药剂学第四章药物微粒分散体系word精品
主管药师考试重点:药物微粒分散系的基础理论
主管药师考试重点:药物微粒分散系的基础理论主管药师考试重点:药物微粒分散系的基础理论导语:在主管药师的考试中,关于药物微粒分散系的基础理论的相关知识你知道多少?下面是店铺整理的相关考试内容,需要的小伙伴们一起来看看吧。
第一节概述分散体系(disperse system)是一种或几种物质高度分散在某种介质中所形成的体系。
被分散的物质称为分散相(disperse phase),而连续的介质称为分散介质(disperse medium)。
分散体系按分散相粒子的直径大小可分为小分子真溶液(直径<10-9m)、胶体分散体系(直径在10-7~10-9m范围)和粗分散体系(直径>10-7m)。
粗分散体系的微粒给药系统包括混悬剂、乳剂、微囊、微球等。
它们的粒径在500nm~100um范围内。
胶体分散体系的微粒给药系统包括纳米微乳、脂质体、纳米粒、纳米囊、纳米胶束等。
它们的粒径全都小于1000nm。
将微粒直径在10-9~10-4m范围的分散相统称为微粒,由微粒构成的分散体系则统称为微粒分散体系。
微粒分散体系的特殊性能:①微粒分散体系首先是多相体系,分散相与分散介质之间存在着相界面,因而会出现大量的表面现象;②随分散相微粒直径的减少,微粒比表面积显著增大,使微粒具有相对较高的表面自由能,所以它是热力学不稳定体系,因此,微粒分散体系具有容易絮凝、聚结、沉降的趋势,③粒径更小的分散体系(胶体分散体系)还具有明显的布朗运动、丁铎尔现象、电泳等性质。
微粒分散体系在药剂学的重要意义:①由于粒径小,有助于提高药物的溶解速度及溶解度,有利于提高难溶性药物的生物利用度;②有利于提高药物微粒在分散介质中的分散性与稳定性;③具有不同大小的微粒分散体系在体内分布上具有一定的选择性,如一定大小的微粒给药后容易被单核吞噬细胞系统吞噬;④微囊、微球等微粒分散体系一般具有明显的缓释作用,可以延长药物在体内的作用时间,减少剂量,降低毒副作用;⑤还可以改善药物在体内外的稳定性。
微粒分散体系-精品医学课件
二、微粒大小与体内分布
小于50nm的微粒能够穿透肝脏内皮,通过毛 细血管末梢或通过淋巴传递进入骨髓组织。
静脉注射、腹腔注射0.1~3.0m的微粒分 散体系能很快被单核吞噬细胞系统的巨噬细 胞所吞噬,最终多数药物微粒浓集于巨噬细 胞丰富的肝脏和脾脏等部位,血液中的微粒 逐渐被清除。
二、微粒大小与体内分布
(一)微粒间的Vander Waals吸引能
分子之间的Vander Waals作用,涉及偶极 子的长程相互作用:
①两个永久偶极之间的相互作用; ②永久偶极与诱导偶极间的相互作用; ③诱导偶极之间的色散相互作用。 除了少数的极性分子,色散相互作用在三
类作用中占支配地位。此三种相互作用全 系负值,即表现为吸引,其大小与分子间 距离的六次方成反比。
的 离 子 与 靠 近 定表性面关的系反密离切子。 构 成 了 微 粒的吸附层;同时ζ=由σ于ε扩/r 散作用,反 离子在微在粒相周同的围条呈件现下距,微微粒粒越表小面,越远 则浓度越稀的梯ζ度电分位越布高形。成微粒的扩 散层,吸附层与扩散层所带电荷相反。 微粒的吸附层与相邻的扩散层共同构 成微粒的双电层结构。
(一)微粒间的Vander Waals吸引能
Hamaker假设:微粒间的相互作用等于组成它 们的各分子之间的相互作用的加和。
对于两个彼此平行的平板微粒,得出单位面 积上相互作用能ΦA: ΦA= - A/12πD2
对于同一物质,半径为a的两个球形微粒之间 的相互作用能为: ΦA= - Aa/12H
微粒分散体系
第一节 概述
分散体系(disperse systems)是一种或几种
物质高度分散在某种介质中所形成的体系。
被分散的物质称为分粗分散散相体(系d的is微p粒er给s药e 系p统ha包s括e)混,悬
微粒分散体系的物理稳定性(执业药师药剂学辅导精华)
微粒分散体系的物理稳定性直接关系到微粒给药系统的应⽤。
在宏观上,微粒分散体系的物理稳定性可表现为微粒粒径的变化,微粒的絮凝、聚结、沉降、乳析和分层等等。
影响微粒分散体系物理稳定性的因素是⼗分复杂的,⽽研究这些因素将有利于最终改善微粒分散体系的物理稳定性。
1.热⼒学稳定性:微粒分散体系是典型的多相分散体系,存在⼤量的相界⾯。
随着微粒医`学教育⽹搜集整理粒径的变⼩,表⾯积不断增加,表⾯张⼒降低。
2.动⼒学稳定性:微粒分散体系的动⼒学稳定性主要表现在两个⽅⾯。
⼀个是分⼦热运动产⽣的布朗运动,⼀个是重⼒产⽣的沉降,⼆者分别提⾼和降低微粒分散体系的医`学教育⽹搜集整理物理稳定性,当微粒较⼩时,布朗运动起主要作⽤,当微粒较⼤时,重⼒起主要作⽤。
药剂学:药物微粒分散体系的基础理论
三、微粒分散系的光学性质
当一束光照射到微粒分散系时,可以出现光的吸
(二)沉降——Stokes’定律
