固定化酶与细胞
固定化酶和固定化细胞
2022年高考生物总复习:固定化酶和固定化细胞
(1)固定化酶
①形成:将水溶性的酶用物理或化学的方法固定在某种介质上,使之成为不溶于水而又有酶活性的制剂。
②特性:与游离酶相比较,稳定性好,与底物和产物容易分离,易于控制,能反复多次使用;便于运输和贮存,有利于自动化生产。
(2)固定化细胞:是指固定在一定空间范围内的、能够进行生命活动并且可以反复使用的活细胞,又叫做固定化活细胞或固定化增殖细胞。
(3)固定技术
①概念:利用物理或化学方法将酶或细胞固定在一定空间内的技术。
②方法(连线)
提示A—b—ⅠB—a—ⅡC—c—Ⅲ
③适用对象
一般来讲,酶更适合采用化学结合法和物理吸附法固定化,而细胞多采用包埋法固定化,这是因为个大的细胞难以被吸附或结合,而个小的酶则易从包埋材料中漏出。
第1页共1页。
酶与细胞的固定化
发酵液中含菌体少,有利于产品的分离纯化,提高产品质量等
第五节 固定化酶和固定化细胞的表征
• 缺点:酶与载体相互作用力弱,酶易脱落等 1)引入功能团和间隔臂;
第五节 固定化酶和固定化细胞的表征
酶被物理吸附于不溶性载体的一种固定化方 固定化后酶的哪些主要性质发生了变化?变化的趋势及原因分析.
常见非共价法?常见共价法?
法。 少量的持续不断的配基的脱落;
交联法由于不需要活化基团,所以条件比较温和,酶活的回收率比较高? 活力回收:指固定化后固定化酶(或细胞)所显示的活力占被固定的等当量游离酶(细胞)总活力的百分比. 第五节 固定化酶和固定化细胞的表征
颗粒、线条、薄膜和酶管等形状。颗粒状占 绝大多数,它和线条主要用于工业发酵生产 ,薄膜主要用于酶电极。酶管机械强度较大 ,主要用于工业生产。
固定化酶的优势:
① 极易将固定化酶与底物、产物分开;产物溶 液中没有酶的残留,简化了提纯工艺;
② 可以在较长时间内进行反复分批反应和装柱 连续反应
③ 酶反应过程能够加以严格控制; ④ 较游离酶更适合于多酶反应; ⑤ 在大多数情况下,能够提高酶的稳定性; ⑥ 可以增加产物的收率,提高产物的质量; ⑦ 酶的使用效率提高、成本降低。
在中性pH下优先与a-氨基反应,因此有一定的选择性 缺点:在包埋过程发生的化学反应同样会导致酶的失活。
• 优点:酶活性中心不易被破坏,酶高级结构 二、载体活化程度和固定化配基密度的测定
固定化过程中,酶分子空间构象会有所变化,甚至影响了活性中心的氨基酸;
用此法制备的固定化酶有蛋白酶、脲酶、核糖核酸酶等。
第五章 固定化酶和细胞
制备固定化酶的依据
1.固定化酶必须能保持酶原有的专一性、 1.固定化酶必须能保持酶原有的专一性、高效催化 固定化酶必须能保持酶原有的专一性 能力和常温、常压下能起催化反应等特点。 能力和常温、常压下能起催化反应等特点。 2.固定化酶应能回收、贮藏,利于反复使用。 2.固定化酶应能回收、贮藏,利于反复使用。 固定化酶应能回收 3.固定化酶应用于机械化和自动化操作 固定化酶应用于机械化和自动化操作, 3.固定化酶应用于机械化和自动化操作,所用载体 常有一定的机械强度。 常有一定的机械强度。 4.固定化酶应能保持甚至超过原有酶液的活性 固定化酶应能保持甚至超过原有酶液的活性。 4.固定化酶应能保持甚至超过原有酶液的活性。即 要保护活性中心基团。 要保护活性中心基团。 5.固定化酶应能最大程度与底物接近 固定化酶应能最大程度与底物接近, 5.固定化酶应能最大程度与底物接近,从而提高产 具有最小的空间位阻。 量。具有最小的空间位阻。 6.固定化酶应有最大的稳定性 固定化酶应有最大的稳定性。 6.固定化酶应有最大的稳定性。 7.固定化酶应易与产物分离 固定化酶应易与产物分离。 7.固定化酶应易与产物分离。
