20.1.1平均数说课稿 (1)

合集下载

人教版数学八年级下册20.1.1加权平均数(教案)

人教版数学八年级下册20.1.1加权平均数(教案)
-突破方法:通过实际情境,如图形面积的计算,让学生直观感受权值对加权平均数的影响。
-加权平均数在实际问题中的应用:将理论知识应用到具体问题中,对于学生来说是一个挑战。
-突破方法:设计不同难度的实际问题,如商品销售统计、调查问卷分析等,引导学生逐步学会运用加权平均数。
-解决涉及加权平均数的综合问题:学生需要将多个知识点综合运用,对逻辑思维和问题解决能力要求较高。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“加权平均数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-突破方法:通过案例分析和分组讨论,帮助学生构建解决问题的思路框架,逐步培养他们分析问题和解决问题的能力。
在教学中,教师应围绕这些重点和难点内容,采用多种教学策略,如直观演示、案例分析、小组合作等,确保学生能够透彻理解加权平均数的概念、计算方法和应用场景。同时,教师应注重学生的个体差异,为不同水平的学生提供适宜的指导和帮助,使他们在掌握核心知识的同时,能够有效突破学习难点。
3.培养学生的逻辑思维能力和团队合作精神,在学习过程中形成良好的数学学习习惯。
-引导学生通过小组合作、讨论交流等方式探究加权平均数的性质和计算方法。
-培养学生在解决问题的过程中,形成严谨的逻辑思维和良好的学习习惯。
三、教学难点与重点
1.教学重点
-加权平均数的定义及其与算术平均数的关系:这是本节课的核心内容,需要让学生明确加权平均数的概念,理解权值对平均数的影响,以及加权平均数与算术平均数的区别与联系。

华师大版八下数学20.1《平均数》平均数的意义说课稿

华师大版八下数学20.1《平均数》平均数的意义说课稿

华师大版八下数学20.1《平均数》平均数的意义说课稿一. 教材分析华师大版八下数学20.1《平均数》是初中数学的重要内容,旨在让学生理解平均数的含义,掌握求平均数的方法,并能够运用平均数解决实际问题。

本节课的内容包括平均数的定义、性质、求法以及平均数在实际生活中的应用。

通过本节课的学习,学生能够理解平均数在统计学中的重要性,提高解决问题的能力。

二. 学情分析八年级的学生已经掌握了整数、分数和小数的知识,对数学概念有一定的理解能力。

但是,对于平均数的概念和求法,部分学生可能还比较陌生。

因此,在教学过程中,需要结合学生的实际情况,用生动具体的例子让学生理解和掌握平均数的概念和求法。

三. 说教学目标1.知识与技能:理解平均数的含义,掌握求平均数的方法,能够运用平均数解决实际问题。

2.过程与方法:通过小组合作、讨论交流的方式,提高学生分析问题、解决问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,体会数学与生活的紧密联系,提高学生运用数学知识解决实际问题的能力。

四. 说教学重难点1.重点:平均数的定义、性质和求法。

2.难点:理解平均数在实际生活中的应用,能够运用平均数解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、板书、教学卡片等辅助教学,提高教学效果。

六. 说教学过程1.导入:通过生活中的实例,如班级同学的体重、成绩等,引出平均数的概念,激发学生的学习兴趣。

2.新课导入:介绍平均数的定义、性质和求法,引导学生理解和掌握平均数的概念。

3.案例分析:分析实际生活中的例子,让学生体会平均数在实际中的应用,培养学生运用数学知识解决实际问题的能力。

4.小组合作:学生分组讨论,交流自己对平均数的理解和求法,提高学生的合作能力和沟通能力。

5.总结提升:教师引导学生总结本节课的主要内容,强化对平均数的理解和掌握。

华师大版八下数学20.1平均数20.1.1平均数的意义教学设计

华师大版八下数学20.1平均数20.1.1平均数的意义教学设计

华师大版八下数学20.1平均数20.1.1平均数的意义教学设计一. 教材分析华师大版八下数学20.1平均数是学生在学习了统计和概率的基础知识后,进一步探讨平均数的意义和求法。

本节内容通过具体的实例,让学生理解平均数的定义,掌握求平均数的方法,并能够运用平均数解决实际问题。

教材中提供了丰富的例题和练习题,供学生巩固所学知识。

二. 学情分析学生在学习本节内容前,已经掌握了统计和概率的基础知识,具备了一定的数学思维能力。

但部分学生对平均数的理解可能仍停留在表面,不能深入理解其内涵。

因此,在教学过程中,需要关注学生的认知水平,引导学生从具体实例中发现平均数的意义,并通过大量的练习,让学生熟练掌握求平均数的方法。

三. 教学目标1.理解平均数的定义,掌握求平均数的方法。

2.能够运用平均数解决实际问题。

3.培养学生的数学思维能力和团队协作能力。

四. 教学重难点1.重点:平均数的定义,求平均数的方法。

2.难点:深入理解平均数的内涵,运用平均数解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中发现平均数的意义。

2.运用小组合作学习的方式,让学生在讨论中思考,培养团队协作能力。

3.利用多媒体辅助教学,直观展示平均数的求法,提高学生的学习兴趣。

4.注重练习,让学生在实践中巩固所学知识。

六. 教学准备1.多媒体教学设备。

2.练习题和学习资料。

3.计时器。

七. 教学过程1.导入(5分钟)通过一个具体的问题引入本节内容:某班有30名学生,在一次数学测试中,他们的平均成绩是85分,请问这个班的学生成绩范围是多少?2.呈现(15分钟)讲解平均数的定义,并通过多媒体展示平均数的求法。

引导学生从具体实例中总结出求平均数的方法。

3.操练(15分钟)学生分组讨论,每组选取一个实例,求出平均数,并解释其意义。

各组将结果展示给全班,大家共同讨论,加深对平均数概念的理解。

4.巩固(10分钟)针对本节课的内容,设计一些练习题,让学生独立完成。

平均数(一)

平均数(一)

八年级数学20.1.1平均数(1) 新授课 1课时 执笔:贺焕杰 审核:张群 时间:第十三周学习目标(一) 知识与技能:使学生理解数据的权和加权平均数的概念 (二)过程与方法:使学生掌握加权平均数的计算方法(三)情感态度与价值观:通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

