直线的倾斜角和斜率教案

合集下载

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案一、教学目标1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 掌握直线的斜率公式,能够计算直线的斜率。

3. 能够运用直线的倾斜角和斜率解决实际问题。

二、教学重点1. 直线的倾斜角的概念。

2. 直线的斜率公式的运用。

三、教学难点1. 直线的倾斜角的求解。

2. 直线的斜率的计算。

四、教学准备1. 教师准备PPT,内容包括直线的倾斜角和斜率的定义、公式和例题。

2. 准备黑板和粉笔,用于板书和讲解。

五、教学过程1. 导入:通过提问方式引导学生回顾初中阶段学习的直线方程和倾斜角的概念,为新课的学习做好铺垫。

2. 直线的倾斜角的概念:讲解直线的倾斜角的定义,通过图形和实例让学生直观地理解直线的倾斜角。

3. 直线的斜率公式:讲解直线的斜率公式,并通过图形和实例让学生理解公式的含义和运用。

4. 例题讲解:给出几个例题,让学生上台板书和讲解,巩固对直线的倾斜角和斜率的理解和运用。

5. 课堂练习:给出几道练习题,让学生独立完成,检测对直线的倾斜角和斜率的掌握程度。

7. 作业布置:布置几道有关直线的倾斜角和斜率的作业题,让学生课后巩固。

六、教学反思通过本节课的教学,发现学生在直线的倾斜角的求解和直线的斜率的计算方面存在一定的困难。

在今后的教学中,应更加注重这两个方面的讲解和练习,让学生更好地理解和掌握。

结合实际问题,让学生感受直线的倾斜角和斜率在解决实际问题中的重要性。

七、教学评价通过课堂讲解、例题讲解和课堂练习,评价学生对直线的倾斜角和斜率的掌握程度。

关注学生在课后作业的完成情况,全面评估学生对本节课内容的掌握。

八、教学拓展1. 讲解直线的倾斜角和斜率在实际问题中的应用,如计算直线的倾斜角度数、求解直线的斜率等。

2. 引导学生思考直线的倾斜角和斜率与其他数学概念的联系,如与函数、方程等的关系。

九、教学资源1. PPT课件。

2. 直线方程和倾斜角的相关教材和辅导书。

3. 网络资源,如直线斜率的计算器等。

直线的倾斜角和斜率教学设计

直线的倾斜角和斜率教学设计

直线的倾斜角和斜率教学设计教学设计:直线的倾斜角和斜率一、教学目标:1.知识目标:理解直线的倾斜角和斜率的概念,能够计算直线的斜率。

2.能力目标:能够运用直线的倾斜角和斜率解决实际问题。

3.情感目标:培养学生对数学的兴趣和积极参与数学学习的态度。

二、教学内容:1.直线的倾斜角和斜率的概念介绍。

2.直线的斜率的计算方法。

3.直线的倾斜角和斜率在实际问题中的应用。

三、教学过程:1.导入新知识(5分钟)让学生观察一些直线的图片,引导学生思考直线的特征和性质。

然后提出问题:“如何刻画直线的倾斜程度?”进一步引导学生思考斜率的概念。

2.概念讲解(10分钟)介绍直线的倾斜角和斜率的概念,并进行示例说明。

通过几个具体图例,让学生理解倾斜角和斜率的计算方法。

3.斜率计算练习(15分钟)在黑板上给出几组直线的坐标,让学生自行计算斜率。

然后互相交流答案,老师给予必要的指导和讲解。

4.斜率的性质探究(10分钟)在黑板上给出不同的两条直线,让学生分别计算斜率并进行比较,引导学生发现两条平行线的斜率相等,两条垂直线的斜率的乘积为-15.应用实例探讨(20分钟)以实际问题为例,引导学生应用倾斜角和斜率的概念计算问题。

例如,计算两个点之间的坡度、判断两个线段的交叉情况等。

6.巩固练习(15分钟)提供一些练习题,要求学生计算直线的斜率,并在给出的坐标系中绘制这些直线。

让学生将所学知识应用到实际问题中,巩固对倾斜角和斜率的理解和计算能力。

7.拓展应用(15分钟)让学生从生活实际中寻找更多的与斜率相关的问题,并用倾斜角和斜率的概念解决这些问题。

鼓励学生讨论和分享解决思路,加深对知识的理解和应用能力。

8.知识总结(5分钟)让学生自主总结直线的倾斜角和斜率的关系,并展示自己的总结。

教师进行点评和补充说明。

四、课堂训练:借助数字资源软件或练习册等材料,布置适量的作业题目,巩固学生对直线的倾斜角和斜率的理解和应用。

五、教学反思:本教学设计通过多种方式引导学生理解直线的倾斜角和斜率的概念,并加以实际问题的应用,既注重了学生的思维能力培养,又培养了学生对数学的兴趣和动手能力。

直线的倾斜角与斜率教案

直线的倾斜角与斜率教案

直线的倾斜角与斜率教案一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 让学生掌握直线的斜率计算公式,能够计算直线的斜率。

3. 让学生了解直线的倾斜角与斜率之间的关系,能够运用关系解决问题。

二、教学重点与难点:1. 教学重点:直线的倾斜角的概念,直线的斜率计算公式,直线的倾斜角与斜率之间的关系。

2. 教学难点:直线的倾斜角与斜率之间的关系的运用。

三、教学方法:1. 采用问题驱动法,引导学生主动探究直线的倾斜角与斜率之间的关系。

2. 利用数形结合法,让学生在几何图形中观察和理解直线的倾斜角与斜率。

3. 运用实例分析法,让学生通过实际问题运用直线的倾斜角与斜率之间的关系。

四、教学准备:1. 教学课件:直线的倾斜角与斜率的定义及计算公式。

2. 教学素材:几何图形、实际问题。

3. 教学工具:黑板、粉笔、直尺、圆规。

五、教学过程:1. 导入新课:通过复习平面几何中直线的基本概念,引导学生进入直线的倾斜角与斜率的学习。

2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解如何求直线的倾斜角。

3. 讲解直线的斜率:介绍直线的斜率计算公式,讲解如何计算直线的斜率。

4. 探究直线的倾斜角与斜率之间的关系:引导学生通过几何图形和实际问题,探究直线的倾斜角与斜率之间的关系。

5. 巩固知识:通过实例分析,让学生运用直线的倾斜角与斜率之间的关系解决问题。

6. 课堂小结:总结直线的倾斜角与斜率的概念、计算方法和关系。

7. 布置作业:布置有关直线的倾斜角与斜率的练习题,巩固所学知识。

六、教学反思:在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了直线的倾斜角与斜率的概念和计算方法,以及是否能够运用关系解决问题。

如有问题,要及时调整教学方法,提高教学质量。

七、课时安排:本节课安排2课时,第一课时讲解直线的倾斜角和斜率的概念及计算方法,第二课时讲解直线的倾斜角与斜率之间的关系和巩固知识。

八、教学评价:通过课堂讲解、练习题和实际问题解决,评价学生对直线的倾斜角与斜率的掌握程度。

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案一、教学目标1. 知识与技能:(1)理解直线的倾斜角的概念,能够求出直线的倾斜角;(2)掌握直线的斜率与倾斜角的关系,能够计算直线的斜率;(3)能够运用直线的倾斜角和斜率解决实际问题。

