任意角的概念和弧度制

合集下载

角的概念与弧度制

角的概念与弧度制
角的概念与弧度制
1、任意角的概念:设角的顶点在坐标原点,始边与 x 轴正半 轴重合,终边在坐标平面内, (1)从运动的角度看,可分为正角、负角和零角. (2)从终边位置来看,可分为象限角和轴线角. 象限角:若角 的终边落在第 k 象限,则称 为第 k 象限角; 注:若角 的终边在坐标轴上,则角 不属于任何象限角; (3)若 α 与 β 角的终边相同, 则 β 用 α 表示为 β=α+2kπ(k ∈Z).
)
练习 1: (1)给出下列四个命题: ①-
5 12
是第四象限角;
② 5 是第三象限角;
4
③475°是第二象限角; 其中正确的命题有
④- 7 是第一象限角;
4
9π (2)下列与 的终边相同的角的表达式中正确的是( 4 A.2kπ+45° (k∈Z) C.k· 360° -315° (k∈Z) 9π B.k· 360° + (k∈Z) 4 9π D.kπ+ (k∈Z) 4
)
例 2、分别写出终边在四个象限的角的集合
练习 2、已知角 是第二象限角,求: (1)角 是第几象限的角;
2
(2)角 2 终边的位置。
例 3、已知扇形的圆心角是 α,半径为 R,弧长为 l. (1)若 α=60° ,R=10 cm,求扇形的弧长 l 及该弧所在弓形的 面积; ; (2)若扇形的周长为 20 cm, 当扇形的圆心角 α 为多少弧度时, 这个扇形的面积最大;
弧长 l=|α|r 1 1 S= lr= |α|r21)锐角是第一象限角,反之亦然.( (2)终边在 x )
.(
π 轴上的角的集合是 αα=kπ+2,k∈Z
)
π (3)将分针拨快 10 分钟,则分针转过的角度是 .( 3 (4)第一象限的角一定不是负角.( )

4.1 任意角、弧度制及任意角的三角函数

4.1 任意角、弧度制及任意角的三角函数
难点正本 疑点清源
1.对角概念的理解要准确
(1)不少同学往往容易把“小于 90° 的角”等同于“锐角”, 把 “0° ~ 90° 的角 ” 等同于 “ 第 一象限的角”.其实锐角的集 合是{α|0° <α<90° }, 第一象限角 的集合为 {α|k· 360° <α<k· 360° + 90° ,k∈Z}. (2)终边相同的角不一定相等, 相等的角终边一定相同,终边 相同的角的同一三角函数值 相等.
-8
解析
C
C C
基础知识
题型分类
思想方法练出高分题型分类 Nhomakorabea深度剖析
题型一
【例 1】
角的有关问题
(1)写出终边在直线 y= 3x
思维启迪 解析 探究提高
上的角的集合; 6π 角的终边相同, 7 θ 求在 [0,2π)内终边与 角的终边相同 3 (2)若角 θ 的终边与 的角; (3)已知角 α 是第一象限角,试确定 α 2α、 所在的象限. 2
题型二 三角函数的定义
思维启迪 解析 探究提高
【例 2】 已知角 α 的终边经过点 P(x, 3 - 2) ( x ≠ 0) ,且 cos α = x , 6 1 求 sin α+ 的值. tan α
先根据任意角的三角函数的 1 定义求 x,再求 sin α+ tan α 的值.
基础知识
题型分类
思想方法
思想方法 练出高分
基础知识·自主学习
要点梳理
(3)角度制和弧度制的互化:180° = 180 π ° π rad,1° = 180 rad,1 rad= π . r ,扇形的 (4)扇形的弧长公式:l= |α|· 1 1 2 lr = | α |· r 面积公式:S= 2 . 2

任意角和弧度制的概念

任意角和弧度制的概念

任意角和弧度制角可以看成一条射线绕着它的端点旋转所成的图形。

1.任意角,包括正角、负角和零角。

我们规定:一条射线绕其端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角,如果一条射线没有作任何旋转,就称它形成了一个零角,这样零角的始边与终边重合。