• 粒径 较 大 的 微 粒 受 重力作 用 ,静 置 时 会 自 然 沉降 , 其沉降速度服从 Stokes ’ 定律: (4-11)
r愈大,微粒和分散介 质的密度差愈大,分散 介质的粘度愈小,粒子 的沉降速度愈大。
2r 2 ( 1 2 ) g V 9
– 小分子真溶液(<10-9m;<1nm) – 胶体分散体系(10-7~10-9m;1~100nm) – 粗分散体系(>10-7m;>100nm) • 微粒:直径在10-9~10-4m的微粒,其构成的分散体系统称为 微粒分散体系。如微米与纳米级大小的各种给药载体/系统。
微粒分散体系的特殊性能:
①多相体系:
微球表面形态
Scanning electron micrography of ADM-GMS(阿霉素明胶微球)
微球橙红色,形态圆整、均匀,微球表面可见孔 隙,部分微球表面有药物或载体材料结晶。
2.激光散射法——动态光散射法
• 对于溶液,散射光强度、散射角大小与溶液的性质、溶质 分子量、分子尺寸及分子形态、入射光的波长等有关,对 于直径很小的微粒,雷利(瑞利)散射公式:
微粒大小与体内分布
< 50nm 的微粒能够穿透肝脏内皮, 通过毛细血管末梢或
淋巴传递进入骨髓组织。
静脉注射、腹腔注射0.1~3.0m的微粒能很快被单核吞噬 细胞系统吞噬,浓集于巨噬细胞丰富的肝脏和脾脏等部位。 人肺毛细血管直径为2m,>2m的粒子被肺毛细血管滞 留下来,<2m的微粒则通过肺而到达肝、脾等部位。 。 注射> 50m 的微粒,可使微粒分别被 截留在肠、肾等相 应部位。
药剂学第四章药物微粒分散体系
第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确的填A,错误的填B)1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。
( )2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。
( )3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。
( )4.微粒的大小与体内分布无关。
( )5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。
( )6.分子热运动产生的布朗运动和重力产生的沉降,两者降低微粒分散体系的稳定性。
( ) 7.微粒表面具有扩散双电层。
双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。
( )8.微粒表面具有扩散双电层。
双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。
( )9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。
( )10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。
( )11.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。
( )12.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。
( )13.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。
( )14.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。
加入的电解质叫絮凝剂。
( )15.絮凝剂是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )16.絮凝剂是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )17.反絮凝剂是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
第一篇 药物制剂的基本理论 第四章 微粒分散体系
高分子未吸附于微粒表面时,在表面 的浓度低于体系溶液中的浓度,形成负吸 附,使微粒表面形成一种空缺表面层,在 这种体系中使胶体分散体系稳定的理论称 空缺稳定理论。
第三节 微粒分散体系物理稳定性相关理论
五、微粒聚结动力学 微粒>1μm不稳定(聚沉速度相对快) (一)快聚结 ΦT=0时势垒为0 ,一经碰撞就聚结,聚结速 度由碰撞速率决定,碰撞速率由布朗运动决定即 由扩散速度决定。 快聚结速度与微粒大小无关,受温度和介质 黏度影响。
分散体系,在侧面可观察到明显的乳光(散射光的 宏观表现)。本质是粒子对光的散射。低分子溶液 则是以透射光为主,无乳光。