2. 过程与方法:通过观察实际情境,让学生感受直线的倾斜角和斜率的概念,培养学生的观察能力和思维能力。

3. 情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。

二、教学重点与难点1. 教学重点:(1)直线的倾斜角的概念;(2)直线的斜率与倾斜角的关系;(3)运用直线的倾斜角和斜率解决实际问题。

2. 教学难点:直线的斜率与倾斜角的计算。

三、教学过程1. 导入新课:通过展示实际情境,如倾斜的梯子、斜坡等,引导学生思考直线的倾斜角和斜率的概念。

2. 讲解直线的倾斜角:(1)介绍直线的倾斜角的概念,即直线与水平线之间的夹角;(2)引导学生通过观察和思考,理解直线的倾斜角的大小与直线的斜率之间的关系。

3. 讲解直线的斜率:(1)介绍直线的斜率的概念,即直线的倾斜角的正切值;(2)引导学生通过观察和思考,掌握直线的斜率与倾斜角的关系;(3)举例说明如何计算直线的斜率。

4. 练习与巩固:布置一些有关直线的倾斜角和斜率的练习题,让学生独立完成,巩固所学知识。

四、课后作业1. 请描述直线的倾斜角和斜率的概念,并说明它们之间的关系。

(1)直线y = 2x + 3;(2)直线x = 4。

五、教学反思通过本节课的教学,学生应该能够理解直线的倾斜角和斜率的概念,并掌握它们之间的关系。

在教学过程中,要注意引导学生通过观察和思考,培养学生的观察能力和思维能力。

布置适量的练习题,让学生巩固所学知识。

在课后,要关注学生的学习情况,及时进行教学反思,不断提高教学质量。

六、教学拓展1. 探讨直线的倾斜角与斜率在实际应用中的例子,如建筑设计中的斜屋顶、物理学中的倾斜面等。

2. 引导学生思考直线的倾斜角和斜率在几何图形中的作用,如在三角形、四边形等图形中的运用。

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案一、教学目标1.理解直线的倾斜角和斜率的概念;2.掌握求直线的倾斜角和斜率的方法;3.能够应用直线的倾斜角和斜率解决实际问题。

二、教学重点1.直线的倾斜角和斜率的概念;2.求直线的倾斜角和斜率的方法。

三、教学难点1.直线的倾斜角和斜率的关系;2.应用直线的倾斜角和斜率解决实际问题。

四、教学内容1. 直线的倾斜角和斜率的概念直线的倾斜角是指直线与水平线之间的夹角,用α表示。

直线的斜率是指直线的倾斜程度,用k表示。

2. 求直线的倾斜角和斜率的方法(1)已知直线的解析式设直线的解析式为y=kx+b,其中k为斜率,b为截距。

直线的倾斜角可以用斜率k求得,即tanα=k。

直线的斜率可以用解析式求得,即k=(y2-y1)/(x2-x1)。

(2)已知直线上两点坐标设直线上两点坐标为(x1,y1)和(x2,y2)。

直线的倾斜角可以用斜率k求得,即tanα=k=(y2-y1)/(x2-x1)。

直线的斜率可以用解析式求得,即k=(y2-y1)/(x2-x1)。

3. 应用直线的倾斜角和斜率解决实际问题(1)求两条直线的夹角设两条直线的斜率分别为k1和k2,则两条直线的夹角为α=|tan⁡(k2-k1)/(1+k1k2)|。

(2)求直线的方程已知直线上一点坐标为(x1,y1)和直线的斜率为k,则直线的解析式为y-y1=k(x-x1)。

(3)求直线与坐标轴的交点设直线与x轴的交点坐标为(x,0),则x=-b/k。

设直线与y轴的交点坐标为(0,b),则b=y1-kx1。

五、教学方法1.讲解法:通过讲解直线的倾斜角和斜率的概念、求解直线的倾斜角和斜率的方法以及应用直线的倾斜角和斜率解决实际问题的步骤,让学生掌握相关知识点。

2.案例分析法:通过实际案例,让学生应用所学知识解决实际问题,提高学生的实际应用能力。

3.互动探究法:通过让学生自己探究直线的倾斜角和斜率的关系,提高学生的自主学习能力。

六、教学评价1.课堂练习:通过课堂练习,检查学生对直线的倾斜角和斜率的掌握程度。

直线的倾斜角和斜率教学教案

直线的倾斜角和斜率教学教案

直线的倾斜角和斜率一教学教案教学目标(1)了解直线方程的概念.(2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率.(3)理解公式的推导过程,掌握过两点的直线的斜率公式.(4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(5)通过斜率概念的建立和斜率公式的推导,援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学建议1.教材分析(1)知识结构本节内容首先依据一次函数与其图像一一直线的关系导出直线方程的概念;其次为进一步研究直线,建立了直线倾斜角的概念,进而建立直线斜率的概念,从而完成了直线的方向或者说直线的倾斜角这一直线的几何属性向直线的斜率这一代数属性的转变;最后推导出经过两点的直线的斜率公式.这些充分表达了解析几何的思想方法.(2)重点、难点分析①本节的重点是斜率的概念和斜率公式.直线的斜率是后继内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及商量直线与二次曲线的位置关系,直线的斜率都发挥着重要作用.因此,正确理解斜率概念,熟练掌握斜率公式是学好这一章的关键.②本节的难点是对斜率概念的理解.学生对于用直线的倾斜角来刻画直线的方向并不难接受,但是,为什么要定义直线的斜率,为什么把斜率定义为倾斜角的正切两个问题却并不简单接受.2.教法建议(1)本节课的教学任务有三大项:倾斜角的概念、斜率的概念和斜率公式.学生思维也对应三个高潮:倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式如何建立.相应的教学过程也有三个阶段①在教学中首先是创设问题情境,然后通过商量明确用角来刻画直线的方向,如何定义这个角呢,学生在商量中逐渐明确倾斜角的概念.②本节的难点是对斜率概念的理解.学生认为倾斜角就可以刻画直线的方向,而且每一条直线的倾斜角是唯一确定的,而斜率却不这样.学生还会认为用弧度制表示倾斜角不是一样可以数量化吗.再有,为什么要用倾斜角的正切定义斜率,而不用正弦、余弦或余切哪要解决这些问题,就要求教师援助学生认识到在直线的方程中表达的不是直线的倾斜角,而是倾斜角的正切,即直线方程(一次函数的形式,下同)中X的系数恰好就是直线倾斜角的正切.为了便于学生更好的理解直线斜率的概念,可以借助几何画板设计:(1)α变化一直线变化一中的系数变化(同时注意的变化(2)中的系数变化一直线变化一Q变化(同时注意的变化〕.运用上述正反两种变化的动态演示充分揭示直线方程中系数与倾斜角正切的内在关系,这对援助学生理解斜率概念是极有好处的.③在进行过两点的斜率公式推导的教学中要注意与前后知识的联系,课前要对平面向量,三角函数等有关内容作肯定的复习打算.④在学习直线方程的概念时要通过举例清楚地指出两个条件,最好能用充要条件表达直线方程的概念,强化直线与相应方程的对应关系.为将来学习曲线方程做好打算.(2)本节内容在教学中宜采纳启发引导法和商量法,设计为启发、引导、探究、评价的教学模式.学生在积极思维的根底上,进行充分的商量、争辩、交流、和评价.倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式的建立,这三项教学任务都是在商量、交流、评价中完成的.在此过程中学生的思维和能力得到充分的开展.教师的任务是创设问题情境,引发争论,组织交流,参与评价.教学设计例如直线的倾斜角和斜率教学目标:(1)了解直线方程的概念,正确理解直线倾斜角和斜率概念,(2)理解公式的推导过程,掌握过两点的直线的斜率公式.(3)培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(4)援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学重点、难点:直线斜率的概念和公式教学用具:计算机教学方法:启发引导法,商量法教学过程:(一)直线方程的概念如图1,对于一次函数,和它的图像一一直线有下面关系:(1)有序数对(0,1)满足函数,则直线上就有一点A,它的坐标是(0,1).(2)反过来,直线上点B(1,3),则有序实数对(1,3)就满足.一般地,满足函数式的每一对,的值,都是直线上的点的坐标(,);反之,直线上每一点的坐标都满足函数式,因此,一次函数的图象是一条直线,它是以满足的每一对X,y的值为坐标的点构成的.从方程的角度看,函数也可以看作是二元一次方程,这样满足一次函数的每一对,的值“变成了〃二元一次方程的解,使方程和直线建立了联系.定义:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的全部点坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线就叫做这个方程的直线.以上定义改用集合表述:,的二元一次方程的解为坐标的集合,记作.假设(1) (2),则.问:你能用充要条件表达吗?答:一条直线是一个方程的直线,或者说这个方程是这条直线的方程的充要条件是…….(问题1)请画出以下三个方程所表示的直线,并观察它们的异同.99过定点,方向不同.如何确定一条直线?两点确定一条直线.还有其他方法吗?或者说如果只给出一点,要确定这条直线还应增加什么条件?学生:思考、回忆、答复:这条直线的方向,或者说倾斜程度.(导入)今天我们就共同来研究如何刻画直线的方向.(问题2)在坐标系中的一条直线,我们用怎样的角来刻画直线的方向呢?商量之前我们可以设想这个角应该是怎样的呢?它不仅能解决我们的问题,同时还应该是简单的、自然的.学生:展开商量.学生商量过程中会有错误和不严谨之处,教师注意引导.通过商量认为:应选择α角来刻画直线的方向.依据三角函数的知识,说明一个方向可以有无穷多个角,这里只需一个角即可(开始时可能有学生认为有四个角或两个角),当然用最小的正角.从而得到直线倾斜角的概念.(板书)定义:一条直线1向上的方向与轴的正方向所成的最小正角叫做直线的倾斜角.(教师强调三点:(1)直线向上的方向,(2)轴的正方向,(3)最小正角.)特别地,当与轴平行或重合时,规定倾斜角为0。

