Stm32 IO端口及其中断

合集下载

关于STM32串口空闲中断IDEL的问题

关于STM32串口空闲中断IDEL的问题

关于STM32串口空闲中断IDEL的问题1.空闲中断是接受数据后出现一个byte 的高电平(空闲)状态,就会触发空闲中断.并不是空闲就会一直中断,准确的说应该是上升沿(停止位)后一个byte,如果一直是低电平是不会触发空闲中断的(会触发break 中断)。

2.关于第二点有要铺垫的三个情况,datasheet 中”当一空闲帧被检测到时,其处理步骤和接收到普通数据帧一样,但如果IDLEIE 位被设置将产生一个中断”“空闲符号被视为完全由'1'组成的一个完整的数据帧,后面跟着包含了数据的下一帧的开始位'1'的位数也包括了停止位的位数”空闲符号的配图后面跟这一个低电平.有人理解为只有收到下一个数据的起始位才会触发中断,这样理解是不对的,应该是数据后有空闲了一帧就会触发.3.清中断的方式感觉奇怪,使用函数USART_ClearITPendingBit( USART1,USART_IT_IDLE )清除不了中断的.我用的是3.5 的库,查看函数说明,里面的@param 参数并没有IDLE,后面的@note 中,这样说:”PE(Parity error),FE(Framingerror),NE(Noise error),ORE(OverRun error) and IDLE(Idle line detected) pendingbits are cleared by software sequence: a read operation to USART_SR register(USART_GetITStatus()) followed by a read operation to USART_DR register(USART_ReceiveData()).”我是通过语句”USART1->DR;”来清除IDLE 中断的.现在有很多数据处理都要用到不定长数据,而单片机串口的RXNE 中断一次只能接收一个字节的数据,没有缓冲区,无法接收一帧多个数据,现提供两种利用串口IDLE 空闲中断的方式接收一帧数据,方法如下:方法1:实现思路:采用STM32F103 的串口1,并配置成空闲中断IDLE 模式且使能DMA 接收,并同时设置接收缓冲区和初始化DMA。

stm32串口通信死在接收中断中的解决方法

stm32串口通信死在接收中断中的解决方法

stm32串⼝通信死在接收中断中的解决⽅法现象: 使⽤stm32f0xx系列的芯⽚,串⼝1使⽤接收中断时,当接收到⼀个数据时死在串⼝中断中,发⽣了串⼝中断溢出。

原因解释:在使⽤⼀个串⼝发数据的传感器过程中,发现程序第⼀次进⼊串⼝中断之后不再执⾏主函数的内容,中断中的内容也不执⾏。

查询⼤量资料后发现:串⼝在接收数据过多时,会出现串⼝溢出错误,并进⼊溢出中断(ORE中断)。

接下来是错误产⽣原因以及解决⽅法。

(1)什么是ORE中断?为什么会产⽣?产⽣原因如上所述。

ORE标志位在USART_SR寄存器,但值得注意的是,当我们打开串⼝接收中断时,同时也就打开了ORE中断。

(2)如何解决?看了上⾯的资料之后,我知道程序是死在了串⼝溢出中断。

处理中断时,我⾸先想到的是清除这个中断标志位,但是遇到了很多⿇烦。

解决⽅法: void USART1_IRQHandler(void){ /* 加⼊清除标志位,否则会卡死在串⼝中断服务函数中 */ uint8_t ucTemp; if(USART_GetITStatus(DEBUG_USARTx,USART_IT_RXNE)!=RESET) //检查 USART 是否发⽣中断 { USART_ClearITPendingBit(DEBUG_USARTx,USART_IT_RXNE); // 清中断标志 ucTemp=USART_ReceiveData(DEBUG_USARTx); } if(USART_GetFlagStatus(DEBUG_USARTx,USART_FLAG_ORE) == SET) // 检查 ORE 标志 { USART_ClearFlag(DEBUG_USARTx,USART_FLAG_ORE); USART_ReceiveData(DEBUG_USARTx); }}。

stm32外部中断实验报告-STM32实例外部中断实验

stm32外部中断实验报告-STM32实例外部中断实验

stm32外部中断实验报告_STM32实例外部中断实验上⼀篇⽂章我们介绍了 STM32F10x 的中断,这次我们就来学习下外部中断。

本⽂中要实现的功能与按键实验⼀样,即通过按键控制LED,只不过这⾥采⽤外部中断⽅式进⾏控制。

学习时可以参考《STM32F10x 中⽂参考⼿册》-9 中断和事件章节。

外部中断介绍EXTI 简介STM32F10x 外部中断/事件控制器(EXTI)包含多达 20 个⽤于产⽣事件/中断请求的边沿检测器。

EXTI 的每根输⼊线都可单独进⾏配置,以选择类型(中断或事件)和相应的触发事件(上升沿触发、下降沿触发或边沿触发),还可独⽴地被屏蔽。

EXTI 结构框图EXTI 框图包含了 EXTI 最核⼼内容,掌握了此框图,对 EXTI 就有⼀个全局的把握,在编程的时候思路就⾮常清晰。

从图中可以看到,有很多信号线上都有标号 9 样的“20”字样,这个表⽰在控制器内部类似的信号线路有 20 个,这与 STM32F10x 的 EXTI 总共有20 个中断/事件线是吻合的。

因此我们只需要理解其中⼀个的原理,其他的 19个线路原理都是⼀样的。

EXTI 分为两⼤部分功能,⼀个产⽣中断,另⼀个产⽣事件,这两个功能从硬件上就有所差别,这个在框图中也有体现。

从图中标号 3 的位置处就分出了两条线路,⼀条是 3-4-5 ⽤于产⽣中断,另⼀条是 3-6-7-8⽤于产⽣事件。

下⾯我们就来介绍下这两条线路:(1)⾸先看下产⽣中断的这条线路(1-2-3-4-5)1.标号 1 为输⼊线,EXTI 控制器有 20 个中断/事件输⼊线,这些输⼊线可以通过寄存器设置为任意⼀个 GPIO,也可以是⼀些外设的事件,这部分内容我们会在后⾯专门讲解。

输⼊线⼀般是存在电平变化的信号。

2.边沿检测电路,EXTI 可以对触发⽅式进⾏选择,通过上升沿触发选择寄存器和下降沿触发选择寄存器对应位的设置来控制信号触发。

边沿检测电路以输⼊线作为信号输⼊端,如果检测到有边沿跳变就输出有效信号 1 给红⾊框 3 电路,否则输出⽆效信号 0。

使用HAL库开发STM32GPIO口基础使用与外部中断

使用HAL库开发STM32GPIO口基础使用与外部中断

使用HAL库开发STM32GPIO口基础使用与外部中断GPIO(General Purpose Input/Output)是STM32系列微控制器上常见的功能模块之一,它用于与外部设备进行数据交互。