重、难点:1、重点:会求加权平均数2、难点:对“权”的理解 学习过程 一、 课前准备1、算术平均数的定义: 一般地,对于n 个数x 1,x 2,…,x n ,我们把)(121n x x x n+++ 叫做这n 个数的算术平均数(mean),简称平均数,记为x ,读作“x 拔”.2、某广告公司欲招聘广告策划人员一名,对A 、B 、C 三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用?3、 加权平均数的概念 在实际问题中,一组数据的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个“权”.如例1中4、3、1分别是创新、综合知识、语言三项测试成绩的权(weight),而称134188350472++⨯+⨯+⨯为A 的三项测试成绩的加权平均数.把加权平均数与小学学过的平均数计算公式作比较看看意义上是否一致?4、 某校八年级二班一次数学测试成绩如下:100分7人,99分5人,98分6人,95分4人,88分5人,85分5人,80分8人,79分2人,78分4人,65分2人,50分2人,试计算全班的平均成绩.二、随堂练习:1、一组数据:40、37、x、64的平均数是53,则x的值是()A、67B、69C、71D、722、甲、乙、丙三种饼干售价分别为3元、4元、5元,若将甲种10斤、乙种8斤、丙种7斤混到一起,则售价应该定为每斤()A、3.88元B、4.3元C、8.7元D、8.8元3、某次考试A、B、C、D、E五名学生平均分为62分,除A以外四人平均分为60分,则A得分为()A、60B、62C、70D、无法确定4、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%求小关和小兵本学期的总平均分?5(单位:小时)求这些灯泡的平均使用寿命?三、拓展提高:1、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.2、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。

人教版八年级数学下册20.1.1平均数(第1课时)一等奖优秀教学设计

人教版八年级数学下册20.1.1平均数(第1课时)一等奖优秀教学设计

人教版义务教育课程标准实验教科书八年级下册20.1.1平均数(1) 教学设计一、内容和内容解析1.内容人教版八年级下册“20.1.1平均数”第一课时.2.内容解析统计活动的几个环节中,数据的分析是在对数据的收集、整理基础之上进行的,是统计活动中最重要的环节.平均数是最常用、最基本的数据分析方法,反映一组数据的“平均水平”,并与中位数、众数相结合,通过对数据集中趋势的描述,体现数据向其中心值靠拢或聚集的程度,因此平均数(尤其是加权平均数)是统计中的一个重要概念.本节着重研究加权平均数,“权”的重要性在于它反映的是数据的相对“重要程度”.尽管学生在以前的学习中已初步了解了平均数的意义,并会计算权数相等情况下的算术平均数,但对加权平均数的意义以及“权”的作用理解仍将非常困难,教学中应尽量列举典型的、贴近学生生活和具有现实意义的生活例子,在对实际问题的分析和解决中加深对“权”的理解和体会,渗透平均数和“权”的统计思想,为更好地进行数据的描述与分析,为实现后继统计知识的学习目标──建立统计观念、突出统计思想奠定基础.基于上述分析,确定本节教学重点是:以具体问题为载体,在实际问题情景中理解加权平均数的意义和作用,学会运用加权平均数解决实际问题.二、目标和目标解析1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数.教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题.2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度.3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性.通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性.三、教学问题诊断分析1.教师教学可能存在的问题:(1)就本论本,不能很恰当地列举典型的、贴近学生生活的现实例子,以具体的实际问题为载体,创设问题情景,揭示概念;(2)不能设计有效的数学问题,使学生通过有思维含量的数学活动,引导学生对“权”的意义和作用有深刻的理解;(3)过分强调知识的获得,忽略了统计思想的揭示和统计观念的建立;(4)对前两个学段中学生已经具有的相关平均数的知识经验了解不足,致使引入的问题太过简单或难度要求过高,导致学生的学习积极性不高.2.学生学习中可能出现的问题:(1)由于生活经验不足,同时受认知水平的影响,对抽象的“权”的意义和作用的理解会有所困难;(2)尽管在第一、第二学段已经学习了统计的简单知识,但对统计的意义和统计思想的理解尚处在最粗浅的认识层面,加之对“权”理解的困难,所以可能会感到这部分知识的学习比较抽象,缺少学习的激情.鉴于上述分析,确定本节的教学难点是:列举典型的、贴近学生生活的、和具有现实意义的生活例子,通过设计有效的、有思维含量的数学问题,激活学生的数学思维,深入理解数据的权的意义和作用.三、学准备:多媒体课件、导学案四、学过程。

《20.1.1平均数》学历案-初中数学人教版12八年级下册

《20.1.1平均数》学历案-初中数学人教版12八年级下册

《平均数》学历案(第一课时)一、学习主题本课学习主题为“初中数学课程《平均数》”,旨在让学生掌握平均数的概念、计算方法及其在日常生活中的应用。

通过本课的学习,学生将能够理解平均数的意义,学会用平均数来描述一组数据的整体水平。

二、学习目标1. 知识与技能:(1)理解平均数的概念,知道平均数是一组数据的和除以数据的个数所得的结果。

(2)掌握平均数的计算方法,能够熟练地运用平均数进行计算。

(3)了解平均数在日常生活中的应用,能够用平均数来描述一组数据的整体水平。

2. 过程与方法:(1)通过观察、分析具体实例,让学生自主探究平均数的概念和计算方法。

(2)通过小组合作,让学生共同解决问题,培养合作与交流的能力。

3. 情感态度与价值观:(1)激发学生的学习兴趣,提高学生对数学的认识和热爱。

(2)通过实际问题,让学生感受到数学在生活中的作用,培养应用意识。

三、评价任务1. 概念理解评价:通过课堂提问和小组讨论,评价学生对平均数概念的理解程度。

2. 计算能力评价:通过布置相关练习题,评价学生的平均数计算能力。

3. 应用能力评价:通过让学生解决实际问题,评价学生将平均数应用于实际生活的能力。

四、学习过程1. 导入新课:通过生活中的实例,引导学生思考如何描述一组数据的整体水平,从而引入平均数的概念。

2. 探究新知:通过具体实例,让学生自主探究平均数的概念和计算方法。

教师可以引导学生观察、分析、总结,让学生自主发现平均数的计算方法。

3. 小组合作:让学生分组,共同解决问题,互相交流,培养合作与交流的能力。

教师可以根据学生的实际情况,设计合适的问题,让学生进行小组合作。

4. 归纳总结:让学生总结本课所学知识,巩固记忆。

教师可以进行适当的补充和强调。

五、检测与作业1. 检测:通过布置相关练习题,检测学生对平均数概念和计算方法的掌握情况。

2. 作业:布置相关实际问题,让学生将所学知识应用于实际生活中,培养学生的应用意识。

六、学后反思1. 教师反思:教师应对本课教学进行反思,总结教学经验,找出不足之处,为今后的教学提供借鉴。

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案一. 教材分析平均数和加权平均数是初中数学八年级下册的教学内容,主要让学生了解平均数的定义和性质,掌握加权平均数的计算方法。

