初三数学重点难点几何题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压轴题 经典难题(1)

1、已知:如图,P 是正方形ABCD 点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)

2、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、

DD 1的中点.

求证:四边形A 2B 2C 2D 2是正方形.(初二)

4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC

的延长线交MN 于E 、F .

求证:∠DEN =∠F .

经典难题(二)

D 2 C 2

B 2 A 2 D 1

C 1 B 1 C B D

A A 1

A F

G C

E B O D A P C D B

F

1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)

2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)

3、如果上题把直线MN

设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 于P 、Q . 求证:AP =AQ .

(初二)

4、如图,分别以△ABC 的AC 和BC 为一边,

在△ABC 点P 是EF 的中点.

求证:点P 到边AB 的距离等于AB 的一半.

经典难 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC 求证:CE =CF .(初二)

2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .

求证:AE =AF .(初二)

3、设P 是正方形ABCD 一边BC

求证:PA =PF .(初二)

4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,

D .求证:AB =DC ,BC =AD .(初三)

经典难

1、已知:△ABC 是正三角形,P

求:∠APB 的度数.(初二)

2、设P 是平行四边形ABCD 部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)

3、设ABCD 为圆接凸四边形,求证:AB ·CD +AD ·BC =AC ·

4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) 经典难题(五)

1、设P 是边长为1的正△ABC 任一点,L =PA +PB +PC ,求证:≤L <2.

2、已知:P 是边长为1的正方形ABCD 的一点,求PA +PB +PC 的最小值.

3、P 为正方形ABCD 的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.

4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,

∠EBA =200,求∠BED 的度数.

F

P D

E C

B

A

A P

C B

A

C B

P

D

E

D

A A

C

B

P

D

经典难题(一)

1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,

即△GHF∽△OGE,可得EO

GF

=

GO

GH

=

CO

CD

,又CO=EO,所以CD=GF得证。

2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得

△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150

所以∠DCP=300 ,从而得出△PBC是正三角形

3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点,连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,

由A2E=1

2A1B1=1

2

B1C1= FB2 ,EB2=1

2

AB=1

2

BC=F C1 ,又∠GFQ+∠Q=900和

∠GE B2+∠Q=900,所以∠GE B2=∠GFQ又∠B2FC2=∠A2EB2,

可得△B2FC2≌△A2EB2,所以A2B2=B2C2,

又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 ,

从而可得∠A2B2 C2=900 ,

同理可得其他边垂直且相等,

从而得出四边形A2B2C2D2是正方形。

4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=

∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。

经典难题(二)

1.(1)延长AD到F连BF,做OG⊥AF,

相关文档
最新文档