本文主要介绍如何使用HAL库来配置和使用STM32的GPIO口,并实现外部中断功能。

在使用GPIO口之前,我们首先需要了解STM32芯片上的GPIO引脚的命名方式。

以STM32F103C8T6为例,它具有32个GPIO引脚,从PA0到PA15和PB0到PB15、其中,GPIO口的命名方式为"A"加上引脚的编号。

例如,PA0表示GPIOA的第0个引脚,PB10表示GPIOB的第10个引脚。

1.引入头文件和宏定义首先,在代码文件的顶部引入"stm32f1xx_hal.h"头文件。

然后,在需要使用GPIO功能的地方,定义一个GPIO_InitTypeDef结构体变量,并通过它来配置GPIO的参数。

2.配置GPIO模式和速度在设置GPIO口之前,需要配置GPIO的模式和速度。

通过设置GPIO_InitStruct结构体变量的对应成员变量来实现。

例如,要将PA5配置为推挽输出模式,可以使用如下语句:```GPIO_InitStruct.Pin = GPIO_PIN_5;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);```这里,GPIO_PIN_5表示PA5引脚,GPIO_MODE_OUTPUT_PP表示推挽输出模式,GPIO_SPEED_FREQ_HIGH表示高速模式。

3.配置GPIO引脚在配置好GPIO模式和速度后,可以通过HAL_GPIO_Init函数来配置GPIO引脚,并进行初始化。

stm32 gpio中断 引脚 电平状态

stm32 gpio中断 引脚 电平状态

标题:STM32 GPIO中断引脚电平状态分析与应用一、概述STM32是一款广泛应用于嵌入式系统的芯片,并且具有丰富的外设功能。

在实际应用中,GPIO中断引脚的电平状态对于系统的稳定性和可靠性至关重要。

本文将以STM32 GPIO中断引脚电平状态为主题,分析其原理和应用。

二、STM32 GPIO中断1. 概述STM32芯片具有丰富的GPIO外设,可以方便地实现对外部事件的响应。

其中,GPIO中断是一种常用的外部事件触发机制,通过配置GPIO中断引脚可以实现对外部信号的实时监测和响应。

2. 原理GPIO中断引脚与外部信号相连,当外部信号发生变化时,引脚的电平状态也会相应改变。

通过配置中断触发条件和中断处理函数,可以实现对外部信号的及时响应。

3. 应用在实际应用中,GPIO中断可以用于监测外部开关、传感器等设备的状态变化,以及实现对设备的控制和调度。

通过合理配置中断引脚和中断处理函数,可以提高系统的稳定性和可靠性。

三、GPIO中断引脚的电平状态1. 低电平触发当GPIO中断引脚的电平由高变低时,触发中断。

这种触发方式适用于外部信号为低电平有效的场景,例如按键开关、传感器触发等。

2. 高电平触发当GPIO中断引脚的电平由低变高时,触发中断。

这种触发方式适用于外部信号为高电平有效的场景,例如光电传感器、红外遥控器等。

3. 双边沿触发当GPIO中断引脚的电平由低变高或由高变低时,均触发中断。

这种触发方式适用于外部信号为双边沿触发的场景,例如旋转编码器、电机霍尔传感器等。

四、GPIO中断引脚电平状态的配置与实现1. 配置在STM32芯片中,通过配置GPIO中断引脚的模式、触发条件和中断优先级等参数,可以实现对中断的灵活控制。

具体配置方法可以参考STM32的冠方文档和相关资料。

2. 实现在实际应用中,可以通过编写中断处理函数,实现对中断事件的响应和处理。

在中断处理函数中,可以根据中断引脚的电平状态进行相应的逻辑判断和操作,实现对外部信号的实时监测和控制。

stm32 gpio中断 引脚 电平状态 -回复

stm32 gpio中断 引脚 电平状态 -回复

stm32 gpio中断引脚电平状态-回复STM32是一款广泛使用的32位单片机系列,具备强大的性能和丰富的外设功能,其中GPIO(General Purpose Input/Output)引脚是其最基本的输入输出接口之一。

在STM32中,GPIO引脚可以通过中断机制来实现对电平状态的检测和响应。

本文将一步一步介绍STM32 GPIO中断引脚的原理、配置和应用场景。

一、引脚中断基本原理在STM32的GPIO引脚中,每个引脚都有自己的控制寄存器和状态寄存器。

通过设置相关的寄存器值,可以控制引脚的输入输出模式以及电平状态的检测。

当引脚的电平状态发生变化时,会触发GPIO中断并执行相应的中断服务程序。

1.1 引脚控制寄存器引脚控制寄存器用于配置引脚的输入输出模式、上拉/下拉电阻以及引脚输出的初始电平状态。

通过设置寄存器的位值,可以控制引脚的多种状态。

1.2 引脚状态寄存器引脚状态寄存器用于读取引脚的电平状态。

当引脚的电平状态发生变化时,状态寄存器的相应位会被置位,表示引脚中断发生。

1.3 外部中断控制器外部中断控制器用于管理GPIO引脚中断的触发条件和优先级。

可以通过设置相应的寄存器值,来配置引脚的触发模式(上升沿、下降沿、边沿等)以及中断的优先级。

二、引脚中断配置步骤为了使用GPIO引脚中断,需要按照以下步骤进行配置:2.1 GPIO引脚初始化首先,需要初始化GPIO引脚的功能和模式。

可以通过设置引脚控制寄存器的位值,来配置引脚的输入输出模式和上拉/下拉电阻。

例如,可以将引脚设置为输入模式,并启用上拉电阻,以便检测外部信号引脚的电平状态。

2.2 外部中断配置接下来,需要配置外部中断控制器,以确定引脚中断的触发条件和优先级。

可以通过设置中断控制寄存器的位值,来配置引脚的触发模式。

例如,可以将引脚设置为上升沿触发模式,表示仅在引脚电平上升沿触发中断。

2.3 中断服务程序编写当引脚的电平状态发生变化并触发中断时,系统会自动跳转到相应的中断服务程序执行相应的操作。

stm32外部中断的使用(含实例)

stm32外部中断的使用(含实例)

stm32外部中断的使⽤(含实例)中断对于开发嵌⼊式系统来讲的地位绝对是⽏庸置疑的,在C51单⽚机时代,⼀共只有5个中断,其中2个外部中断,2个定时/计数器中断和⼀个串⼝中断,但是在STM32中,中断数量⼤⼤增加,⽽且中断的设置也更加复杂。

今天就将来探讨⼀下关于STM32中的中断系统。

1 基本概念ARM Coetex-M3内核共⽀持256个中断,其中16个内部中断,240个外部中断和可编程的256级中断优先级的设置。

STM32⽬前⽀持的中断共84个(16个内部+68个外部),还有16级可编程的中断优先级的设置,仅使⽤中断优先级设置8bit中的⾼4位。

STM32可⽀持68个中断通道,已经固定分配给相应的外部设备,每个中断通道都具备⾃⼰的中断优先级控制字节PRI_n(8位,但是STM32中只使⽤4位,⾼4位有效),每4个通道的8位中断优先级控制字构成⼀个32位的优先级寄存器。

