6秩亏自由网平差S的求法与基准解析
秩亏自由网平差及其通解
第32卷第2期2010年6月地球科学与环境学报Journal of Earth Sciences and EnvironmentVol.32No.2Jun.2010收稿日期:2009 07 15基金项目:国家自然科学基金项目(40672173;40802075) 作者简介:赵超英(1976 ),男,山西平遥人,副教授,工学博士,从事InSAR 理论与数据处理的教学与研究。
E mai l:zhaochaoying@秩亏自由网平差及其通解赵超英,黄观文(长安大学地质工程与测绘学院,陕西西安710054)摘要:通过坐标转换将初始坐标系下的特解转换得到任意坐标系下的通解,研究了秩亏自由网基准转换的实质。
结果表明,秩亏自由网平差最优解实质是基于近似值所确定的基准下的最优解,在实际应用中确定合适的基准是关键。
以西安地区GP S 沉降监测网为例,不同基准下秩亏解均为该基准下最优解,但只有顾及板块运动的基准才具有物理意义。
关键词:秩亏;自由网平差;基准条件;坐标系;通解中图分类号:P228.4 文献标志码:A 文章编号:1672 6561(2010)02 0215 03Rank Defect Free Net Adjustment andIts General SolutionZH AO Chao ying ,H UANG Guan w en(S chool of Ge olog ical E ngineer ing an d Su rv ey ing ,Chang an Unive rsity ,X i an 710054,S haanxi,China)Abstract:T hro ug h transfor ming the par ticular solut ion o f initial coo rdinates to the g ener al solution o f ar bitrar y co or dinate,rank def ect free net adjust ment is analyzed,and the essence of the datum tr ansfor matio n is discussed.T he results sho w t hat the o ptimized solution of rank defect fr ee net adjust ment is t he o ne so lution under t he datum which is calculated by the approx imat ion v alue.In pr act ice,the key problem is to determine t he appro pr iate datum.G PS monito ring netw or k in Xi an is t aken as an example to demonstrate the differ ent o pt imal so lutio ns under differ ent data,w hereas the so lutio ns in plate mo tion ar e physically significant.Key words:rank defect ;fr ee net adjustment;datum condition;co or dinate system;general so lutio n0 引言自Messl 提出自由网平差以来[1],其理论研究和应用研究均得到较大的发展,中国学者自20世纪80年代开始对其进行了系统研究[2 3]。
论秩亏自由网平差的性质及稳健基准的意义
论秩亏自由网平差的性质及稳健基准的意义
自由网平差是一种网络平差方法,它可以用来解决复杂的网络平差问题。
自由网平差具有三个特点:1、自由网平差是一种秩亏的网络平差方法,它可以解决复杂的网络平差问题;2、自由网平差是一种稳健的网络平差方法,它可以抵消网络中的噪声和误差;3、自由网平差是一种有效的网络平差方法,它可以有效地提高网络的精度和稳定性。
秩亏的自由网平差是指在网络平差过程中,网络的观测数据和计算结果之间存在着秩亏的状态,即观测数据和计算结果之间存在着不可解释的差异。
这种秩亏的状态可以通过调整网络中的参数来消除,从而达到网络平差的目的。
稳健基准是指在网络平差过程中,通过调整网络中的参数,使网络对噪声和误差具有较强的抗干扰能力,有效地抵消噪声和误差,从而提高网络的精度和稳定性。
稳健基准的意义在于,可以有效地抵消网络中的噪声和误差,保证网络的精度和稳定性。
秩亏自由网平差