第二节 微粒分散体系的物理化学性质
三、微粒分散体系的电学性质 1.电泳:如将电极插入微粒体系溶液中,通以电 流,则微粒可向阴极或阳极移动,这种在电场作 用下微粒的定向一定成为电泳。微粒大小与移动 速度成反比。
第二节 微粒分散体系的物理化学性质
一、微粒分散体系的动力学性质
1. Brown运动 1827年Brown在显微镜下发现,微粒
( < 100nm以下)在不停地不规则的运 动,将此现象命名为Brown 运动。
爱因斯坦根据分子运动论导出Brown运
动与粒子的半径、介质的黏度、温度有关。
第二节 微粒分散体系的物理化学性质
第三节 微粒分散体系物理稳定性相关理论
三、空间稳定理论 空间稳定效应的存在总势能: ΦT= ΦA +ΦR+ Φs Φs:空间稳定效应产生的排斥能,微粒
很近时趋于无穷大,故第一极小处不可能发 生聚沉,聚结多表现为较远距离上的絮凝。 空间稳定作用受电解质影响小。
第三节 微粒分散体系物理稳定性相关理论
第三节 微粒分散体系物理稳定性相关理论 三、空间稳定理论
药剂学第四章药物微粒分散体系分析
第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确的填A,错误的填B)1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。
( )2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。
( )3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。
( )4.微粒的大小与体内分布无关。
( )5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。
( )6.分子热运动产生的布朗运动和重力产生的沉降,两者降低微粒分散体系的稳定性。
( ) 7.微粒表面具有扩散双电层。
双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。
( )8.微粒表面具有扩散双电层。
双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。
( )9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。
( )10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。
( )11.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。
( )12.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。
( )13.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。
( )14.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。
加入的电解质叫絮凝剂。
( )15.絮凝剂是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )16.絮凝剂是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )17.反絮凝剂是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
微粒分散系的主要性质与特点(执业药师药剂学辅导精华)
微粒分散体系的性质包括其热⼒学性质、动⼒学性质、光学性质和电学性质等。
这⾥主要介绍与其粒径⼤⼩和物理稳定性有关的基本性质。
1.微粒⼤⼩:微粒⼤⼩是微粒分散体系的重要参数,对其体内外的性能有⼗分重要的影响。
微粒⼤⼩完全均⼀的体系称为单分散体系;微粒⼤⼩不均⼀的体系称为多分散体系。
微粒⼤⼩的测定⽅法有光学显微镜法、电⼦显微镜法、激光散射法、库尔特计数法、Stokes沉降法、吸附法等。
2.微粒⼤⼩与体内分布:不同⼤⼩的微粒分散体系在体内具有不同的分布特征。
⼩于50nm的微粒能够穿透肝脏内⽪,通过⽑细⾎管末梢或通过淋巴传递进⼊⾻髓组织。
静脉注射、腹腔注射0.1~3.0µm的微粒分散体系医`学教育搜集整理能很快被状内⽪系统(RES)的巨嗜细胞所吞噬,最终多数药物微粒浓集于巨噬细胞丰富的肝脏和脾脏等部位,⾎液中的微粒逐渐被清除。
若注射⼤于50µm的微粒⾄肠系膜动脉、门静脉、肝动脉或肾动脉,可使微粒分别被截留在肠、肝、肾等相应部位。
3.微粒的动⼒学性质:表现为布朗运动。
布朗运动是微粒扩散的微观基础,⽽扩散现象⼜是布朗运动的宏观表现。
正是由于布朗运动使很⼩的微粒具有了动⼒学的稳定性。