68个通道的优先级控制字⾄少构成17个32位的优先级寄存器。

4bit的中断优先级可以分成2组,从⾼位看,前⾯定义的是抢占式优先级,后⾯是响应优先级。

按照这种分组,4bit⼀共可以分成5组第0组:所有4bit⽤于指定响应优先级;第1组:最⾼1位⽤于指定抢占式优先级,后⾯3位⽤于指定响应优先级;第2组:最⾼2位⽤于指定抢占式优先级,后⾯2位⽤于指定响应优先级;第3组:最⾼3位⽤于指定抢占式优先级,后⾯1位⽤于指定响应优先级;第4组:所有4位⽤于指定抢占式优先级。

所谓抢占式优先级和响应优先级,他们之间的关系是:具有⾼抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应,即中断嵌套。

当两个中断源的抢占式优先级相同时,这两个中断将没有嵌套关系,当⼀个中断到来后,如果正在处理另⼀个中断,这个后到来的中断就要等到前⼀个中断处理完之后才能被处理。

如果这两个中断同时到达,则中断控制器根据他们的响应优先级⾼低来决定先处理哪⼀个;如果他们的抢占式优先级和响应优先级都相等,则根据他们在中断表中的排位顺序决定先处理哪⼀个。

STM32外部中断以及中断优先级

STM32外部中断以及中断优先级

外部中断(zhōngduàn)的初始化过程:1.初始化IO为输入(shūrù)(可以设置上拉,下拉,浮空)2.开启(kāiqǐ)IO复用(fù yònɡ)时钟3.开启(kāiqǐ)与该IO相对的线上(详解下)4.配置NVIC,使能中断5.编写中断服务函数外部中断:Stm32中总共有19个外部中断包括:线0-15:IO输入中断(每条线上最多有7个IO,如GPIOA~GPIOG,但是每一条线每次只允许同时连接到一个IO)线16:PVD线17:RTC线18:USB关于(guānyú)优先级:CM3中内核(nèi hé)支持256个中断(zhōngduàn)(16个内核(nèi hé)+240外部(wàibù))和可编程256级中断优先级的设置Stm32目前(mùqián)支持84个中断(zhōngduàn)(16个内核(nèi hé)+68个外部(wàibù),注:不是(bù shi)指68个外部中断),16级可编程优先级(优先级设置寄存器中使用了4位)注意:其中(qízhōng)外部中断5-9和中断(zhōngduàn)10-15向量存放(cúnfàng)在一起优先级:数值(shùzí)低的优先级要高于数值高的!!!!!!上电复位后,系统默认(mòrèn)使用的是组0;一个系统只能使用一组优先级组,不可使用多个,优先级的设置不能超过组的范围,否则会产生不可预计的错误1.高抢先级的中断可以打断低优先级的中断响应,构成中断嵌套2.相同抢先级的中断不可以构成嵌套,系统会优先响应子优先级高的3.当2(n)个相同抢先优先级和相同子优先级的中断(zhōngduàn)出现,STM32首先响应中断通道所对应的中断向量地址(dìzhǐ)低的那个中断4.0号抢先优先级的中断,可以(kěyǐ)打断任何中断抢先优先级为非0号的中断(zhōngduàn);1号抢先优先级的中断(zhōngduàn),可以打断任何中断抢先优先级为2、3、4号的中断;……;构成中断嵌套。

STM32F103学习笔记(五) 外部中断

STM32F103学习笔记(五) 外部中断

STM32F103学习笔记(五)外部中断首先是外部中断基本的概念:STM32 的每个IO 都可以作为外部中断的中断输入口,这点也是STM32 的强大之处。

STM32F103 的中断控制器支持19 个外部中断/事件请求。

每个中断设有状态位,每个中断/事件都有独立的触发和屏蔽设置。

STM32F103 的19 个外部中断为:线0~15:对应外部IO 口的输入中断。

线16:连接到PVD 输出。

线17:连接到RTC 闹钟事件。

线18:连接到USB 唤醒事件。

线16~18还没有学到只看了线0~15。

每个中断线对应着7个GPIO口,形成映射关系,以线0 为例:它对应了GPIOA.0、GPIOB.0、GPIOC.0、GPIOD.0、GPIOE.0、GPIOF.0、GPIOG.0。

而中断线每次只能连接到1 个IO 口上,这样就需要通过配置来决定对应的中断线配置到哪个GPIO 上了。

下面我们看看GPIO 跟中断线的映射关系图:根据映射关系,就开始配置按键对应GPIO口和中断的映射了:[csharp] view plain copy <pre name="code" class="csharp"><prename="code" class="html">void EXTIX_Init(void){ EXTI_InitTypeDef EXTI_InitStructure;NVIC_InitTypeDef NVIC_InitStructure; KEY_Init(); // 按键端口初始化RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,EN ABLE); //使能复用功能时钟//GPIOE.2 中断线以及中断初始化配置下降沿触发GPIO_EXTILineConfig(GPIO_PortSourceGPIOE,GPIO_Pi nSource2);EXTI_InitStructure.EXTI_Line=EXTI_Line2; //KEY2 EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;EXTI_InitStructure.EXTI_LineCmd = ENABLE;EXTI_Init(&EXTI_InitStructure); //根据EXTI_InitStruct中指定的参数初始化外设EXTI寄存器//GPIOE.3 中断线以及中断初始化配置下降沿触发//KEY1GPIO_EXTILineConfig(GPIO_PortSourceGPIOE,GPIO_Pi nSource3);EXTI_InitStructure.EXTI_Line=EXTI_Line3;EXTI_Init(&EXTI_InitStructure); //根据EXTI_InitStruct中指定的参数初始化外设EXTI寄存器//GPIOE.4 中断线以及中断初始化配置下降沿触发//KEY0GPIO_EXTILineConfig(GPIO_PortSourceGPIOE,GPIO_Pi nSource4);EXTI_InitStructure.EXTI_Line=EXTI_Line4;EXTI_Init(&EXTI_InitStructure); //根据EXTI_InitStruct中指定的参数初始化外设EXTI寄存器//GPIOA.0 中断线以及中断初始化配置上升沿触发PA0 WK_UPGPIO_EXTILineConfig(GPIO_PortSourceGPIOA,GPIO_Pi nSource0);EXTI_InitStructure.EXTI_Line=EXTI_Line0;EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; EXTI_Init(&EXTI_InitStructure); //根据EXTI_InitStruct中指定的参数初始化外设EXTI寄存器NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn;//使能按键WK_UP所在的外部中断通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02; //抢占优先级2,NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x03; //子优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能外部中断通道NVIC_Init(&NVIC_InitStructure);NVIC_InitStructure.NVIC_IRQChannel = EXTI2_IRQn;//使能按键KEY2所在的外部中断通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02; //抢占优先级2,NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x02; //子优先级2NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能外部中断通道NVIC_Init(&NVIC_InitStructure);NVIC_InitStructure.NVIC_IRQChannel = EXTI3_IRQn;//使能按键KEY1所在的外部中断通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02; //抢占优先级2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x01; //子优先级1NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能外部中断通道NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQn;//使能按键KEY0所在的外部中断通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02; //抢占优先级2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x00; //子优先级0NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能外部中断通道NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器} //外部中断0服务程序voidEXTI0_IRQHandler(void) { delay_ms(10);//消抖if(KEY3==1) //WK_UP按键{ BEEP=!BEEP; } EXTI_ClearITPendingBit(EXTI_Line0); //清除LINE0上的中断标志位} //外部中断2服务程序voidEXTI2_IRQHandler(void) { delay_ms(10);//消抖if(KEY2==0) //按键KEY2{ LED0=!LED0; }EXTI_ClearITPendingBit(EXTI_Line2); //清除LINE2上的中断标志位} //外部中断3服务程序voidEXTI3_IRQHandler(void) { delay_ms(10);//消抖if(KEY1==0) //按键KEY1{ LED1=!LED1; }EXTI_ClearITPendingBit(EXTI_Line3); //清除LINE3上的中断标志位} void EXTI4_IRQHandler(void){ delay_ms(10);//消抖if(KEY0==0) //按键KEY0 { LED0=!LED0;LED1=!LED1; }EXTI_ClearITPendingBit(EXTI_Line4); //清除LINE4上的中断标志位} [html] view plain copy。