直线的倾斜角与斜率教学设计

直线的倾斜角与斜率教学设计

2.1直线的倾斜角与斜率第一课时:倾斜角与斜率教学设计教学目标:1.初步了解直线的倾斜角和斜率的概念.2.初步掌握过两点的直线斜率的计算公式,会求直线的倾斜角和斜率.3.通过斜率概念的建立和斜率公式的推导,经历几何问题代数化的过程,经历从特殊到一般,从感性到理性的认知过程,体会数形结合和化归转化思想.教学重点:理解直线的倾斜角和斜率概念,初步掌握过两点的直线斜率的计算公式教学难点:直线的倾斜角、斜率概念的形成,两点斜率公式的建构。

教学过程:新课引入:在以往的几何学习中,我们常常通过直观感知、操作确认、思辨论证、度量计算等方法研究几何图形的形状、大小和位置关系,这种方法通常称为综合法.本章我们采用一种新的方法——坐标法研究几何图形的性质.坐标法是解析几何中最基本的研究方法.解析几何是17世纪法国数学家笛卡儿和费马创立的,它的基本内涵和方法是:通过坐标系,把几何的基本元素——点和代数的基本对象——数(有序数对)对应起来,在此基础上建立曲线(点的轨迹)的方程,从而把几何问题转化为代数问题,通过代数方法研究几何图形的性质.解析几何的创立是数学发展史上的一个里程碑,数学从此进入变量数学时期,它为微积分的创建奠定了基础.本章我们将在平面直角坐标系中,探索确定直线位置的几何要素,建立直线的方程,并通过直线的方程研究两条直线的位置关系、交点坐标以及点到直线的距离等.探究新知:我们知道,点是构成直线的基本元素. 在平面直角坐标系中,点用坐标表示,那么,直线如何表示呢?自主学习:阅读课本51-52页探究上方问题1确定一条直线位置的几何要素是什么?对于平面直角坐标系中的一条直线l,如何利用坐标系确定它的位置?教师讲解:两点以及一点和一个方向可以确定一条直线,由方向向量我们可以知道,两点确定一条直线可以归结为一点和一个方向确定一条直线.问题2如何表示直线的方向?教师讲解:在平面直角坐标系中,我们规定一条直线向上的方向为这条直线的方向. 因此,这些直线的区别在于它们的方向不同. 如何表示这些直线的方向?我们看到,这些直线相对于x 轴的倾斜程度不同,也就是它们与x 轴所成的角不同. 因此,我们可以利用这样的角来表示这些直线的方向.新知:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角问题3 当直线l 与x 轴平行或重合时,其倾斜角大小为多少?直线的倾斜角的取值范围是什么?当直线l 与x 轴平行或重合时,我们规定它的倾斜角为0°.因此,直线的倾斜角α的取值范围为0°≤α<180°.这样,平面直角坐标系中,每一条直线都有一个确定的倾斜角,而且方向相同的直线,其倾斜程度相同,倾斜角相等;方向不同的直线,其倾斜程度不同,倾斜角不相等. 因此,我们可以用倾斜角表示平面直角坐标系中一条直线的倾斜程度,也就表示了直线的方向. 探究: (1)已知直线l 经过点O (0,0),P (√3,1),α与点O ,P 的坐标有什么关系? (2)类似地,如果直线l 经过点P 1(-1,1),P 2(√2,0),α与点P 1,P 2的坐标又有什么关系?对于问题(1),如图,向量OP ⃗⃗⃗⃗⃗ =(√3,1),且直线OP 的倾斜角也为α.由正切函数的定义,有tan α=√3=√33. 对于问题(2),如图,P 2P 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−1−√2,1−0)=(−1−√2,1).平移向量P 2P 1⃗⃗⃗⃗⃗⃗⃗⃗ 到OP ⃗⃗⃗⃗⃗ ,则点P 的坐标为(−1−√2,1),且直线OP 的倾斜角也是α.由正切函数的定义,有tan α=−1−√2=1−√2.1)0)一般地,如图,当向量21P P 的方向向上时,),(121221y y x x P P --=.平移向量21P P 到OP ,则点P 的坐标为,且直线OP 的倾斜角也是α,由正切函数的定义,有tan α=.同样,当向量12P P 的方向向上时,如图,),(212112y y x x P P --=,也有tan α==.新知:直线l 的倾斜角α与直线l 上的两点P 1(x 1,y 1), P 2(x 2,y 2)(x 1≠x 2)的坐标有如下关系:tan α=y 2−y 1x 2−x 1.我们把一条直线的倾斜角α的正切值叫做这条直线的斜率(slope ),斜率常用小写字母k 表示,即k =tan α.日常生活中常用“坡度”表示倾斜面的倾斜程度:坡度=铅直高度水平宽度.问题3 当直线的倾斜角由0o 逐渐增大到180o 时,其斜率如何变化?为什么? 当倾斜角α满足0o ≤α<90o 且逐渐增大时,斜率k 逐渐增大; 当倾斜角α=90o ,斜率不存在;当倾斜角α满足90o <α<180o 且逐渐增大时,斜率k 逐渐增大.由正切函数的单调性,倾斜角不同的直线其斜率也不同.因此,我们可以用斜率表示倾斜角不等于90o 的直线相对于x 轴的倾斜程度,进而表示直线的方向.由tan α=y 2−y1x 2−x 1及k =tan α知,k = y 2−y1x 2−x 1.2121(,)--x x y y 2121y y x x --1212y y x x --2121y y x x --问题4 直线的方向向量与斜率k 有什么关系?我们知道,直线P 1P 2上的向量21P P 及与它平行的向量都是直线的方向向量. 直线P 1P 2的方向向量21P P 的坐标为2121(,)--x x y y , 当直线P 1P 2与x 轴不垂直时,12≠x x . 此时向量21121P P x x -也是直线P 1P 2的方向向量,且它的坐标为2121211(,),---x x y y x x 即21211y y x x --(,)=(1,),k 其中k 是直线P 1P 2的斜率.因此,若直线l 的斜率为k ,它的一个方向向量的坐标为(x ,y ),则=y k x. 例1、 如图,已知A (3,2),B (-4,1),C (0,-1),求直线AB ,BC ,CA 的斜率,并判断这些直线的倾斜角是锐角还是钝角.解:直线AB 的斜率k AB =1243---=17; 直线BC 的斜率k BC =1104----()=24-=-12;直线CA 的斜率k CA =2-(-1)30-=33=1.由k AB >0及k CA >0可知,直线AB 与CA 的倾斜角均为锐角; 由k BC <0可知,直线BC 的倾斜角为钝角. 随堂练习:1.已知坐标平面内三点A(-1,1)、B(1,1)、C(2,3+1). 求直线AB 、BC 的斜率和倾斜角;2.若A(1,0),B(-3,m),直线AB 的斜率为-12,则m =( ) A .-8 B .-2 C .2D .8CBAxyO3、若直线过点(1,3),(4,3+3),则此直线的倾斜角是 ( ) A .π6 B .π4 C .π3D .2π34、已知点M(0,b)与点N(-3,1)连成直线的倾斜角为120°,则b =_______. 课堂小结本节课,我们在平面直角坐标系中,讨论了确定直线位置的几何要素,即两点确定一条直线以及一点和一个方向确定一条直线. 并从形和数的角度利用倾斜角和斜率来刻画直线的倾斜程度,即表示了直线的方向,并探讨了倾斜角、斜率与直线上两点坐标的关系,探讨了直线的方向向量与斜率的关系.在此过程中体会到了数形结合数学思想以及将几何问题转化为代数问题的化归转化思想.知识点回顾:(1)倾斜角的定义:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.直线的倾斜角α的取值范围为 0°≤α<180°.(2)k=tan α k=y 2−y 1x 2−x 1.(3)若直线l 的斜率为k ,它的一个方向向量的坐标为(x ,y ),则=yk x. 作业:课本55页练习。