4.微粒的光学性质:当微粒⼤⼩适当时,光的散射现象⼗分明显。
丁铎尔现象正是微粒散射光的宏观表现。
如果有⼀束光线在暗室内通过微粒分散体系,在其侧⾯可以观察到明显的乳光,这就是Tyndall现象。
在纳⽶级⼤⼩医`学教育搜集整理的微粒分散体系中,即使在正常的室内光线下,也可以观察到明显的乳光,事实上,这已经成为判断纳⽶体系的⼀个简单的⽅法。
同样条件下,粗分散体系由于反射光为主,不能观察到丁铎尔现象;⽽低分⼦的真溶液则是透射光为主,同样也观察不到乳光。
可见,微粒⼤⼩不同,光学性质相差很⼤。
5.微粒的电学性质:微粒的表⾯可因电离、吸附或摩擦等⽽带上电荷。
第四章微粒分散体系PPT课件
h 第二级小
-
第一级小
--
35
(四)临界聚沉浓度
• 总势能曲线上的势垒的高度随溶液中电解质浓度的加 大而降低,当电解质浓度达到某一数值时,势能曲线 的最高点恰好为零,势垒消失,体系由稳定转为聚沉,
这就是临界聚沉状态,这时的电解质浓度即为该微粒
分散体系的聚沉值。 • 将在第一极小处发生的聚结称为聚沉(coagulation),
小,移动越快。
ζ=σε/r
(二)微粒的双电层结构
在相同的条件下,微 粒越小, ζ电位越
• 在微粒分散系溶液中,微粒表面的离高子。与近表面的反离
子构成吸附层;同时由于扩散作用,反离子在微粒周围
呈现渐远渐稀的梯度分布扩散层,吸附层与扩散层所带
电荷相反,共同构成双电层结构。
--
23
斯特恩吸附扩散双电层
吸附层:微粒表面→切动面
2.重力产生的沉降 使微粒分散体系的物理稳定性下降
--
27
• 絮凝与反絮凝 • DLVO理论 • 空间稳定理论 • 空缺稳定理论 • 微粒聚结动力学
(了解即可)
--
28
一、絮凝与反絮凝
• 微粒表面的电学特性也会影响微粒分散体系的物理稳 定性。
• 扩散双电层的存在,使微粒表面带有同种电荷,在一 定条件下因互相排斥而稳定。双电层厚度越大,微粒 越稳定。
--
18
• 布朗运动是液体分子热运动撞击微粒的结果。 • 布朗运动是微粒扩散的微观基础,而扩散现象又是
布朗运动的宏观表现。 • 布朗运动使很小的微粒具有了动力学稳定性。 • 微粒运动的平均位移Δ可用布朗运动方程表示:
D
RTt
L3 h r
Δ-在t时间内粒子在x轴方向的平均位移
药物微粒分散体系的基础理论
注:溶胶粒子表面电荷旳起源
电离作用:胶粒旳基团解离;硅胶粒子表面旳SiO2分子与 水生成H2SiO3,若解离生成SiO32-,使硅溶胶带负电,介质 具有H+离子而带正电。
吸附作用:胶粒优先吸附与本身有相同成份旳离子。如 AgNO3与KI→AgI,可吸附Ag+或I-带电。
¨ 当一束光线在暗室经过胶粒分散系,在其侧面可 看到明显旳乳光,即Tyndall现象。丁铎尔现象是 (胶体)微粒散射光旳宏观体现。
¨ 低分子溶液—透射光;粗分散体系—反射光; ¨ 胶体分散系—散射光。
丁达尔现象
• 丁达尔现象(Tyndall phenomena)
• 在暗室中,将一束光经过溶胶时,在侧面 可看到一种发亮旳光柱,称为乳光,即丁 达尔(Tyndall)现象。
又是布朗运动旳宏观体现。
• 布朗运动使很小旳微粒具有了动力学稳定性。 • 微粒运动旳平均位移Δ可用布朗运动方程表达:
RTt
3rN A
(4-1)
t-时间;T-热力学温度;η-介质粘度;r-微粒半径;NA-介质微粒数目
★ r愈小,介质粘度愈小,温度愈高,粒子旳平均位
移愈大,布朗运动愈明显。
布朗运动:粒子永不断息旳无规则旳直线运动
布朗运动是粒子在每一瞬间受介质分子碰撞旳 合力方向不断变化旳成果。因为胶粒不断运动, 从其周围分子不断取得动能,从而可抗衡重力 作用而不发生聚沉。
(二)沉降——Stokes’定律
• 粒径较大旳微粒受重力作 用,静置时会自然沉降, 其沉降速度服从Stokes’ 定律: (4-11)
V 2r2(1 2)g 9
摩擦带电:非导体构成旳体系中,介电常数较大旳一相易带 正电,另一相带负电。如玻璃(15)在水中(81)带负电,苯中 (2)带正电。
药剂学第四章药物微粒分散体系
第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确的填A,错误的填B)1.药物微粒分散系就是热力学稳定体系,动力学不稳定体系。
( )2.药物微粒分散系就是动力学稳定体系,热力学不稳定体系。
( )3.药物微粒分散系就是热力学不稳定体系,动力学不稳定体系。
( )4.微粒的大小与体内分布无关。
( )5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。
( )6.分子热运动产生的布朗运动与重力产生的沉降,两者降低微粒分散体系的稳定性。
( )7.微粒表面具有扩散双电层。
双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。