秩亏自由网平差的研究刘 阳(江苏师范大学,城建学部,江苏 徐州 )摘要:秩亏自由网是因为控制网中没有足够的起始数据, 即缺乏基准的平差问题,因此按间接平差进行平差时, 其误差方程的系数阵 B 不能满足列满秩的要求, 相应的法方程系数阵T bb N B PB 是秩亏阵.为了求定未知参数的唯一确定解, 除了遵循最小二乘准则外, 还需增加新的基准约束条件 , 从而得到未知参数的唯一确定解.本文主要利用MATLAB 从传统的测量平差的观点出发, 来计算例题,分析,和论述亏秩自由网平差之解的性质,讨论了附加矩阵S 的形式了确定的方式,讨论了秩亏自由网平差之解与传统自由网平差之解的关系, 给出了详细的解答过程,并且比较了俩种方法的各自的优缺点,给出总结。
关键词:秩亏自由网;平差;间接平差Research Rank Defect Free NetworkAdjustmentLiuyang(School of Urban construction and design, Jiangsu Normal University, 221116)Abstract:Rank Defect Free Network control network because of not enough initial data,That lack of adjustment problems benchmark.Therefore, when carried out by indirect adjustment adjustment, the coefficient matrix B error equation does not meet the requirements of full rank.Corresponding normal equation coefficient matrix is rank deficient matrix.In order to find a unique set of unknown parameters to determine the solution, in addition to following the least squares criterion, the need to add a new benchmark constraints, resulting in a unique solution to determine the unknown parameters.The main advantage of MATLAB article from the traditional viewpoint of Surveying Adjustment,Analysis of the nature of the calculation examples, and discusses the loss of rank free net adjustment of the solution,Additional discussion of the form of the S matrix determined, discusses the relationship between solutions of rank defect free network adjustment of the solution with the traditional free network adjustment, the process gives a detailed answer, and compare the two methods of their advantages and disadvantages.Gives summary.Key words: Rank-defect free net adjustment; adjustment; condition comparison引言在现代测量数据处理过程中,秩亏自由网平差在近几十年得到了广泛应用,是重要的数据处理方法之一,特别是在变形监测、最优化设计中,秩亏自由网平差都展现出其优势。
秩亏网平差
h2
C
原因:网中没有已知高 程点。
秩亏网平差的概念
2、平差基准
测量控制网以点的坐标(及高程)为未知参数进行参数平 差时,网中必须具有必要的起算数据。例如,水平控制网必须 有一个已知点的坐标,一条已知边长和一个已知方位角;水准 网必须有一个已知点的高程。有时,网中还会有多余的起算数 据。测量平差中,将仅含必要起算数据的控制网称为 经典自由 网,将含有多余起算数据的控制网称为附合网。当控制网中存 在必要起算数据或多余起算数据时,观测方程的系数矩阵才可 能列满秩,起算数据不足时,就产生数亏。
B BT ( BBT )1
当 C 为满秩方阵时,
(GA) GA
T
C C C 1
对于参数平差模型(等精度) :