如果α是零角,那么α=0°。

设α,β是任意两个角,如果它们的旋转方向相同且旋转量相等,那么就称α=β。

我们规定,把角α的终边旋转角β,这时终边所对应的角是α+β。

类似于实数a的相反数是-a,我们引入角α的相反角的概念。

我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角。

角α的相反角记为-α。

角的减法可以转化为角的加法。

在直角坐标系内讨论角。

为了方便,角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限就说这个角是第几象限角。

如果角的终边在坐标轴上,那么就认为这个角不属于任何一个象限。

2.弧度制角可以用度为单位进行测量,1度的角等于周角的1/360,这种用度作为单位来度量角的单位制叫做角度制。

另一种度量角的单位制是弧度制。

如图,射线OA 绕断点O 旋转到OB 形成角α,在旋转过程中,射线OA 上的一点P (不同于点O )的轨迹是一条圆弧,这条圆弧对应于圆心角α。

设︒=n α,r OP =,点P 所形成的圆弧的长为l 。

由180r n l π=,于是180πn r l =。

根据上面公式可以发现,圆心角α所对的弧长与半径的比值,只与α的大小有关。

也就是说这个比值随尔法的确定而唯一确定,这就启发我们,可以利用圆的弧长与半径的关系度量圆心角。

我们规定:长度等于半径长的圆弧,所对的圆心角叫做1弧度的角,弧度单位用符号rad 表示,读作弧度。

我们把半径为1的圆叫做单位圆。

根据上述规定,在半径为r 的圆中,弧长为l 的弧所对的圆心角为α rad,那么rl=α。

其中α的正负由角α的终边的旋转方向决定,即逆时针旋转为正,顺时针旋转为负。

第一节 任意角、弧度制及任意角的三角函数

第一节 任意角、弧度制及任意角的三角函数

第一节任意角、弧度制及任意角的三角函数高考概览:1.了解任意角的概念;2.了解弧度制的概念,能进行弧度与角度的互化;3.理解任意角的三角函数(正弦、余弦、正切)的定义.[知识梳理]1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式3.任意角的三角函数[辨识巧记]1.区分两个概念(1)第一象限角未必是锐角,但锐角一定是第一象限角.(2)不相等的角未必终边不相同,终边相同的角也未必相等.2.两个关注点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)在同一个问题中采用的度量制度必须一致,不能混用.[双基自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,反之亦然.()(3)将表的分针拨快5分钟,则分针转过的角度是30°.()(4)相等的角终边一定相同,终边相同的角也一定相等.()[答案](1)×(2)×(3)×(4)×2.(必修4P10A组T10改编)单位圆中,200°的圆心角所对的弧长为( )A .10πB .9π C.910π D.109π[解析] ∵200°=10π9,∴单位圆中,200°的圆心角所对的弧长为l =10π9×1=10π9.故选D.[答案] D3.(必修4P 15练习T 6改编)若角θ满足tan θ>0,sin θ<0,则角θ所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] 由正切和正弦的象限符号可知,在第三象限.故选C.[答案] C4.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( ) A .-43 B .-45 C .-35 D .-34[解析] 根据三角函数的定义,tan α=y x =35-45=-34,故选D. [答案] D5.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为________.[解析] 如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cos π4=22,sin 5π4=cos 5π4=-22.根据三角函数线的变化规律标出满足题中条件的角x ∈⎝ ⎛⎭⎪⎫π4,5π4.[答案] ⎝ ⎛⎭⎪⎫π4,5π4考点一 角的概念及集合表示【例1】 (1)若α是第三象限角,且cos α2>0,则α2是第________象限角. (2)终边在直线y =3x 上的角的集合是________.[解析] (1)解法一:∵α是第三象限角,∴2k π+π<α<2k π+3π2(k∈Z ),则k π+π2<α2<k π+3π4(k ∈Z ).当k =2n (n ∈N )时,2n π+π2<α2<2n π+3π4,不满足cos α2>0,舍去.当k =2n +1(n ∈N )时,2n π+π+π2<α2<2n π+π+3π4,满足cos α2>0,∴α2是第四象限角.解法二:利用等分象限角的方法,可以判断α2是第二或四象限角,又因为cos α2>0,所以α2是第四象限角.(2)在(0,π)内终边在直线y =3x 上的角是π3,∴终边在直线y =3x 上的角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=π3+k π,k ∈Z . [答案] (1)四 (2)⎩⎨⎧⎭⎬⎫α|α=π3+k π,k ∈Z(1)确定kα,αk (k ∈N *)的终边位置3步骤①用终边相同角的形式表示出角α的范围;②再写出kα或αk 的范围;③然后根据k 的可能取值讨论确定kα或αk 的终边所在位置.(2)终边在某直线上角的求法3步骤①数形结合,在平面直角坐标系中画出该直线;②按逆时针方向写出[0,π)内的角β;③{α|α=k π+β,k ∈Z }.[对点训练]1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-350°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个[解析] -3π4是第三象限角;4π3是第三象限角;-400°=-40°-360°,所以-400°是第一象限角;-350°=10°-360°,所以350°是第一象限角.故②④正确,故选B.[答案] B2.设集合M =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x =k 2×180°+45°,k ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k 4×180°+45°,k ∈Z ,则两集合的关系是( ) A .N ⊆M B .M =N C .M ND .M ∩N =∅ [解析] 因为M ={x |x =(2k +1)·45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合; 而集合N ={x |x =(k +1)·45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,所以:M N .故选C.[答案] C考点二 扇形的弧长和面积公式【例2】 已知一扇形的圆心角为α(α>0),所在圆的半径为R .(1)若α=60°,R =10 cm ,求扇形的弧长.(2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积?[思路引导] (1)化α为弧度制→代入弧长公式求解(2)利用扇形周长为C 确定α和R 的关系→用α表示扇形的面积S →借助函数知识求解[解] (1)设弧长为l ,则α=60°=π3,R =10,l =π3×10=10π3(cm).(2)解法一:扇形周长C =2R +l =2R +αR ,∴R =C2+α, ∴S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2 =C 22α·14+4α+α2=C 22·14+α+4α≤C 216.当且仅当α2=4,即α=2时,扇形面积有最大值C 216.解法二:扇形周长C =2R +l ,面积S =12lR =12R (C -2R )=-R 2+12CR =-⎝⎛⎭⎪⎫R -C 42+C 216⎝ ⎛⎭⎪⎫0<R <C 2, 当且仅当R =C 4,即C =4R 时,扇形的面积S 最大,此时C =4R =2R +l ,l =2R ,由l =2R 得α=2,即α=2时,扇形面积有最大值C 216.涉及弧长和扇形面积的计算时,可用的公式有角度表示和弧度表示两种,其中弧度表示的公式结构简单,易记好用,在使用前,应将圆心角用弧度表示.弧长和扇形面积公式:l =|α|R ,S =12|α|R 2=12lR .在公式的选择上以简单,计算量小为原则,如本例(2)中解法二比解法一计算量小.[对点训练]已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8[解析] 由S =12×4×R 2=2,得R =1,所以弧长l=4×1=4,故扇形的周长C=2R+l=2+4=6.故选C.[答案] C考点三三角函数的定义任意角的三角函数的定义属于理解内容,单独考查时不多,多结合其他知识一起考查,以选择、填空题形式出现.常见的命题角度有:(1)求三角函数值;(2)判断三角函数值的符号;(3)利用三角函数线解不等式.角度1:求三角函数值【例3-1】已知角α的终边上一点P(-3,m)(m≠0),且sinα=2m4,求cosα,tanα的值.[解]设P(x,y).由题设知x=-3,y=m,所以r2=|OP|2=(-3)2+m2(O为原点),r=3+m2,所以sinα=mr=2m4=m22,所以r=3+m2=22,3+m2=8,解得m=±5. 当m=5时,r=22,x=-3,y=5,所以cosα=-322=-64,tanα=-153;当m =-5时,r =22,x =-3,y =-5,所以cos α=-322=-64,tan α=153. 角度2:判断三角函数值的符号【例3-2】 若sin α·tan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解析] 由sin α·tan α<0可知sin α,tan α异号,从而α为第二或第三象限的角,由cos αtan α<0,可知cos α,tan α异号.从而α为第三或第四象限角.综上,α为第三象限角.故选C.[答案] C角度3:利用三角函数线解不等式【例3-3】 函数y =lg(3-4sin 2x )的定义域为________. [思路引导] 真数大于0→解三角不等式→ 单位圆中正弦线→看图得结果[解析] ∵3-4sin 2x >0,∴sin 2x <34, ∴-32<sin x <32.利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示).∴x ∈⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z ).[答案] ⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z )(1)定义法求三角函数的3种情况①已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.②已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.③已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.(2)三角函数符号在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.(3)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.[对点训练]1.已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35 D .-45[解析] 根据题,cos α=-4(-4)2+32=-45.故选D. [答案] D2.已知角α的终边经过点(3a -9,a +2),且sin α>0,cos α<0,则a 的取值范围是________.[解析] 因为sin α>0,cos α<0,所以α是第二象限角.所以点(3a -9,a +2)在第二象限,所以⎩⎪⎨⎪⎧3a -9<0,a +2>0,解得-2<a <3.[答案] (-2,3)3.函数y =2cos x -1的定义域为________. [解析] ∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边的范围.∴x ∈⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ).[答案] ⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z )课后跟踪训练(二十)基础巩固练一、选择题1.下列角中终边与330°相同的角是( ) A .30° B .-30° C .630° D .-630°[解析] 因为330°的角的终边与-30°的角的终边相同,所以选项B 满足题意.故选B.[答案] B2.若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512[解析] 因为sin α=-513,且α为第四象限角,所以cos α=1213,所以tan α=-512,故选D.[答案] D3.若角α=2 rad(rad 为弧度制单位),则下列说法错误的是( ) A .角α为第二象限角B .α=⎝ ⎛⎭⎪⎫360π°C .sin α>0D .sin α<cos α[解析] 对于A ,∵π2<α<π,∴角α为第二象限角,故A 正确;对于B ,α=⎝ ⎛⎭⎪⎫360π°=2 rad ,故B 正确;对于C ,sin α>0,故C 正确;对于D ,sin α>0,cos α<0,故D 错误.故选D.[答案] D4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角α的弧度数是( )A .1B .4C .1或4D .2或4[解析] 设扇形的半径为r cm ,弧长为l cm ,则l +2r =6,S =12lr =2,解得r =2,l =2或r =1,l =4,故α=lr =1或4,故选C.[答案] C5.集合⎭⎬⎫{α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )[解析] 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.故选C.[答案] C 二、填空题6.若α=k ·180°+45°,k ∈Z ,则α为________象限角. [解析] α=k ·180°+45°=k 2·360°+45°.当k 为偶数时,α为第一象限角;当k 为奇数时,α为第三象限角.综上,α为第一或第三象限角.[答案] 第一或第三7.若点⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6在角α的终边上,则sin α的值为________. [解析] ∵角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,即⎝ ⎛⎭⎪⎫12,-32,∴由任意角的三角函数的定义,可得sin α=-32.[答案] -328.已知圆O :x 2+y 2=4与y 轴正半轴的交点为M ,点M 沿圆O 顺时针运动π2弧长到达点N ,以ON 为终边的角记为α,则tan α=________.[解析] 圆的半径为2,π2的弧长对应的圆心角为π4,故以ON 为终边的角为⎩⎨⎧⎭⎬⎫α|α=2k π+π4,k ∈Z ,故tan α=1.[答案] 1 三、解答题9.(1)设90°<α<180°,P (x,4)为其终边上的一点,且cos α=15x ,求tan α.(2)已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ,cos θ.[解] (1)∵90°<α<180°,∴cos α<0,∴x <0. 又cos α=15x =x x 2+16,∴x =-3.∴tan α=4x =-43.(2)∵θ的终边过点(x ,-1),∴tan θ=-1x , 又∵tan θ=-x ,∴x 2=1,∴x =±1. 当x =1时,sin θ=-22,cos θ=22; 当x =-1时,sin θ=-22,cos θ=-22.10.(1)已知扇形周长为10,面积是4,求扇形的圆心角; (2)一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .[解] (1)设圆心角是θ,半径是r ,则⎩⎨⎧2r +rθ=10,12θ·r 2=4,解得⎩⎨⎧r =4,θ=12,或⎩⎪⎨⎪⎧r =1,θ=8.(舍去). ∴扇形的圆心角为12.(2)设圆的半径为r cm ,弧长为l cm ,则⎩⎨⎧12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2.∴圆心角α=lr =2.如图,过O 作OH ⊥AB 于H ,则∠AOH =1 rad. ∴AH =1·sin1=sin1(cm), ∴AB =2sin1(cm).能力提升练11.(2019·江西南昌二中测试)已知角α终边上一点P 的坐标是(2sin2,-2cos2),则sin α等于( )A .sin2B .-sin2C .cos2D .-cos2[解析] r =(2sin2)2+(-2cos2)2=2.由任意角的三角函数的定义,得sin α=yr =-cos2,故选D.[答案] D12.(2019·山东济南外国语学校段考)下列结论中错误的是( ) A .若0<α<π2,则sin α<tan αB .若α是第二象限角,则α2为第一象限或第三象限角 C .若角α的终边过点P (3k,4k )(k ≠0),则sin α=45D .若扇形的周长为6,半径为2,则其圆心角的大小为1弧度 [解析] 选项A ,若0<α<π2,则sin α<tan α=sin αcos α,A 正确;选项B ,若α是第二象限角,即α∈⎝ ⎛⎭⎪⎫2k π+π2,2k π+π,k ∈Z ,则α2∈⎝⎛⎭⎪⎫k π+π4,k π+π2,k ∈Z ,为第一象限或第三象限角,B 正确;选项C ,若角α的终边过点P (3k,4k )(k ≠0),则sin α=4k 9k 2+16k 2=4k 5|k |,不一定等于45,C 不正确;选项D ,若扇形的周长为6,半径为2,则弧长=6-2×2=2,其圆心角的大小为22=1弧度,D 正确.故选C.[答案] C13.(2018·北京第三十五中学期中)如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆的交点A 在第二象限.若cos α=-35,则点A 的坐标为________.[解析] ∵cos α=-35,∴sin α=1-cos 2α=45,∴A ⎝⎛⎭⎪⎫-35,45.[答案] ⎝ ⎛⎭⎪⎫-35,4514.如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴的正半轴的交点,点A 的坐标为⎝ ⎛⎭⎪⎫513,1213,∠AOB =90°.(1)求cos ∠COA ; (2)求tan ∠COB .[解] (1)因为点A 的坐标为⎝ ⎛⎭⎪⎫513,1213,根据三角函数的定义可得cos ∠COA =513.(2)因为∠AOB =90°,sin ∠COA =1213, 所以cos ∠COB =cos(∠COA +90°)=-sin ∠COA =-1213.又因为点B 在第二象限, 所以sin ∠COB =1-cos 2∠COB =513.故tan ∠COB =sin ∠COB cos ∠COB=-512.拓展延伸练15.(2019·上海长宁、嘉定一模)设角α的顶点为坐标原点,始边为x 轴的正半轴,则“α的终边在第一、二象限”是“sin α>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] α的终边在第一、二象限能推出sin α>0,sin α>0成立能推出α的终边在第一、二象限或y 轴的正半轴上,故“α的终边在第一、二象限”是“sin α>0”的充分不必要条件.故选A.[答案] A16.(2019·河北张家口月考)若角θ满足sin θ>0,tan θ<0,则θ2是( )A .第二象限角B .第一象限角C .第一或第三象限角D .第一或第二象限角[解析] ∵角θ满足sin θ>0,tan θ<0,∴θ是第二象限角,即π2+2k π<θ<π+2k π,k ∈Z ,∴π4+k π<θ2<π2+k π,k ∈Z ,∴θ2是第一或第三象限角.故选C.[答案] C。

任意角和弧度制、三角函数的概念

任意角和弧度制、三角函数的概念
2
π


所以 kπ+2 < 2<kπ+ 4 (k∈Z).
π


当 k=2n(n∈Z)时,2nπ+2 < 2<2nπ+ 4 , 2是第二象限角;



当 k=2n+1(n∈Z)时,2nπ+ 2 < 2 <2nπ+ 4 , 2是第四象限角.

综上可知,当 α 是第三象限角时,2是第二或第四象限角.
4
3
3
3
是真命题;-400°=-360°-40°,从而-400°是第四象限角,故③是真命
题;-315°=-360°+45°,从而-315°是第一象限角,故④是真命题.
π
π
(2)集合 π + ≤ ≤ π + ,∈Z 中的角的终边所表示的范围(阴影
4
2
部分)是( C )
π
π
当 k=2n(n∈Z)时,2nπ+ ≤ ≤2nπ+ ,
3
3
3

,k∈Z}.
3
= 2π +
解题心得1.角的终边在一条直线上比在一条射线上多一种情况.
2.判断角β所在的象限,先把β表示为β=2kπ+α,α∈[0,2π),k∈Z,再判断角α所
在的象限即可.