( )8.微粒表面具有扩散双电层。
双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。
( )9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。
( )10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。
( )11.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。
( )12.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。
( )13.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。
( )14.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。
加入的电解质叫絮凝剂。
( )15.絮凝剂就是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )16.絮凝剂就是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )17.反絮凝剂就是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
药剂学第四章药物微粒分散体系
第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确得填A,错误得填B)1.药物微粒分散系就是热力学稳定体系,动力学不稳定体系。
( )2.药物微粒分散系就是动力学稳定体系,热力学不稳定体系。
( )3.药物微粒分散系就是热力学不稳定体系,动力学不稳定体系。
( )4.微粒得大小与体内分布无关。
( )5.布朗运动可以提高微粒分散体系得物理稳定性,而重力产生得沉降降低微粒分散体系得稳定性。
( )6.分子热运动产生得布朗运动与重力产生得沉降,两者降低微粒分散体系得稳定性。
( ) 7.微粒表面具有扩散双电层。
双电层得厚度越大,则相互排斥得作用力就越大,微粒就越稳定。
( )8.微粒表面具有扩散双电层。
双电层得厚度越小,则相互排斥得作用力就越大,微粒就越稳定。
( )9.微粒体系中加入某种电解质使微粒表面得ζ升高,静电排斥力阻碍了微粒之间得碰撞聚集,这个过程称为反絮凝。
( )10.微粒体系中加入某种电解质使微粒表面得ζ升高,静电排斥力阻碍了微粒之间得碰撞聚集,这个过程称为絮凝。
( )11.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒间得斥力下降。
( )12.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒表面得ζ上升。
( )13.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒表面得ζ降低,会出现反絮凝现象。
( )14.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒间得斥力下降,出现絮凝状态。
加入得电解质叫絮凝剂。
( )15.絮凝剂就是使微粒表面得ζ降低到引力稍大于排斥力,引起微粒分散体系中得微粒形成絮凝状态得电解质。
( )16.絮凝剂就是使微粒表面得ζ升高,使排斥力大于吸引力,引起微粒分散体系中得微粒形成絮凝状态得电解质。
( )17.反絮凝剂就是使微粒表面得ζ升高,使到排斥力大于吸引力,引起微粒分散体系中得微粒形成絮凝状态得电解质。
初级药师考试复习笔记——药剂学药物微粒分散系的基础理论、流变学基础、药物制剂的稳定性、药物制剂的设计
药剂学药物微粒分散系的基础理论、流变学基础、药物制剂的稳定性、药物制剂的设计一、药物微粒分散系的基础理论1.概述概念:一种或多种物质高度分散在某种介质中所形成的体系小分子真溶液(直径<10-9m )微粒分散体系分类胶体分散体系(直径在10-7 ~10-9m 范围):主要包括纳米微乳、脂质体、纳米粒、纳米囊、纳米胶束等,他们的粒径全都小于1000nm粗分散体系(直径>10-7m ):主要包括混悬剂、乳剂、微囊、微球,他们的微粒在500~100μm 范围内微粒:10-9 ~10-4m 范围的分散相统称微粒多相体系,出现大量的表面现象微粒分散体系特殊的性能热力学不稳定体系粒径更小的分散体系还有明显的布朗运动、丁铎尔现象、电泳现象性质有助于提高药物的溶解速度及溶解度,有利于提高难溶性药物的生物利用度有利于提高药物微粒在分散介质中的分散性和稳定性在体内分布上有一定的选择性一般具有缓释作用2.