STM32按键中断(HAL库版)

STM32按键中断(HAL库版)

STM32按键中断(HAL库版)
本文将介绍如何使用STM32F4的IO口作为中断触发源,通过串口显示按键被按下的日志。

一、运用到的资源、工具:
1.1开发板芯片STM32F407,PI9作为外部中断源、USART3串口向屏幕传输信息
1.2编译工具:MDK-ARM V5(keil5)
1.3辅助工具:STM32CubeMX
二、硬件设计
2.1原理图:
三、软件设计
3.1STM32cubeMX配置工程文件
选择Key1作为外部中断源、选择中断触发方式为下降沿触发、并设置中断优先级分组选择优先级
使能USART3串口配置为异步通信
最后生成工程文件
3.2串口输出重定向(重写fputc函数)
int fputc(int ch, FILE *p)
{
while(!(USART3->SR & (1 << 7)));USART3->DR = ch;
return ch;
}
3.3在中断回调函数中,打印KEY1 DOWN\n
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if(GPIO_Pin == GPIO_PIN_9)
{
HAL_Delay(40);
if(HAL_GPIO_ReadPin(GPIOI, GPIO_PIN_9) == 0)
{
printf("KEY1 DOWN\n");
}
}
}
四、代码及运行结果
4.1运行结果按下KEY1、打印一次KEY1 DOWN。

stm32解决中断冲突的方法

stm32解决中断冲突的方法

stm32解决中断冲突的方法如何解决STM32中的中断冲突第一步:了解STM32中断机制STM32微控制器系列是STMicroelectronics开发的一系列32位ARM Cortex-M内核的微控制器。

STM32使用向量中断控制器(NVIC)来管理中断。

每个可中断源都有一个特定的中断优先级,并且可以通过调整优先级来控制中断的触发和处理顺序。

中断是STM32系统中非常重要的一部分,它允许微控制器在处理其他任务时根据需要对外部事件作出响应。

但是,在STM32中使用多个中断时可能会出现冲突的问题。

这可能导致一些中断无法触发或中断优先级错误。

为了解决这个问题,可以采取以下方法。

第二步:了解中断冲突的原因中断冲突可能是由于中断优先级设置错误、中断嵌套问题或中断间共享资源引起的。

中断优先级设置错误是指中断的优先级设置不正确,导致某些中断会被覆盖或延迟触发。

中断嵌套问题是指当一个中断正在处理时,另一个中断发生,导致中断无法正确触发。

中断间共享资源引起的冲突是指多个中断同时访问共享资源,导致数据错误或冲突。

第三步:调整中断优先级首先,调整中断的优先级是解决中断冲突的关键。

在STM32中,每个中断源都有一个特定的优先级,范围从0到15。

较低的数值表示更高的优先级,而较高的数值表示较低的优先级。

为了更好地控制中断触发和处理顺序,可以根据系统需求适当调整中断的优先级。

调整中断优先级可通过在NVIC中设置相关的中断控制器寄存器来实现。

有两个关键的寄存器需要设置:中断优先级寄存器(IPR)和中断使能寄存器(IER)。

中断优先级寄存器用于设置中断的优先级,而中断使能寄存器用于使能或禁用中断。

为了防止冲突,可以将高优先级的中断设置为较低的值(例如0或1),而将低优先级的中断设置为较高的值(例如14或15)。

这样可以确保高优先级的中断首先得到处理,从而避免了中断冲突。

第四步:正确处理中断嵌套另一个常见的中断冲突问题是中断嵌套。

STM32-实现串口中断接收和发送数据

STM32-实现串口中断接收和发送数据

STM32-实现串⼝中断接收和发送数据⼀、⼯具 1、硬件:STM32L053R8单⽚机(HAL库) 2、编译环境:Atollic TrueSTUDIO for STM32 9.3.0 3、辅助⼯具:STM32CubeMX⼆、单⽚机系统时钟配置 1、系统时钟配置(没有显⽰的默认),这⾥选择的是内部的⾼速时钟(HSI)作为时钟源,系统时钟频率配置到24MHz。

三、串⼝配置 1、选⽤的是串⼝1,模式是异步通讯,波特率为38400,数据位长度为8,⽆校验位,⼀个停⽌位,接收和发送都打开,其它默认。

2、使能串⼝中断四、⽣成⼯程并进⾏完善 1、⼯程⽣成设置 2、完善代码 在配置完串⼝后,要以中断的⽅式接收数据,后⾯新增的接收⼀个字节数据函数主要是为了打开串⼝中断并等待有数据发来,剩下的字节由中断的回调函数控制接收。

/*** @brief USART1 Initialization Function* @param None* @retval None*/static void MX_USART1_UART_Init(void){/* USER CODE BEGIN USART1_Init 0 *//* USER CODE END USART1_Init 0 *//* USER CODE BEGIN USART1_Init 1 *//* USER CODE END USART1_Init 1 */huart1.Instance = USART1;huart1.Init.BaudRate = 38400 ;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_TX_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart1.Init.OverSampling = UART_OVERSAMPLING_16;huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;if (HAL_UART_Init(&huart1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN USART1_Init 2 */HAL_UART_Receive_IT(&huart1, &r_data, 1);/* USER CODE END USART1_Init 2 */} 当有数据发来,会响应中断接收数据,接收完后会关闭中断然后调⽤⼀个回调函数,如果想接收多个数据,就需要在回调函数中重新开启接收中断,回调函数的内容可以由⽤户⾃⼰添加(该函数名为固定写法不能随意更改)。