3.确定角 kα, (k≥2,且 k∈N*)的终边的位置:先用终边相同角的形式表示出



角 α 的范围,再写出 kα 或 的范围,最后根据 k 的可能取值讨论确定角 kα 或
∴终边在直线 y= 3x 上的角的集合为 =

高中数学必修四任意角与弧度制知识点汇总

高中数学必修四任意角与弧度制知识点汇总

任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。

注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。

例1、若13590<<<αβ,求βα-和βα+的范围。

(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。

可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。

零角:没有发生任何旋转的角。

负角:按照顺时针方向旋转的角。

例2、(1)时针走过2小时40分,则分针转过的角度是 -960(2)将分针拨快10分钟,则分针转过的弧度数是 3π .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

例1、30? ;390? ;?330?是第 象限角 300? ; ?60?是第 象限角585? ; 1180?是第 象限角 ?2000?是第 象限角。

例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C例3、写出各个象限角的集合:例4、若α是第二象限的角,试分别确定2α,2α 的终边所在位置.解 ∵α是第二象限的角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2α<k ·180°+90°(k ∈Z ), 当k=2n (n ∈Z )时, n ·360°+45°<2α<n ·360°+90°; 当k=2n+1(n ∈Z )时, n ·360°+225°<2α<n ·360°+270°. ∴2α是第一或第三象限的角. 拓展:已知α是第三象限角,问3α是哪个象限的角∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<3α<90°+k ·120°. ①当k=3m(m ∈Z )时,可得 60°+m ·360°<3α<90°+m ·360°(m ∈Z ). 故3α的终边在第一象限. ②当k=3m+1 (m ∈Z )时,可得 180°+m ·360°<3α<210°+m ·360°(m ∈Z ). 故3α的终边在第三象限. ③当k=3m+2 (m ∈Z )时,可得 300°+m ·360°<3α<330°+m ·360°(m ∈Z ).故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。

任意角、弧度制、三角函数定义

任意角、弧度制、三角函数定义

任意角、弧度制、三角函数定义、同角三角函数关系式任意角和弧度制1.角的概念(1)角的概念:角可以看成平面内绕着从一个位置到另一个位置所成的图形.2.终边相同的角象限角与终边落在坐标轴上的角终边落在坐标轴上的角经常用到,下表是终边落在x轴、y轴各半轴上的角,请完成下表.下表是终边落在各个象限的角的集合,请补充完整.写出终边落在x轴上的角的集合S.写出终边落在y轴上的角的集合T.3.1弧度的角:把长度等于的弧所对的圆心角叫做1弧度的角,用符号表示,读作.4.弧度制:用作为单位来度量角的单位制叫做弧度制.5.角的弧度数的规定:一般地,正角的弧度数是一个,负角的弧度数是一个,零角的弧度数是.如果半径为r的圆的圆心角α所对弧的长为l,那么,角α的弧度数的绝对值是.这里,α的正负由角α的终边的旋转方向决定.6.角度与弧度的互化:360°=rad;180°=rad;1°=rad≈0.017 45 rad.7.弧长公式和扇形面积公式,任意角的三角函数1.任意角三角函数的定义单位圆定义法:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: 叫做α的正弦, 记作sin α,即sin α= ; 叫做α的余弦,记作cos α,即cos α= ;y x叫做α的正切,记作tan α,即tan α= (x ≠0).终边定义法:设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则有sin α=___,cos α=___,tan α=___ (x ≠0),其中r =x 2+y 2>0.2.正弦、余弦、正切函数值在各象限的符号3.诱导公式一终边相同的角的同一三角函数的值 ,即:sin(α+k ·2π)= ,cos(α+k ·2π)= ,tan(α+k ·2π)= ,其中k ∈Z.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.( ) (2)角α的三角函数值与其终边上点P 的位置无关.( )(3)角α终边上点P 的坐标为(-12,32),那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.( )(4)α∈(0,π2),则tan α>α>sin α.( )(5)α为第一象限角,则sin α+cos α>1.( )【典型例题】例1 (1)已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为________.(2)若角α在第三象限,则α2在第________象限.跟踪训练1 (1)设集合M ={x |x =k 2·180°+45°,k ∈Z },N ={x |x =k4·180°+45°,k ∈Z },那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅(2)集合{α|k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是( )(3).角-870°的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限(4).下列与9π4的终边相同的角的表达式中正确的是 ( ) A .2k π+45°(k ∈Z ) B .k ·360°+94π(k ∈Z ) C .k ·360°-315°(k ∈Z ) D .k π+5π4(k ∈Z )例2 已知一扇形的圆心角为α,半径为R ,弧长为l . (1)若α=60°,R =10cm ,求扇形的弧长l ;(2)已知扇形的周长为10cm ,面积是4cm 2,求扇形的圆心角;(3)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?跟踪训练2:(1)将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是 ( ) A.π3 B.π6 C .-π3 D .-π6(2)已知扇形的周长为4cm ,当它的半径为________cm 和圆心角为________弧度时,扇形面积最大. (3).已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin2 C.2sin1D .2sin1例3 把下列各角化成2k π+α (0≤α<2π,k ∈Z)的形式,并指出是第几象限角: (1)-1 500°; (2)23π6; (3)-4. 跟踪训练3 将-1 485°化为2k π+α (0≤α<2π,k ∈Z)的形式例4 已知角α的终边上一点P (-15a,8a ) (a ∈R 且a ≠0),求α的各三角函数值.跟踪训练4 已知角θ的终边上一点P (x,3) (x ≠0),且cos θ=1010x ,求sin θ,tan θ.例5 求下列各式的值.(1)cos 25π3+tan ()-15π4; (2)sin(-1 320°)cos 1 110°+cos(-1 020°)sin 750°+tan 495°.跟踪训练5 求下列各式的值.(1)cos ()-23π3+tan 17π4; (2)sin 630°+tan 1 125°+tan 765°+cos 540°.例6 判断下列各式的符号:(1)sin α·cos α(其中α是第二象限角); (2)sin 285°cos(-105°); (3)sin 3·cos 4·tan ⎝⎛⎭⎫-23π4.跟踪训练6 (1)若sin αcos α<0,则α是第_________象限角.(2)代数式:sin 2·cos 3·tan 4的符号是________.例7 (1)已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12 B.12 C .-32 D.32(2)点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为 ( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12C.⎝⎛⎭⎫-12,-32 D .⎝⎛⎭⎫-32,12例8 (1)若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角(2)设θ是第三象限角,且||cos θ2=-cos θ2,则θ2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角专项基础训练1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个2.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α∈(0,π)的弧度数为( ) A.π3 B.π2C. 3 D .2 3.设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α等于( )A.43B.34 C .-34 D .-434.若α是第三象限角,则下列各式中不成立的是( )A .sin α+cos α<0B .tan α-sin α<0C .cos α-tan α<0D .tan αsin α<0 5.给出下列命题:①第二象限角大于第一象限角; ②三角形的内角是第一象限角或第二象限角; ③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .46.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________.7.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为________.8.设角α是第三象限角,且||sin α2=-sin α2,则角α2是第________象限角.9.一个扇形OAB 的面积是1cm 2,它的周长是4cm ,求圆心角的弧度数和弦长AB .10.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ.11.已知圆O :x 2+y 2=4与y 轴正半轴的交点为M ,点M 沿圆O 顺时针运动π2弧长到达点N ,以ON 为终边的角记为α,则tan α等于( ) A .-1 B .1 C .-2 D .2 12.给出下列各函数值: ①sin(-1000°);②cos(-2200°);③tan(-10), 其中符号为负的是( )A .①②B .②C .③D .①③13.已知点P (sin α-cos α,2)在第二象限,则α的一个变化区间是( )A.()-π2,π2B.()-π4,3π4C.()-3π4,π4D.()π2,π14.在直角坐标系中,O 是原点,A 点坐标为(3,-1),将OA 绕O 逆时针旋转450°到B 点,则B 点的坐标为____________.15.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.。

第四章 §4.1 任意角和弧度制、三角函数的概念

第四章 §4.1 任意角和弧度制、三角函数的概念

题型二 弧度制及其应用
例 2 (1)已知一扇形的圆心角 α=π3,半径 R=10 cm,则此扇形的弧积为____3____ cm2.
由已知得 α=π3,R=10 cm, 所以 l=αR=π3×10=130π(cm), S 扇形=12αR2=12×π3×102=530π(cm2).
√C.第三、四象限
D.第一、四象限
因为cos α·tan α<0,所以cos α,tan α的值一正一负,所以角α的终边 在第三、四象限.
返回
课时精练
知识过关
一、单项选择题 1.给出下列四个命题,其中正确的是 A.-34π是第四象限角 B.43π是第二象限角 C.-400°是第一象限角
√D.-315°是第一象限角
思维升华
(1)利用三角函数的定义,已知角α终边上一点P的坐标,可以求出α的三 角函数值;已知角α的三角函数值,也可以求出点P的坐标. (2)利用角所在的象限判定角的三角函数值的符号时,特别要注意不要忽 略角的终边在坐标轴上的情况.
跟踪训练 3 (1)已知角 α 的终边过点 P(-8m,-6sin 30°),且 cos α=
A.2kπ-45°(k∈Z)
B.k·360°+94π(k∈Z)
√C.k·360°-315°(k∈Z)
D.kπ+54π(k∈Z)
自主诊断
与94π的终边相同的角可以写成 2kπ+94π(k∈Z),但是角度制与弧度制 不能混用,所以只有 C 正确.
自主诊断
3.(必修第一册P180T3改编)已知角θ的终边过点P(-12,5),则sin θ+cos θ
题型三 三角函数的概念
例 3 (1)(2023·北京模拟)在平面直角坐标系中,角 α 以 x 轴的非负半轴为

24任意角与弧度制知识点总结

24任意角与弧度制知识点总结
②几何法:即利用三角函数线来作出正弦函数在0,2 内的图象,再通过平移得到
y sin x 的图象。
③五点法:在函数 y sin x , x 0,2 的图象上,起关键作用的点有以下五个:
0,0, 2 ,1,,0, 32 ,1,2,0
必修四第一章知识点总结
一、意角的概念
(1)、角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。 (2)、角的分类 ①按逆时针方向旋转形成的角叫做正角。 ②按顺时针方向旋转形成的角叫做负角。 ③如果一条射线没有作任何旋转,我们称它形成了一个零角。这样,零角的始边与终 边重合。 这样,我们就把角的概念推广到了任意角,包括正角、负角和零角。
量角的单位制
无关
以省略
有关
五、任意角的三角函数
(1)、直角坐标系内用点的坐标表示锐角三角函数
设锐角 的顶点与原点 O 重合,始边与 x 轴的非负半轴重合,那么它的终边在第一象
限。在 的终边上任取一点 P a,b ,它与原点的距离 r a2 b2 0 ,过 P 作 x 轴的
垂线,垂足为 M ,则线段 OM 的长度为 a , MP 的长度为 b 。根据初中学过的三角函数定
(4)、正弦函数、余弦函数的奇偶性
正弦函数 y sin x ( x R )是奇函数,余弦函数 y cos x ( x R )是偶函数。
(5)、正弦函数、余弦函数的单调性 ①由正弦曲线和余弦曲线可得正弦函数和余弦函数的单调性如下:
函数
y