本节课通过引入实际问题,引导学生探讨平均数的求法,进而引出加权平均数的概念,并通过例题讲解和练习,使学生熟练掌握加权平均数的计算方法。

二. 学情分析学生在七年级已经学习了算术平均数的概念,对本节课的内容有一定的认知基础。

但部分学生对概念的理解不够深入,对实际问题的分析能力有待提高。

此外,学生在运算能力方面也存在差异,部分学生对复杂运算的计算过程不够熟练。

三. 教学目标1.理解平均数的定义和性质,掌握加权平均数的计算方法。

2.能运用加权平均数解决实际问题,提高分析问题和解决问题的能力。

3.培养学生的运算能力和合作精神,提高学生的数学素养。

四. 教学重难点1.重点:加权平均数的计算方法。

2.难点:对实际问题中权重的理解和运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究平均数的定义和性质。

2.通过实例分析,让学生了解加权平均数的应用,培养学生的实际问题解决能力。

3.利用小组合作学习,让学生在讨论中巩固知识,提高合作意识。

4.采用讲练结合的方法,对学生进行有针对性的辅导,提高学生的运算能力。

六. 教学准备1.准备相关的实际问题,用于引导学生探讨平均数的概念。

2.准备PPT课件,展示平均数和加权平均数的定义和性质。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如成绩统计、商品销售等,引导学生思考如何求解这些问题的平均值。

通过讨论,让学生回顾算术平均数的概念,为新课的学习做好铺垫。

2.呈现(15分钟)讲解平均数的定义和性质,引导学生理解平均数的概念。

通过PPT课件展示加权平均数的定义,让学生了解加权平均数与算术平均数的关系。

同时,讲解加权平均数的计算方法,让学生掌握计算加权平均数的基本步骤。

20.1.1平均数(1)

20.1.1平均数(1)
显然甲的成绩比乙高,所以从成绩看,应该录取甲. 我们常用平均数 表示一组数据的“平 均水平”.
应试者 甲 乙 听 85 73 说 78 80 读 85 82 写 73 83
重要程度 不一样! 问题2 如果公司想招一名笔译能力较强的翻译, 用算术平均数来衡量他们的成绩合理吗? 听、说、读、写的成绩按照2:1:3:4的比确定.
应试者 甲 乙 听 85 73 说 78 80
3 : 4
读 85 82 写 73 83
探究新知
思考 吗?
85 2+78 1+85 3+73 4 =79.5 2+1+3+ 4 能把这种加权平均数的计算方法推广到一般
一般地,若n个数x1,x2,„,xn的权分别 是w1,w2,„,wn,则
创新能力
72 85 67
计算机能力
50 74 72
公关能力
88 45 67
(2)请你设计合理的权重,为公司招聘一名职员: ① 网络维护员;② 客户经理;③ 创作总监.
20章
数据的分析
20.1.1 平均数
复习引入
1、重庆7月中旬一周的最高气温如下:
星期 气温/ 0c 一 38 二 36 三 38 四 36 五 38 六 36 日 36
(1)你能快速计算这一周的平均最高吗? (2)你还能回忆、归纳出算术平均数的概念吗? 日常生活中,我们常用平均数表示一组数据的“平均水 平”. 一般地,对于n个数x1, x2, …, xn,我们把
选手 A B
演讲内容 85 95
演讲能力 95 85
演讲效果 95 95
小结反思
知识点:
(1)加权平均数在数据分析中的作用是什么?

人教版八年级下册20.1.1平均数根据频数分布表求平均数教学设计

人教版八年级下册20.1.1平均数根据频数分布表求平均数教学设计
a.确定频数分布表的类型(如组距式或累计式);
b.根据频数分布表中的数据,计算各组数据的组中值;
c.将各组数据的组中值与对应的频数相乘,得到各组数据的总和;
d.将所有组的总和相加,再除以总频数,得到平均数。
2.教师通过图示、板书等形式,直观展示求平均数的过程,帮助学生理解各个步骤的含义。
(三)学生小组讨论,500字
1.通过小组合作、讨论、实践等学习方式,培养学生主动探索、积极参与的学习态度。
2.利用频数分布表进行数据整理和分析,培养学生的数据敏感性和逻辑思维能力。
3.通过实际例题的讲解和练习,让学生掌握根据频数分布表求平均数的计算步骤,提高计算准确性。
(三)情感态度与价值观
1.培养学生尊重事实、严谨治学的态度,认识到数据分析在现实生活中的重要性。
在教学过程中,教师应以学生为本,关注他们的学习需求和发展,创造一个充满活力、富有挑战的课堂氛围,使学生在轻松愉快的氛围中掌握知识,提高能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:掌握根据频数分布表求平均数的计算方法,并能够熟练运用到实际问题中。
2.难点:理解频数分布表中各个数据之间的关系,以及如何利用这些关系求解平均数。
2.通过数学知识的学习,激发学生对数学的兴趣,培养学生的数学美感。
3.引导学生关注社会现象,学会用数学的眼光观察和思考问题,提高学生的社会责任感和公民素养。
教学设计:
一、导入新课
1.引导学生回顾频数分布表的概念,为新课的学习做好铺垫。
2.提问:“我们已经学习了如何制作频数分布表,那么如何利用频数分布表来求解平均数呢?”
2.教师强调平均数在实际问题中的应用价值,激发学生对数学的兴趣。
3.鼓励学生在课后继续思考,如何将所学的求平均数的方法运用到其他领域的问题解决中。