直线的倾斜角与斜率教案

直线的倾斜角与斜率教案

直线的倾斜角与斜率教案直线的倾斜角与斜率教案一、教学目标:1. 知识目标:了解直线的倾斜角和斜率的概念;2. 能力目标:能够计算直线的倾斜角和斜率;3. 情感目标:培养学生对数学知识的兴趣和自信心。

二、教学重难点:1. 重点:直线的倾斜角和斜率的概念;2. 难点:直线的斜率的计算方式。

三、教学过程:1. 导入(5分钟):通过给学生出示两条不同斜率的直线,让学生观察并思考,引导学生讨论直线的倾斜角和斜率的关系,激发学生学习的兴趣。

2. 了解直线的倾斜角和斜率(10分钟):通过简单直观的图形,引导学生理解直线的倾斜角和斜率的概念。

并且给出直线的斜率公式:k = tanθ,其中k为直线的斜率,θ为直线的倾斜角。

3. 计算直线的倾斜角和斜率(25分钟):(1)通过给出两个点的坐标,引导学生计算直线的斜率的计算方法:k = (y2 - y1) / (x2 - x1);(2)通过给出直线方程,引导学生计算直线的倾斜角的计算方法:θ = arctank。

4. 练习与巩固(15分钟):让学生进行相关的计算练习,巩固和加深对直线的倾斜角和斜率的理解。

通过多种情况的练习,让学生熟练掌握计算直线斜率和倾斜角的方法。

5. 拓展(10分钟):通过给学生展示各种曲线的斜率和倾斜角的计算方法,引导学生思考如何计算曲线的斜率和倾斜角。

通过观察各种曲线的特点,引导学生发现曲线斜率和倾斜角的规律。

6. 总结(5分钟):对刚才的学习内容进行总结,帮助学生回顾和巩固所学知识。

引导学生思考直线斜率和倾斜角的重要性以及实际应用。

四、教学反思:本节课通过以具体的图形为例,引导学生理解直线倾斜角和斜率的概念,通过具体的计算方法,让学生能够实际计算直线的斜率和倾斜角。

同时,通过拓展的内容引导学生思考更加复杂形状的曲线的斜率和倾斜角的计算方法,培养学生的综合应用能力。

针对学生的不同水平,提供了多种练习,巩固学生对知识的掌握,创设了有利于学生自主思考和交流的氛围。

高中数学《直线的倾斜角和斜率》教案

高中数学《直线的倾斜角和斜率》教案

高中数学《直线的倾斜角和斜率》教案一、教学目标1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。

3. 能够运用直线的倾斜角和斜率解决实际问题。

二、教学内容1. 直线的倾斜角的概念2. 直线的斜率与倾斜角的关系3. 直线的倾斜角和斜率的计算4. 直线的倾斜角和斜率在实际问题中的应用三、教学重点与难点1. 教学重点:直线的倾斜角的概念,直线的斜率与倾斜角的关系,直线的倾斜角和斜率的计算。

2. 教学难点:直线的倾斜角和斜率的计算,直线的倾斜角和斜率在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生通过探究直线的倾斜角和斜率的概念及关系,提高学生的思维能力。

2. 利用数形结合法,结合图形讲解直线的倾斜角和斜率,增强学生的直观理解。

3. 通过实例分析,让学生学会运用直线的倾斜角和斜率解决实际问题。

五、教学过程1. 导入:通过复习初中阶段学习的直线的倾斜角的概念,引导学生思考直线的倾斜角与斜率的关系。

2. 新课讲解:(1)讲解直线的倾斜角的概念,介绍直线的倾斜角的定义及求法。

(2)讲解直线的斜率与倾斜角的关系,引导学生理解斜率与倾斜角之间的联系。

(3)讲解直线的倾斜角和斜率的计算方法,让学生掌握计算直线的倾斜角和斜率的技巧。

3. 实例分析:运用直线的倾斜角和斜率解决实际问题,如计算直线的倾斜角和斜率,分析直线在坐标系中的位置等。

4. 课堂练习:布置一些有关直线的倾斜角和斜率的练习题,让学生巩固所学知识。

5. 总结:对本节课的内容进行总结,强调直线的倾斜角和斜率的概念及计算方法。

6. 作业布置:布置一些有关直线的倾斜角和斜率的练习题,让学生课后巩固所学知识。

六、教学策略1. 案例分析:通过分析具体直线图形,让学生理解直线的倾斜角和斜率在实际问题中的应用。

2. 小组讨论:组织学生进行小组讨论,分享各自对直线倾斜角和斜率的理解,互相学习,提高理解。

直线的倾斜角与斜率教案

直线的倾斜角与斜率教案

教学课题 3.1.1直线的倾斜角与斜率教学目标与过程1、知识与技能(1)理解直线的倾斜角和斜率的概念;(2)体验用代数方法刻画直线斜率的过程;(3)掌握过两点的直线的斜率公式及应用;(4)通过小结把具体知识(斜率公式)的掌握深化成一种数学思想(数形结合)。