( AG)T AG
G 称为 A 的广义逆。
可以只满足一个或几个方程,共有 1 2 3 4 C4 C4 C4 C4 15 种不同的广 义逆。
ˆ L V AX ˆ ( AT A)1 AT L A L X
B
h1
A
h3
h2
C
ˆ 1 l1 v1 1 1 0 x v 1 0 1 x l ˆ 2 2 2 ˆ3 v3 0 1 1 x l3 0 l1 1 1 0 x1 h1 l 1 0 1 x 0 h 2 2 2 0 l 0 1 1 x 3 3 h3
(D-4)
R( A) u n , s n u
相容方程组的通解:
是满足(A-1)和(A-3)的最小范 Am
X X Gα
测绘数据处理自由网平差
的秩R(B)等于未知参数 的个数t.即 (1-7-2)
2020/7/9
2
在最小二乘准则下,得其法方程为
(1-7-3)
其中N= PB,W=
。此时,系数阵N为满秩方阵,即
det(N) ,N为非奇异阵,有唯一解,其解为
(1-7-4)
当平差网没有起算数据时,网中所有的点均为待定点。设未知
方程,从而可以按附有限制条件的间接平差法求解。
等价于约束条件
的限制条件方程为
式中
BG=0
故加权秩亏网平差函数模型为
(1-7-9) (1-7-10)
(1-7-11)
2020/7/9 11
此处的系数矩阵B不是列满矩阵,而是列亏矩阵。 将式(1-7-11)组成法方程,得
(1-7-12)
式中
, 因N为降秩方阵,无正常逆,所以
2020/7/9
5
(2)、秩亏网平差。它是在最小二乘
和最小范数
的条件
下求定未知参数的最佳估值。
(3)、加权秩亏网平差。它是在最小二乘
和加权最
小范数的条件
下求定未知参数的最佳估值。式
中, 为表示未知参数稳定程度的先验权矩阵。
(4)、拟稳平差。若将平差网中的未知参数分为两类,即
(s>d)
(1-7-7)
平均距离)。 对于一维的高程网,这种约束是使平差前后网店的平均高程保持 不变。 这些约束条件我们称之为重心基准条件。
2020/7/9
9
(三)加权秩亏自由网平差基准 和秩亏自由网平差基准类似,但应考虑各网点的权重,采用了带 权重心基准条件。 (四)拟稳平差基准 也和秩亏自由网平差基准类似,但仅仅是采用所有拟稳点的重心 基准条件。
秩亏自由网平差的解法
R( A) r t
增加虚拟观测:
ˆ l AX 2 2 1 D ( l ) Q P 0 0
(1)
d t r
P 非奇异对称矩阵
ˆ l B X
d ,t
PI
T 即当 BB I
R( B ) d
(2)
① R( B ) d T ② AB 0
h3 15.817 m
x2 h1 x1 h3 x3 h2
各线路距离S相等,试求平差后各点高程及协因数。 解: 取各点近似高程为:
0 0 0 0 x10 H 10 0 m , x2 H2 12.345 m , x3 H3 15.817 m
PI
1. 列误差方程式
ˆ l V AX
( N i I )S i NSi 0 ( i 1,d )
因N 具有秩亏d=t-r,故N的特征值中必有d个为零,对应 零特征值必存在d个线性无关的特征向量,由此构成矩阵
ud
S ( S 1 S 2 S d )
BT S
R( S ) d
AS 0
(1)再确定
l
T ˆ ˆ X r X r min
Q N Q ( AT PA BT B) I Q A PA I Q B B 右乘 B
T T
T,顾及
ABT O
B T Q B T BBT O
Q B T B T ( BBT ) 1
Q B T B T ( BBT ) 1
左乘 AQ
伪观测法
AQ Q B T AQ B T ( BBT ) 1 ABT ( BBT ) 1 ( BBT ) 1 O
时满足该条件。 相当于
秩亏网平差若干计算方法
秩亏网平差若干计算方法1.概述在测量平差中,控制网中除了必要起算数据外还有多余起算数据的是附合网,仅有必要起算数据的是自由网,这两种控制网在间接平差时误差方程系数矩阵都是满秩的,由此得到的法方程系数阵也是满秩的,即法方程有唯一解。
这是经典平差的范畴。
自由网中有一种具有特殊用途的控制网,就是秩亏自由网,这种自由网没有起始数据参与平差并且以待定点的坐标为待定参数。
此时的误差方程的系数阵是列亏阵,由此所得的法方程系数阵也是秩亏阵。
一般设网中全部的待定坐标个数为,必要观测数为,全部观测数为,为阶矩阵,相应的法方程系数阵是阶矩阵,,秩亏数都为,所以法方程有无穷组解。
这里产生秩亏的原因是控制网中没有起算数据,所以就是网中必要的起算数据个数。
对于水准网,必要起算数据是一个点的高程,故;对于测角网,必要起算数据是两个点的坐标,故;对于测边网或是边角网,必要起算数据是一个点的坐标和一条边的方位,故。