sin
x

2k

2
,2k

2

3 2



sin

任意角和弧度制及任意角的三角函数考点及例题讲解

任意角和弧度制及任意角的三角函数考点及例题讲解

任意角和弧度制及任意角的三角函数考纲解读 1.通过角的变换,判断角所在象限;2.常见的角度与弧度之间的转化;3.已知角的终边求正弦、余弦、正切值;4.利用三角函数线求角的大小或角的范围;5.利用扇形面积公式和弧长公式进行相关计算.[基础梳理]1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角. ①正角:按逆时针方向旋转形成的角; ②负角:按顺时针方向旋转形成的角;③零角:如果一条射线没有作任何旋转,我们称它形成了一个零角. (2)终边相同角:与α终边相同的角可表示为:{β|β=α+2k π,k ∈Z }. 2.弧度与角度的互化(1)1弧度的角:长度等于半径长的弧所对的圆心角. (2)角α的弧度数公式:|α|=lr .(3)角度与弧度的换算:360°=2π rad,1°=π180 rad,1 rad =(180π)°≈57°18′.(4)扇形的弧长及面积公式: 弧长公式:l =α·r . 面积公式:S =12l ·r =12α·r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫作角α的正弦线、余弦线和正切线.4.终边相同的角的三角函数 sin(α+k ·2π)=sin α, cos(α+k ·2π)=cos α,tan(α+k ·2π)=tan α(其中k ∈Z ),即终边相同的角的同一三角函数的值相等.[三基自测]1.单位圆中,200°的圆心角所对的弧长为( ) A .10π B .9π C.9π10 D.10π9答案:D2.若角θ满足tan θ>0,sin θ<0,则角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:C3.弧长为3π、圆心角为34π的扇形半径为________.答案:44.(必修4·4.1例题改编)α终边上一点P (-3,4).则sin α=________,cos α=________,tan α=________.答案:45 -35 -435.(2017·高考全国卷Ⅰ改编)若α的终边过点(3,4),则cos ⎝⎛⎭⎫α-π4=__________. 答案:7210[考点例题]考点一 终边相同的角及象限角|易错突破高考总复习·数学(理)第三章 三角函数、解三角形[例1] (1)若角α满足α=2k π3+π6(k∈Z ),则α的终边一定在( )A .第一象限或第二象限或第三象限B .第一象限或第二象限或第四象限C .第一象限或第二象限或x 轴非正半轴上D .第一象限或第二象限或y 轴非正半轴上(2)已知sin α>0,cos α<0,则12α所在的象限是( )A .第一象限B .第三象限C .第一或第三象限D .第二或第四象限(3)下列与9π4的终边相同的角的表达式中正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )[解析] (1)由α=2k π3+π6,k ∈Z ,当k =0时,α=π6,终边在第一象限.当k =1时,α=2π3+π6=5π6,终边在第二象限.当k =-1时,α=-2π3+π6=-π2,终边在y 轴的非正半轴上,故选D.(2)因为sin α>0,cos α<0,所以α为第二象限角,即π2+2k π<α<π+2k π,k ∈Z ,则π4+k π<12α<π2+k π,k ∈Z .当k 为偶数时,12α为第一象限角;当k 为奇数时,12α为第三象限角,故选C.(3)由定义知终边相同的角中不能同时出现角度和弧度,应为π4+2k π或k ·360°+45°(k ∈Z ).[答案] (1)D (2)C (3)C [易错提醒][纠错训练]1.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为:β=45°+k ×360°(k ∈Z ), 则令-720°<45°+k ×360°<0°, 得-765°<k ×360°<-45°, 解得-765360<k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315°2.终边在直线y =3x 上的角的集合为__________. 解析:在坐标系中画出直线y =3x , 可以发现它与x 轴正半轴的夹角是π3,终边在直线y =3x 上的角的集合为 ⎩⎨⎧⎭⎬⎫α|α=k π+π3,k ∈Z .答案:⎩⎨⎧⎭⎬⎫α|α=k π+π3,k ∈Z考点二 扇形弧长、面积公式的应用|方法突破[例2] (1)(2018·合肥模拟)《九章算术》是我国古代内容极为丰富的数学名著,卷一《方田》[三三]:“今有宛田,下周三十步,径十六步.问为田几何?”译成现代汉语其意思为:有一块扇形的田,弧长30步,其所在圆的直径是16步,问这块田的面积是多少(平方步)?( )A .120B .240C .360D .480(2)(2018·太原模拟)已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin 2 C.2sin 1D .2 sin 1[解析] (1)由题意可得:S =12×8×30=120(平方步).(2)如图:∠AOB =2弧度,过O 点作OC ⊥AB 于C ,并延长OC 交弧AB 于D .则∠AOD =∠BOD =1弧度,且AC =12AB =1,在Rt △AOC 中,AO =AC sin ∠AOC =1sin 1,即r =1sin 1,从而弧AB 的长为l =α·r =2sin 1.[答案] (1)A (2)C [方法提升][母题变式]将本例(1)改为已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是( ) A .4 B .2 C .8D .1解析:设半径为r ,圆心角的弧度数为θ, 由S =12θr 2,得8=12×θ×4,∴θ=4.答案:A考点三 三角函数的定义|模型突破角度1 用三角函数的定义求值[例3] (1)(2018·大同模拟)已知角α的终边经过点P (-x ,-6),且cos α=-513,则x的值为________.(2)已知角α的终边在直线y =-3x 上,则10sin α+3cos α的值为________. [解析] (1)∵cos α=-x(-x )2+(-6)2=-x x 2+36=-513,∴⎩⎪⎨⎪⎧x >0,x 2x 2+36=25169,解得x =52.(2)设α终边上任一点为P (k ,-3k ), 则r =k 2+(-3k )2=10|k |. 当k >0时,r =10k , ∴sin α=-3k 10k =-310,1cos α=10kk=10, ∴10sin α+3cos α=-310+310=0;当k <0时,r =-10k , ∴sin α=-3k -10k =310,1cos α=-10k k=-10, ∴10sin α+3cos α=310-310=0.[答案] (1)52 (2)0[模型解法]角度2 三角函数值符号的判断[例4] (1)(2018·怀化模拟)sin 2·cos 3·tan 4的值( ) A .小于0 B .大于0 C .等于0D .不存在(2)已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] (1)∵π2<2<3<π<4<32π.∴sin 2>0,cos 3<0,tan 4>0. ∴sin 2·cos 3·tan 4<0.(2)由题意可得⎩⎪⎨⎪⎧ cos α<0,tan α<0,则⎩⎪⎨⎪⎧sin α>0,cos α<0,所以角α的终边在第二象限,故选B.[答案] (1)A (2)B [模型解法]角度3 利用三角函数线比较大小,解不等式[例5] (1)(2018·石家庄模拟)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α[解析] 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可得,AT >OM >MP ,故有sin α<cos α<tan α.[答案] C (2)y =sin x -32的定义域为________. [解析] ∵sin x ≥32,作直线y =32交单位圆于A 、B 两点,连接OA 、OB ,则OA 与OB 围成的区域(图中阴影部分)即为角x 的终边的范围,故满足条件的角x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π3≤x ≤2k π+2π3,k ∈Z .[答案] ⎩⎨⎧⎭⎬⎫x |2k π+π3≤x ≤2k π+2π3,k ∈Z[模型解法]形如sin α≥a 或sin α≤a ()a ∈[-1,1]的解,其关键点为: (1)作出sin α=a 的函数线;(2)根据不等式,确定α的转动方向; (3)写出α的区域.[高考类题](2014·高考大纲全国卷)设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >aD .c >a >b解析:∵b =cos 55°=sin 35°>sin 33°=a ,∴b >a . 又∵c =tan 35°=sin 35°cos 35°>sin 35°=cos 55°=b ,∴c >b .∴c >b >a .故选C. 答案:C[真题感悟]1.[考点一、二] (2014·高考新课标全国卷Ⅰ)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案:C2.[考点二、三](2017·高考北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=__________.解析:由已知可得,sin β=sin(2k π+π-α)=sin(π-α)=sin α=13(k ∈Z ).1答案:3。

高中数学5.1任意角和弧度制

高中数学5.1任意角和弧度制

高中数学5.1 任意角和弧度制一、概述高中数学中,三角函数是一个重要内容。

而在学习三角函数之前,我们需要先了解一些基本概念,比如任意角和弧度制。

本文将围绕着这两个概念展开讲解,帮助读者更好地理解和掌握这些内容。

二、任意角的概念1. 任意角是指不限制在0°到360°之间的角。

在平面直角坐标系中,任意角可以被表示为一个终边落在坐标轴上的角。

这意味着任意角可以包括整个360°的范围。

2. 我们通常用θ来表示任意角,其实任意角可以被表示为θ=360k +α,其中k是整数,α是小于360°的正角,它是唯一的。

三、弧度制的概念1. 弧度制是另一种角度的度量方式,它是以圆的半径长为单位进行度量的。

一个圆的全周长为2πr,所以一个圆的一周等于2π弧度。

2. 我们知道360°等于2π弧度,所以1°等于π/180弧度。

角度和弧度之间可以通过π进行转换。

3. 弧度制适合用于求解圆的性质问题,因为它更直接地与圆的半径有关,可以简化很多计算,并且更具有普适性。

四、任意角与弧度的转换1. 已知一个角的度数,求其对应的弧度。

我们可以根据1°等于π/180弧度的关系,进行计算转换。

30°对应的弧度是30°×π/180=π/6弧度。

2. 已知一个角的弧度,求其对应的度数。

同样可以根据π弧度等于180°进行转换计算。

π/3弧度对应的度数是π/3÷π×180°=60°。

五、扩展知识1. 在解决某些三角函数的问题时,可能会遇到弧度制和角度制混用的情况。

在这种情况下,我们需要先将角度统一转换为弧度,然后再进行计算。

2. 在高等数学中,弧度制被广泛应用于导数、积分和微分等计算中。

了解弧度制可以为后续高等数学的学习奠定坚实基础。

六、总结任意角和弧度制是高中数学中一个基础而重要的知识点,它为后续学习三角函数和高等数学打下了基础。

任意角的概念与弧度制教案

任意角的概念与弧度制教案

任意角的概念与弧度制教案一、概念解释任意角是指角的顶点可以位于坐标系中的任意位置,而不仅仅局限于角的顶点位于原点或坐标轴上。

在平面直角坐标系中,如果将角的顶点放在原点上,且不在坐标轴上,则该角为任意角。

在数学中,角的度量方式有两种,分别是度度量和弧度度量。

本教案将重点介绍弧度制的概念与应用。

二、弧度制的定义弧度制是一种用弧长来度量角的单位制度。

弧度制中,角的度量用弧长与半径相等的弧所对应的弧度数表示。

三、弧度制与度度量的转换1. 弧度制转度度量:角度(度) = 弧度数× (180°/π)2. 度度量转弧度制:弧度数 = 角度(度) × (π/180°)四、弧度制的优点1. 精确性:弧度制可以更精确地表示小角度,保证计算结果的准确性。

2. 便利性:在三角函数的计算中,弧度制更便于推导与计算,使得计算过程更加简洁。

3. 单位统一:由于弧度制是用弧长来度量角度的单位制度,使得角度和长度的单位得到了统一。

五、任意角的弧度表示在任意角中,以顺时针为正方向,角的弧度表示为正角度的弧度数。

六、弧度制在三角函数中的应用在三角函数中,弧度制是最常用的单位制度。

以下是几个常用三角函数值对应的弧度制表示:1. 正弦函数:sin(30°) = sin(π/6) = 0.52. 余弦函数:cos(45°) = cos(π/4) = 0.7073. 正切函数:tan(60°) = tan(π/3) = √3七、弧度制的练习与应用1. 练习一:求解以下各角的弧度制表示:a) 45°b) 60°c) 90°2. 练习二:根据题意求解下列三角函数的值(保留两位小数):a) sin(π/4)b) cos(π/3)c) tan(π/6)3. 应用一:计算角度为45°的正弦值解答:sin(45°) = sin(π/4) = 0.7074. 应用二:计算角度为60°的余弦值解答:cos(60°) = cos(π/3) = 0.5八、总结通过本教案的学习,我们了解了任意角的概念以及其中的弧度制度量方式。