2、过程与方法通过讲述小故事,培养学生对所学新知识的亲切感,激发学习热情,拉近知识与生活的距离。

3、情感态度与价值观在教学中首先让学生从源头上了解知识的脉络,然后充分揭示“数”与“形”的内在联系,体会数形美的统一,激发学生学习数学的兴趣,培养学生勇于探索,勇于创新的精神。

教学重点1、初步培养学生的数形结合的思想;2、直线的倾斜角和斜率的概念;3、过两点的直线的斜率公式;教学难点过两点的直线的斜率公式的导出课时安排 1课时教学用具 板书 教学方法情景教学法、讲授法、直观教学法3.1.1直线的倾斜角与斜率昆明市第一中学赵燕艳教学设计思路讲述笛卡尔开创解析几何的传奇故事,把知识植根于生活,使学生对即将学习的解析几何知识有亲切感,同时也用笛卡尔在艰难波折生活中,坚持不懈、积极探索的精神鼓舞学生。

用在黑板上固定一根棍子的简单生活实例,引出坐标系内确定直线位置的几何要素。

在探究确定直线位置的过程中,给出倾斜角的定义,并由定义归纳出倾斜角的范围。

由生活中坡度的实例,引出斜率的数学概念。

再由斜率的定义推导出用直线上的两点表示出斜率的公式。

最后,通过对斜率公式的深入观察和分析,深化数形结合的思想。

具体教学过程1、 新课导入同学们好,今天我们开始学习数学的一个重要分支——解析几何。

同学们知道,在几何问题的研究中,我们主要依据几何图形中点、线、面的关系研究几何图形的性质。

现在,我们要采用另外一种方法——坐标法,就是以坐标为桥梁,把几何问题转化为代数问题。

通过代数运算研究几何图形。

我举个通俗的例子,同学们如果我问你,你们家住哪儿,你可以带领我去,嗯,这是最原始的办法;你可以画张图告诉我,那类似几何方法,当然,一般你们是告诉我住址,其实住址就是一个位置坐标。

直线的倾斜角与斜率教案

直线的倾斜角与斜率教案

《直线的倾斜角和斜率》教案一、教学目标(一)知识与技能1、理解直线的倾斜角和斜率的定义,掌握倾斜角与斜率的关系;2、掌握过两点的直线的斜率公式和应用。

(二)过程与方法1、通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,体验用代数方法刻画直线倾斜程度的过程,以提高学生分析、比较、概括,化归的数学能力,培养学生综合运用知识解决问题的能力。

2、、通过对直线斜率公式的分类讨论帮助学生进一步了解分类思想、数形结合思想,在教学中充分揭示“数”与“形”的内在联系,(三)情感、态度与价值观1、通过对倾斜角等概念的导入让学生体会到数学知识的产生来源于实际问题的需要,从而进一步端正学习态度,激发学习数学的兴趣。

2、在教学过程中对学生装进行对立统一的辩证唯物主义观点的教育,培养学生勇于探索,勇于创新的科学精神。

二、教学重点直线的倾斜角与斜率的概念,过两点的直线斜率公式。

三、教学难点对直线倾斜角与斜率概念的理解,直线的斜率与它的倾斜角之间的关系。

四、教学方法发启式教学法、自主研讨法五、教学用具利用多媒体辅助教学六、教学过程(一)情境引入,提出问题播放视频,通过中国著名的水利工程——三峡大坝,引入迎水坡与背水坡的坡度知识,抽出大坝某处的横断面(梯形)的两条腰,提出问题“腰所在直线的位置怎样确定,如何定量地研究它们的倾斜程度,引入坐标法。

(二)知识探索,分析理解问题 在直角坐标系中如何确定该两条线段所在直线的位置呢? 答:在平面直角坐标系中,确定直线位置的几何条件是:(1)两点确定一条直线;(2)已知直线上的一个点和这条直线的方向。

通过方法二导出250角和1500角分别就是直线l 1和l 2的倾斜角,引出直线倾斜角的定义。

(三)师生互动,抽象概括 1、直线的倾斜角定义在平面直角坐标系中,对于一条与x 轴相交的直线l ,把 x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫做直线l 的倾斜角.通常倾斜角用α表示.规定:当直线l 和x 轴平行时它的倾斜角为00 动画演示倾斜角的变化过程(见课件)由此推导在直角坐标系中,直线绕直线与x 轴交点旋转,它对x 轴正方向有四种情形。

(完整版)直线的倾斜角和斜率教案

(完整版)直线的倾斜角和斜率教案

《直线的倾斜角和斜率》教案教学目的:1。

了解“坐标法”2.理解直线的倾斜角和斜率概念,掌握过两点的直线的斜率公式并牢记斜率公式的特点及适用范围;3。

已知直线的倾斜角,求直线的斜率4。

已知直线的斜率,求直线的倾斜角5.培养学生“数形结合”的数学思想.教学重点: 斜率概念,用代数方法刻画直线斜率的过程.教学难点: 1直线的斜率与它的倾斜角之间的关系。

2运用两点坐标计算直线的斜率授课类型:新授课课时安排: 1课时教具:多媒体教学过程:一。

知识背景与课题的引入1.从本章起,我们研究什么?怎样研究?解析几何是17世纪法国数学家笛卡尔和费马创立的,解析几何的创立是数学发展史上的一个里程碑,数学从此由常量数学进入变量数学时期。

解析几何由此成为近代数学的基础之一。

在解析几何学中,我们常常用一种方法:坐标法. 研究几何图形的性质.坐标法是以坐标系为基础,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法,它是解析几何中最基本的研究方法.本章首先在平面直角坐标系中,建立直线的方程。

然后通过方程,研究直线的交点、点到直线的距离等.2.课题的引入下面就让我们就一起踏着前人的足迹去学习和体会这一门科学的思想方法,用坐标法研究几何问题时,我们首先研究最简单的几何对象-—直线,学习直线的倾斜角和斜率.二。

新课1问题1对于平面直角坐标系内的一条直线它的位置由哪些条件可以确定呢?一个点可以确定一条直线的位置吗?分析:对,两点可以确定一条直线,过一个点可以画出无数条直线,这些直线都与轴正向成一定的角度,我们把直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,于是可以这样确定一条直线,过个定点,确定一个倾斜角便可以确定一条直线;这种方法与两点确定一条直线的方法是一致的.先固定个点,再确定另外一点相当于确定这条直线的方向,确定了方向也就等同于确定了该直线的倾斜角.注:平行于轴或于轴重合的直线的倾斜角为0°问题2直线倾斜角的范围是多少?这样在平面直角坐标系内每一条直线都有一个确定的倾斜角,倾斜角刻画了直线倾斜的程度,且倾斜程度相同的直线,其倾斜角相等,倾斜程度不相同的直线,其倾斜角也不相等.问题3(斜率的概念)日常生活中我们可以用一个比值表示倾斜程度的量:例如:坡度(比)= 升高量/前进量能否用一个比值刻画斜率呢?如果是一条直线的倾斜角,我们把倾斜角的正切值叫做这条直线的斜率(slop)记作:tank问题4(1)是不是所有的直线都有倾斜角?是(2)是不是直线都有斜率?倾斜角为90°时没有斜率, 因为90°的正切不存在。