人教版八年级数学下册第二十章数据的分析20.1.1平均数教学设计

人教版八年级数学下册第二十章数据的分析20.1.1平均数教学设计
(1)求以下数列的平均数:3,6,9,12,15。
(2)已知某班级学生的平均身高为1.6米,若增加一名身高为1.8米的学生,求新的平均身高。
(3)已知一组数据的平均数为20,求这组数据总和的2倍。
2.提高拓展题
为了提高学生的数据分析能力和解决实际问题的能力,布置以下提高拓展题:
(4)某商店进行促销活动,活动期间,顾客平均每人消费金额为100元。若一名顾客消费了150元,求此时顾客的平均消费金额。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平均数的定义及其求解方法,平均数在实际问题中的应用。
2.难点:理解平均数的含义,掌握平均数与其他统计量的关系,以及如何根据数据特点选择合适的平均数作为数据代表值。
(二)教学设想
1.创设情境,导入新课
结合生活实际,设计一个与学生生活密切相关的问题,如班级同学身高、体重等数据的分析,引导学生通过求解平均数来描述数据集中趋势,激发学生学习的兴趣。
让学生分组讨论,尝试用自己的语言描述平均数的含义,并举例说明。在此过程中,教师巡回指导,了解学生的思考情况。
3.教师引导
在学生讨论的基础上,教师进行引导总结,给出平均数的定义,并强调平均数在描述数据集中趋势方面的重要作用。
(二)讲授新知
1.平均数的定义与性质
教师详细讲解平均数的定义,即总数除以个数,强调平均数反映了数据集的总体特征。同时,介绍平均数的性质,如受极端值影响较大等。
本章节教学设计以人教版八年级数学下册第二十章数据的分析20.1.1平均数为依据,结合学科特点和课程内容,注重培养学生的知识技能、过程与方法以及情感态度与价值观。在教学过程中,教师应关注学生的个体差异,因材施教,使他们在原有基础上得到提高。同时,注重理论与实践相结合,让学生在实际问题中感受数学的魅力,提高他们运用数学知识解决实际问题的能力。

人教版八年级下册20.1.1平均数(教案)

人教版八年级下册20.1.1平均数(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平均数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平均数的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平均数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
举例:在讲解平均数的定义时,可以引用班级同学的身高、体重数据,让学生计算平均身高和体重,从而加深对平均数含义的理解。
2.教学难点
-平均数性质的掌握:理解当数据增大或减小时,平均数的变化规律,这是学生容易混淆的地方。
-平均数与中位数、众数的区别和联系:学生需要区分这三个统计量,并明白它们在不同数据集上的适用性。
五、教学反思
在本次教学活动中,我尝试了多种方法来帮助学生理解和掌握平均数的概念及其应用。首先,通过引入日常生活中的实例,我发现同学们对于平均数这一概念产生了浓厚的兴趣。他们在思考问题时,能够将所学知识与实际情境联系起来,这让我感到很欣慰。
然而,在讲授过程中,我也发现了一些问题。有些同学在计算平均数时,仍然容易出错,尤其是在处理一些复杂的数据时。这说明我在讲解平均数计算方法这一部分,可能还需要再加强一下,可以通过更多具体例题的讲解和练习,帮助学生巩固计算技巧。
人教版八年级下册20.1.1平均数(教案)
一、教学内容
人教版八年级下册20.1.1平均数:
1.平均数的定义:引导学生理解平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标。
2.平均数的计算方法:讲解如何将一组数据相加后除以数据的个数,得到平均数。

华师大版八下数学20.1平均数说课稿

华师大版八下数学20.1平均数说课稿

华师大版八下数学20.1平均数说课稿一. 教材分析华师大版八下数学20.1平均数是本节课的主要内容。

平均数是初中数学中的一个重要概念,它反映了数据集中趋势的一种量数。

在本节课中,学生将学习平均数的定义、性质和计算方法,并能运用平均数解决实际问题。

教材通过丰富的实例和练习,帮助学生理解和掌握平均数的概念,培养学生的数学思维能力和解决问题的能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,他们已经学习了数据的收集、整理和表示方法,对数据有一定的认识。

但是,学生对平均数的理解可能还停留在表面的层次,没有深入理解其本质和应用。

因此,在教学过程中,我需要关注学生的认知水平,通过引导和启发,帮助学生深入理解平均数的概念,并能够运用到实际问题中。

三. 说教学目标1.知识与技能目标:学生能够理解平均数的定义和性质,掌握平均数的计算方法,并能运用平均数解决实际问题。

2.过程与方法目标:通过小组合作、讨论和探究,学生能够培养数学思维能力和解决问题的能力。

3.情感态度与价值观目标:学生能够感受到数学与生活的联系,增强对数学的兴趣和自信心。

四. 说教学重难点1.重点:平均数的定义、性质和计算方法。

2.难点:理解平均数的本质和应用,能够运用平均数解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究的教学方法,通过引导学生思考和讨论,激发学生的学习兴趣和主动性。

2.教学手段:利用多媒体课件和实物教具,帮助学生直观地理解平均数的概念和计算方法。

同时,通过布置练习题和实际问题,让学生在实践中运用平均数。

六. 说教学过程1.导入:通过一个实际问题,引出平均数的概念,激发学生的兴趣。

2.探究:学生分组讨论,通过实例和练习,引导学生探索平均数的性质和计算方法。

3.讲解:教师进行讲解,明确平均数的定义和性质,示范平均数的计算方法。

4.练习:学生独立完成练习题,巩固对平均数的理解和计算方法。

5.应用:学生分组讨论,运用平均数解决实际问题,培养学生的应用能力。

20.1_数据的代表_(第1课时)20.1.1平均数(1)