2.秩亏网平差模型以间接平差为例,令个坐标参数的平差值为,观测向量为,则秩亏网的误差方程为:(1)式中,,,,随机模型是:(2)根据最小二乘原理,在下,可组成发方程如下:(3)若是按照直接解法用如下的方程组来解求的解:(a)容易得到,即该方程组有解但不唯一,虽然满足最小二乘准则,但有无穷多组的解,无法求得唯一的,因为参数必须在一定的坐标基准下才能唯一确定。
为了得到的唯一解,增加个坐标基准约束条件,即:(4)在限制条件下,得到法方程如下:(5)由此可以根据下面的方程组解得的唯一解:(b)由上述方程组(b),可以得到:()(7)()()3.矩阵分解应用于秩亏网平差3.1 奇异值分解用于秩亏网平差可以看出,上面提到的这种计算秩亏网平差的方式很复杂,现在我们不妨把秩亏自由网平差看成在满足最小二乘和最小范数的条件下,求参数一组最佳估值的平差方法,也就是通过对如下的方程组来解求的唯一解:(c)这是个复杂的方程组,如果按照正常求解的方法是很困难的,下面我们把矩阵的奇异值分解融合进来。
秩亏自由网平差
秩亏自由网平差的研究刘 阳(江苏师范大学,城建学部,江苏 徐州 )摘要:秩亏自由网是因为控制网中没有足够的起始数据, 即缺乏基准的平差问题,因此按间接平差进行平差时, 其误差方程的系数阵 B 不能满足列满秩的要求, 相应的法方程系数阵T bbN B PB 是秩亏阵.为了求定未知参数的唯一确定解, 除了遵循最小二乘准则外, 还需增加新的基准约束条件 , 从而得到未知参数的唯一确定解.本文主要利用MATLAB 从传统的测量平差的观点出发, 来计算例题,分析,和论述亏秩自由网平差之解的性质,讨论了附加矩阵S 的形式了确定的方式,讨论了秩亏自由网平差之解与传统自由网平差之解的关系, 给出了详细的解答过程,并且比较了俩种方法的各自的优缺点,给出总结。
关键词:秩亏自由网;平差;间接平差Research Rank Defect Free NetworkAdjustmentLiuyang(School of Urban construction and design, Jiangsu Normal University, 221116)Abstract:Rank Defect Free Network control network because of not enough initial data,That lack of adjustment problems benchmark.Therefore, when carried out by indirect adjustment adjustment, the coefficient matrix B error equation does not meet the requirements of full rank.Corresponding normal equation coefficient matrix is rank deficient matrix.In order to find a unique set of unknown parameters to determine the solution, in addition to following the least squares criterion, the need to add a new benchmark constraints, resulting in a unique solution to determine the unknown parameters.The main advantage of MATLAB article from the traditional viewpoint of Surveying Adjustment,Analysis of the nature of the calculation examples, and discusses the loss of rank free net adjustment of the solution,Additional discussion of the form of the S matrix determined, discusses the relationship between solutions of rank defect free network adjustment of the solution with the traditional free network adjustment, the process gives a detailed answer, and compare the two methods of their advantages and disadvantages.Gives summary.Key words: Rank-defect free net adjustment; adjustment; condition comparison引言在现代测量数据处理过程中,秩亏自由网平差在近几十年得到了广泛应用,是重要的数据处理方法之一,特别是在变形监测、最优化设计中,秩亏自由网平差都展现出其优势。