随着固定化技术的发展,出现固定化菌体 1973年 随着固定化技术的发展,出现固定化菌体 。1973年,日 本首次在工业上应用固定化大肠杆菌菌体中的天门冬氨 酸酶,由反丁烯二酸连续生产L 天门冬氨酸。 酸酶,由反丁烯二酸连续生产L-天门冬氨酸。 在固定化酶和固定化菌体的基础上,70年代后期出现了 在固定化酶和固定化菌体的基础上,70年代后期出现了 固定化细胞技术 技术。 1976年 固定化细胞技术。 1976年,法国首次用固定化酵母细胞 生产啤酒和酒精,1978年日本用固定化枯草杆菌生产淀 生产啤酒和酒精,1978年日本用固定化枯草杆菌生产淀 粉酶,开始了用固定化细胞生产酶的先例。 粉酶,开始了用固定化细胞生产酶的先例。 1982年 日本首次研究用固定化原生质体生产谷氨酸, 1982年,日本首次研究用固定化原生质体生产谷氨酸, 固定化原生质体生产谷氨酸 取得进展。固定化原生质体由于解除了细胞壁的障碍, 取得进展。固定化原生质体由于解除了细胞壁的障碍, 更有利于胞内物质的分泌, 更有利于胞内物质的分泌,这为胞内酶生产技术路线的 变革提供了新的方向。 变革提供了新的方向。
固定化技术应用-酶和细胞的固定化
固定化技术应用-酶和细胞的固定化试题中出现固定酶能不能催化一系列反应,查找资料,没有权威资料认为已经存在催化系列反应的酶,应该是研究方向。
选修知识的考查已经出现应用方向,也拓展到了技术的前景。
也就是说,需要在教学中创设情境适当扩大知识面,结合试题进行教学会收到很好的效果,如固定化酶技术可以拓展到固定化细胞。
问题:固定化技术以及发展前景如何?什么是固定化酶?什么是固定化细胞?011.固定化酶技术固定化酶技术是用物理或化学手段。
将游离酶封锁住固体材料或限制在一定区域内进行活跃的、特有的催化作用,并可回收长时间使用的一种技术。
酶的固定化技术已经成为酶应用领域中的一个主要研究方向。
经固定化的酶与游离酶相比具有稳定性高、回收方便、易于控制、可反复使用、成本低廉等优点,在生物工业、医学及临床诊断、化学分析、环境保护、能源开发以及基础研究等方面发挥了重要作用。
2.固定化酶技术的发展以前,固定化酶技术是把从生物体内提取出来的酶,用人工方法固定在载体上。
1916年Nelson和GrImn最先发现了酶的固定化现象。
科学家们就开始了同定化酶的研究工作。
1969年日本一家制药公司第一次将固定化的酰化氨基酸水解酶用于从混合氨基酸中生产L-氮基酸,开辟了固定化酶在工业生产中的新纪元。
我国的固定化酶研究开始于1970年,首先是微生物所和上海生化所的工作者开始了固定化酶的研究。
当今,固定化酶技术发展方向是无载体的酶固定化技术。
邱广亮等用磁性聚乙二醇胶体粒子作载体,采用吸附-交联法,制备出具有磁响应性的固定化糖化酶,简称磁性酶(M I E)一方面由于载体具有两亲性,M I E可稳定的分散于水相或有机相中,充分的进行酶催化反应;另一方面,由于载体具有磁响应性,M I E又可借助外部磁场简单地回收,反复使用,大大提高酶的使用效率。
Puleo等将钛合金表面用丙烯酸胺等离子体处理引入氨基,然后将含碳硝化甘油接枝于钛合金表面,或者将等离子体处理的钛合金先由琥珀酸酐处理,再用含碳硝化甘油接枝,进而将溶菌酶和骨形态蛋白进行固定,实现了生物分子在生物惰性金属上的固定化。
固定化酶与固定化细胞
(2) 共价结合法
此法得到的固定化 酶结合牢固、稳定 性好、利于连续使 用,因此它是目前 应用最多的一类固 定化酶的方法。
借助共价键将酶的活性非 必须侧链基团或细胞表面 基团(如氨基、羧基、羟 基、巯基、咪唑基等)和 载体的功能基团进行偶联 以达到固定化目的方法。
共价偶联法的优点、缺点
共价偶联法的优点:得到的固定化酶结合牢固、稳定性 好、利于连续使用。 共价偶联法的缺点:载体活化的操作复杂,反应条件激 烈,需要严格控制条件才可以获得较高活力的固定化酶。 同时共价结合会影响到酶的空间构象,从而对酶的催化 活性产生影响。
ro
rb
NaCS
ri
NaCS
ra
固定化酶的制法及其特性比较
特性
共价键 结合法
制备方法
离子 结合法
交联法
物理 包埋法 吸附法
制法 酶活力 底物特异性
难 高 易变
结合能力 再生
强 不可
易 高 不变
难 中 易变
中 可能
强 不可
易 低 不变
弱 可能
难 高 不变
弱
不可
固定化酶的保存方法