微粒分散系的主要性质与特点单分散体系:微粒大小完全均一的体系多分散体系:微粒大小不均一的体系微粒粒径表示方法:几何学粒径、比表面粒径、有效粒径测定方法:光学显微镜法、电子显微镜法、激光散射法、库尔特计数法、Stokes 沉降法、吸附法小于50nm 的微粒能够穿透肝脏内皮,通过毛细血管末梢通过淋巴传递进入骨髓组织静脉注射、腹腔注射0.1~0.3μm 的微粒分散体系能很快被网状内皮系统的巨噬细胞所吞噬,最终多数药物微粒浓集于肝脏和脾脏等部位7~12μm 的微粒,由于大部分不能通过肺的毛细血管,结果被肺部机械性的滤取,肺是静脉注射给药后的第一个能贮留的靶位若注射大于50μm 的微粒指肠系膜动脉、门静脉、肝动脉或肾动脉,可使微粒分别被截留在肠、肝、肾等相应部位微粒的动力学性质:布朗运动是微粒扩散的微观基础,而扩散现象又是布朗运动的宏观表现纳米体系:丁铎尔现象微粒的光学性质粗分散体系:反射光为主,不能观察到丁铎尔现象低分子的真溶液:透射光为主,不能观察到丁铎尔现象电泳微粒分散体系在药剂学中的意义微粒大小与测定方法微粒大小与体内分布微粒的电学性质微粒的双电层结构:吸附层、扩散层布朗运动重力产生的沉降:服从Stokes 定律V= 絮凝与反絮凝二、流变学基础剪切应力与剪切速度是表征体系流变性质的两个基本参数牛顿流动纯液体和多数低分子溶液在层流条件下的剪切应力S 与剪切速度D 成正比。
4. 药物微粒分散系的基础理论
22
Ⅰ-散射光强度;Ⅰ0-入射光的强度; -分散相 的折射率; -分散介质的折射率;λ-入射光波 长;V-单个粒子的体积;v -单位体积溶液中 粒子数目。由该公式得到,散射光强度与粒 子体积V的平方成正比,利用这一特性可以 测定粒子大小及分布。
2a ( ) g u 9
2 0
式中,a——微粒的半径;g——重力加速度; η——分散介质的粘度;ρ和ρ0——微粒和分散 介质的密度。
当微粒半径a>1μm后,则微粒就要沉降或上浮, 动力稳定性较差。因此为了减小微粒沉降或上 浮的速度,则通过增加分散介质的粘度,加入 增稠剂,调节微粒与分散介质的密度差,使 ρ≈ρ0。这样可提高此微粒分散制剂的稳定性。 但最主要的是减小微粒的半径,当微粒半径a 从 10μm减小为 1μm时,其沉降速度从 4.36×102μm/s降低为4.36μm/s,相差100倍。
一、絮凝与反絮凝 微粒表面具有扩散双电层,使微粒表面 带有同种电荷,因相互排斥而稳定 絮凝与反絮凝 ξ = 20~25mV ξ >50mV
二、DLVO理论
微粒的稳定性取决于微粒之间吸引与排斥作用的相 对大小。 Derjaguin-Landau和Verwey-Overbeek四人以微 粒间的相互吸引和相互排斥力为基础,提出DLVO 理论,它能够比较完善地解释电解质对微粒多相分 散系稳定性的影响。以下主要讨论粒子间的吸引力 和排斥力的计算。
18
药剂学--药物微粒分散系的基础理论
邻的扩散层共同构成微粒的双电层结构。
三、微粒的电学性质
(二)DLVO理论---- 微粒稳定性的理论。 1 双电层的排斥作用能( ΦR) 2 微粒间的Vander Waals吸引能(ΦA) 3 微粒间总相互作用能( ΦT) 4 临界聚沉浓度
1.布朗运动
提高微粒分散体系的物理稳定性
布朗运动是微粒扩散的微观基础,而扩散现象
又是布朗运动的宏观表现。 布朗运动使很小的微粒具有了动力学稳定性。
二、动力学稳定性
2.重力产生的沉降
使微粒分散体系的物理稳定性下降。
V = 2 r2( 1- 2)g / 9
三、微粒的电学性质
从吸附层表面至反离
①由于粒径小,有助于提高药物的溶解速度及溶解 度,有利于提高难溶性药物的生物利用度;
②有利于提高药物微粒在分散介质中的分散性与稳 定性;
③具有不同大小的微粒分散体系在体内分布上具有 一定的选择性,如一定大小的微粒给药后容易被 单核吞噬细胞系统吞噬;
④微囊、微球等微粒分散体系一般具有明显的缓释 作用,可以延长药物在体内的作用时间,减少剂 量,降低毒副作用;
>10-7m)。 胶体分散体系的微粒给药系统包 将微粒直径在括1纳0米-9微~乳1、0-脂4m质范体围、纳的米分粒散、 相统称
为 粒分微散粒体,系由。微纳径粒米全囊都构、小成纳于的米100胶分0n束m散等。体。它系们则的统粒 称为微
微粒分散体系的特殊性能:
①微粒分散体系首先是多相体系,分散相与
药物微粒分散系的基础理论
第一节 概述
分散体系(disperse system)是一种或几种物质 高度分散在某种介质中所形成的体系。被分
(完整版)人卫第七版药剂学重点整理
(完整版)⼈卫第七版药剂学重点整理第⼀章绪论1. 药剂学:研究药物制剂的基本理论、处⽅设计、制备⼯艺、质量控制及合理使⽤的综合性应⽤技术科学2.剂型:为适应治疗或预防的需要⽽制备的不同给药形式,称为药物剂型,简称剂型(Dosage form)3. 制剂:为适应治疗或预防的需要⽽制备的不同给药形式的具体品种,称为药物制剂,简称药剂学任务:是研究将药物制成适于临床应⽤的剂型,并能批量⽣产安全、有效、稳定的制剂,以满⾜医疗卫⽣的需要。