4第四讲 用附有限制条件的参数平差法求解秩亏自由网
(15) )
前三个条件同测边网,现分析第四个条件式: 前三个条件同测边网,现分析第四个条件式: 网中重心点至任一点的距离的平差值为
ˆ ˆ ˆ ) Si2 = ( X i0 + δ X i − X 0 ) 2 + (Yi 0 + δ Yi − Y 项得: 展开上式并取至一次项得:
QXˆ = ( N + Gm G ) N ( N + Gm G )
T −1 m T −1 m
(5) )
三、各种网形的 Gm 阵及秩亏自由网平差基准的意义 1.水准网 1.水准网
T Gm = (1 1 L 1)
(6) ) (7) )
t
故由 知
t i =1
1×t
T ˆ ˆ Gm δ X = ∑ δ X i = 0 i =1 t
m
设网中的重心坐标为 又设
1 m 0 1 m 0 X 0 = ∑ X i , Y 0 = ∑ Yi m i =1 m i =1
(12) ) (13) )
ˆ (Yi 0 + δ Yi ) − Y 0 −1 ˆ = tg −1 α i = tg 0 ˆ )− X0 (X + δ X
i i
ˆ Yi − Y 0 ˆ − X0 Xi
因此,在测角秩亏自由网平差中, 因此,在测角秩亏自由网平差中,和经典平差一 一个点的重心坐标, 样,也有自己的起始数据——一个点的重心坐标,一个 也有自己的起始数据 一个点的重心坐标 重心点至所有点的向径方位角的加权平均数和一个重心 点至所有点的向径长度的加权平均数。 点至所有点的向径长度的加权平均数。
作业: 作业: (1)用附有限制条件的参数平差法求解上次作业的水 ) 准网。 准网。
0 改为15.817m求解该网。 求解该网。 (2)将 X 3 改为 ) 求解该网
测绘数据处理-自由网平差
4
d就是网中必要的起算数据个数。且有:
二、秩亏自由网平差思路 为了求得未知参数的唯一确定解,除了遵循最小二乘准则外 ,还必须增加新的约束条件,从而达到求得唯一解的目的 。由于约束条件不同,秩亏自由网平差可分为如下几种情 况: (1)、经典自由网平差。它是在假设网中有d个必要起算数据 的条件下,求定未知参数的最佳估计。这种方法早就已为 人们所熟知。不难理解,该法的平差结果(未知参数X的 解及其协因数阵 )将随着假设的d个必要起算数据的不同 而不同,即随着已知点位置的改变而改变。
第七行划去,剩下的6三行u列的阵即为三维测边网平差时的附
加阵。 很明显,上述的附加阵G均未标准化,即只是满足了BG=0, 但尚未满足的条件。
2019/2/15
17
阵标准化
1、用原始阵 2、设 和 阵,求出相应的阵 ; 相应 中第i行主对角元素为gii,把原始阵
的第i行数据均乘以
即可得到标准化阵的相应数据;
2019/2/15
2
在最小二乘准则下,得其法方程为 (1-7-3) 其中N= PB,W= 。此时,系数阵N为满秩方阵,即 (1-7-4) 当平差网没有起算数据时,网中所有的点均为待定点。设未知 参数的个数为u,误差方程为 (1-7-5) 组成的法方程为
2019/2/15
det(N)
,N为非奇异阵,有唯一解,其解为
2019/2/15
26
点号
P1 P2 P3 P4
/m
2019/2/15
27
(1)计算网的重心点坐标
(2)计算以加权重心点坐标为坐标原点的各待定点的坐标值
点号
P1 P2 P3
/km
P4
2019/2/15
秩亏自由网平差
ˆ N BT Pl ( E N N )M 中挑选一个解,使得 从X
X min
所以,平差问题成为:
即求误差方程的最小 二乘、最小范数解。 最小二乘指改正数, 最小范数指参数。亦 即求长度最短的最小 二乘解。 武汉大学测绘学院 孙海燕
V T PV min ˆ l V BX ˆTX ˆ min X
武汉大学测绘学院 孙海燕
第四章 秩亏自由网平差
例:如图水准网,1)设 H 3 已知,则误差方程为
0 v1 1 l1 ˆ1 v 1 1 x l2 2 x ˆ2 v3 0 1 l3
法方程系数阵
rank( B) R( B) u t 2
2 1 B B 1 2
T T T 1
rank( BT B) t u 2
1 2 1 | B B | 3, ( B B) 3 1 2
ˆ ( BT B) 1 BT l x
(5) 若矩阵 P 正定,则
A( AT PA) AT PA A
(6) G 为 AT A 的广义逆,则 G T 也是 AT A的广义逆。 3、广义逆 A 的计算 若
rank ( A) r (n, m)