一.真空冷冻干燥保存(长期保存) 二.低温保存 三.多孔玻璃的无机质载体比纤维素等的有机质载体
含羟基的载体可用三氯 三嗪等多卤代物进行活 化,形成含有卤素基团 的活化载体。
D.硅烷化法
多孔玻璃特点: 机械强度好,表面积大。 耐有机溶剂和微生物破坏。载体可以再生,寿
命长等。
D.硅烷化 法
一般常用的载体:多 孔玻璃,多孔陶瓷。
D
. 硅 烷 化 法
D
. 硅 烷 化 法
D.硅烷化 法
E .溴化氰法
大小 和总吸附面积的大小。
固定化酶和固定化细胞技术
张 海 龙山东教育学院 生物系Shan Dong Institute of Education第九章 第九章 固固定化酶与固定化细胞技术第一节固定化酶•固定化酶:是指在在一定空间内呈闭锁状态存在的酶,能连续地进行反应,反应后的酶可以回收重复利用。
•酶的固定化是将酶与水溶性载体结合,制备固定化酶的过程。
固定化酶的特点(与游离酶相比)•(1)极易将固定化酶与底物、产物分开,产物溶液中没有酶的残留,提纯工艺简化;•(2)能够在较长时间 进行反应,便于实现连续化和自动化;•(3)大多数情况下,能够提高酶的稳定性;•(4)酶的反应过程能够严格控制;•(5)酶的利用率提高,生产成本降低;•(6)能够进行多酶反应;•(7)可以增加产物收率,提高产物的质量;•(8)增加了生产的成本;•(9)只能用于可溶性小分子底物,对大分子的底物适应性差,与完整的菌体细胞相比,不适宜于多酶反应,特别是需要辅助因子的反应。
一、固定化酶的制备方法•根据不同应用目的和不同应用环境选择不同的方法,遵循如下原则:–(1)必须维持酶的催化活性以及专一性;–(2)有利于实现连续化和自动化;–(3)固定化酶应有最小的空间位阻,尽可能不妨碍酶与底物的接近,以便提高产品的质量;–(4)酶与载体必须结合牢固,便于回收贮存,反复利用;–(5)固定化酶应有最大的稳定性,所选载体不应与产物或反应液发生化学反应;–(6)成本要低,以便于工业使用;实践中,可根据酶的性质,反应特征选择合适的方法。
•(一)包埋法:–1、网格型–2、微囊型:界面沉淀法、界面聚合、二级乳化法、脂质包埋法•(二)吸附法:–1、物理吸附法–2、离子吸附法•(三)、共价偶联法•(四)、交联法•(五)、共价结合法–1、结晶法–2、分散法酶固定化方法示意图二、固定化酶的性质1、稳定性2、最适温度最适pH pH3、最适4、底物特异性go稳定性比游离酶的好(1)对热的稳定性提高,可以耐受较高的温度2040608010030405060708090Temperature ( ºC )R e l a t i v e a c t i v i t y (%)A BA 固定化酶B 游离酶稳定性(续)(2)保存稳定性好,保存时间延长(3)对蛋白酶的抵抗性增强,不易被蛋白(4)对变性剂)对变性剂((如尿素、有机溶剂、盐酸胍等如尿素、有机溶剂、盐酸胍等))的耐受性提高,保留较高酶活(5)对酶抑制剂、对不同)对酶抑制剂、对不同pH pH pH稳定性提高稳定性提高稳定性提高..(back back))最适温度与游离酶差不多050100150200250300350304050607080Temperature ( ºC )R e l a t i v e a c t i v i t y (%)A B最适温度(续)例外用重氮法制备的固定化胰蛋白酶和胰凝乳蛋白酶,5-10℃;比游离酶高比游离酶高5-105-15 ℃以共价结合法固定的色氨酸酶,比游离酶高5-15 以共价结合法固定的色氨酸酶,比游离酶高汤亚杰以交联法用壳聚糖固定胰蛋白酶最适温度为30 ℃同一种酶;80 ℃,比固定化前提高了,比固定化前提高了30用不同的方法或载体进行固定化,其最适温度可能不同不同方法和载体固定化氨基酰化酶的最适温度 <60烷基化法DEAE-DEAE-葡聚糖凝胶葡聚糖凝胶 67离子键结合法DEAE-DEAE-纤维素纤维素 72离子键结合法DEAE-DEAE-葡聚糖凝胶葡聚糖凝胶 60游离最适温度最适温度((℃ ) 方法载体载体最适pH 值酶固定化后,对底物作用的最适酶固定化后,对底物作用的最适pH