药物剂型的重要性:改变药物作⽤性质,降低或消除药物的毒副作⽤,调节药物作⽤速度,靶向作⽤,影响药效药剂学的分⽀学科⼯业药剂学物理药剂学药⽤⾼分⼦材料学⽣物药剂学药物动⼒学临床药剂学药典作为药品⽣产、检验、供应和使⽤的依据第⼆章:药物制剂的稳定性药物制剂稳定性的概念药物制剂的稳定性系指药物在体外的稳定性,是指药物制剂在⽣产、运输、贮藏、周转,直⾄临床应⽤前的⼀系列过程中发⽣质量变化的速度和程度。
药⽤溶剂的种类(⼀)⽔溶剂是最常⽤的极性溶剂。
其理化性质稳定,能与⾝体组织在⽣理上相适应,吸收快,因此⽔溶性药物多制备成⽔溶液(⼆)⾮⽔溶剂在⽔中难溶,选择适量的⾮⽔溶剂,可以增⼤药物的溶解度。
1.醇类如⼄醇、2.⼆氧戊环类3.醚类⽢油。
4.酰胺类⼆甲基⼄酰胺、能与⽔混合,易溶于⼄醇中。
5.酯类油酸⼄酯。
6.植物油类如⾖油、⽟⽶油、芝⿇油、作为油性制剂与乳剂的油相。
7.亚砜类如⼆甲基亚砜,能与⽔、⼄醇混溶。
介电常数(dielectric constant)溶剂的介电常数表⽰在溶液中将相反电荷分开的能⼒,它反映溶剂分⼦的极性⼤⼩。
溶解度参数溶解度参数表⽰同种分⼦间的内聚能,也是表⽰分⼦极性⼤⼩的⼀种量度。
溶解度参数越⼤,极性越⼤。
溶解度(solubility)是指在⼀定温度下药物溶解在溶剂中达饱和时的浓度,是反映药物溶解性的重要指标。
溶解度常⽤⼀定温度下100g溶剂中(或100g溶液,或100ml溶液)溶解溶质的最⼤克数来表⽰,亦可⽤质量摩尔浓度mol/kg或物质的量浓度mol/L来表⽰。
第4章药物微粒分散系的基础理论2021优选
胶体分粗散分体散系体的微系粒>给药10系–统7 m包(括10纳0米nm微) 乳、脂微质粒体分、散纳米体粒系、纳10米–囊9 ~、1纳0 米–4胶m束(1nm-100μm)
等。它们的粒径全都小于100nm。
小分子真溶液
-9 10 m
胶体分散体系
-7 10 m
微粒分散体系
-4 10 m 粗分散体系
第一节 概述
的聚集,称为反絮凝,加入的电解质称为反絮凝剂。
➢ 同一电解质因加入量的不同,起絮凝作用或反絮凝作 用。如枸橼酸盐、酒石酸盐、磷酸盐和一些氯化物( 如三氯化铝)等。
离子价数越高,絮凝作用越强。当絮凝剂的加入使ζ
电位降至20~25mv时,形成的絮凝物疏松、不易 结块,而且易于分散;
增加离子浓度,降低双电层厚度,可促进絮凝;
四、DLVO理论
DLVO理论是关于微粒稳定性的理论。
(一)微粒间的Vander Waals吸引能(ΦA)
丁达尔现象(Tyndall phenomena) M点 ,VR > > VA Vmax,能垒 ,稳定 (一)微粒间的Vander Waals吸引能(ΦA)
(二)双电层的排斥作用能( ΦR) 加入亲水性高分子物质;
• 微粒越小,动电位ζ越高 • 电解质 • 水化
第三节 微粒分散体系的物理稳定性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、填空题
1.混悬剂中的微粒粒径大多在呵 之间。
2.粒子在液体介质中的沉降速度与粒子的大小密切相关,可以用Stoke's公式求算
粒径,此公式为。
3.微粒分散系丁达尔(或称丁铎尔)现象的本质是。
4.微粒分散系布朗运动的本质是。
5.微粒扩散的微观基础是。
6.微粒的与相邻的共同构成微粒的双电层结构。
C.微粒粒径越小,表面张力越大,越容易聚集
D.微粒粒径越大,表面张力越小,越容易聚集
3.延缓混悬微粒沉降速度的最有效措施是:()
A.增加分散介质黏度B.减小分散相密度
C.增加分散介质密度D.减小分散相粒径
8.微粒的双电层因重叠而产生排斥作用导致微粒分散系稳定是( )理论的核心内容。
A.空间稳定理论B.空缺稳定理论C.体积限制效应理论
18.微粒的物理稳定性取决于总势能曲线上势垒的大小。倘若势垒为零,微粒会发生 聚结。()
19.微粒的物理稳定性取决于总势能曲线上势垒的大小。倘若有势垒存在, 微粒不会发生聚 结。( )
20.微粒的物理稳定性取决于总势能曲线上势垒的大小。倘若有势垒存在, 微粒会发生慢聚 结。( )
21•微粒的物理稳定性取决于总势能曲线上势垒的大小。倘若势垒为零,微粒不会发生 聚结。()
8.微粒表面具有扩散双电层。双电层的厚度越小,则相互排斥的作用力就越大,微粒就越 稳定。( )
9.微粒体系中加入某种电解质使微粒表面的毋高,静电排斥力阻碍了微粒之间的碰撞聚集,
这个过程称为反絮凝。( )
10•微粒体系中加入某种电解质使微粒表面的毋高,静电排斥力阻碍了微粒之间的碰撞聚
集,这个过程称为絮凝。()
14.溶胶聚沉时的外观标志有、、。
四、单项选择题
1.根据Stocks定律,混悬微粒沉降速度与下列哪一个因素成正比?()