STM32F407使用总结

STM32F407使用总结

STM32运用总结主要分为IO口,定时器的PWM和QEI,中断,ADC,DAC和DMA介绍。

在STM32的运用中第一步一般是使能相应模块的时钟,然后配置IO口,最后配置相应的寄存器。

1.IO口STM32的IO口非常多,而且与其它外设模块通常是复用的。

在不同的外设中IO口的设置是不一样的。

这一部分介绍普通的数值IO口。

IO口有A-G共7组,每组16口。

1.IO口在时钟总线AHB1上,使能对应端口的时钟。

在寄存器RCC->AHB1ENR中。

2.配置IO口的模式,普通的IO口配置为普通的输入输出模式。

配置IO口是悬空还是上拉或者下拉。

以上两步分别在寄存器GPIOx->MODER和GPIOx->PUPDR(x=A,B,C,D,E,F,G)3.其中配置为输出模式时还要设置速度和相应的输出方式,开漏或者推挽,以上两步分别在寄存器GPIOx-> OSPEEDR和GPIOx->OTYPER(x=A,B,C,D,E,F,G)。

4.设置IO口的高低电平。

在寄存器GPIOx->BSRRH中置相应的位为1就是将相应的位置0,在寄存器GPIOx->BSRRL中置相应的位为1就是将相应的位置1.另外还可以设置GPIOx_ODR寄存器来设置输出电平以及读取GPIOx_IDR寄存器来获取输入电平。

2.PWMSTM32的定时器也非常之多,用到的主要是两个部分:用定时器产生PWM和定时触发ADC,这里一部分介绍PWM。

(高级定时器的配置和这差不多,由于在STM32F103里面已经尝试过在STM32F407里面就没有再写)1.配置IO口。

我们说过STM32的外设模块主要是和IO口复用的,因此在使用外设模块时首先配置好相应的IO口。

比如使用A口的PA1作为定时器Timer2的PWM输出。

则应按照如下的步骤来配置PA1。

1)使能A口的时钟。

在寄存器RCC->AHB1ENR中。

2)配置PA1为复用功能。

STM32外部中断5-9,10-15的应用解析

STM32外部中断5-9,10-15的应用解析
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉
GPIO_Init(GPIOE, &GPIO_InitStructure);//初始化GPIOE7
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;//普通输入模式
EXTI_InitStructure.EXTI_LineCmd = ENABLE;//使能LINE0
EXTI_Init(&EXTI_InitStructure);//配置
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOE, EXTI_PinSource9);//PE9连接到中断线9
/*配置EXTI_Line5 */
EXTI_InitStructure.EXTI_Line = EXTI_Line5;//LINE5
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;//中断事件
EXTI_InitStructure.EXTI_Trigger =EXTI_Trigger_Rising; //上升沿触发
STM32外部中断5-9,10-15的应用解析
STM32有些系列(比如STM32F407)的外部中断5-9是共用一个中断处理函数EXTI9_5_IRQHandler(),外部中断10-15共用中断函数EXTI15_10_IRQHandler(),所以很多人(包括我自己)刚开始时对于这些外部中断线的设置以及判断都不是弄得很清楚,下面就直接贴出中断引脚的配置、中断配置以及进入中断之后的判断处理程序。

STM32外部中断原理与配置

STM32外部中断原理与配置

STM32外部中断原理与配置STM32-外部中断原理与配置IO⼝外部中断原理概述STM32控制器⽀持的外部中断/事件请求中断线M3M4M7EXTI线0~15:对应外部IO⼝的输⼊中断。

√√√EXTI线16:连接到PVD输出。

√√√EXTI线17:连接到RTC闹钟事件。

√√√EXTI线18:连接到USB OTG FS唤醒事件。

√√√EXTI线19:连接到以太⽹唤醒事件。

√√EXTI线20:连接到USB OTG HS(在FS中配置)唤醒事件√√EXTI线21:连接到RTC⼊侵和时间戳事件。

√√EXTI线22:连接到RTC唤醒事件。

√√EXSTI线23:连接到LPTIM1异步事件√IO⼝外部中断STM32的每个IO都可以作为外部中断输⼊。

每个外部中断线可以独⽴的配置触发⽅式(上升沿,下降沿或者双边沿触发),触发/屏蔽,专⽤的状态位。

STM32供IO使⽤的中断线只有16个,但是STM32F系列的IO⼝多达上百个,STM32F103ZGT6(112),那么中断线怎么跟io⼝对应呢?GPIO和中断线映射关系GPIOx.0映射到EXTI0GPIOx.1映射到EXTI1……GPIOx.14映射到EXTI14GPIOx.15映射到EXTI15对于M4/M7,配置寄存器为SYSCFG_EXTIRx对于M3,配置寄存器为AFIO_EXTICRx如下图所⽰,EXTI0[3:0]有4个位,可以配置16个,所以可以从PA0选择到PI0。

也就是说16个中断线,最多可以处理16*16个外部引脚的中断。

可以在⼿册中找到SYSCFG 外部中断配置寄存器:16个中断线就分配16个中断服务函数?IO⼝外部中断在中断向量表中只分配了7个中断向量,也就是只能使⽤7个中断服务函数。