20.1_数据的代表_(第1课时)20.1.1平均数(1)
选手 A B 演讲内容 85 95 演讲能力 95 85 演讲效果 95 95
解:选手A的最后得分是
选手B的最后得分是
85 50% 95 40% 95 10% 50% 40% 10%
=90,
95 50% 85 40% 95 10% 50% 40% 10%
第二十章数据的分析 20.1数据的代表(第1课时)
例1 一家公司打算招聘一名英文翻译,对甲乙两名应试者进行 了听、说、读、写的英语水平测试,他们各项的成绩(百分制) 如下:
应试者 甲 乙 听 85 73 说 78 80 读 85 82力比较强的翻译,计 算两名应试者的平均成绩(百分制).从他们的成绩看,应 该录取谁? (2)如果这家公司想招一名笔译能力较强的翻译,听、 说、读、写成绩按照2:1:3:4的比确定,计算两名应 试者的平均成绩(百分制),从他们的成绩看,应该录 取谁?
1主要知识内容:
若n个数
x1, x 2 , ,xn
则:
的权分别是
加 权 平 均 数
w1, w2 , ,wn
x1w1 x2 w2 xn wn w1 w2 w3 wn
叫做这n个数的加权平均数。 数据的权能够反映的数据的相对“重要程度”。
2 运用加权平均数的计算样本数据的平均数 3 认真体会加权平均数 权 的意义?
解:(1)甲的平均成绩为
85 78 85 73 80 .25 4
乙的平均成绩为
73 80 82 83 79.5 4
甲的成绩比乙高,所以应该录取甲. (2)听、说、读、写的成绩按照2:1:3:4的比确定,则 甲的平均成绩为
85 2 78 1 85 3 73 4 79.5 2 1 3 4

人教版20.1.1平均数—加权平均数说课课件

人教版20.1.1平均数—加权平均数说课课件
人教版八年级数学(下册)第二十章 :数据的分析
三、教学目标
(一)知识技能 1.掌握加权平均数及权的概念。 2.会求一组数据的加权平均数。 3.会用加权平均数及权解决实际问题。
(二)过程方法
1.学生在参与猜想、验证、解决实际问题的数学活动中,体 会加权平均数及权的含义。 2.渗透从特殊到一般的数学归纳的方法,培养学生大胆质疑、 不断挑战、严谨的数学思维品质。
人教版八年级数学(下册)第二十章 :数据的分析
环节二:验证猜想 探究新知
(6)、白巧克力单价变为x 元/千克,黑巧克力单价 变为y元/千克,把m千克 白巧克力和n千克黑巧克 力混合,混合后的平均单 价该如何计算?
在以上问题的基础上,教 师把数字变为字母,给出 问题(6),学生继续计算混 合巧克力的平均单价。 教师追问:问题(6)中两种 巧克力的单价的权分别是 什么? 巩固加权平均数的计算方 法,强化学生对“权”和 “加权平均数”的认识。 渗透从特殊到一般的数学 思想方法,为加权平均数 公式的得出做好铺垫。
人教版八年级数学(下册)第二十章 :数据的分析
三、教学目标
(三)问题解决 培养学生从数学的角度发现问题的意识和解决问题的
能力,增强学生用统计知识解决实际问题的应用意识,提 高学生的实践能力。
(四)情感态度 通过解决身边的实际问题,让学生进一步认识
数学与人类生活的密切联系,激发学生学习数学的 兴趣,培养学生用数据说话的习惯和实事求是的科 学态度。
学生独立完成后三 种混合巧克力的平 均单价的计算.并根 据计算结果判断, 猜想是否正确.
学生通过计算,验 证猜想的正确性, 进而发展学生从合 情推理到演绎推理 的能力,培养学生 严谨的数学思维品 质。
人教版八年级数学(下册)第二十章 :数据的分析

人教版数学八年级下册20.1.1《平均数》说课稿

人教版数学八年级下册20.1.1《平均数》说课稿

人教版数学八年级下册20.1.1《平均数》说课稿一. 教材分析《平均数》是人教版数学八年级下册第20章第1节的内容。

本节课主要介绍了平均数的定义、性质和求法,以及平均数在实际生活中的应用。

教材通过丰富的实例,引导学生认识平均数,探究平均数的性质,培养学生运用平均数解决实际问题的能力。

二. 学情分析八年级的学生已经掌握了整数、分数和小数的知识,具备了一定的逻辑思维和运算能力。

但他们对平均数的理解可能仅停留在表面,对其性质和求法不够了解。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生深入理解平均数,提高他们运用平均数解决实际问题的能力。

三. 说教学目标1.知识与技能:理解平均数的定义,掌握平均数的性质和求法,能运用平均数解决实际问题。

2.过程与方法:通过观察、分析、归纳等方法,探究平均数的性质,提高学生的逻辑思维能力。

3.情感态度与价值观:培养学生对数学的兴趣,使他们认识到数学在生活中的重要作用。

四. 说教学重难点1.重点:平均数的定义、性质和求法。

2.难点:平均数的性质和求法,以及运用平均数解决实际问题。

五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法和小组合作学习法。

2.教学手段:利用多媒体课件、实物模型和数学软件辅助教学。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何求解平均数,激发学生的学习兴趣。

2.探究平均数的定义:让学生观察、分析实例,引导学生发现平均数的性质,总结出平均数的定义。

3.讲解平均数的性质:通过实例和数学推理,讲解平均数的性质,让学生加深对平均数的理解。

4.学习平均数的求法:引导学生运用公式法和列举法求解平均数,巩固所学知识。

5.应用拓展:让学生运用平均数解决实际问题,提高他们运用数学知识解决问题的能力。

6.总结:对本节课的内容进行总结,强调平均数在实际生活中的重要作用。

七. 说板书设计板书设计如下:八. 说教学评价本节课的评价主要从学生的知识掌握、能力培养和情感态度三个方面进行。

20.1.1平均数(1)

20.1.1平均数(1)
你认为小明的做法有道理吗?为什么?
由于各郊县的人数不同,各郊县的人均耕地面积对这个市郊县 的人均耕地面积的影响不同,因此这个市郊县的人均耕地面积 不能是三个郊县人均耕地面积的算术平均