pH pH和酶和酶—pH pH曲线常发生偏曲线常发生偏移(见图),原因是微环境表面电荷性质的影响带负电荷的载体,固定化酶最适pH 值比游离酶的高(1)载体的带电性质对最适pH 的影响原因:吸引作用带正电荷的载体,固定化酶最适pH 值比游离酶的低H +H +H +H +H +H +H +偏酸微环境OH -OH -OH -OH -OH -OH -H+H+大环境偏碱酶不带电荷的载体,固定化酶最适pH 值一般不变(2)产物酸碱性对最适pH 值的影响酸性酸性::固定化酶的最适固定化酶的最适pH pH pH值比游离酶的高值比游离酶的高碱性碱性::固定化酶的最适固定化酶的最适pH pH pH值比游离酶的低值比游离酶的低中性中性::固定化酶的最适固定化酶的最适pH pH pH值一般不变值一般不变原因原因::载体障碍产物的扩散底物的特异性与底物分子量的大小有关与底物分子量的大小有关;;作用于低分子量底物的酶,没有明显变化,如氨基酰化酶、葡聚糖氧化酶等酰化酶、葡聚糖氧化酶等;;既可作用于大分子底物,又可作用于小分子底物的酶,往往会发生变化。
第五章固定化酶和细胞
2 固定化酶的研究历史
固定化酶的研究从50年代开始,1953年德国的 Grubhofer 和Schleith采用聚氨基苯乙烯树脂为载体与羧肽酶、淀粉 酶、胃蛋白酶、核糖核酸酶等结合,制成固定化酶。
60年代后期,固定化技术迅速发展起来。1969年,日本的 千烟一郎首次在工业上生产应用固定化氨基酰化酶从DL氨基酸连续生产L-氨基酸,实现了酶应用史上的一大变革。
交联法
借助双功能试剂使酶分子之间发生交联作用,制成网状结构的固 定化酶的方法。
常用的双功能试剂有戊二醛、 己二胺、顺丁烯二酸酐、双偶 氮苯等。其中应用最广泛的是 戊二醛。
戊二醛有两个醛基,这两个醛基都可与酶或蛋白质的游离氨基反 应,形成席夫(Schiff)碱,而使酶或菌体蛋白交联,制成固定 化酶或固定化菌体。
在使用固定化酶时,必须引起注意。影响固定化酶最适pH值的因素 主要有两个,一个是载体的带电性质,另一个是酶催化反应产物的 性质。 固定化酶的底物特异性与游离酶比较可能有些不同,其变化与底物 分子量的大小有一定关系。固定化酶底物特异性的改变,是由于载 体的空间位阻作用引起的。
本章 目录
5 固定化酶的应用
中通CO2气体进行反应 实现了辅酶的内部循环 该固定化系统表现出较好的
循环使用的稳定性
酶和辅酶 共固定化
( Ei-Zahab, et al. 2008; Matsuda T. et al. 2009 )
E2 E1
环氧琥珀酸水解酶生产L-(+)-酒 石酸
江苏 常茂生化
底 物
产 物
常茂生化利用凝胶包埋固定化含环氧琥珀酸水解酶的
DL-乙酰氨基酸拆分
固定化酶与固定化细胞
生化代谢产物,需由多种酶经多步酶促反应才能合成. 生化代谢产物,需由多种酶经多步酶促反应才能合成. 多酶反应器,为制造那些在有机合成上很棘手的, 多酶反应器,为制造那些在有机合成上很棘手的,结构 复杂的生化代谢物开辟了一条新的途径. 复杂的生化代谢物开辟了一条新的途径.
固定化细胞
直接把微生物细胞固定化
包埋法是制备固定化细胞最常用的方法. 包埋法是制备固定化细胞最常用的方法.将 产酶菌株用包埋剂如聚丙烯酰胺凝胶, 产酶菌株用包埋剂如聚丙烯酰胺凝胶,琼脂糖 凝胶,琼脂,海藻酸,卡拉胶, 凝胶,琼脂,海藻酸,卡拉胶,二和三醋酸纤 胶原,明胶和戊二醛等包埋起来, 维,胶原,明胶和戊二醛等包埋起来,发挥酶 或酶系的作用. 或酶系的作用. 例如: 3m1细胞悬浮液加人到 例如:海藻酸包埋 3m1细胞悬浮液加人到 2% 溶液中,置冰箱10h 10h, 20ml 2%CaCl2溶液中,置冰箱10h,用 100ml生理盐水洗二次 生理盐水洗二次. 100ml生理盐水洗二次. 注意:如果反复使用固定化细胞,需要避免 注意:如果反复使用固定化细胞, 其他微生物的污染, 其他微生物的污染,在工业生产中细胞的固 定化是在严格无菌条件下进行. 定化是在严格无菌条件下进行.