,设
1 A O 11 A m.n O O
A11 r .r A n.m A21 n r .r
4、不同基准下平差的各种量有什么变化
5、基准如何变换
武汉大学测绘学院 孙海燕
第四章 秩亏自由网平差
第二节 广义逆与线性方程组的解
m,n n ,1
线性方程组
Axb
m,1
a1
3第二章 秩亏自由网平差原理综述
ˆ Qˆ 普通秩亏网平差: X r 、 Xr ˆ 、Q ˆ 普通拟稳平差: X XS S ˆ 、Q ˆ 经典自由网平差: X C XC
ˆ L 0 1 X V1 1 1 1 V 1 1 X ˆ L 0 2 2 2 ˆ L V3 0 1 1 X 3 3 1 0 1 1 0 A 1 1 0 =0 1 1 0 1 1
第一专题: 秩亏自由网平差
长安大学地测学院 赵超英 zhaochaoying@
主要内容
问题的引入 秩亏自由网平差的原理 广义逆的补充知识 秩亏自由网平差的解法 秩亏自由网平差解的性质
一、问题的引入
1、四个例子、两个概念
例1: 设有水准网,如图所示,假设 x3 为已知高程,
1、秩亏网最小二乘解: i)假定某些差数固定——设定基准
V AX L R ( A) t 0 , d 0 V T PV m in 得:
NX AT PL R( A) t 0 ˆ N 1 AT PL X
1
N
——正则逆(凯莱逆)
ii)不设基准 R( A) t 0 t , d d 0
三种自由网平差间的关系
加权包含了普通与拟稳秩亏网平差是一种普通形式。
当 Px I 时 ˆTP X ˆ X ˆ T X min X x
PX 2 当 Px
0 0 时,则 = PX I 0 I
T 0 0 X T T I X X T X min 0 I X
R( N ) t 0 t 秩亏 凯莱逆不存在: NN NN 广义逆 N 不唯一, X N AT PL ( I N N )M ,其中M是任意向量,解不 唯一。 注意: N N I
测网平差方法与步骤分析
测网平差方法与步骤分析导言:测量是地理信息系统(GIS)的基础,而测网平差作为测量的一种重要方法,广泛应用于土地测量、工程测量和空间数据分析等领域。
本文将对测网平差的方法和步骤进行分析,帮助读者了解测网平差的基本原理和操作步骤。
一、测网平差方法测网平差是一种数据处理方法,通过统计学原理和数学模型,对测量数据进行加权平差,提高测量结果的精度和可靠性。
常用的测网平差方法包括最小二乘法和加权最小二乘法。
1.最小二乘法(LS)最小二乘法是一种常见的测网平差方法,其基本原理是通过最小化测量残差的平方和,得到最优的平差结果。
该方法适用于误差满足正态分布的情况,可以较好地处理系统误差和随机误差。
2.加权最小二乘法(WLS)加权最小二乘法是在最小二乘法的基础上引入权重因子,对不同测量数据进行加权处理。
该方法适用于测量误差不满足正态分布的情况,能够更好地处理异常值和粗差数据。
二、测网平差步骤对于测网平差,一般需要经过以下步骤进行处理:1.数据准备首先,需要收集并整理测量数据,包括测量观测值、测站坐标、测角数据等。
同时,还需要确定测网的控制点和测量误差限差等参数。
2.观测数据处理在数据准备完成后,需要对观测数据进行处理,包括测角观测值的转化为方位角或坐标增量、测站坐标的转换和误差检查等。
3.建立数学模型在进行测网平差前,需要建立数学模型,一般为误差方程。
误差方程是通过观测方程和几何关系方程建立的,用于描述测量数据之间的关系。
4.解算平差参数根据建立的数学模型,通过数值解算的方法求解平差参数,包括待定点坐标增量、已知点坐标及其精度估计等。
5.检查平差结果在求解平差参数后,需要对平差结果进行检查,包括误差分析、精度评定和异常值检测等。
如果发现问题,还需要对数据进行修正和迭代。
6.平差结果应用最后,根据平差结果进行相应的应用,如地图绘制、工程设计等。
同时,还需要对测量数据和结果进行保存和备份,以便后续的数据分析和处理。
结语:测网平差作为一种重要的数据处理方法,对于提高测量精度和可靠性具有重要意义。
第三讲秩亏自由网平差
AR A ( A A)
A是降秩矩阵时:秩分解法、降阶法。
降阶法:
• 在秩亏的方阵A中,删去d个某一行和相应的某 一列降阶求逆,删去位置均以“0”代之,即得奇 异方阵的广义逆A-。 • 可见A-不唯一。 1 1 0 • 例如: A 0 1 1 ,( R A) 2,d 3 2 1
T B T B
I PV 0 D 2 I 0 0 D 2 I 0 0 0 B ˆ L ( X ) 0 DX I Lx 0 B ˆ T X B I DX
T d1 du uu u1
V B l ˆ V T x 0 Vg S Px P P 0 0 I
平差准则:
V PV min
T
按间接平差法求参数:
1、合并
2、法方程: 3、解参数