角的概念、弧度制、任意角的三角函数和诱导公式

角的概念、弧度制、任意角的三角函数和诱导公式

三角函数专题一角的概念、弧度制、任意角的三角函数和诱导公式一、基本知识 1、角的概念(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形 (2)角的分类⎩⎪⎨⎪⎧按旋转方向不同分类⎩⎪⎨⎪⎧正角:按顺时针方向旋转形成的角负角:按逆时针方向旋转形成的角零角:射线没有旋转按终边位置不同分类⎩⎪⎨⎪⎧ 象限角:角的终边在第几象限,这个角就是第几象限角轴线角:角的终边落在坐标轴上(3) 终边相同的角:所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:角α的弧度数公式 |α|=lr(l 表示弧长)角度与弧度的换算①1°=π180rad ;②1 rad =⎝⎛⎭⎫180π° 弧长公式l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.(3).同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α(α≠π2+k π,k ∈Z ).4.三角函数的诱导公式(口诀:奇变偶不变,符号看象限) 公式 一 二 三 四 五 六 角 2k π+α (k ∈Z ) π+α -α π-α π2-α π2+α 正弦 sin α -sin α -sin α sin α cos α cos α 余弦 cos α -cos α cos α -cos α sin α -sin α正切 tan αtan α-tan α-tan α二、题型精炼 题型一 角的认识例题 (多选)(1) 若角α是第二象限角,则α2可以是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 答案 AC【解答】 ∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z .当k为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.故选C .(多选)(2)在-720°~0°范围内所有与45°终边相同的角为( ).A .135°B .-675°C .-315°D .215° 答案 BC【解答】 所有与45°终边相同的角可表示为:β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ),得-765°≤k ×360°<-45°(k ∈Z ),解得-765360≤k <-45360(k ∈Z ),从而k =-2或k =-1,代入得β=-675°或β=-315°.所以选择BC 练习 (1) 给出下列四个命题:①-3π4是第二象限角;②-400°是第四象限角;③4π3是第三象限角;④-315°是第一象限角.其中正确的命题有( )A .①②③B .①②C .②③④D .③④ 答案 C【解答】 -3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角,②正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.所以选择C (2) 已知点P (cos α,tan α)在第三象限,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 B【解答】由题意得⎩⎪⎨⎪⎧cos α<0,tan α<0⇒⎩⎪⎨⎪⎧cos α<0,sin α>0,所以角α的终边在第二象限. 题型二 扇形的弧长与面积公式例题 (1).扇形的弧长为12,面积为24,则圆心角的弧度数为 答案3【解答】 由扇形面积与弧长公式可得,21242S r α==,12l r α==,故4r =,解得弧度数3α=(2).已知某扇形的圆心角为2弧度,其所对的弦长为10,则该扇形的周长为( ) A .10sin 2B .10sin1C .20sin 2D .20sin1答案D【解答】 由题意得:扇形的半径5sin1r =,则该扇形的弧长102sin1l r ==, ∴该扇形的周长为202sin1l r +=.故选:D. 练习 (1) 已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是 答案 1【解答】 设此扇形的半径为r ,弧长为l ,则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧ r =1,l =4,或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1. (2) 若扇形的圆心角是α=120°,弦长AB =12 cm ,则弧长l =________cm . 答案833π 【解答】 设扇形的半径为r cm ,如图.由sin 60°=122r ,得r =43,又α=2π3,所以l =|α|·r=2π3×43=833π(cm). 题型三 任意角的三角函数例题 (1) 如图,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α的值为( )A .45B .-45C .35D .-35答案 D【解答】 因为点A 的纵坐标y A =45,且点A 在第二象限,又因为圆O 为单位圆,所以A点横坐标x A =-35,由三角函数的定义可得cos α=-35.(2) 设α是第二象限角,P (x ,4)为其终边上的一点,且cos α=15x ,则tan α=( )A .43B .34C .-34D .-43答案 D【解答】 因为α是第二象限角,所以cos α=15x <0,即x <0.又cos α=15x =xx 2+16.解得x =-3,所以tan α=4x =-43.练习 (1).已知角α的终边与单位圆交于点13,2A ⎛⎝⎭,则sin α的值为( )A .3B .12-C 3D .12【答案】A【解答】根据三角函数的定义可知,3sin y α==A . (2).已知角α的终边经过点()1,2P -, 则tan α=( ) A .2 B .2- C .1 D .1-【答案】B【解答】解:由题意得2tan 21α==--. 题型四 同角三角函数关系例题 (1).已知角α的终边经过点P (1,m ),且sin α=−3√1010,则cos α=( ) A .±√1010B .−√1010C .√1010D .13【答案】C【解答】解:因为角a 的终边经过点P (1,m ),所以OP =√1+m 2 因为sin α=−3√1010,所以:√1+m 2=−3√1010;所以m =﹣3.(正值舍) 故cos α=1√1+m =√1010;故选:C .(2).已知a 是第二象限角,tanα=−13,则cos α=( ) A .3√1010B .−3√1010C .√1010D .−√1010【答案】B【解答】解:∵α为第二象限角,tan α=−13, ∴cos α=−√11+tan 2α=−3√1010. 故选:B .练习 (1).(多选)已知3sin 5α=,则cos α=( ) A .45B .45-C .34D .34-【答案】AB 【解答】因为3sin 5α=,则α为第一象限角或者第二象限,所以24cos 1sin 5αα=-或45-.故选:AB . (2).已知cos α2tan α=1,则sin α=( ) A .13B 2C .37D .59【答案】B【解答】22sin cos tan 1ααα=⨯==故选:B 题型五 齐次方程例题 (1).已知tan 4θ=,则2cos sin cos 2sin θθθθ-=+( )A .13-B .23-C .49-D .29-【答案】D【解答】解:因为tan 4θ=,所以2cos sin 2tan 242cos 2sin 12tan 1249θθθθθθ---===-+++⨯,故选:D.(2).已知1tan 2θ=,则2cos cos sin θθθ+=( ) A 13+B 33+C .65D .56【答案】C【解答】因为1tan 2θ=,故2222211cos sin cos 1tan 621sin cos 1tan 51()2θθθθθθθ+++===+++故选:C. 练习 (1).已知tan α=2,则2sin 2α+cos 2αsin 2α−3cos 2α的值为( ) A .9 B .6C .﹣2D .﹣3【答案】A【解答】解:因为tan α=2, 则2sin 2α+cos 2αsin 2α−3cos 2α=2tan 2α+1tan 2α−3=2×4+14−3=9.故选:A .(2).已知tan α=−12,则1sin2α−cos 2α=( )A .−54B .−58C .58D .54【答案】B 【解答】解:1sin2α−cos 2α=sin 2α+cos 2α2sinαcosα−cos 2α=tan 2α+12tanα−1=14+12×(−12)−1=−58.故选:B . 题型六 诱导公式例题(1).已知sin (π+α)=35,则sin(2π−α)cos(π−α)sin(π2−α)=【答案】−35【解答】解:∵sin (π+α)=35=−sin α,∴sin α=−35, ∴sin(2π−α)cos(π−α)sin(π2−α)=−sinα⋅(−cosα)cosα=sin α=−35,(2).已知sin (π2−α)=35,则cos (π+α)=( )A .−35B .35C .45D .45【答案】A【解答】解:∵sin(π2−α)=35, ∴cos α=35,∴cos (π+α)=﹣cos α=−35. 故选:A .练习 (1).cos 225︒的值为【答案】22-【解答】解:()2cos 225cos 18045cos 45︒=︒+︒=-︒= (2).若f(x)=()()()sin πcos 2π1sin cos π2θθθθ-+-=++,求tan α的值 【答案】-3 【【解答】()()()sin πcos 2πsin cos 1sin cos πsin cos 2θθθθθθθθ-+-+==++-,分子分母同除以cos θ, tan 11tan 12θθ+=-,解得:tan 3θ=-故选:C。