直线的倾斜角与斜率教学设计

直线的倾斜角与斜率教学设计

直线的倾斜角与斜率教学设计一、教学目标1.理解直线的斜率和倾斜角的概念及其在几何问题中的意义。

2.掌握计算直线斜率和倾斜角的方法。

3.能够应用直线斜率和倾斜角解决几何问题。

二、教学内容1.直线斜率的定义和计算方法。

2.直线倾斜角的定义和计算方法。

3.直线斜率和倾斜角在几何问题中的应用。

三、教学过程一、引入活动(15分钟)1.师生对话引入:教师可以与学生进行对话,通过问题引导学生思考直线斜率和倾斜角的概念。

教师:同学们,你们都知道直线吧?直线在几何学中很重要,我们今天要学习直线的一个重要特征,那就是斜率和倾斜角。

那你们知道直线的斜率和倾斜角在几何问题中有什么作用呢?学生:斜率和倾斜角可以帮助我们描述直线的倾斜程度和方向,可以用来计算两点之间的斜率和倾斜角以及解决几何问题。

教师:对的,直线的斜率和倾斜角可以帮助我们更好地理解直线的性质和特征,也可以应用到实际问题中。

接下来,我们就来具体学习一下直线的斜率和倾斜角。

二、讲解直线斜率的概念和计算方法(20分钟)1.定义斜率:斜率指直线上两点之间纵坐标的变化量与横坐标的变化量的比值。

斜率=(y2-y1)/(x2-x1),其中(x1,y1)和(x2,y2)是直线上的两个点。

2.示例讲解:教师通过示意图和具体计算进行示例讲解。

示例:已知直线上有两个点A(2,3)和B(5,7),求直线AB的斜率。

计算过程:斜率=(7-3)/(5-2)=4/3解释:直线AB的斜率为4/3,表示直线从点A到点B的上升程度(纵坐标增加的量)每增加3个单位,水平坐标(横坐标)增加4个单位。

3.学生练习:学生进行类似的计算练习,教师随机抽查学生的答案。

三、讲解直线倾斜角的概念和计算方法(20分钟)1.定义倾斜角:倾斜角指直线与坐标轴正方向之间的夹角。

2.计算倾斜角:可以利用直线的斜率来计算直线的倾斜角。

倾斜角 = arctan (斜率)注:这里的arctan是反正切函数,可以使用计算器或数学软件进行计算。

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明

一、教案内容1.1 直线的倾斜角【教学目标】理解直线的倾斜角的概念,掌握求直线倾斜角的方法,能运用直线的倾斜角解决相关问题。

【教学重点】直线的倾斜角的概念,求直线倾斜角的方法。

【教学难点】如何运用直线的倾斜角解决相关问题。

【教学准备】直角坐标系,多媒体设备。

【教学过程】(1)引入:复习直线的斜率概念,引导学生思考直线的倾斜角与斜率的关系。

(2)讲解:介绍直线的倾斜角的概念,讲解求直线倾斜角的方法,结合实例进行演示。

(3)练习:让学生独立完成一些求直线倾斜角的问题,并及时给予反馈和讲解。

(4)应用:引导学生运用直线的倾斜角解决实际问题,如求直线的倾斜角和斜率,判断直线的方向等。

1.2 直线的斜率【教学目标】理解直线的斜率的概念,掌握求直线斜率的方法,能运用直线的斜率解决相关问题。

【教学重点】直线的斜率的概念,求直线斜率的方法。

【教学难点】如何运用直线的斜率解决相关问题。

【教学准备】直角坐标系,多媒体设备。

【教学过程】(1)引入:复习倾斜角的概念,引导学生思考直线的斜率与倾斜角的关系。

(2)讲解:介绍直线的斜率的概念,讲解求直线斜率的方法,结合实例进行演示。

(3)练习:让学生独立完成一些求直线斜率的问题,并及时给予反馈和讲解。

(4)应用:引导学生运用直线的斜率解决实际问题,如判断两直线是否平行或重合,求直线的倾斜角等。

二、教案说明本教案分为两个课时,第一课时讲解直线的倾斜角,第二课时讲解直线的斜率。

在教学过程中,注重让学生通过实例来理解和掌握概念和方法,并在应用环节中引导学生将所学知识运用到实际问题中。

,教案中还提供了丰富的练习题,以便学生巩固所学知识。

六、直线的斜率计算【教学目标】掌握直线斜率的计算方法,能够运用直线的斜率解决实际问题。

【教学重点】直线斜率的计算方法。

【教学难点】如何运用直线斜率解决实际问题。

【教学准备】直角坐标系,多媒体设备。

【教学过程】(1)引入:复习上节课的内容,引导学生思考直线的斜率与倾斜角的关系。

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明一、教学目标1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。