酶分子被结合到水不溶性 载体上共价结合形成水不 溶性的固定化酶
交联法
使用双功能或多功能试剂使酶分子之间相互 交联呈网状结构的固定化方法. 交联呈网状结构的固定化方法. 最常用的双功能试剂有戊二醛, 最常用的双功能试剂有戊二醛,顺丁稀二酸 酐和乙烯共聚物等.酶蛋白中的游离氨基, 酐和乙烯共聚物等.酶蛋白中的游离氨基,酚 咪唑基及巯基均可参与交联反应. 基,咪唑基及巯基均可参与交联反应. 双功能试剂: 双功能试剂: 常用的是戊二醛 常用的是戊二醛 O O
固定化酶和固定化细胞的制作方法
固定化酶的制作方法固定化酶的方法主要有吸附法、包埋法、共价结合法、共价交联法、结晶法(一)、吸附法吸附法是通过载体表面和酶分子表面间的次级键相互作用而达到固定目的的方法。
只需将酶液与具有活泼表面的吸附剂接触,再经洗涤除去未吸附的酶便能制得固定化酶。
是最简单的固定化技术,在经济上也最具有吸引力.物理吸附法(physical adsorption)是通过氢键、疏水键等作用力将酶吸附于不溶性载体的方法。
常用的载体有:高岭土、皂土、硅胶、氧化铝、磷酸钙胶、微空玻璃等无机吸附剂,纤维素、胶原以及火棉胶等有机吸附剂。
离子结合法(ion binding)是指在适宜的pH和离子强度条件下,利用酶的侧链解离基团和离子交换基间的相互作用而达到酶固定化的方法(离子键)。
最常用的交换剂有CM-纤维素、DEAE-纤维素、DEAE-葡聚糖凝胶等;其他离子交换剂还有各种合成的树脂如Amberlite XE-97、Dowe X-50等。
离子交换剂的吸附容量一般大于物理吸附剂。
影响酶蛋白在载体上吸附程度的因素:1. pH:影响载体和酶的电荷变化,从而影响酶吸附。
2. 离子强度:多方面的影响,一般认为盐阻止吸附。
3. 蛋白质浓度:若吸附剂的量固定,随蛋白质浓度增加,吸附量也增加,直至饱和。
4. 温度:蛋白质往往是随温度上升而减少吸附。
5. 吸附速度:蛋白质在固体载体上的吸附速度要比小分子慢得多。
6. 载体:对于非多孔性载体,则颗粒越小吸附力越强。
多孔性载体,要考虑吸附对象的大小和总吸附面积的大小。
吸附法的优点:操作简单,可供选择的载体类型多,吸附过程可同时达到纯化和固定化的目的,所得到的固定化酶使用失活后可以重新活化和再生。
吸附法的缺点:酶和载体的结合力不强,会导致催化活力的丧失和沾污反应产物;经验性强。
(二)、包埋法包埋法是将酶物理包埋在高聚物网格内的固定化方法。
(如将聚合物的单体和酶溶液混合后,再借助聚合促进剂的作用进行聚合,将酶包埋于聚合物中以达到固定化的目的)。
固定化酶与固定化细胞技术
固定化酶与固定化细胞技术酶是具有生物催化功能的生物大分子(蛋白质或RNA),但通常指的是由氨基酸组成的酶,本章也仅探讨此类酶。
作为一种生物催化剂,参与生物体内各种代谢反应,而且反应后其数量和性质不发生变化。
由于酶的高级结构对环境十分敏感,各种因素(包括物理因素、化学因素和生物因素)均有可能使酶丧失活力。
但在常温常压条件下能高效地进行反应,且具有很高的专一性,副反应少,许多难以进行的有机化学反应在酶的作用下都能顺利进行。
由于酶的这些特点,大大促进了酶的应用和酶技术的研究。
酶被人们广泛应用于酿造、食品、医药等领域,特别是近几年来,随着分子生物学的发展,酶的应用更加活跃。
由于酶反应随着时间的延长,反应速度会逐渐降低,反应后酶不能回收,这就限制了酶的应用范围。
如果能将酶固定在惰性支持物上制成固定化酶,仍具有催化作用,还能回收反复使用,并且生产可以连续化、自动化。
从20世纪60年代固定化酶技术发展以来,不仅在酶学理论研究中发挥独特作用,在实际应用中也显示出强大的威力。
随着技术的不断发展,广义的固定化酶发展到固定化辅酶、固定化细胞及固定化细胞器等,固定化酶在食品、医药、化工和生物传感器制造上都有成功的应用实例。
对一个特定的目的和过程来说,是采用细胞,还是采用分离后的酶作催化剂,要根据过程本身来决定。
一般来说,对于一步或两步的转化过程用固定化酶较合适;对多步转换,采用固定化细胞显然有利。