B l ˆ Bx ˆl , V T x 0 S Px P 0 P 0 I ˆ B T Pl 0 B T PBx B P S T P 0 x
3)即网中存在d 个起始数据, 这就是固定基准下的经 典自由网平差。
秩亏问题解决:经典平差(附加固定的基准条件 )和伪逆平差(直接利用广义逆求解 ); 优缺点:解法简捷 ,但没考虑到解法物理意义, 不能反映真实情况。 提出:拟稳平差理论。 “拟稳平差”的基本思想:考虑到监测网中的点 ,处于不同的地质构造和地球物理环境,随着时 间的延伸,都可能发生变动,但是总存在相对变 化小的,即相对稳定的点。
1、定义:满足下列四个条件,即
AA A A A AA A ( AA )T AA ( A A)T A A
论秩亏自由网平差的性质及稳健基准的意义
论秩亏自由网平差的性质及稳健基准的意义
泰勒-普克网平差的性质及稳健基准的意义
一、泰勒-普克网平差的性质
1、平差基础
泰勒-普克网平差是一种在某一程度上把差距变成零的基础计算手段,其核心
目标是让差距最小化。
就其本质而言,泰勒-普克网平差也是一种多变量数学优化
技术,是一种最优化技术,所获得平差结果使残差最小化并能确定被估量参数的最优值。
2、平差技术特点
泰勒-普克网平差技术的特点有:它仅考虑坐标计算,因此它的计算简单可靠;由于其利用了既定的数学规律,它的计算结果是固定的;另外,它只需要坐标测量观测点以及观测张角即可得到正确的平差曲线坐标数据,降低了计算错误的可能性。
二、稳健基准的意义
1、基准点确定泰勒-普克网系统构建完成后,必须确定基准点,这些基准点的
确定有利于经线的稳定性,其能够将准确的坐标视图和参考坐标视图实现统一,保证经线的准确度。
2、精度分析稳健基准的设置能够更好地保证平差精度,并可以充分发挥最大
可接受误差的作用,因此能够更好地提高经线测量准确性。
3、丰富经线系统基准点确定后,能够为拓展测量着许多有用的信息,增强经
线系统的完整性和稳定性,以保证经线系统的精度和准确度。
综上所述,泰勒-普克网平差作为一项多变量数学优化技术,它能够有效地让
多个观测结果变为零的一种差距,其特点是只考虑坐标计算,实现数学优化后获得
平差结果,能够将准确的坐标视图和参考坐标视图实现统一。
同时,稳健基准的设置有利于经线系统的稳定性,可以充分发挥最大可接受误差的作用,确定有助于拓展测量的同时,也能够更好地提高经线测量的准确性。
5第二章秩亏自由网平差的解法
N
m
N (NN )
为最小范数逆
Xˆ r Nm AT Pl
以上是最小二乘最小范数解
根据最小范数的定义知,该逆应满足:
NN
m
N
N
(
N
m
N
)
T
N
m
N
[证明]:
(1)
NN
m
N
NN (NN )
N
N
由广义逆的性质三有 A( AT A) AT A A或AT A( AT A) AT AT
DDT ( AT A( AT A) AT AT )(A( AT A) AT A A) ( AT A( AT A) AT A( AT A) AT A AT A( AT A) AT A AT A( AT A) AT A AT A 0
的条件极值问题。 组成新的函数:
Xˆ T Xˆ 2K T (NXˆ AT Pl)
对 Xˆ 求偏导数并令其等于零,得:
Xˆ
2Xˆ T
2K T N
0
Xˆ N T K
(1)
NXˆ AT Pl
(2)
NN T K AT Pl
K (NN T ) AT Pl Xˆ r N T (NN T ) AT Pl N (NN ) AT Pl
主要内容
➢ 问题的引入 ➢ 秩亏自由网平差的原理 ➢ 广义逆的补充知识 ➢ 秩亏自由网平差的解法
秩亏自由网平差的解法分类
√①求N 的最小范数逆
----Mittermayer(1971)
√②伪逆解法 ③√ 附加条件法 ④√ 伪观测法
----Mittermayer(1971)
----Mittermayer(1972)
H
0 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a jh
(
y
0 h
y
0 j
)
(
s
0 jh
)
2
, b jh
(x
0 h
x
0 j
)
(s
0 jh
)
2
自由测角网中没有固定点,因此每个水平角为两水平方向之
差。三个坐标点的坐标未知数必同时出现在误差方程中,故
系数阵中的每一行元素结构总是形如
(a jh a jk ) (bjh bjk ) a jh bjh a jk bjk
• 参考: Xu P L. A General Solution in Geodetic Nonlinear Rank-defect Models [ J ] . Bollettino di Geodesia e Scienze Affini , 1997 ,56 (1) :1225.