3. 能够运用直线的倾斜角和斜率解决实际问题。

二、教学内容1. 直线的倾斜角的概念:直线与x轴正方向所成的角称为直线的倾斜角。

2. 直线的斜率与倾斜角的关系:直线的斜率k等于tan(倾斜角)。

3. 直线的斜率的计算:给定直线的倾斜角,可以计算出直线的斜率。

三、教学方法1. 采用讲解法,讲解直线的倾斜角的概念和斜率与倾斜角的关系。

2. 采用例题解析法,通过例题讲解如何计算直线的斜率。

3. 采用练习法,让学生通过练习题巩固所学知识。

四、教学步骤1. 导入新课:通过提问方式引导学生回顾初中阶段学习的直线倾斜角的概念。

2. 讲解直线的倾斜角的概念,解释斜率与倾斜角的关系。

3. 讲解直线的斜率的计算方法,并通过例题进行讲解。

4. 布置练习题,让学生巩固所学知识。

五、教学评价1. 课堂讲解:评价学生对直线倾斜角的概念和斜率与倾斜角的关系的理解程度。

2. 练习题:评价学生运用直线的倾斜角和斜率解决问题的能力。

说明:本教案分为五个部分,包括教学目标、教学内容、教学方法、教学步骤和教学评价。

在教学过程中,要注意引导学生理解直线的倾斜角的概念,掌握斜率与倾斜角的关系,并通过练习题让学生巩固所学知识。

教案中的教学内容可以根据实际情况进行调整。

六、教学拓展1. 讨论斜率的正负性:解释当倾斜角大于45度时,斜率为正;小于45度时,斜率为负。

2. 探究斜率与倾斜角的关系:引导学生通过绘制不同倾斜角的直线,观察斜率的变化。

七、实际应用1. 生活实例:举例说明直线的倾斜角和斜率在生活中的应用,如建筑物的屋顶斜率、道路的坡度等。

2. 数学应用:引导学生运用直线的倾斜角和斜率解决数学问题,如计算直线与坐标轴的交点、直线的方程等。

八、课堂小结1. 回顾本节课所学的内容,强调直线的倾斜角的概念和斜率与倾斜角的关系。

直线的倾斜角与斜率教案

直线的倾斜角与斜率教案

3.1.1直线的倾斜角与斜率教学目标:1、正确理解直线的倾斜角和斜率的概念.2、理解直线的倾斜角的唯一性.3、理解直线的斜率的存在性.4、斜率公式的推导过程,掌握过两点的直线的斜率公式.重点与难点:直线的倾斜角、斜率的概念和公式.教学过程:一、复习准备:1.讨论:在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢2.在日常生活中,我们常说这个山坡很陡峭,有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢二、讲授新课:1.教学直线倾斜角与斜率的概念:我们知道,经过两点有且只有确定一条直线.那么,经过一点P的直线l的位置能确定吗如图,过一点P可以作无数多条直线a,b,c,…易见,答案是否定的.这些直线有什么联系呢1它们都经过点P.2它们的‘倾斜程度’不同.怎样描述这种‘倾斜程度’的不同引入直线的倾斜角的概念:①直线倾斜角的概念:x轴正向与直线向上方向之间所成的角叫直线的倾斜角注意:当直线与x轴平行或重合时,我们规定它的倾斜角为0度.;讨论:倾斜角的取值范围是什么呢0°≤α<180°.因为平面直角坐标系内的每一条直线都有确定的倾斜程度,引入直线的倾斜角之后,我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.直线a∥b∥c,那么它们的倾斜角α相等吗答案是肯定的.所以一个倾斜角α不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素:一个点P和一个倾斜角α..②直线斜率的概念:直线倾斜角 的正切值叫直线的斜率.常用k 表示,tan k α=讨论:当直线倾斜角为90︒度时它的斜率不存在吗.倾斜角的大小与斜率为正或负有何关系斜率为正或负时,直线过哪些象限呢 α取值范围是0°≤α<180°.给定两点P 1x 1,y 1,P 2x 2,y 2,x 1≠x 2,如何用两点的坐标来表示直线P 1P 2的斜率③ 直线斜率的计算:两点确定一直线,给定两点111(,)p x y 与222(,)p x y ,则过这两点的直线的斜率2121y y k x x -=- 思考:1直线的倾斜角α确定后,斜率k 的值与点1p ,2p 的顺序是否有关2当直线平行表于y 轴或与y 轴重合时,上述公式2121y y k x x -=-还适用吗归纳:对于上面的斜率公式要注意下面四点:1当x 1=x 2时,公式右边无意义,直线的斜率不存在,倾斜角α=90°,直线与x 轴垂直;2k 与P 1、P 2的顺序无关,即y 1,y 2和x 1,x 2在公式中的前后次序可以同时交换,但分子与分母不能交换;3斜率k 可以不通过倾斜角而直接由直线上两点的坐标求得;4当y 1=y 2时,斜率k=0,直线的倾斜角α=0°,直线与x 轴平行或重合.2.教学例题:例1.已知A3,2,B-4,1,C0,-1求直线AB 、AC 、BC 的斜率,并判断这些直线的倾斜角是锐角还是钝角.例2.在平面直角坐标系中画出经过原点且斜率分别为1,2,3--的直线123,,l l l .例3.已知三点Aa,2、B5,1、C-4,2a 在同一直线上,求a 的值;27 三.巩固与提高练习:1.教材P86面练习第1、2、3、4题;2.若直线l 向上的方向与y 轴正方向成30°角,则l 的倾斜角为60°、l 的斜率为3;3.已知等边三角形ABC,若直线AB 平行于y 轴,则∠C 的平分线所在的直线的倾斜角为0°, 斜率为0,另两边AC 、BC 所在的直线的倾斜角为120°、60°,斜率为-3、3;4.当且仅当m为何值时,经过两点Am,3、B-m,2m-1的直线的倾斜角为60°四.小结:倾斜角、斜率的概念,斜率的计算公式.五:作业习案十七。

说明直线的倾斜角与斜率教案

说明直线的倾斜角与斜率教案

说明直线的倾斜角与斜率教案一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 让学生掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学重点:1. 直线的倾斜角的概念。

2. 直线的斜率与倾斜角的关系。

三、教学难点:1. 直线的倾斜角的求法。

2. 直线的斜率的计算。

四、教学准备:1. 教师准备PPT,内容包括直线的倾斜角与斜率的定义、计算方法及应用实例。

2. 学生准备笔记本,用于记录教学内容。

五、教学过程:1. 导入:教师通过PPT展示直线倾斜角与斜率的定义,引导学生思考直线的倾斜角与斜率的关系。

2. 新课:教师讲解直线的倾斜角的概念,解释直线的斜率与倾斜角的关系,并通过例题演示求直线的倾斜角和斜率的方法。

3. 练习:学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。

4. 拓展:教师提出实际问题,引导学生运用直线的倾斜角和斜率的知识解决问题。

6. 作业:学生完成PPT上的课后作业,巩固所学知识。

六、教学反思:教师在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了直线的倾斜角和斜率的知识,以及是否有效地解决了实际问题。

七、教学评价:教师通过学生的课后作业、课堂表现和实际问题解决能力来评价学生对直线的倾斜角和斜率的理解和应用能力。

八、教学拓展:教师可以引导学生进一步研究直线的倾斜角和斜率在实际应用中的作用,如物理学、工程学等领域。

九、教学参考资料:1. 数学教材。

2. 相关教案和教学文章。

3. 互联网上的教育资源。

十、教学时间:1课时(40分钟)六、教学活动设计:1. 导入活动:通过PPT展示实际生活中的直线图像,如斜坡、建筑物等,让学生观察并思考这些直线的倾斜角和斜率。

2. 课堂活动:教师引导学生通过合作探究的方式,探讨直线的倾斜角与斜率的关系,并分享各自的学习心得。

3. 实践活动:学生分组进行实践活动,利用直尺、三角板等工具,测量实际物体或图片上的直线倾斜角,并计算其斜率。

说明直线的倾斜角与斜率教案

说明直线的倾斜角与斜率教案

说明直线的倾斜角与斜率教案一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 让学生掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容:1. 直线的倾斜角的概念。

2. 直线的斜率与倾斜角的关系。

3. 求直线的倾斜角和斜率的方法。

三、教学重点与难点:1. 直线的倾斜角的概念。

2. 直线的斜率与倾斜角的关系。

四、教学方法:采用讲解法、案例分析法、讨论法等教学方法,引导学生理解直线的倾斜角与斜率的概念,并通过实例分析让学生掌握求解方法。

五、教学过程:1. 导入:通过生活中的实例,如道路的坡度、飞机的爬升率等,引导学生思考直线的倾斜角和斜率的概念。

2. 新课讲解:讲解直线的倾斜角的概念,引导学生理解直线的倾斜角是如何定义的,并介绍求解直线的倾斜角的方法。

3. 案例分析:分析具体实例,让学生理解直线的斜率与倾斜角的关系,并学会计算直线的斜率。

4. 课堂练习:布置一些有关直线的倾斜角和斜率的练习题,让学生巩固所学知识。

5. 总结:对本节课的内容进行总结,强调直线的倾斜角和斜率的概念及求解方法。

6. 作业布置:布置一些有关直线的倾斜角和斜率的作业题,让学生课后巩固所学知识。

六、教学评估:1. 通过课堂练习和课后作业的完成情况,评估学生对直线的倾斜角和斜率概念的理解程度。

2. 观察学生在案例分析中的参与程度,判断学生对直线的斜率与倾斜角关系的掌握情况。

3. 设计一些开放性问题,引导学生进行思考和讨论,评估学生的逻辑思维能力和解决问题的能力。

七、教学反馈与调整:1. 根据学生的课堂表现和作业完成情况,及时给予反馈,对学生的错误进行纠正。

2. 对于学生掌握不足的地方,可以进行讲解或者提供更多的案例分析,以帮助学生理解和掌握。

3. 根据学生的反馈,调整教学方法和节奏,确保学生能够更好地理解和应用直线的倾斜角和斜率的知识。

八、教学拓展:1. 引导学生思考直线的倾斜角和斜率在实际应用中的作用,如工程测量、经济学中的成本分析等。

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案一、教学目标1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 让学生掌握直线的斜率的概念,能够求出直线的斜率。