第一节固定化酶固定化酶(immobilized enzyme)是指在一定空间内呈闭锁状态存在的酶,能连续地进行反应,反应后的酶可以回收重复使用。
酶的固定化是将酶与水不溶性载体结合,制备固定化酶的过程。
固定化酶的形状依不同用途有颗粒、线条、薄膜和酶管等,颗粒状占绝大多数;颗粒和线条主要用于工业发酵生产;薄膜主要用于酶电极;酶管机械强度较大,主要用于化学工业生产。
目前,由于固定化酶的性质比游离酶及其相关技术优越,人们对其极感兴趣,因此固定化酶的应用也与日俱增。
酶与细胞的固定化
(二)包埋法
原理
– 将酶包埋于格子(Lattice)内,格子的结构可以防止蛋白质 渗出于周围基质中,但是底物仍能渗入格子内与酶相接 触
优缺点
– 优点:酶分子本身不参加水不溶性格子的形成、方法较 为简便、酶分子未受到化学作用、活力较高
– 缺点:不适用于大分子底物
根据使用包埋剂分类
– 聚丙烯酰胺凝胶包埋法、辐射包埋法、卡拉胶包埋法、 大豆蛋白质包埋法、微囊法等
– 利用聚丙烯酰胺凝胶或胶原膜包埋谷氨酸棒杆菌,用分批法或装柱 法连续由葡萄糖合成
L-苹果酸
– 利用聚丙烯酰胺凝胶包埋含有延胡索酸酶的产氨短杆菌
35
(五)生产 a-淀粉酶
方法
– 利用聚丙烯酰胺凝胶包埋枯草杆菌
特点
– 凝胶中的细菌在保温过程中仍在生长
36
二、固定化技术需要考虑的重要因素
本征速率和动力学参数
– 聚丙烯酰胺凝胶、琼脂凝胶、骨胶原、海藻酸钙 凝胶,K-角叉菜聚糖等
26
常用包埋剂的优缺点
K-角叉菜聚糖
– 制法简单,机械强度好,稳定性高,不影响细胞的代谢 活力
– 国内来源困难
海藻酸钙
– 钙离子容易被培养基中的磷酸根离子夺走而使凝胶解体
聚丙烯酰胺凝胶
– 孔径控制容易,机械强度好,富有弹性,细胞的活性高
抗生素
– 利用固定化细胞可以由单一营养物生成杆菌肽, 比传统发酵法(用淀粉-肉汤培养基)优越
33
(三)生产酒精和啤酒
酒精
– 传统酒精发酵需要大型发酵罐,不但设备繁杂, 操作困难,而且耗费一部分糖以供酵母生长之用 – 应用固定化细胞进行连续发酵后,酒精发酵时间 由传统方法的36h缩短至3h以下,乙醇生产能力 每小时为20~50g/L,而传统方法仅为2g/L – 细菌固定化的研究也颇为活跃
固定化酶与固定化细胞(第六章)
固定化催化剂的特殊应用( 固定化催化剂的特殊应用(三) 特殊应用 药物控释载体9
药物释放要求: 定点(靶向性); 定量(太高太低均有害); 避免被(胃酸、蛋白酶)破坏; 避免引起免疫反应。 措施:聚合物修饰;凝胶包埋;制成微球 制剂或脂质体、具有导向性的药物等。
固定化催化剂的特殊应用( 固定化催化剂的特殊应用(四) 特殊应用 --生物传感器
第六章 固定化酶与固定化细胞
固定化酶定义的形成以及扩展
固定化酶是20世纪50年代发展起来的一项新技术, 最初称“ 水不溶性酶 ”(water insoluble enzyme) 和 “ 固相酶 ” (solid phase enzyme),是将水溶性的酶 与不溶性的载体结合起来。 后来,人们发现可以将酶包埋在凝胶内或置于超滤装 置中,高分子底物与酶在超滤膜的一边,反应产物可以 透过膜逸出。这种情况下,酶本身仍处于溶解状态,只 不过是被固定在一个有效的空间内。再用上面的名字已 不合适。 1971年第一次国际酶工程会议上统一称为“ 固定化 酶”。(immobilized enzyme )是指在一定空间内成闭索 状态存在的酶,能连续地进行反应,反应后酶可以回收 利用。 “ 固定化的生物催化剂” 包含酶、含酶细胞及微生物 的固定化。1
固定化酶半衰期(T 固定化酶半衰期(T1/2)的测定
测定半衰期的意义:评价固定化方法;生 产上决定更换酶的时机。 定义:从开始到活力只剩一半时所经历的 时间。有使用半衰期,贮藏半衰期等。 方法:直接法测既费时、费力,有时还不 可行(如半衰期很长)。 参考测定放射性元素半衰期的做法,间接 测定。
间接法测定固定化酶半衰期T 间接法测定固定化酶半衰期T1/2