• /special/opencourse/daishu.h tml 讲师:Gilbert Strang 职业:麻省理工学院 教授
1
0
1
0 1
0
m
m
m
GT
0
y10
1
0
m
x10
y
0 2
1 0
m
x
0 2
y
0 m
1
m xm0
H H
HH
H H
此时
1 0 0
G TG 0 1 0 I
0 0 1
➢ 由于测边网中的观测方程为非线性方程,在线性 化处理中,总假定坐标改正数为微小量,因此仅 取其一次项(即线性)。所以在假定坐标近似值 时,应尽量逼近坐标平差值,以减少因线性化所 带来的误差。一般可先假定任一点的坐标,再根 据相应的观测值推算网中其余点的近似坐标。
3、测角网
对于自由测角网,其系数阵A的秩亏数为4,即缺少两个 位置基准(X,Y)、一个方位基准和一个尺度基准。测角网 的误差方程式为
vi ( a jh a jk )ˆx j ( b jh b jk )ˆy j a jh ˆxh b jh ˆyh a j k ˆxk b jk ˆyk li
各类自由网S和G的确定
赵超英
主要内容
➢秩亏自由网平差的三种解法回顾 ➢各类自由网S的确定 ➢S与基准的关系
秩亏自由网平差的解法分类
①求N的最小范数逆 ----Mittermayer(1971)
③附加条件法 ④伪观测法 ⑦坐标转换法
----Mittermayer(1972)
----Pelzer(1974)
A的行列式等于0,有非零解,特征值0对应的特征向量有四 个,除与水平网相同的三个特征向量外,还有一个尺度基准 对应的特征向量:
x10
y10
x
0
m
y
0
m
T
1
ST
42m
0 y10 x10
0
1 x10 y10
1
0 y20 x20
0 1 1 0 x20 ym0 y20 xm0
0
1
xm0 ym0
1 0
0 1
0 0
1 0
0 1
0 0
1 0
0 1
0 0
33m 0 0 1 0 0 1 0 0 1
其对应的G矩阵形式如下:
1 0 0 1 0 0 1 0 0
A的行列式等于0,有非零解,特征值0对应的特征向量有三个, 分别是:
1 0 1 0T
0 1 0 1T
y10 x10 ym0 xm0 T
满足AS=0,由上述特征向量可得S为:
1 0 1 0 1 0
S
T
0
1
0
1 0
1
32m
y10
x10
y2
将S标准化,可得G矩阵形式如下:
1 1
1
1
1 1
A
nt
1
1
可以推出法方程系数阵N=ATA,形式如下:
2 1 1 0 0
S T 1 1 1
1
2
1
0
AS 0
N 1
0 1 2 1
0
0
1
2
NS 0
GT 1 1 1 1
t
2、测边网、边角网
对于自由测边网,其系数阵A的秩亏数为3,即缺少两个位置 基准(X,Y)和一个方位参数。测边网误差方程的一般形式为
原理类似
----e.g. Xu PL(1999?2000?)
解法一:最小二乘最小范数解法
NXˆ AT Pl 0
Xˆ T Xˆ min
Xˆ r Nm AT Pl
Xˆ r N AT Pl
解法三:伪观测法
Ol
A ST
Xˆ
r
Xˆ N 1C Q C (N SST )1 AT Pl
解法四:附加条件法
NQ11 I S( S T S )1 S T
可以证明
Q11
N
N
m
ST
d u
Xˆ r
u1
0
Xˆ T Xˆ min
主要内容
➢秩亏自由网平差的三种解法回顾 ➢各类自由网S的确定 ➢S与基准的关系
各类自由网S和G的确定
1、水准网
d=1。由于误差方程系数阵A中的每一行元素总是出现两个基
本元素+1和-1,其元素结构总是形如:
1 0 0 1 0 0 0 0 0 A 0 1 0 0 1 0 0 0 0 33m 0 0 1 0 0 1 0 0 0
因此,参照水准网情况,可写出GPS网的S矩阵形式如下:
1 0 0 1 0 0 1 0 0
S
T
0
1
0
0
1
0
0
1
0
33m 0 0 1 0 0 1 0 0 1
S
T
将S标准化,可得G矩阵形式如下:
1
m
0
GT
y10
H
x10
H
0
1
m
1
0
m
x10
y
0 2
H
H
y10
x20
HH
0 1
m
1 0
m
x20 ym0
H
H
y20
x
0 m
H
H
0
1
m
x
0 m
H
y
0 m
H
4、GPS网(1)
GPS网的观测量为基线,隐含旋转参数和尺度参数,GPS自由
网的秩亏数为3,必要起始数据是网中一点的三维坐标。 GPS网可以简单看成是三维方向的水准网,某基线向量的观 测方程为:
vik aik xˆi bik yˆi aik xˆk bik yˆ k lik
aik
xi0 xk0 si0k
, bik
yi0
y
0 k
si0k
自由测边网中没有固定点,因此每条边的两端点坐标未知数
必同时出现在误差方程中,故系数阵中的每一行元素结构总
是形如
Ai aik bik aik bik
V
n1
A
nu
Xˆ r
u1
l
n1
ST
d u
Xˆ r
u1
0
NQ11 I S( S T S )1 S T Xˆ r Q11AT Pl
证明三种解法的等价性(一)
Xˆ r Q11AT Pl
S T Q11 0
QXˆ r Xˆ r Q11 AT PQll PAQ11 Q11NQ11 Q11 Q11S( S T S )-1 S T Q11