任意角与弧度制

任意角与弧度制

任意角与弧度制任意角与弧度制是数学中常见的两种角度计量方式。

在解决三角函数问题时,我们通常会用到这两种方式来表示角度的大小。

接下来,我将详细介绍任意角与弧度制的概念、转换关系以及应用。

首先,我们来了解一下任意角的概念。

在平面几何中,角是由两条射线共享一个公共端点所形成的图形。

而任意角则是指不限制角的大小,可以是小于180度的锐角,也可以是等于180度的直角,甚至是大于180度的钝角。

在三角函数中,我们常常需要计算任意角的正弦、余弦、正切等数值,因此需要一种方式来准确地表示和计算任意角。

接下来,我们来介绍弧度制。

弧度制是一种以圆的半径为单位进行角度计量的方式。

在弧度制中,一个完整的圆周对应的角度为360度,对应的弧长为2πr(其中r为圆的半径)。

而弧度制则是将一个完整的圆周分成2π个等分,每个等分对应的角度为1弧度。

因此,任意角所对应的弧度数可以通过以下公式计算:弧度数 = 角度数×π/180。

接下来,我们来看一些具体的例子来理解任意角与弧度制之间的转换关系。

假设有一个任意角A,它的角度数为60度。

那么我们可以通过以下公式将其转换为弧度数:60 ×π/180 =π/3 弧度。

同样地,如果给定一个弧度数,我们也可以通过以下公式将其转换为角度数:弧度数× 180/π = 角度数。

除了转换关系外,任意角与弧度制还有一些重要的应用。

首先,在三角函数中,正弦、余弦、正切等函数的定义都是基于弧度制的。

因此,在计算三角函数值时,需要将角度转换为弧度进行计算。

其次,在物理学和工程学等领域中,很多问题都涉及到圆周运动、周期性变化等情况。

而这些问题往往需要用到三角函数来描述和分析,因此需要使用弧度制来准确地表示和计算角度。

最后,我们还需要注意任意角与弧度制之间的换算关系。

在实际问题中,有时候会涉及到从任意角到弧度制的转换或者从弧度制到任意角的转换。

对于这些情况,我们可以根据上述提到的公式进行计算,并注意保留合适的精度。

任意角和弧度制及任意角的三角函数

任意角和弧度制及任意角的三角函数

任意角和弧度制及任意角的三角函数‖知识梳理‖1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的分类+k·360°,k∈Z}.2.弧度制(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角.弧度记作rad.(2)公式|α|=l r3.三角函数线有向线段MP 为正弦线,有向线段OM 为余弦线,有向线段AT 为正切线| 微 点 提 醒 |1.若α∈⎝⎛⎭⎫0,π2,则tan α>α>sin α. 2.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.‖易错辨析‖判断下列结论是否正确(请在括号中打”√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.(×) (2)角α的三角函数值与其终边上点P 的位置无关.(√) (3)不相等的角终边一定不相同.(×) (4)终边相同的角的同一三角函数值相等.(√) (5)若α∈⎝⎛⎭⎫0,π2,则tan α>sin α.(√) (6)若α为第一象限角,则sin α+cos α>1.(√)‖自主测评‖1.下列与9π4的终边相同的角的表达式中正确的是( )A .2k π-45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )解析:选C 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有C 正确.故选C.2.(教材改编题)若θ满足sin θ<0,cos θ>0,则θ的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D 由sin θ<0,θ的终边可能位于第三象限或第四象限,也可能与y 轴的非正半轴重合,cos θ>0,θ的终边可能位于第一象限,也可能位于第四象限,也可能与x 轴的非负半轴重合,故θ的终边在第四象限.3.(教材改编题)角-870°的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案:C4.(教材改编题)已知角θ的终边过点P (12,-5),则cos θ的值为________. 解析:因为x =12,y =-5,所以r =x 2+y 2=13,所以cos θ=x r =1213.答案:12135.(教材改编题)扇形弧长为20 cm ,中心角为100°,则该扇形的面积为________cm 2. 解析:由弧长公式l =|α|r ,得r =20100π180=36π(cm),所以S 扇形=12lr =12×20×36π=360π(cm 2).答案:360π…………考点一 象限角及终边相同的角…………………|自主练透型|……………|典题练全|1.若α=k ·180°+45°(k ∈Z ),则α在( ) A .第一或第三象限 B .第一或第二象限 C .第二或第四象限D .第三或第四象限 解析:选A 当k =2n (n ∈Z )时,α=2n ·180°+45°=n ·360°+45°,α为第一象限角; 当k =2n +1(n ∈Z )时,α=(2n +1)·180°+45°=n ·360°+225°,α为第三象限角,所以α为第一或第三象限角.故选A.2.若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角解析:选C ∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z . 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.∴α2是第一或第三象限角. 3.(一题多解)设集合M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ,N =xx =k4·180°+45°,k ∈Z ,那么( ) A .M =N B .M ⊆N C .N ⊆MD .M ∩N =∅解析:选B 解法一:由于M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…}, N =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k 4·180°+45°,k ∈Z ={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N .解法二:由于M 中,x =k2·180°+45°=k ·90°+45°=45°·(2k +1),2k +1是奇数;而N 中,x=k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N . 4.集合⎩⎨⎧α⎪⎪⎭⎬⎫k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,n ∈Z ,此时α的终边和π4≤α≤π2的终边一样,当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,此时α的终边和π+π4≤α≤π+π2的终边一样.5.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________.解析:如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π.答案:⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π『名师点津』………………………………………………|品名师指点迷津| 1.终边在某直线上角的求法4步骤(1)数形结合,在平面直角坐标系中画出该直线; (2)按逆时针方向写出[0,2π]内的角;(3)再由终边相同角的表示方法写出满足条件角的集合; (4)求并集化简集合. 2.判断象限角的2种方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.(2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角. 3.确定kα,αk (k ∈N *)的终边位置3步骤(1)用终边相同角的形式表示出角α的范围; (2)再写出kα或αk的范围;(3)然后根据k 的可能取值讨论确定kα或αk的终边所在的位置.…………考点二 扇形的弧长、面积公式…………|重点保分型|……………|研透典例|【典例】 已知扇形的圆心角是α,半径为R ,弧长为l .(1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)若扇形的周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? [解] (1)α=60°=π3,l =10×π3=10π3(cm).(2)由已知得,l +2R =20,则l =20-2R ,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25, 此时l =10 cm ,α=2 rad.『名师点津』………………………………………………|品名师指点迷津|弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求扇形的圆心角、半径、弧长三个量中的任意两个量. [提醒]运用弧度制下有关弧长、扇形面积公式的前提是角的度量单位为弧度制.|变式训练|1.若某圆弧长度等于该圆内接正三角形的边长,则该弧所对的圆心角的弧度数为( ) A.π6 B.π3 C .3D.3解析:选D 如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,所以AM =32r ,AB =3r , 所以l =3r ,由弧长公式得α=l r =3rr= 3.2.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A .2 B .sin2 C.2sin1D .2sin1解析:选C 如图,∠AOB =2弧度,过O 点作OC ⊥AB 于C ,并延长OC 交AB ︵于D .则∠AOD =∠BOD =1弧度, 且AC =12AB =1,在Rt △AOC 中, AO =AC sin ∠AOC =1sin1,即r =1sin1,从而AB ︵的长为l =α·r =2sin1.故选C.………………考点三 三角函数的定义………………|多维探究型|……………|多角探明|角度一 利用三角函数的定义求值【例1】 已知α是第二象限的角,其终边的一点为P (x ,5),且cos α=24x ,则tan α=( ) A.155B.153C .-155D .-153[解析] 因为α是第二象限的角,其终边上的一点为P (x ,5),且cos α=24x ,所以x <0,cos α=x x 2+5=24x ,解得x =-3,所以tan α=5-3=-153.[答案] D角度二 判断三角函数值的符号 【例2】 (1)sin2·cos3·tan4的值( ) A .小于0 B .大于0 C .等于0D .不存在(2)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解析] (1)因为π2<2<3<π<4<3π2,所以sin2>0,cos3<0,tan4>0. 所以sin2·cos3·tan4<0,所以选A. (2)由sin αtan α<0可知sin α,tan α异号, 则α为第二象限角或第三象限角. 由cos αtan α<0可知cos α,tan α异号, 则α为第三象限角或第四象限角. 综上可知,α为第三象限角. [答案] (1)A (2)C角度三 利用三角函数线比较大小或解不等式【例3】 (1)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α(2)函数y =sin x -32的定义域为________. [解析] (1)如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可得,AT >OM >MP ,故有sin α<cos α<tan α.故选C.(2)由题意,得sin x ≥32,作直线y =32交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域(图中阴影部分)即为角x 的终边的范围,故满足条件的角x 的集合为⎩⎨⎧x ⎪⎪⎭⎬⎫2k π+π3≤x ≤2k π+2π3,k ∈Z .[答案] (1)C (2)⎣⎡⎦⎤2k π+π3,2k π+2π3,k ∈Z 角度四 以三角函数定义为背景的创新题【例4】 如图所示,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )[解析] 因为P 0(2,-2),所以∠P 0Ox =-π4.因为角速度为1,所以按逆时针旋转时间t 后,得∠POP 0=t ,所以∠POx =t -π4.由三角函数定义,知点P 的纵坐标为2sin ⎝⎛⎭⎫t -π4,因此d =2⎪⎪⎪⎪sin ⎝⎛⎭⎫t -π4. 令t =0,则d =2⎪⎪⎪⎪sin ⎝⎛⎭⎫-π4= 2. 当t =π4时,d =0,故选C.[答案] C『名师点津』………………………………………………|品名师指点迷津| 1.定义法求三角函数值的三种情况(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.2.三角函数值的符号及角的位置的判断已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角的终边位置.注意终边在坐标轴上的特殊情况.[提醒]若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).3.利用单位圆解三角不等式(组)的一般步骤 (1)用边界值定出角的终边位置. (2)根据不等式(组)定出角的范围. (3)求交集,找单位圆中公共的部分. (4)写出角的表达式.|变式训练|1.已知点P (tan α,cos α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由题意知tan α<0,cos α<0,故sin α>0,根据三角函数值的符号规律可知,角α的终边在第二象限.故选B.2.已知角α的始边与x 轴的正半轴重合,顶点在坐标原点,角α终边上的一点P 到原点的距离为2,若α=π4,则点P 的坐标为( ) A .(1,2)B .(2,1)C .(2,2)D .(1,1)解析:选D 设点P 的坐标为(x ,y ), 则由三角函数的定义得⎩⎨⎧ sin π4=y 2,cos π4=x 2, 即⎩⎨⎧ x =2cos π4=1,y =2sin π4=1.故点P 的坐标为(1,1).3.已知角α的终边上一点P (-3,m )(m ≠0),且sin α=2m 4,求cos α,tan α的值. 解:设P (x ,y ).由题设知x =-3,y =m ,所以r 2=|OP |2=(-3)2+m 2(O 为原点),r =3+m 2,所以sin α=m r =2m 4=m 22, 所以r =3+m 2=22,3+m 2=8,解得m =± 5.当m =5时,r =22,x =-3,y =5,所以cos α=-322=-64,tan α=-153; 当m =-5时,r =22,x =-3,y =-5,所以cos α=-322=-64,tan α=153. 【典例】 在一块顶角为120°、腰长为2的等腰三角形厚钢板废料OAB 中用电焊切割成扇形,现有如图所示两种方案,既要充分利用废料,又要切割时间最短,问哪一种方案最优?[解] 因为△AOB 是顶角为120°、腰长为2的等腰三角形,所以A =B =30°=π6,AM =BN =1,AD =2, 所以方案一中扇形的弧长=2×π6=π3;方案二中扇形的弧长=1×2π3=2π3; 方案一中扇形的面积=12×2×2×π6=π3,方案二中扇形的面积=12×1×1×2π3=π3. 由此可见:两种方案中利用废料面积相等,方案一中切割时间短.因此方案一最优.[点评] 通过对废料充分利用中扇形面积与弧长的计算,分析比较出最优方案,体现了在解决实际问题中利用数学知识建立数学模型解决问题的素养.。

任意角和弧度制

任意角和弧度制

任意角和弧度制引言在数学中,角度是一种度量物体之间相对位置的方式。

角度可以用度数或弧度来表示,其中度数是最常见的方式,而弧度则是一种更为抽象的度量方式。

本文将介绍任意角的概念以及如何在度数和弧度制之间进行转换。

任意角的定义在平面几何中,任意角可以由一个初始边和一个终边确定。

初始边是角的起点,终边是从起点开始沿着给定的方向确定的线段。

终边最终与一个固定点相交,这个点称为角的顶点。

任意角任意角在度数制中,一个圆周被划分为360度,这意味着一个完整的圆是360度。

任意角可以包含大于360度或小于0度的值。

弧度制相对于度数制,弧度制是一种更为抽象和自然的度量方式。

弧度是一种无单位的度量,它表示沿着圆周上一个圆心角所对应的弧长。

在弧度制中,一个完整的圆的弧长为2π,因此一个直角(90度)对应的弧度为π/2,一周(360度)对应的弧度为2π。

根据这个比例,我们可以通过下面的公式将度数转换为弧度:弧度 = (度数 / 360)* 2π度数到弧度的转换示例我们来看一个具体的例子,假设有一个角度为45度的角,我们想将其转换为弧度。

根据上面的公式,我们可以进行如下计算:弧度= (45 / 360) * 2π计算结果为:弧度= (0.125) * 2π = 0.25π因此,45度的角度转换为弧度为0.25π。

弧度到度数的转换示例同样地,我们可以将一个给定的弧度转换为度数。

假设我们有一个弧度为π/4的角度,我们想将其转换为度数。

根据上述的公式,我们可以进行如下计算:度数 = (弧度/ 2π) * 360计算结果为:度数= (π/4 / 2π) * 360 = (0.25) * 360 = 90度因此,弧度为π/4的角度转换为度数为90度。