0.15 0.21 0.18 x 0.18(公顷) 3
,而应该是:
0.15×15表示A县 耕地面积吗?你能 说出这个式子中分 子,分母各表示什 么吗?
加权平均数的概念 对“权”的理解
复习: 2.4 数据2、3、4、1、2的平均数是________,这个平均数 叫做_________ 平均数. 算术 一次数学测验,3名同学的数学成绩分别是60,80和 100分,则他们的平均成绩是多少?你怎样列式计算?算式中 的分子分母分别表示什么含义? 60 80 100 80 x= 3 如果有n个数(用χ1、χ2、χ3、…χn)那么它们的平均 数我们表示为
教 学 目 标
在探究解决实际问题的过程中, 形成“加权平均数”的概念, 知识技能 并能运用加权平均数公式解决 实际问题。 通过对问题的思考,与同伴的 过程与方 合作交流等探究过程,形成知 法 识培养能力。 以积极情感态度参与数学活动 情感态度 中来,在解决问题的过程中体 会科学认识事物重要性。
重点 难点
33 2 2
乙的成绩为
73 3 80 3 85 2 82 2 79.3 33 2 2
显然甲的成绩比乙高,所以从成绩看,应该录取甲.
应试者 甲 乙
听 85 73
说 83 80
读 78 85
写 75 82
(2)如果这家公司想招一名笔译能力较强的翻译,听、 说、读、写成绩按照2:2:3:3的比确定,计算两名应 试者的平均成绩(百分制).从他们的成绩看,应该 录取谁? 解:根据题意:

初中数学人教版八年级下册20.1.1 平均数第1课时 平均数(1)教案

初中数学人教版八年级下册20.1.1 平均数第1课时 平均数(1)教案

初中数学人教版八年级下册实用资料第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时 平均数(1)1.使学生理解并掌握数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.重点会求加权平均数.难点对“权”的理解.一、复习导入某校八年级共有班级 1班 2班 3班 4班参考人数 40 42 45 32平均成绩 80 81 82 79x =14×(79+80+81+82)=80.5 平均数的概念及计算公式:一般地,如果有n 个数x 1,x 2,x 3,…,x n ,则有x =x 1+x 2+x 3+…+x n n,其中x 叫做这n 个数的平均数,读作“x 拔”.二、讲授新课问题: 一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(应试者 听 说 读 写甲 85 78 85 73乙 73 80 82 83(1)(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?对于问题(1),根据平均数公式,甲的平均成绩为:85+78+85+734=80.25, 乙的平均成绩为73+80+82+834=79.5. 因为甲的平均成绩比乙高,所以应该录取甲.对于问题(2),听、说、读、写成绩按照2∶1∶3∶4的比确定,这说明各项成绩的“重要程度”有所不同,读、写的成绩比听、说的成绩更加“重要”.因此,甲的平均成绩为85×2+78×1+85×3+73×42+1+3+4=79.5, 乙的平均成绩为73×2+80×1+82×3+83×42+1+3+4=80.4. 因为乙的平均成绩比甲高,所以应该录取乙.上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.而问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4分别称为听、说、读、写四项成绩的权,相应的平均数79.5,80.4分别称为甲和乙的听、说、读、写四项成绩的加权平均数.一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n叫做这n 个数的加权平均数.三、例题讲解【例1】教材第112页例1【例2】为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行了测量,结果如下表:(单位:小时寿命 450 550 600 650 700只数 20 10 30 15 25解:这些灯泡的平均使用寿命为:x =450×20+550×10+600×30+650×15+700×2520+10+30+15+25=597.5(小时) 四、巩固练习1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为________.【答案】2x 1+3x 2+4x 3+5x 4x 1+x 2+x 3+x 42.某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶________环.【答案】ax +by a +b五、课堂小结师:这节课你学到了什么新知识?生1:数据的权和加权平均数的概念.生2:掌握加权平均数的计算方法.……平均数是统计中的一个重要概念,新教材注重学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念,基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.第2课时 平均数(2)1.加深对加权平均数的理解.2.会根据频数分布表求加权平均数,解决一些实际问题.3.会用计算器求加权平均数的值.重点根据频数分布表求加权平均数.难点根据频数分布表求加权平均数.一、复习导入采用教材原有的引入问题,设计的几个问题如下:(1)请同学们阅读教材中的探究问题,依据统计表可以读出哪些信息?(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值有什么关系? 设计意图(1)主要是想引出根据频数分布表求加权平均数近似值的计算方法;(2)加深了对“权”的意义的理解:当利用组中值近似取代一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权;二、例题精讲【例2】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).解:这个跳水队运动员的平均年龄为x =13×8+14×16+15×24+16×28+16+24+2≈14(岁). 【例3】某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡.它们的使用使用寿命/x/h 600≤x<1000 1000≤x<1400 1400≤x<1800 1800≤x<2200 2200≤x<2600灯泡只数 5 10 12 17 6分析:估计这批灯泡的平均使用寿命.解:根据表格,可以得出各小组的组中值,于是x =800×5+1200×10+1600×12+2000×17+2400×650=1672, 即样本平均数为1672.因此,可以估计这批灯泡的平均使用寿命大约是1672 h .三、巩固练习某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用时间进行调查,下表是该校八年级某班.所用时间t(分钟) 人 数0<t≤10 410<t≤20 620<t≤30 1430<t≤40 1340<t≤50 950<t≤60 4求:(1)(2)该班学生平均每天做数学作业所用的时间.【答案】解:(1)15(2)该班学生平均每天做数学作业所用时间为x =5×4+15×6+25×14+35×13+45×9+55×44+6+14+13+9+4=30.8(分钟) 四、课堂小结1.加权平均数的应用.2.根据频数分布表求加权平均数.3.学会用计算器求加权平均数的值.在统计中算术平均数常用于表示对象的一般水平,它是描述数据集中程度的一个统计量,它可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别,可见平均数是统计中的一个重要概念.基于这一认识,这节课注重了以下几个方面:一、在现实生活情境中引入,注重数学与生活的联系.二、创造有效的数学学习方式,理解平均数的意义,学会平均数的算法.20.1.2 中位数和众数第1课时 中位数和众数(1)认识中位数和众数,并会求出一组数据的众数和中位数.重点认识中位数、众数这两种数据代表.难点利用中位数、众数分析数据信息,做出决策.一、复习导入前面已经和同学们研究了平均数这个数据代表.它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据的过程中又起到怎样的作用.二、讲授新课 月收 入/元 45000 18000 10000 5500 5000 3400 3000 1000 人数 1 1 1 3 6 1 11 1(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?师:同学们知道如何计算这个公司员工月收入的平均数吗?生:根据加权平均数,可以求出这个公司员工月收入的平均数为:45000+18000+10000+5500×3+5000×6+3400+3000×11+10001+1+1+3+6+1+11+1=6276.师:很好!那么用第(1)问中算得的平均数来反映该公司全体员工的月收入水平,你认为合理吗?生:不合理.因为在这25名员工中,仅有3名员工的收入在6276元以上,而另外22名员工的收入都在6276元以下.因此,用月收入的平均数反映所有员工的月收入水平不合理.师:这位同学分析得很好!那么应该选择什么数据来反映该公司员工月收入的水平呢?这就要用到本节课要学习的中位数,利用中位数可以更好地反映这组数据的集中趋势.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称位于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.利用中位数分析数据可以获得一些信息.例如,上述问题中将公司25名员工月收入数据由小到大排列,得到的中位数为3400,这说明除去月收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.【例1】教材第117页例4师:刚才我们学习中位数,下面我们再来学习一个反映数据集中趋势的另一众数,一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映该组数据的集中趋势.【例2】一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你尺码/cm22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 3 1码组成的一组数据的众数.一段时间内卖出的300双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数,进而估计这家鞋店销售哪种尺码的鞋最多.解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5 cm的鞋销售量最大,因此可以建议鞋店多进23.5 cm的鞋.三、巩固练习1.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是________,众数是________.【答案】9 92.一组各不相同的数据23,27,20,18,x,12,它的中位数是21,则x的值是________.【答案】223.数据92,96,98,100,x的众数是96,则其中位数和平均数分别是( )A.97,96 B.96,96.4C.96,97 D.98,97【答案】B4.如果在一组数据中,23,25,28,22出现的次数依次为3,5,3,1,并且没有其他的数据,则这组数据的众数和中位数分别是( )A.24,25 B.23,24C.25,25 D.23,25【答案】C四、课堂小结1.认识了中位数和众数.2.理解了中位数和众数的意义和作用,并能利用它们分析数据信息,做出决策.本次教学中,我通过引导学生在了解中位数和众数的意义之后,让学生利用中位数和众数的知识解决实际问题,沟通了知识与实际生活的联系,让学生体会到中位数与众数知识的实用性.第2课时中位数和众数(2)1.进一步认识到平均数、众数、中位数都是数据的代表.2.了解平均数、中位数、众数在描述数据时的差异.重点了解平均数、中位数、众数之间的差异.难点灵活运用这三个数据代表解决问题.一、复习导入平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据集中趋势的量.它们各有自己的特点,能够从不同的角度提供信息,在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.另外要注意:(1)平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;(2)众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算也不受极端值的影响;(3)平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应地引起平均数的变动;(4)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势;(5)实际问题中求得的平均数、众数、中位数应带上单位.二、例题讲解【例1得分50 60 70 80 90 100 110 120人数 2 3 6 14 15 5 4 1解:众数90分中位数85分平均数84.6分【例2】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁) 甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,5,5,6,6,36,55.(1)甲群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映甲群游客年龄特征的是________;(2)乙群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映乙群游客年龄特征的是________.解:(1)15 15 15 众数(2)15 5.5 5,6 中位数【例3】教材第119页例6三、巩固练习职员董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为应该使用平均数和中位数中的哪一个来描述该公司职工的工资水平?【答案】(1)2091 1500 1500 (2)3288 1500 1500 (3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.四、课堂小结1.了解平均数、中位数、众数之间的差异.2.灵活运用这三个数据代表解决问题.本节课首先从复习平均数、中位数和众数的定义开始,接着列出这三种统计量各自的特点和适用条件,为避免太过抽象,在后面设计的例题中都有这些统计量的应用,培养学生应用数学的意识.20.2 数据的波动程度1.了解方差的定义和计算公式.2.理解方差概念的产生和形成过程.3.会用方差比较两组数据的波动大小.重点方差产生的必要性和应用方差公式解决实际问题.难点理解方差的概念并会运用方差的公式解决实际问题.一、情境导入1.请同学们看下面的问题:(幻灯片出示)农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49 上面两组数据的平均数分别是x 甲≈7.54,x 乙≈7.52,说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们的平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量的分布情况,我们把这两组数据画成下面的图1和图2.师:比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米在各试验田的产量较集中地分布在平均量附近,从图中看出的结果能否用一个量来刻画呢?这就是我们本节课所要学习的内容——方差.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).2.方差的概念教师讲解:为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:设在一组数据中,各数据与它们的平均数的差的平方的和的平均数是s 2,那么我们用s 2=1n[(x 1-x)2+(x 2-x)2+…+(x n -x)2] 来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据的方差越大,说明这组数据的波动越大;数据的方差越小,说明这组数据的波动越小,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解了方差的概念之后,再回到了引例中,通过计算甲、乙两种甜玉米的方差,根据理论说明哪种甜玉米的产量更好.教师示范:两组数据的方差分别是s 甲2=(7.65-7.54)2+(7.50-7.54)2+…+(7.41-7.54)210≈0.01, s 乙2=(7.55-7.52)2+(7.56-7.52)2+…+(7.49-7.52)210≈0.002. 显然s 甲2>s 乙2,即甲种甜玉米的波动较大,这与我们从图1和图2看到的结果一致.由此可知,在试验田中,乙种甜玉米的产量比较稳定.正如用样本的平均数估计总体的平均数一样,也可以用样本的方差来估计总体的方差.因此可以推测,在这个地区种植乙种甜玉米的产量比甲种的稳定.综合考虑甲、乙两个品种的平均产量和产量的稳定性,可以推测这个地区比较适合种植乙种甜玉米.这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.二、例题讲解【例1】教材第125页例1【例2】教材第127页例2【例3】(幻灯片出示)已知两组数据:甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名学生到黑板计算. 解:根据公式可得x 甲=10+18(-0.1+0.3-0.2+0.1+0.4+0-0.2-0.3) =10+18×0=10 x 乙=10+18(0.2+0-0.5+0.3+0.5-0.4-0.2+0.1) =10+18×0=10 s 甲2=18[(9.9-10)2+(10.3-10)2+…+(9.7-10)2] =18(0.01+0.09+…+0.09) =18×0.44=0.055 s 乙2=18[(10.2-10)2+(10-10)2+…+(10.1-10)2] =18(0.04+0+…+0.01) =18×0.84=0.105 从s 甲2<s 乙2知道,乙组数据比甲组数据波动大.三、巩固练习1.已知一组数据为2,0,-1,3,-4,则这组数据的方差为________.【答案】62.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,7,7经过计算,两人射击环数的平均数相同,但s甲2________s乙2,所以确定________去参加比赛.【答案】>乙四、课堂小结1.知识小结:通过这节课的学习,我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小,而描述一组数据的波动大小的量不止一种,最常用的是方差.2.方法小结:求一组数据方差的方法:先求平均数,再利用平均数求方差.本次教学在解决引例问题时,通过对数据的分析,发现以前学过的统计知识不能解决新问题,引出矛盾,这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花,真正体现“不同的人,在数学上得到不同的发展”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学第二十章《数据的分析》第一节《数据的代表》第一课时
《平均数》说课稿
今天我说课的课题是人教版初三数学第二十章《数据的分析》第一节《数据的代表》第一课时《平均数》。