从表中可以看出,外部中断线5~ 9分配⼀个中断向量,共⽤⼀个服务函数外部中断线10~15分配⼀个中断向量,共⽤⼀个中断服务函数。

中断服务函数列表:EXTI0_IRQHandlerEXTI1_IRQHandlerEXTI2_IRQHandlerEXTI3_IRQHandlerEXTI4_IRQHandlerEXTI9_5_IRQHandlerEXTI15_10_IRQHandlerIO⼝外部中断HAL库配置⽅法外部中断操作使⽤到的函数分布⽂件stm32fxxx_hal_gpio.hstm32fxxx_hal_gpio.c外部中断配置:外部中断的中断线映射配置和触发⽅式都是在GPIO初始化函数中完成:GPIO_InitTypeDef GPIO_Initure;GPIO_Initure.Pin=GPIO_PIN_0; //PA0GPIO_Initure.Mode=GPIO_MODE_IT_RISING; //上升沿触发GPIO_Initure.Pull=GPIO_PULLDOWN;HAL_GPIO_Init(GPIOA,&GPIO_Initure);void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init){uint32_t position;uint32_t ioposition = 0x00;uint32_t iocurrent = 0x00;uint32_t temp = 0x00;/* Check the parameters */assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));assert_param(IS_GPIO_PIN(GPIO_Init->Pin));assert_param(IS_GPIO_MODE(GPIO_Init->Mode));assert_param(IS_GPIO_PULL(GPIO_Init->Pull));/* Configure the port pins */for(position = 0; position < GPIO_NUMBER; position++){/* Get the IO position */ioposition = ((uint32_t)0x01) << position;/* Get the current IO position */iocurrent = (uint32_t)(GPIO_Init->Pin) & ioposition;if(iocurrent == ioposition){/*--------------------- GPIO Mode Configuration ------------------------*//* In case of Alternate function mode selection */if((GPIO_Init->Mode == GPIO_MODE_AF_PP) || (GPIO_Init->Mode == GPIO_MODE_AF_OD)){/* Check the Alternate function parameter */assert_param(IS_GPIO_AF(GPIO_Init->Alternate));/* Configure Alternate function mapped with the current IO */temp = GPIOx->AFR[position >> 3];temp &= ~((uint32_t)0xF << ((uint32_t)(position & (uint32_t)0x07) * 4)) ;temp |= ((uint32_t)(GPIO_Init->Alternate) << (((uint32_t)position & (uint32_t)0x07) * 4));GPIOx->AFR[position >> 3] = temp;}/* Configure IO Direction mode (Input, Output, Alternate or Analog) */temp = GPIOx->MODER;temp &= ~(GPIO_MODER_MODER0 << (position * 2));temp |= ((GPIO_Init->Mode & GPIO_MODE) << (position * 2));GPIOx->MODER = temp;/* In case of Output or Alternate function mode selection */if((GPIO_Init->Mode == GPIO_MODE_OUTPUT_PP) || (GPIO_Init->Mode == GPIO_MODE_AF_PP) || (GPIO_Init->Mode == GPIO_MODE_OUTPUT_OD) || (GPIO_Init->Mode == GPIO_MODE_AF_OD)) {/* Check the Speed parameter */assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));/* Configure the IO Speed */temp = GPIOx->OSPEEDR;temp &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2));temp |= (GPIO_Init->Speed << (position * 2));GPIOx->OSPEEDR = temp;/* Configure the IO Output Type */temp = GPIOx->OTYPER;temp &= ~(GPIO_OTYPER_OT_0 << position) ;temp |= (((GPIO_Init->Mode & GPIO_OUTPUT_TYPE) >> 4) << position);GPIOx->OTYPER = temp;}/* Activate the Pull-up or Pull down resistor for the current IO */temp = GPIOx->PUPDR;temp &= ~(GPIO_PUPDR_PUPDR0 << (position * 2));temp |= ((GPIO_Init->Pull) << (position * 2));GPIOx->PUPDR = temp;/*--------------------- EXTI Mode Configuration ------------------------*//* Configure the External Interrupt or event for the current IO */if((GPIO_Init->Mode & EXTI_MODE) == EXTI_MODE){/* Enable SYSCFG Clock */__HAL_RCC_SYSCFG_CLK_ENABLE();temp = SYSCFG->EXTICR[position >> 2];temp &= ~(((uint32_t)0x0F) << (4 * (position & 0x03)));temp |= ((uint32_t)(GPIO_GET_INDEX(GPIOx)) << (4 * (position & 0x03)));SYSCFG->EXTICR[position >> 2] = temp;/* Clear EXTI line configuration */temp = EXTI->IMR;temp &= ~((uint32_t)iocurrent);if((GPIO_Init->Mode & GPIO_MODE_IT) == GPIO_MODE_IT){temp |= iocurrent;}EXTI->IMR = temp;temp = EXTI->EMR;temp &= ~((uint32_t)iocurrent);if((GPIO_Init->Mode & GPIO_MODE_EVT) == GPIO_MODE_EVT){temp |= iocurrent;}EXTI->EMR = temp;/* Clear Rising Falling edge configuration */temp = EXTI->RTSR;temp &= ~((uint32_t)iocurrent);if((GPIO_Init->Mode & RISING_EDGE) == RISING_EDGE){temp |= iocurrent;}EXTI->RTSR = temp;temp = EXTI->FTSR;temp &= ~((uint32_t)iocurrent);if((GPIO_Init->Mode & FALLING_EDGE) == FALLING_EDGE){temp |= iocurrent;}EXTI->FTSR = temp;}}}}和串⼝中断⼀样,HAL库同样提供了外部中断通⽤处理函数HAL_GPIO_EXTI_IRQHandler,我们在外部中断服务函数中会调⽤该函数处理中断。

STM32外部中断(实现按键控制LED)

STM32外部中断(实现按键控制LED)

STM32外部中断(实现按键控制LED)引⾔“中断” 这个概念,指的是在单⽚机运⾏过程中,在指定条件发⽣时,停下当前所有⼯作,去执⾏中断处理函数内的内容。

就像我们在教室上课时,突然地震了,不出意外的话我们都需要停下⼿中学习任务,去进⾏⼀系列的避险动作。

这⼀节我们通过中断的⽅式,完成通过按键控制LED亮灭的操作。

准备环节中断相关知识STM32的中断控制器⽀持19个外部中断/事件请求。

这⼗九个外部中断为:线0~15:对应外部IO⼝的输⼊中断。

线16:连接到PVD输出。

线17:连接到连接到RTC时钟事件。

线18:连接到USB唤醒事件。

配置使⽤时,需要先将IO⼝与相应中断线的映射关系建⽴,再对其进⾏使⽤。

那映射关系是怎样的呢?GPIOx.0 ~ GPIOx.15(x = A,B,C,D,E,F,G)分别对应中断线0 ~ 15配置GPIO与中断线关系的函数是void GPIO_EXTILineConfig(uint8_t GPIO_PortSource, uint8_t GPIO_PinSource)eg:GPIO_EXTILineConfig(GPIO_PortSourceGPIOE,GPIO_PinSource2);把GPIO作为EXTI外部中断时,需要打开AFIO时钟。

APIO时钟何时需要打开,具体可以参考这篇⽂章:嵌套向量中断控制器(NVIC)初始化完线上中断和中断条件等内容,还需要配置中断分组。

配置中断分组之前,我们需要先确定如何进⾏分组。

这⾥就需要⽤到NVIC。

关于NVIC的具体内容可查看这篇博⽂:。

编码环节步骤初始化IO⼝输⼊开启AFIO时钟设置IO⼝与中断线的映射关系初始化线上中断、设置触发条件等配置中断分组,并使能中断编写中断服务函数main.c(以下内容均省略头⽂件)int main(void){delay_init();NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC终端分组2LED_Init();KEY_Init();EXTIX_Init(); //外部中断初始化LED1 = 0;}exti.h#ifndef __EXTI_H#define __EXIT_H#include "sys.h"void EXTIX_Init(void); //外部中断初始化#endifexti.cvoid EXTIX_Init(void){EXTI_InitTypeDef EXTI_InitStructure; //外部中断结构体初始化NVIC_InitTypeDef NVIC_InitStructure; //中断分组结构体初始化KEY_Init();RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); //开启AFIO时钟GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource0); //映射IO⼝与中断线//以下为配置中断线初始化EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; //中断模式EXTI_InitStructure.EXTI_LineCmd = ENABLE; //使能中断线EXTI_InitStructure.EXTI_Line = EXTI_Line0; //中断线标号EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; //触发⽅式EXTI_Init(&EXTI_InitStructure);//以下为中断优先级的配置NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn; //声明使⽤的中断是哪⼀个NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02; //设置抢占优先级为2 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x03; //设置⼦优先级为3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能中断NVIC_Init(&NVIC_InitStructure);}void EXTI0_IRQHandler(void) //中断服务函数{delay_ms(10); //软件去抖if(WK_UP==1){LED0 = !LED0;LED1 = !LED1;}EXTI_ClearITPendingBit(EXTI_Line0); //清除中断位}补充中断服务函数中断服务函数的名称是固定的,写错会导致⽆法中断。