3. 能够运用直线的倾斜角和斜率解决实际问题。

二、教学重点与难点1. 教学重点:直线的倾斜角和斜率的概念,求直线的倾斜角和斜率的方法。

2. 教学难点:直线的倾斜角和斜率在实际问题中的应用。

三、教学方法采用讲解法、演示法、练习法、讨论法等相结合的方法进行教学。

四、教学准备1. 教学课件。

2. 练习题。

3. 黑板、粉笔。

五、教学过程1. 导入新课通过复习旧知识,引导学生回顾直线方程的基本形式,提出直线的倾斜角和斜率的概念。

2. 讲解直线的倾斜角讲解直线的倾斜角的定义,通过图形演示直线的倾斜角,让学生理解直线的倾斜角的概念。

3. 讲解直线的斜率讲解直线的斜率的定义,通过图形演示直线的斜率,让学生理解直线的斜率的概念。

4. 求直线的倾斜角和斜率讲解如何求直线的倾斜角和斜率,通过例题演示求直线的倾斜角和斜率的方法,让学生跟随讲解,理解求直线的倾斜角和斜率的过程。

5. 练习巩固布置练习题,让学生独立完成,巩固直线的倾斜角和斜率的概念。

6. 课堂小结对本节课的内容进行小结,强调直线的倾斜角和斜率的概念及求法。

7. 作业布置布置课后作业,让学生进一步巩固直线的倾斜角和斜率的知识。

六、教学拓展1. 讨论斜率与倾斜角的关系:斜率k 与倾斜角α的关系是k = tan(α)。

通过这个关系,学生可以理解为什么斜率是倾斜角的正切值。

2. 探索非锐角直线的斜率:讨论当直线倾斜角大于90度时,斜率是什么。

学生将了解到,当直线垂直于x轴时,倾斜角为90度,斜率是无穷大;当直线逆时针旋转超过90度时,斜率变为负无穷。

七、应用实例1. 实际问题:给定直线的倾斜角,求直线的方程。

学生可以通过已知的倾斜角和一点来求解直线的斜率和方程。

2. 实际问题:给定直线的斜率,求直线的倾斜角。

学生可以通过已知的斜率来求解直线的倾斜角,并理解斜率与倾斜角的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《直线的倾斜角和斜率》教案
教学目的:
1.了解“坐标法”
2.理解直线的倾斜角和斜率概念,掌握过两点的直线的斜率
公式并牢记斜率公式的特点及适用范围;
3.已知直线的倾斜角,求直线的斜率
4.已知直线的斜率,求直线的倾斜角
5.培养学生“数形结合”的数学思想.
教学重点:斜率概念,用代数方法刻画直线斜率的过程.
教学难点:1直线的斜率与它的倾斜角之间的关系.
2运用两点坐标计算直线的斜率
授课类型:新授课
课时安排:1课时
教具:多媒体
教学过程:
一.知识背景与课题的引入
1.从本章起,我们研究什么?怎样研究?
解析几何是17世纪法国数学家笛卡尔和费马创立的,解析几何的创立是数学发展史上的一个里程碑,数学从此由常量数学进入变量数学时期.解析几何由此成为近代数学的基础之一.
在解析几何学中,我们常常用一种方法:坐标法. 研究几何图形的性质。

坐标法是以坐标系为基础,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法,它是解析几何中最基本的研究方法.
本章首先在平面直角坐标系中,建立直线的方程.然后通过方程,研究直线的交点、点到直线的距离等.
2.课题的引入
下面就让我们就一起踏着前人的足迹去学习和体会这一门科学的思想方法,用坐标法研究几何问题时,我们首先研究最简单的几何对象——直线,学习直线的倾斜角和斜率.
二.新课
1问题1
对于平面直角坐标系内的一条直线它的位置由哪些条件可以确定呢?一个点可以确定一条直线的位置吗?
分析:对,两点可以确定一条直线,过一个点可以画出无数条直线,这些直线都与轴正向成一定的角度,我们把直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,于是可以这样确定一条直线,过个定点,确定一个倾斜角便可以确定一条直线;这种方法与两点确定一条直线的方法是一致的.先固定个点,再确定另外一点相当于确定这条直线的方向,确定了方向也就等同于确定了该直线的倾斜角.
注:平行于轴或于轴重合的直线的倾斜角为0°
问题2
直线倾斜角的范围是多少?
这样在平面直角坐标系内每一条直线都有一个确定的倾斜角 ,倾斜角刻画了直线倾斜的程度,且倾斜程度相同的直线,其倾斜角相等, 倾斜程度不相同的直线,其倾斜角也不相等.
问题3(斜率的概念)日常生活中我们可以用一个比值表示倾斜程度的量: 例如:坡度(比)= 升高量/前进量
能否用一个比值刻画斜率呢?
如果 是一条直线的倾斜角,我们把倾斜角的正切值叫做这条直线的斜率(slop) 记作:tan
k
问题4
(1)是不是所有的直线都有倾斜角?是
(2)是不是直线都有斜率?倾斜角为90°时没有斜率, 因为90°的正切不存在. ( 是锐角时为正,倾斜角是钝角时为负)反映了直线向右或向左倾斜的程度,特别是倾斜角 是锐角时,斜率的值越大倾斜角也越大,倾斜角是钝角时也同样. 探究:由两点确定的直线的斜率
111222(,),(,),l P x y P x y 设直线经过两点求此直线的斜率. 由相似三角形,我们有2121y y k x x
(1)当倾斜角为0°时,此公式适用吗?
(2)当倾斜角为90°时,此公式使用吗?不适用
综上讨论,我们得到经过两点
111222(,),(,)P x y P x y 12()x x 的直线的斜率为2121y y k x x 三.练习
l l 1(2)已知直线经过点A(0,1),B(,2),求的倾斜角的取值范围sin
2:l O 例已知直线过原点,且与线段MN 相交,又
M(-2,4),N(3,2)
(1),OM ON MN 求直线,的斜率.
(2),,(4,),.M N P a a 设三点共线求的值
(3).l 求直线的斜率的取值范围 11,.l l l l l 11212例:
(1)直线的倾斜角=30直线与垂直,求与的斜率
(4).MN l P y 若与交与点(x,y ),求的取值范围x
(5)(,)3.l MN P x y l k P 若与交与点,且的斜率 求点坐标
,,,.a c a a b c R a b b c b
思考:
+已知且,求证
四.小结
1、填表:
2、强调斜率公式的应用,能解决哪些类型的问题?
五.课后作业:P 练习题1、2、3、4
六.教学后记。

相关文档
最新文档