下面我主要从教材分析,目标分析,教学过程,教学方法,教学评价等方面对本课题进行分析阐述:
一、教材分析
(一)教材的地位和作用
本节课是人教版八年级数学下册第20章《数据的分析》中,第一节的内容。

主要让学生认识数据统计中基本统计量,是一堂概念性较强的课,也是学生学会分析数据,作出决策的基础。

本节课的内容与学生生活密切相关,能直接指导学生的生活实践。

(二)教学的重点和难点
教学重点:加权平均数的概念以及其计算方法;
教学难点:对权的理解。

二、目标分析
知识目标:(1)理解算术平均数、加权平均数的含义,掌握算术平均数、加权平均数的计算方法,明确算术平均数、加权平均数在数据分析中的作用。

(2)会计算一组数据的平均数,培养独立思考,勇于创新,小组协作的能力;
教学思考:感受生活中的数学问题,发展学生的观察、归纳、猜测、验证能力,领悟数学与现实世界的必然联系。

解决问题:1、通过经历平均数计算方法的得出过程,积累数学活动经验。

2、通过分组活动探索加权平均数的定义和计算方法,体会在解决问题过程中与
他人合作的重要性。

情感态度与价值观:
1、认识通过观察、实验、类比可以获得数学结论,体验数学活动充满着探索性和创造性。

2、在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,学会分享
别人的想法和结果,并重新审视自己的想法,能从交流中获益。

三、教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理,各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

环节一:创设情景激发兴趣
学起于思,思起于疑,无疑则无知 . 教育家托尔斯泰说过:“成功的教学所需要的不是强制,而是唤起学生强烈的求知欲望,激发学生的兴趣. ”
(问题见课件)首先由学生的平均成绩、平均年龄引入,复习算术平均数的求法。

接着,我将以课本136页的问题一为例,激发学生的学习兴趣。

环节二:分析问题发现新知
在学生计算出以上问题的平均数后,小组讨论研究,看谁做的对,学生得出自己的见解后,老师提问,然后引导对比分析以上两个问题的相同点与不同点,从而讨论归纳出算数平均数的概念。

环节三:结合实际探索新知
以所学知识解决一个实际问题,一个很贴近实际的耕地问题,第一问设计很简单,用算术平均数易求,接着出示第二问,给每个数赋上“权”,让学生探讨用刚刚学到的知识解决,这样学生就很容易深化学生对概念的理解,从而讨论归纳出加权平均数的概念。

环节四:实例探究培养能力
接着用所学知识解决一个实际问题,一个很贴近实际的应聘问题,给每个数赋上“权”,让学生探讨用刚刚学到的知识解决,学生都有一种跃跃欲试的感觉,这样学生就很容易深化学生对概念的理解和掌握。

环节五:探索延伸解决问题
重视教材中的疑问,适当对题目进行引申,使它的作用更加突出,有利于学生对知识的串联、积累、加工,从而达到举一反三的效果。

环节六:归纳小结形成体系
由学生总结本节课所学习的主要内容:⑴算术平均数、加权平均数的概念;⑵算术平均数、加权平均数的计算和确定方法。

让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质。

环节七:分层作业能力升华
学生经过以上五个环节的学习,已经初步掌握了算术平均数、加权平均数的计算和确定方法,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的训练题,其中包括了必做题和选做题,留给学生课后自主探究,这样既使学生掌握基础知识,又使学有余力的学生有进一步发展的空间和余地,这样也充分反映了新课改的精神,就是让不同的学生在数学上得到不同的发展。

四、教学方法
1.教学方法的设计
本节课使用多媒体教学平台;概念教学中,主要以生活实例为背景,从具体的事实上抽象出三个统计量的概念,通过三个统计量的计算与确定的练习帮助学生理解并巩固概念;在教学活动中主要是以问题的方式启发学生,以生动有趣的实例吸引与激励学生;在整个过程中采用情境教学法。

同时,注重培养学生阅读理解能力与小组协作能力,在教学过程中主要以学生“探究思考”“小组讨论”“相互学习”的学习方式而进行。

新课程理念强调“经历过程与获取结论同样重要”。

我采用了探究式的教学方法,整个探究式学习过程充满了师生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2.学法指导
本节课针对学生的认知规律,根据学生自主性和差异性原则,指导他们探究概念、交流合作,体验发现问题、探索问题和解决问题的学习过程。

参与知识的发生、发展、形成过程,使学生掌握知识。

3.教学手段
运用多媒体教学,激发学生探求知识的欲望,通过直观演示,切实有效的提高了课堂教学效果。

五、教学评价
主要从以下三个方面进行
1 . 评价学生的学习过程 .
2 . 评价学生的基础知识和基本技能 .
3 .评价学生发现问题、解决问题的能力 .
六、设计说明
根据新课程的要求,结合教材的编写意图,在本节设计时,我遵循以下原则:实例引入激发兴趣,学习过程体现自主,知识构建循序渐进,思想方法有几渗透。

本节课自始至终,体现“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”
七、结束语
各位领导、老师们,本节课我根据八年级学生的心理特征及其认知规律,采用直观教学和活动探究的教学方法,以学法为重心,放手让学生自主探索的学习,主动地参与到知识形成的整个思维过程,力求使学生在积极、愉快的课堂气氛中提高自己的认识水平,从而达到预期的教学效果。

我的说课完毕,谢谢!。

相关文档
最新文档