结论在本文中,我们介绍了任意角的概念以及如何在度数和弧度制之间进行转换。

度数制是最常见的角度度量方式,而弧度制是一种更为抽象和自然的度量方式。

转换度数到弧度和弧度到度数可以通过简单的公式实现。

任意角的概念与弧度制

任意角的概念与弧度制

任意角的概念与弧度制1、角的概念的推广:角可以看作平面内一条射线绕端点从一个位置(始边)旋转到另一个位置(终边)形成的图形.规定按照逆时针方向旋转而成的角叫做正角;按照顺时针方向旋转而成的角叫做负角:射线没有旋转时称零角.任意角的概念与弧度制1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.正角:按逆时针方向旋转所形成的角.负角:按顺时针方向旋转所形成的角.零角:如果一条射线没有做任何旋转,我们称它形成了一个零角.要点诠释:角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.2.终边相同的角、象限角终边相同的角为角的顶点与原点重合,角的始边与轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.要点诠释:(1)终边相同的前提是:原点,始边均相同;(2)终边相同的角不一定相等,但相等的角终边一定相同;(3)终边相同的角有无数多个,它们相差的整数倍.3、终边相同的角与象限角:与角终边相同的角构成一个集合,;顶点与坐标原点重合,始边与轴正半轴重合,角的终边在第几象限,就把这个角叫做第几象限的角.知识点二:弧度制弧度制(1)长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).(2)弧度与角度互换公式:1rad=≈57.30°=57°18′,1°=≈0.01745(rad)(3)弧长公式:(是圆心角的弧度数),扇形面积公式:.要点诠释:(1)角有正负零角之分,它的弧度数也应该有正负零之分,如等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.(2)角的弧度数的绝对值是:,其中,是圆心角所对的弧长,是半径.3、弧度制的概念及换算:规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.弧度记作rad.注意在用弧度制时,“弧度”或“rad”可以略去不写.在半径为的圆中,弧长为的弧所对圆心角为,则所以,rad,(rad),1(rad).4、弧度制下弧长公式:;弧度制下扇形面积公式.类型一:象限角1.已知角;(1)在区间内找出所有与角有相同终边的角;(2)集合,,那么两集合的关系是什么?解析:(1)所有与角有相同终边的角可表示为:,则令,得解得,从而或代回或.(2)因为表示的是终边落在四个象限的平分线上的角的集合;而集合表示终边落在坐标轴或四个象限平分线上的角的集合,从而:.总结升华:(1)从终边相同的角的表示入手分析问题,先表示出所有与角有相同终边的角,然后列出一个关于的不等式,找出相应的整数,代回求出所求解;(2)可对整数的奇、偶数情况展开讨论.2.已知“是第三象限角,则是第几象限角?思路点拨:已知角的范围或所在的象限,求所在的象限是常考题之一,一般解法有直接法和几何法,其中几何法具体操作如下:把各象限均分n等份,再从x轴的正向的上方起,依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并循环一周,则原来是第几象限的符号所表示的区域即为(n∈N*)的终边所在的区域.解法一:因为是第三象限角,所以,∴,∴当k=3m(m∈Z)时,为第一象限角;当k=3m+1(m∈Z)时,为第三象限角,当k=3m+2(m∈Z)时,为第四象限角,故为第一、三、四象限角.解法二:把各象限均分3等份,再从x轴的正向的上方起依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并依次循环一周,则原来是第Ⅲ象限的符号所表示的区域即为的终边所在的区域.由图可知,是第一、三、四象限角.总结升华:(1)要分清弧度制与角度制象限角和终边在坐标轴上的角;(2)讨论角的终边所在象限,一定要注意分类讨论,做到不重不落,尤其对象限界角应引起注意.举一反三:【变式1】集合,,则( )A、B、C、D、【答案】C思路点拨:( 法一) 取特殊值-1,-3,-2,-1,0,1,2,3,4(法二)在平面直角坐标系中,数形结合(法三)集合M变形,集合N变形,是的奇数倍,是的整数倍,因此.【变式2】设为第三象限角,试判断的符号.解析:为第三象限角,当时,此时在第二象限.当时,此时在第四象限.综上可知:类型二:扇形的弧长、面积与圆心角问题3.已知一半径为r的扇形,它的周长等于所在圆的周长的一半,那么扇形的中心角是多少弧度?合多少度?扇形的面积是多少?解:设扇形的圆心角是,因为扇形的弧长是,所以扇形的周长是依题意,得≈≈总结升华:弧长和扇形面积的核心公式是圆周长公式和圆面积公式,当用圆心角的弧度数代替时,即得到一般的弧长公式和扇形面积公式:举一反三:【变式1】一个扇形的周长为,当扇形的圆心角等于多少弧度时,这个扇形的面积最大?并求出这个扇形的最大面积.思路点拨:运用扇形的面积公式和弧长公式建立函数关系,运用函数的性质来解决最值问题.解:设扇形的半径为,则弧长为,于是扇形的面积当时,(弧度),取到最大值,此时最大值为.故当扇形的圆心角等于2弧度时,这个扇形的面积最大,最大面积是.总结升华:求扇形最值的一般方法是根据扇形的面积公式,将其转化为关于半径(或圆心角)的函数表达式,进而求解.1、角度制与弧度制的互化:(1);(2).解:为第三象限;为轴上角为第二象限;为第三象限角小结:[1]用弧度表示角时,“弧度”两字不写,可写“”;[2]角度制化弧度时,分数形式,且“”不取近似值.2、用角度和弧度分别写出分别满足下列条件的角的集合:(1)第一象限角;(2)锐角;(3)小于的角;(4)终边与角的终边关于轴对称的角;(5)终边在直线上的角.解:(1)或;(2)或;(3)或;(4)分析:因为所求角的终边与角的终边关于轴对称,可以选择代表角,因此问题转化为写出与角的终边相同的角的集合即;(5)或.注意:角度制与弧度制不能混用!3、若是第二象限角,则是第几象限角?反之,是第二象限角,是第几象限角?解:若是第二象限角,则,两边同除以2,得当为奇数时,是第三象限角;当为偶数时,是第一象限角反之,若是第二象限角,则两边同乘以2,得所以是第一或第二象限角或终边在轴正半轴上的轴上角.注意:数形结合.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角的概念和弧度制一、选择题(共11小题,每小题5.0分,共55分)1.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3∶00)开始,在1分钟的时间,3根针中,出现一根针与另外两根针所成的角相等的情况有( )A. 1次 B. 2次 C. 3次 D. 4次2.若角α,β的终边关于y轴对称,则α与β的关系一定是(其中k∈Z) ( )A.α+β=π B.α-β=π2 C.α-β=π2+2kπ D.α+β=(2k+1)π3.已知α为第二象限的角,则π-a2所在的象限是 ( )A.第一或第二象限 B.第二或第三象限 C.第一或第三象限 D.第二或第四象限4.集合{α|kπ+π4≤α≤kπ+π2,k∈Z}中的角所表示的围(阴影部分)是( )A.答案A B.答案B C.答案C D.答案D5.设扇形的周长为6,面积为2,则扇形的圆心角是(单位:弧度) ( )A. 1 B. 4 C.Π D. 1或46.一扇形的周长为16,则当此扇形的面积取最大时其圆心角为( )A. 1 B. 2 C. 3 D.127.已知扇形的周长是10 cm,面积是4 cm2,则扇形的半径是( )A. 1 cm B. 1 cm或4 cm C. 4 cm D. 2 cm或4 cm8.一半径为r的圆切于半径为3r、圆心角为α(0<α<a2)的扇形,则该圆的面积与该扇形的面积之比为( )A . 3∶4B . 2∶3C . 1∶2D . 1∶3 9.终边与坐标轴重合的角α的集合是( )A . {α|α=k ·360°,k ∈Z }B . {α|α=k ·180°+90°,k ∈Z }C . {α|α=k ·180°,k ∈Z }D . {α|α=k ·90°,k ∈Z } 10.已知α是第一象限角,则角a 3的终边不可能落在( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 11.如果α是第三象限的角,则下列结论中错误的是( )A . -α为第二象限角B . 180°-α为第二象限角C . 180°+α为第一象限角D . 90°+α为第四象限角二、填空题(共4小题,每小题5.0分,共20分) 12.在2时到3时之间,分针和时针成120°角的时刻是________.13.若角α的终边与角85π的终边相同,则在[0,2π]上,终边与角a 4的终边相同的角是________. 14.在直径为10 cm 的轮上有一长为6 cm 的弦,P 为弦的中点,轮子以每秒5弧度的角速度旋转,则经过5 s 后P 转过的弧长为__________cm.15.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,则点A 第一次回到点P 的位置时,点A 走过的路径的长度为________.三、解答题(共15小题,每小题12.0分,共180分) 16.射线OA 绕点O 顺时针旋转100°到OB 位置,再逆时针旋转270°到OC 位置.然后再顺时针方向旋转30°到OD位置,求∠AOD的大小.17.设时钟的时针在2点和3点之间,时针和分针什么时候重合?18.如果钟表的指针都做匀速转动,钟表上分针的周期和角速度各是多少?分针与秒针的角速度之比为多少?角的终边关于直线y=x对称,且α∈(-2π,2π),求角α的值.19.若角α的终边与a320.已知一扇形的周长为40 cm,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?21.已知一扇形的圆心角是α,所在圆的半径是R.(1)若α=60°,R=10 cm,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值c(c>0),当α为多少弧度时,该扇形有最大面积?是第几象限角?22.已知α是第三象限角,则a323.已知α是第二象限角,试确定2α,a的终边所在的位置.224.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.25.已知角β的终边在直线√3x-y=0上.(1)写出角β的集合S;(2)写出S中适合不等式-360°<β<720°的元素.26.在与角10 030°终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)360°~720°的角.27.如图,圆周上点A依逆时针方向做匀速圆周运动.已知A点1分钟转过θ(0°<θ<180°)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.28.一只红蚂蚁与一只黑蚂蚁在一个单位圆(半径为1的圆)上爬动,若两只蚂蚁均从点A(1,0)同时逆时针匀速爬动,若红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中0°<α<β<180°),如果两只蚂蚁都在第14秒时回到A点,并且在第2秒时均位于第二象限,求α,β的值.29.如图,一长为√3dm,宽为1 dm的长方形木块在桌面上作无滑动翻滚,翻滚到第四次时被一小木块挡住,使木块底面与桌面所成角为a,试求点A走过的路程及走过的弧所在的扇形的总面6积.(圆心角为正)的终边所在位置.30.若α是第二象限角,试分别确定a3答案解析1.【答案】D【解析】从3时整(3∶00)开始,在1分钟的时间,3根针中,出现一根针与另外两根针所成的角相等的情况有:①当秒针转到大约45°的位置时,以及大约225°的位置时,秒针平分时针与分针.②当秒针转到大约180°的位置时,时针平分秒针与分针.③当秒针转到大约270°的位置时,分针平分秒针与时针.综上,共4次.2.【答案】D【解析】可以取几组特殊角代入检验.3.【答案】D【解析】由2kπ+π2<α<2kπ+π,k∈Z.得kπ+π4<a2<kπ+π2,k∈Z.∴-kπ-π2<-a2<-kπ-π4,k∈Z.∴-kπ+π2<π-a2<-kπ+34π,k∈Z.当k为偶数时,令k=-2m,m∈Z,则2mπ+π2<π-a2<2mπ+34π,m∈Z.∴π-a2为第二象限角.当k为奇数时,令k=-2m+1,m∈Z,则2mπ-π2<π-a2<2mπ-π4,m∈Z.