生物催化剂固定化的优点
o 某些酶回到了它在体内的原始状态。 o 可以重复使用,节约了成本。 o 使用时方便得多,对产物抑制型反应既有 利又方便。 o 催化剂易和产物分离,有利于提高产品质 量(如生产针剂药品,最后不能含蛋白 质)。 o 大多数情况下催化剂固定化后稳定性提高。 o 酶反应过程可以控制。 o 较游离酶更适合于多酶体系反应。
生化工程固定化酶和细胞
底物从反应液传递到载体表面 (外扩散)
↓
底物从载体表面移向酶活性中心 (内扩散)
↓
底物与酶反应
↓
产物由反应位点移向载体表面 (内扩散)
↓
产物传递到反应液中(外扩散)
¾ 总的反应速度取决于最慢的步 骤
就是说固定化酶反应过程是由底物及产物的外 扩散、内扩散及反应等一系列分过程组成的。 传质过程必然影响到总体过程的速率。
④选择率Ssp (selectivity)
当反应过程中有副反应发生,除生成目的产物 外,还生成其它产物时,通常使用选择率这个概 念。
Ssp是指实际转化成目的产物量与全部底物可生
成产物S的sp 理= 论as量p (之sp0 比− 。s)
式 中 asp代表1摩尔底物能生成目的产物P的理论量 (摩尔),其数值取决于反应的计量式。
这种由物质扩散引起的固定化酶反应动力学与 游离酶间的差异称为扩散效应。
一般规律为: ①这种效应对反应速度的影响程度既取决于该效
应本身的大小,也取决于它和酶反应固有速度的 相对大小。这就是说,如果酶反应本身的速度很
小,扩散限制产生的影响也就小一些;反之,扩 散限制就将在整个过程起律速作用。
将固定化酶填充于反应器内,制成稳定的柱床, 然后,通入底物溶液,在一定的反应条件下实现 酶催化反应,以一定的流速,收集输出的转化液 (含产物)。在柱床中,液体流动状态接近于平推 流(又称活塞流)型,因此,填充床反应器可以近 似地看成是一种平推流型反应器。
填充床反应器
带循环的填充 床反应器
由于它且有高效率、易操作、结构简单等优点, 因而是目前工业生产及研究中应用最为普遍的反 应器。它适用于各种形状的固定化酶和不含固体 颗粒、强度不大的底物溶液,以及有产物抑制的 转化反应。
最新:第4章 固定化酶和固定化细胞-文档资料
有些情形下,由于产物分子在靠近膜面的位置逐渐积 聚而形成凝胶层,造成酶膜反应器中严重的产物抑制 降低了生产效率。 浓差极化和膜污染使酶膜反应器的传质速率和生产能 力急剧下降,膜孔堵塞、膜厚增加使膜的结构形态发 生不利变化,膜需要频繁地清洗或更换。
4.5.3.3 膜式反应器的应用
酶膜反应器把酶促反应与膜的选择性物质传递 有效地结合在一起,从而创造出有利的过程热 力学和动力学,在生物、医药、化工、环境等 领域得到了越来越广泛的应用。目前膜反应器 的应用主要有:辅酶或辅助因子的再生、有机 相酶催化、手性拆分与手性合成、反胶团中的 酶催化、生物大分子的水解等。
与酶的固定化相比,固定化细胞保持了胞内酶系 的原始状态与天然环境,有效地利用游离细胞完 整的酶系统和细胞膜的选择通透性,既具有固定 化酶的优点,又具有其自身的优越性:
固定化细胞的优越性
①无需进行酶的分离和纯化,减少酶的活力损 失,同时大大降低了成本; ②可进行多酶反应,且不需添加辅助因子,固 定化细胞不仅可以作为单一的酶发挥作用,而 且可以利用菌体中所含的复合酶系完成一系列 的催化反应,对于这种多酶系统,辅助因子再 生容易;
固定化细胞的优越性
③对于活细胞来说,保持了酶的原始状态,酶 的稳定性更高,对污染的抵抗力更强; ④细胞生长停滞时间短,细胞多,反应快等等。 正是由于固定化细胞的这些无可比拟的优势, 尽管其出现远远晚于固定化酶,但其应用范围 比固定化酶更为广泛。
当然,固定化细胞也有其自身的缺点,如:必须 保持菌体的完整,需防止菌体的自溶,否则影响 产物的纯度;必须抑制细胞内蛋白酶对目的酶的 分解;胞内多酶的存在,会形成副产物;载体、 细胞膜或细胞壁会造成底物渗透与扩散的障碍等。