A.混悬微粒的半径B.ห้องสมุดไป่ตู้悬微粒的半径平方
C.混悬微粒的粒度D.以上均不是
2.下面对微粒描述正确的是:()
A.微粒粒径越大,表面张力越大,越不容易聚集
B.微粒粒径越小,表面张力越小,越不容易聚集
D.固液之间可以相对移动处与本体溶液之间的电位差
17.在大分子溶液中加人大量的电解质,使其发生聚沉的现象称为盐析,产生盐析的主要
15•絮凝剂是使微粒表面的Z降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮
凝状态的电解质。()
16•絮凝剂是使微粒表面的Z升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成
絮凝状态的电解质。()
17•反絮凝剂是使微粒表面的毋高,使到排斥力大于吸引力,引起微粒分散体系中的微粒
形成絮凝状态的电解质。()
第四章 药物微粒分散体系
一、概念与名词解释
1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态
二、判断题(正确的填A,错误的填B)1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。()
2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。()
3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。( )
A.乳光计测定粒子浓度B.观察丁铎尔效应
C.超显微镜测定粒子大小D.观察Z电位
12.固体微粒与极性介质(如水溶液)接触后,在相之间出现双电层, 所产生的电势是()
A.滑动液与本体液之间的电势差B.固体表面与溶液主体间的电势差
C.紧密层与扩散层之间的电势差D.小于热力学电位$
13.对Z电势的阐述,正确的是:()
4.微粒的大小与体内分布无关。( ) 5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的 稳定性。( )
6.分子热运动产生的布朗运动和重力产生的沉降,两者降低微粒分散体系的稳定性。( )
7.微粒表面具有扩散双电层。双电层的厚度越大,则相互排斥的作用力就越大,微粒就越 稳定。( )
A.胶粒间的斥力本质上是所有分子范德华力的总和
B.胶粒间的斥力本质上是双电层的电性斥力
C.胶粒周围存在离子氛,离子氛重叠越大,胶粒越不稳定
D.溶胶是否稳定决定于胶粒间吸引作用和排斥作用的总效应
A.固体表面处与本体溶液之间的电位差
B•紧密层、扩散层分界处与本体溶液之间的电位差
C.扩散层处与本体溶液之间的电位差
22•电解质的聚沉作用是因为压缩双电层,降低胶粒间静电斥力而致。()
23.溶胶在热力学和动力学上都是稳定系统。()
24•溶胶与真溶液一样是均相系统。()
25.能产生丁达尔效应的分散系统是溶胶。()
26.加入电解质可以使胶体稳定,加入电解质也可以使胶体聚沉;两者是矛盾的。()
27.大分子溶液与溶胶一样是多相不稳定体系。()
D.混合效应理论E.DLVO论
9.Z电位与下列哪一个因素成反比:()
A.微粒的表面电荷密度B.微粒半径
C.介质的介电常数D.介质中电解质浓度
E.介质的黏度10.下列哪一项对混悬液的稳定性没有影响()
A.微粒间的排斥力与吸引力B.压力的影响
C.微粒的沉降D.微粒增长与晶型转变
E.温度的影响
11.区别溶胶与真溶液和悬浮液最简单最灵敏的方法是:()
A.Z电势与溶剂化层中离子浓度有关
B.Z电势在无外电场作用下也可表示出来
C.Z电势越大,溶胶越不稳定
D.Zt势越大,扩散层中反号离子越少
14.根据DLVO理论,溶胶相对稳定的主要因素是:()
A.胶粒表面存在双电层结构
B.胶粒和分散介质运动时产生Z电位
C.布朗运动使胶粒很难聚结
D.离子氛重叠时产生的电性斥力占优势15.下面说法与DLVO理论不符的是: ()
7.微粒分散系的稳定理论包括、、、
&微粒分散系的敏化作用是指
9.微粒大小的测定方法有、
等。
10. 微粒分散体系的性质包括、
11.微粒的物理稳定性表现包括微粒的
等。
12.微粒分散体系的动力学稳定性主要表现在两个方面,
13.外加电解质主要是通过、或作用方式来影响胶
粒表面双电层的结构,从而影响溶胶的稳定性的。
11.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥 力下降。()
12. 微粒体系中加入某种电解质,中和微粒表面的电荷,Ch升。()
13.微粒体系中加入某种电解质,中和微粒表面的电荷,
Z降低,会出现反絮凝现象。()
14.微粒体系中加入某种电解质,中和微粒表面的电荷,
力下降,出现絮凝状态。加入的电解质叫絮凝剂。(