∴π-a2为第四象限角.综上所述,π-a2为第二或第四象限角.4.【答案】C【解析】当k =2m ,m ∈Z 时,2m π+π4≤α≤2m π+π2,m ∈Z ;当k =2m +1,m ∈Z 时,2m π+5π4≤α≤2m π+3π2,m ∈Z ,所以选C.5.【答案】D【解析】设扇形的半径为x ,所以弧长为6-2x ,扇形的圆心角为6−2aa,因为扇形的面积为2,所以12(6-2x )x =2,解得x =1或x =2,所以扇形的圆心角为4或1. 6.【答案】B【解析】设圆心角为α,半径为r ,则l +2r =16,∴l =16-2r .∴S =12lr =-r 2+8r (0<r <8),当且仅当r =4时,扇形的面积取最大,此时l =16-2r =8.∴圆心角α为2. 7.【答案】C【解析】设扇形的半径为r ,弧长为l ,根据题意得,2r +l =10,①12lr =4,②解由①②组成的方程组得,r =4,l =2或r =1,l =8(舍去).即扇形的半径为4 cm. 8.【答案】B【解析】设⊙O 与扇形相切于点A ,B ,则AO =r ,CO =2r ,∴∠ACO =30°,∴扇形的圆心角为60°=a3,∴扇形的面积为12·a 3·3r ·3r =32πr 2,∵圆的面积为πr 2,∴圆的面积与该扇形的面积之比为2∶3.9.【答案】D【解析】终边为x 轴的角的集合M ={α|α=k ·180°,k ∈Z },终边为y 轴的角的集合P ={α|α=k ·180°+90°,k ∈Z },设终边为坐标轴的角的集合为S ,则S =M ∪P ={α|α=k ·180°,k ∈Z }∪{α|α=k ·180°+90°,k ∈Z }={α|α=2k ·90°,k ∈Z }∪{α|α=(2k +1)·90°,k ∈Z }={α|α=n ·90°,n ∈Z }.10.【答案】D【解析】∵α是第一象限角,∴k ·360°<α<k ·360°+90°,k ∈Z ,∴a 3·360°<a 3<a3·360°+30°. 当k =3m ,m ∈Z 时,m ·360°<a 3<m ·360°+30°,∴角a 3的终边落在第一象限.当k =3m +1,m ∈Z 时,m ·360°+120°<a 3<m ·360°+150°,∴角a 3的终边落在第二象限. 当k =3m +2,m ∈Z 时,m ·360°+240°<a 3<m ·360°+270°, ∴角a3的终边落在第三象限,故选D. 11.【答案】B【解析】若α是第三象限角,则360°·k +180°<α<360°·k +270°;则360°·k +90°<-α<360°·k +180°,360°·k +270°<180°-α<360°·k +360°此时为第四象限角. 12.【答案】2点32811分或者2点54611分【解析】当分针在时针前面时,设转成120°的时间为x ,则(6-12)x =60+120,∴x =36011=32811. 当时针在分针前面时,设转成120°的时间为y ,则(6-12)y =60+120+120,解得y =60011=54611; 所以2时和3时之间时针与分针成120°的时间为2点32811分或者2点54611分. 13.【答案】2a 5,9a 10,7a 5,19a 10【解析】由题意得α=8a 5+2k π,∴a 4=2a 5+aa2(k ∈Z ). 令k =0,1,2,3,得a 4=2a 5,9a 10,7a 5,19a10. 14.【答案】100【解析】P 到圆心O 的距离OP =√52−32=4(cm),又P 点转过的角的弧度数α=5×5=25(rad),∴弧长为α·OP =25×4=100(cm). 15.【答案】(2+√2)π2【解析】由图可知:∵圆O 的半径r =1,正方形ABCD 的边长a =1, ∴以正方形的边为弦时所对的圆心角为a 3, 正方形在圆上滚动时点的顺序依次为如图所示,∴当点A 首次回到点P 的位置时,正方形滚动了3圈共12次, 设第i 次滚动,点A 的路程为Ai , 则A 1=a 6×|AB |=a 6,A 2=a6×|AC |=√2a 6,A 3=a 6×|DA |=a6, A 4=0,∴点A 所走过的路径的长度为3(A 1+A 2+A 3+A 4)=2+√22π. 16.【答案】∠AOB =-100°,∠BOC =270°,∠COD =-30°,所以∠AOD =∠AOB +∠BOC +∠COD =-100°+270°+(-30°)=140°. 【解析】17.【答案】设2点x 分时针和分针重合,相对于0点分针成6x 度,时针成(2+a60)·30度,则 (2+a60)·30=6x ,故x =101011. 【解析】18.【答案】∵钟表的指针都做匀速转动,∴钟表上分针转动一周,需要1个小时,1小时后重复出现,即周期为1小时.∵分针转动一周是2π弧度,所花时间是3 600 s. ∴钟表上分针的角速度为a1800(rad/s). ∵秒针转动一周是2π弧度,所花时间是60 s , ∴钟表上秒针的角速度为a 30rad/s. 故分针与秒针的角速度之比为160. 【解析】19.【答案】如图,设a 3角的终边为OA ,OA 关于直线y =x 对称的射线为OB,则以OB 为终边的一个角为a4−(a3−a4)=a 6,所以以OB 为终边的角的集合为{a |a=2a π+a6,a ∈a }.又因为α∈(-2π,2π),所以-2π<2k π+a 6<2π,且k ∈Z , 所以k =-1或k =0.当k =-1时,α=-11a6;当k =0时,α=a6.所以角α的值为-11a 6或a6. 【解析】20.【答案】设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=aa =40−2×1010rad =2 rad , ∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2. 【解析】21.【答案】(1)设弧长为l ,弓形面积为S 弓, ∵α=60°=a 3,R =10,∴l =αR =10a3(cm). S 弓=S 扇-S △=12×10a 3×10-12×10×10×sin a 3=50(a 3+√33)(cm 2). (2)扇形周长c =2R +l =2R +αR ,∴α=a −2aa, ∴S 扇=12αR 2=12·a −2a a·R 2=12(c -2R )R =-R 2+12cR =-(a −a4)2+a 216.当且仅当R =a4,即α=2时,扇形面积最大,且最大面积是a 216.【解析】22.【答案】∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ),∴60°+k ·120°<a3<90°+k ·120°(k ∈Z ).当k =3n (n ∈Z )时,60°+n ·360°<a3<90°+n ·360°(n ∈Z ),∴a 3是第一象限的角;当k =3n +1(n ∈Z )时,180°+n ·360°<a 3<210°+n ·360°(n ∈Z ),∴a3是第三象限的角;当k =3n +2(n ∈Z )时,300°+n ·360°<a3<330°+n ·360°(n ∈Z ),∴a3是第四象限的角.∴a3是第一、三、四象限的角.【解析】23.【答案】因为α是第二象限角,所以k ·360°+90°<α<k ·360°+180°,k ∈Z . 所以2k ·360°+180°<2α<2k ·360°+360°,k ∈Z , 所以2α的终边在第三或第四象限或终边在y 轴的非正半轴上. 因为k ·360°+90°<α<k ·360°+180°,k ∈Z , 所以k ·180°+45°<a 2<k ·180°+90°,k ∈Z ,所以当k =2n ,n ∈Z 时,n ·360°+ 45°<a 2<n ·360°+90°,即a 2的终边在第一象限; 当k =2n +1,n ∈Z 时,n ·360°+225°<a 2<n ·360°+270°,即a 2的终边在第三象限.所以a2的终边在第一或第三象限.【解析】24.【答案】(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|k·180°+30°≤x≤k·180°+60°,k∈Z}.【解析】25.【答案】(1)如图,直线√3x-y=0过原点,倾斜角为60°,在0°~360°围,终边落在射线OA上的角是60°,终边落在射线OB上的角是240°,所以以射线OA、OB为终边的角的集合为:S1={β|β=60°+k·360°,k∈Z},S2={β|β=240°+k·360°,k∈Z},所以,角β的集合S=S1∪S2={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+(2k+1)·180°,k∈Z}={β|β=60°+n·180°,n∈Z}.(2)由于-360°<β<720°,即-360°<60°+n·180°<720°,n∈Z.解得-73<n<113,n∈Z,所以n=-2,-1,0,1,2,3.所以S中适合不等式-360°<β<720°的元素为:60°-2×180°=-300°;60°-1×180°=-120°; 60°+0×180°=60°;60°+1×180°=240°; 60°+2×180°=420°;60°+3×180°=600°. 【解析】26.【答案】(1)与角10 030°终边相同的角的一般形式为β=k ·360°+10 030°(k ∈Z ),由-360°<k ·360°+10 030°<0°,得-10 390°<k ·360°<-10 030°,解得k =-28,故所求的最大负角为β=-50°.(2)由0°<k ·360°+10 030°<360°,得-10 030°<k ·360°<-9 670°,解得k =-27,故所求的最小正角为β=310°.(3)由360°≤k ·360°+10 030°<720°,得-9 670°≤k ·360°<-9 310°,解得k =-26,故所求的角为β=670°. 【解析】27.【答案】A 点2分钟转过2θ,且180°<2θ<270°, 又14分钟后回到原位,∴14θ=k ·360°(k ∈Z ), ∴θ=a ·180°7(k ∈Z ),且90°<θ<135°,∴θ=720°7或900°7. 【解析】28.【答案】由题意可知:14α,14β均为360°的整数倍,故可设14α=m ·360°,m ∈Z,14β=n ·360°,n ∈Z ,从而可知α=a7·180°,β=a 7·180°,m ,n ∈Z .又由两只蚂蚁在第2秒时均位于第二象限,则2α,2β在第二象限. 又0°<α<β<180°,从而可得0°<2α<2β<360°, 因此2α,2β均为钝角,即90°<2α<2β<180°.于是45°<α<90°,45°<β<90°.∴45°<a 7·180°<90°,45°<a 7·180°<90°, 即74<m <72,74<n <72.又∵α<β,∴m <n ,从而可得m =2,n =3. 即α=(3607)°,β=(5407)°. 【解析】29.【答案】在扇形ABA 1中,圆心角恰为a 2,弧长l 1=a 2·|AB |=a 2·√3+1=π,面积S 1=12·a 2·|AB |2=12·a 2·4=π.在扇形A 1CA 2中,圆心角也为a 2,弧长l 2=a 2·|A 1C |=a 2·1=a2,面积S 2=12·a 2·|A 1C |2=12·a 2·12=a 4.在扇形A 2DA 3中,圆心角为π-a 2-a 6=a 3,弧长l 3=a 3·|A 2D |=a 3·√3=√33π,面积S 3=12·a 3·|A 2D |2=12·a 3·(√3)2=a 2,∴点A 走过的路程长l =l 1+l 2+l 3=π+a2+√3a 3=(9+2√3a6),点A 走过的弧所在的扇形的总面积S =S 1+S 2+S 3=π+a 4+a2=7a4. 【解析】30.【答案】因为α是第二象限角,所以k ·360°+90°<α<k ·360°+180°(k ∈Z ). 方法一 因为k ·120°+30°<a 3<k ·120°+60°(k ∈Z ), 当k =3n (n ∈Z )时,n ·360°+30°<a 3<n ·360°+60°; 当k =3n +1(n ∈Z )时,n ·360°+150°<a 3<n ·360°+180°; 当k =3n +2(n ∈Z )时,n ·360°+270°<a 3<n ·360°+300°. 所以a 3是第一或第二或第四象限角.方法二 如图所示,作出三等分各个象限的从原点出发的射线,它们与坐标轴把周角等分成12个区域,从x 轴的非负半轴起,按逆时针方向把这12个区域依次循环标上1,2,3,4,则标号是几的区域就是θ为第几象限角时a3的终边落在的区域,所以a3是第一或第二或第四象限角.【解析】。

相关文档
最新文档