(2)酶膜反应器可将目的产物分离出去,而 酶可以重复利用,可实现连续操作,并有可 能提高复杂反应的选择性。 (3)膜作为酶的固定化载体可以使酶在类似 生物膜的环境中高效发挥作用。
第三章-固定化酶与固定化细胞
⏹第三章固定化酶与固定化细胞⏹第一节概述⏹第二节固定化酶的性质及其影响因素⏹第三节固定化酶的制备⏹第四节固定化细胞⏹第五节固定化辅酶和原生质体⏹第六节酶反应器和固定化酶(细胞)的应用⏹第一节概述⏹什么是固定化酶?⏹第一节概述二.固定化酶的优缺点⏹多次使用⏹可以装塔连续反应⏹优点:纯化简单⏹提高产物质量⏹应用范围广⏹缺点:首次投入成本高⏹大分子底物较困难⏹第一节结束⏹点击返回⏹第二节固定化酶的性质及其影响因素⏹一.影响固定化酶性质的因素⏹二.固定化后酶性质的变化⏹三.评价固定化酶的指标⏹一.影响固定化酶性质的因素1.酶本身的变化,主要是由于活性中心的氨基酸残基、高级结构和电荷状态等发生了变化。
⏹二.固定化后酶性质的变化⏹1.固定化对酶活性的影响:⏹酶活性下降,反应速度下降2.固定化对酶稳定性的影响⏹稳定性提高(原因)⏹3.pH的变化(原因)⏹载体带负电荷,pH向碱性方向移动。
⏹载体带正电荷,pH向酸性方向移动。
⏹催化反应的产物为酸性时,固定化酶的pH值比游离⏹酶的pH值高;反之则低⏹固定化后酶稳定性提高的原因:⏹ a. 固定化后酶分子与载体多点连接。
⏹ b. 酶活力的释放是缓慢的。
⏹ c. 抑制自身降解,提高了酶稳定性。
⏹PH 对酶活性的影响:⏹(1)改变酶的空间构象⏹(2)影响酶的催化基团的解离⏹(3)影响酶的结合基团的解离⏹(4)改变底物的解离状态,酶与底物不能结合或结合后不能生成产物。
⏹4.最适温度变化一般与游离酶差不多,但有些会有较明显的变化。
5.底物特异性变化⏹作用于低分子底物的酶特异性没有明显变化⏹既可作用于低分子底物又可作用于大分子低物的酶⏹特异性往往会变化。
6.米氏常数Km的变化,Km值随载体性质变化(链接)⏹米氏常数Km的变化,Km值随载体性质变化由于分配效应:ρ=[Si]微环境/[S]宏观环境Km'=Km/ρ(表观米氏常数)⏹(1)载体与底物带相同电荷,Si]<[S],ρ<1,Km’>Km固定化酶降低了酶的亲和力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理吸附法
固定化技术 酶复合物
化学结合法
包埋法
将酶或细胞固Leabharlann 化的方法将酶吸附在载体的表面
载体
酶
物理吸附法
将酶或细胞固定化的方法
酶
将酶与载体相互连 接起来
化学结合法
将酶或细胞固定化的方法
将酶包埋在能固 化的载体中
酶
凝胶网 格载体 半透膜 微囊
包埋法
物理吸附法 和________ 化学结合 一般来说,酶更适合采用_____________ 法 固定。
不能
大分子难以通过细胞膜。
那应该采用何种技术?
固定化酶技术
实例:高果糖浆的生产
1、你能说出反应柱的优点吗?
2、固定化酶技术的优点:
(1)使酶既能与反应物接 触,又能与产物分离。 (2)固定在载体上的酶可 以被反复利用,效率高。
在生产实际中使用固定化酶技术的不足:
一种酶只能催化一种化学反应,而在生产实际中很多产 物的形成都通过一系列的酶促反应才能进行,所以操作 比较麻烦。 怎么办?
酶制剂的优点与不足
优点:催化效率高、低耗能、低污染,大规模地应用于
食品、化工等各个领域。
不足:
1.通常对温度、pH等条件非常敏感,容易失活; 2.溶液中的酶很难回收,不能被再次利用,提高了生产 成本; 3.反应后会混在产物中,可能影响产品质量。
办法: 固定化酶与细胞技术
固定化酶与细胞
一、什么是固定化酶?
可采用固定化细胞技术
二、固定化细胞技术
1.什么是固定化细胞技术,可以采用什么方法固定? 2.固定化酶和固定化细胞技术分别适合使用哪种方法? 为什么? 3.固定化细胞固定的是一种酶还是一系列酶? 4.包埋法固定细胞的材料很多,本节使用的载体材料是 哪种?
二、固定化细胞技术
5.如果反应物是大分子物质,能否用固定化细胞技术? 为什么?