STM32 串口中断处理方法

STM32 串口中断处理方法
现串口会出现频繁跳中断,导致无法执行主循环的问题!
调试发现是串口中断硬件 BUG:
1. USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);使能了接收中断,那么 ORE 中断也同 时被开启了。
2. ORE 中断只能使用 USART_GetFlagStatus(USART1, USART_FLAG_ORE) 读到(没有使 能 USART_IT_ERR 中断时) 解决办法:
4.找资料 STM32F10x 微控制器参考手册(2009 年 12 月第 10 版)P541 发现如下说明:
也就是说只要接收中断打开,即 RXNEIE 设置为 1,那么 ORE 中断也自动打开了。 可是 USART_GetITStatus(USART1, USART_IT_ORE )== RESET!!!! 找到 USART_GetITStatus(USART1, USART_IT_RXNE)函数,发现只有当 USART_IT_ERR 中断使 能时,才能读到 ORE 中断。 在这里要指出这个 BUG:产生 ORE 中断了,但使用 USART_GetITStatus()函数却无法读到这个中断被 SET 起来!

2.为什么会一直跑到接收中断? 断点之后发现(USART_GetITStatus(USART1, USART_IT_RXNE)==RESET 的,也就是说没有数据 接收到也进了中断,而且在 USART 配置中我也只打开了接收中断!没有数据送过来应该是不可能进入中断 的!
3.响应了什么中断? 我想通过函数(USART_GetITStatus()把所有中断状态都读出来,但失败了,USART_IT_XXX 所有中断 状态都是 RESET!也就是说没有中断也进入到这个中断服务程序来了!?

stm32 gpio中断 引脚 电平状态 -回复

stm32 gpio中断 引脚 电平状态 -回复

stm32 gpio中断引脚电平状态-回复stm32 gpio中断是一种常见的嵌入式系统编程技术,用于检测引脚的电平状态并在特定条件下触发中断。

引脚的电平状态可以是高电平、低电平或者在特定条件下发生变化。

本文将详细介绍stm32 gpio中断的原理、配置以及使用方法。

第一部分:stm32 gpio中断的原理在了解stm32 gpio中断的配置和使用方法之前,我们需要先了解一些基本概念和原理。

stm32微控制器的gpio引脚可以用于输入和输出操作。

当引脚配置为输入模式时,可以检测引脚的电平状态;当引脚配置为输出模式时,可以控制引脚输出的电平。

stm32 gpio中断是通过将引脚配置为输入模式,并设置相应的触发条件来实现的。

当满足触发条件时,引脚的电平状态将发生变化并触发中断。

中断可以是外部中断,也可以是内部中断(也称为事件中断)。

外部中断是由外部信号触发的,而内部中断是由内部事件触发的,如定时器溢出或者其他模块的状态变化。

第二部分:stm32 gpio中断的配置stm32 gpio中断的配置一般包括以下几个步骤:1. 配置gpio引脚的模式和速度。

首先,需要选择引脚的模式,即输入模式或输出模式,并设置引脚的速度。

引脚的速度可以选择低速、中速或高速,根据实际需求进行配置。

2. 配置中断触发条件。

这一步是配置gpio引脚的中断触发条件。

stm32提供了多种触发条件,如上升沿触发、下降沿触发、边沿触发等。

根据实际需求选择合适的触发条件,并将其配置到引脚的中断触发寄存器中。

3. 配置中断分组优先级。

当多个中断同时触发时,中断控制器根据中断分组优先级来确定中断的优先级顺序。

stm32提供了多种中断分组优先级的配置方式,如全局配置、单个配置和组合配置。

4. 使能中断和中断向量表。

最后,需要使能gpio引脚的中断,并在中断向量表中设置相应的中断处理函数。

中断处理函数是用于处理中断事件的函数,其功能与常规的函数类似,但它有一些特殊的约束和操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弟4章I/O端口及中断I/O口(GPIO)一、GPIO的概述:GPI/O,通用型之输入输出(General Purpose I/O)的简称,对于stm32的学习,应该从最基本的GPIO开始学习:首先看看STM32的datasheet上对GPIO口的简单介绍:每个GPI/O端口有两个32位配置寄存器(GPIOx_CRL,GPIOx_CRH),两个32位数据寄存器(GPIOx_IDR,GPIOx_ODR),一个32位置位/复位寄存器(GPIOx_BSRR),一个16位复位寄存器(GPIOx_BRR)和一个32位锁定寄存器(GPIOx_LCKR)。

共7组寄存器。

GPIO端口的每个位可以由软件分别配置成多种模式。

每个I/O端口位可以自由编程,然而I/0端口寄存器必须按32位字被访问(不允许半字或字节访问)。

GPIOx_BSRR和GPIOx_BRR寄存器允许对任何GPIO寄存器的读/更改的独立访问;这样,在读和更改访问之间产生IRQ时不会发生危险。

我们常用的IO端口寄存器只有4个:CRL、CRH、IDR、ODR。

CRL和CRH控制着每个IO口的模式及输出速率。

二、GPIO的配置:当使用GPIO时,需要两步。

一是:配置模式,二是配置时钟。

对于模式配置共有8种,可以通过编程选择:1.浮空输入:GPIO_Mode_IN_FLOATING2.带上拉输入:GPIO_Mode_IPU3.带下拉输入:GPIO_Mode_IPD4.模拟输入:GPIO_Mode_AIN5.开漏输出:GPIO_Mode_Out_OD6.推挽输出:GPIO_Mode_Out_PP7.复用功能的推挽输出:GPIO_Mode_AF8.复用功能的开漏输出:GPIO_Mode_AF_OD模式7和模式8需根据具体的复用功能决定。

时钟配置将会在后续课程中一一介绍。

I/O口的输出模式下,有3种输出速度可选(2MHz、10MHz 和50MHz),这有利于噪声控制。

这个速度是指I/O口驱动电路的响应速度而不是输出信号的速度,输出信号的速度与程序有关(芯片内部在I/O口的输出部分安排了多个响应速度不同的输出驱动电路,用户可以根据自己的需要选择合适的驱动电路)。

通过选择速度来选择不同的输出驱动模块,达到最佳的噪声控制和降低功耗的目的。

高频的驱动电路,噪声也高,当不需要高的输出频率时,请选用低频驱动电路,这样非常有利于提高系统的EMI性能。

当然如果要输出较高频率的信号,但却选用了较低频率的驱动模块,很可能会得到失真的输出信号。

三、GPIO的功能:1.通用I/O(GPIO):最最基本的功能,可以驱动LED、可以产生PWM、可以驱动蜂鸣器等等;2.单独的位设置或位清除:方便软体作业,程序简单。

端口配置好以后只需GPIO_SetBits(GPIOx,GPIO_Pin_x)就可以实现对GPIOx的pinx位为高电平;GPIO_ResetBits(GPIOx,GPIO_Pin_x)就可以实现对GPIOx的pinx位为低电平。

3.外部中断/唤醒线:端口必须配置成输入模式时,所有端口都有外部中断能力;4.复用功能(AF):复用功能的端口兼有IO功能等。

复位期间和刚复位后,复用功能未开启,I/O端口被配置成浮空输入模式:(CNFx[1:0]=01b,MODEx[1:0]=00b)。

5.软件重新映射I/O复用功能:为了使不同器件封装的外设I/O 功能的数量达到最优,可以把一些复用功能重新映射到其他一些脚上。

这可以通过软件配置相应的寄存器来完成。

这时,复用功能就不再映射到它们的原始引脚上了;6.GPIO锁定机制:主要针对复位设定的,当某端口位lock后,复位后将不改变的此端口的位配置。

四、GPIO的配置void GPIO_Config(void){//对PB3进行初始化配置GPIO_InitStructure.GPIO_Pin=GPIO_Pin_3;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;//设置推挽输出GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;//设置翻转速度GPIO_Init(GPIOB,&GPIO_InitStructure);//对PB3初始化/*对PB6上拉输出*/GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;//设置上拉GPIO_Init(GPIOB,&GPIO_InitStructure);//初始化PB6}中断系统一、中断的定义中断的定义:指当出现需要时,CPU暂时停止当前程序的执行转而执行处理新情况的程序和执行过程。

即在程序运行过程中,系统出现了一个必须由CPU立即处理的情况,此时,CPU暂时中止程序的执行转而处理这个新的情况的过程就叫做中断。

二、STM32中断的概述(NVIC)ARM cortex_m3内核支持256个中断(16个内核+240外部)和可编程256级中断优先级的设置STM32采用Cortex-m3内核,但是STM32并没有使用Cortex-m3的全部资源。

STM32目前支持的中断共为84个(16个内核+68个外部),(注:68个外部中断可以)和16级可编程中断优先级的设置(仅使中断向量表)参看stm32中断向量表用中断优先级设置8bit中的高4位,见后面解释)。

STM32的外部中断通道已经固定分配给相应的外设。

NVIC,中文名嵌套中断向量控制器,是Cortex-M3系列控制器内部独有集成单元,与CPU结合紧密,降低中断延迟时间并且能更加高效处理后续中断。

三、中断优先级STM32(Cortex-M3)中有两个优先级的概念——抢占式优先级和响应优先级,也可把响应优先级称作'亚优先级'或'副优先级',每个中断源都需要被指定这两种优先级。

具有高抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应,即中断嵌套,或者说高抢占式优先级的中断可以嵌套低抢占式优先级的中断。

当两个中断源的抢占式优先级相同时,这两个中断将没有嵌套关系,当一个中断到来后,如果正在处理另一个中断,这个后到来的中断就要等到前一个中断处理完之后才能被处理。

如果这两个中断同时到达,则中断控制器根据他们的响应优先级高低来决定先处理哪一个;如果他们的抢占式优先级和响应优先级都相等,则根据他们在中断表中的排位顺序决定先处理哪一个。

既然每个中断源都需要被指定这两种优先级,就需要有相应的寄存器位记录每个中断的优先级;在Cortex-M3中定义了8个bits用于设置中断源的优先级,这8个bits 可以有8种分配方式,如下:所有8位用于指定响应优先级最高1位用于指定抢占式优先级,最低7位用于指定响应优先级最高2位用于指定抢占式优先级,最低6位用于指定响应优先级最高3位用于指定抢占式优先级,最低5位用于指定响应优先级最高4位用于指定抢占式优先级,最低4位用于指定响应优先级最高5位用于指定抢占式优先级,最低3位用于指定响应优先级最高6位用于指定抢占式优先级,最低2位用于指定响应优先级最高7位用于指定抢占式优先级,最低1位用于指定响应优先级这就是优先级分组的概念。

Cortex-M3允许具有较少中断源时使用较少的寄存器位指定中断源的优先级,因此STM32把指定中断优先级的寄存器位减少到4位,这4个寄存器位的分组方式如下:第0组:所有4位用于指定响应优先级第1组:最高1位用于指定抢占式优先级,最低3位用于指定响应优先级第2组:最高2位用于指定抢占式优先级,最低2位用于指定响应优先级第3组:最高3位用于指定抢占式优先级,最低1位用于指定响应优先级第4组:所有4位用于指定抢占式优先级NVIC_PriorityGroupConfig()选择使用哪种优先级分组方式,这个函数的参数有下列5种:NVIC_PriorityGroup_0=>选择第0组NVIC_PriorityGroup_1=>选择第1组NVIC_PriorityGroup_2=>选择第2组NVIC_PriorityGroup_3=>选择第3组NVIC_PriorityGroup_4=>选择第4组例:下面为一个中断的配置void NVIC_Configuration(void){NVIC_InitTypeDef NVIC_InitStructure;NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);//选择优先级分组的第一组NVIC_InitStructure.NVIC_IRQChannel=EXTI0_IRQn;//选择EXTI0中断NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0;//抢占优先级为0NVIC_InitStructure.NVIC_IRQChannelSubPriority=1;//响应优先级wie1NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;//使能中断时钟NVIC_Init(&NVIC_InitStructure);//初始化中断}四、EXTI:外部中断/事件控制器外部中断/事件控制器由19个产生事件/中断要求的边沿检测器组成。

每个输入线可以独立地配置输入类型(脉冲或挂起)和对应的触发事件(上升沿或下降沿或者双边沿都触发)。

每个输入线都可以被独立的屏蔽。

挂起寄存器保持着状态线的中断要求。

EXTI控制器的主要特性如下:控制器的主要特性如下:每个中断/事件都有独立的触发和屏蔽每个中断线都有专用的状态位支持多达19个中断/事件请求检测脉冲宽度低于APB2时种宽度的外部信号。

参见数据手册中电气特性部分的相关参数。

EXTI框图功能说明如要产生中断,中断线必须事先配置好并被激活。

这是根据需要的边沿检测通过设置2个触发寄存器,和在中断屏蔽寄存器的相应位写“1”到来允许中断请求。

当需要的边沿在外部中断线上发生时,将产生一个中断请求,对应的挂起位也随之被置1。

通过写“1”到挂起寄存器,可以清除该中断请求。

为产生事件触发,事件连接线必须事先配置好并被激活。

这是根据需要的边沿检测通过设置2个触发寄存器,和在事件屏蔽寄存器的相应位写“1”到来允许事件请求。

当需要的边沿在事件连线上发生时,将产生一个事件请求脉冲,对应的挂起位不被置1。

通过在软件中断/事件寄存器写“1”,一个中断/事件请求也可以通过软件来产生。

外部中断/事件线路映像80通用I/O端口以下图的方式连接到19个外部中断/事件线上:外部中断通用I/O映像另外三种其他的外部中断/事件控制器的连接如下:EXTI线16连接到PVD输出EXTI线17连接到RTC闹钟事件EXTI线18连接到USB唤醒事件由上图可以知道,PA1--PE1通过EXTI1向内部传输,直到PA15--PE15通过EXTI15向内部传输。

相关文档
最新文档