2018-2019统考初三上学期数学期中考试卷及答案
2018-2019学年度上学期期中九年级数学试卷及答案

2018-2019学年度上学期期中考试 九年级数学试题 (满分120分,时间120分钟)卷一(请将正确选项涂在答题卡上)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四1. 下列图形中,旋转60°后可以和原图形重合的是( ) A .正六边形 B .正五边形 C .正方形 D .正三角形 2.二次函数y =12x 2-4x +3的顶点坐标和对称轴分别是( )A .(1,2),x =1B .(-1,2), x =-1C .(-4,-5),x =-4D .(4,-5),x =43.抛物线y =x 2-2x +1与x 轴的交点个数是( ) A .0 B .1 C .2 D .34.将y =(2x -1)(x +2)+1化成y =a(x +m)2+n 的形式为( ) A .y =2(x +34)2-2516 B .y =2(x -34)2-178C .y =2(x +34)2-178D .y =2(x +34)2+1785.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位长度,再向上平移3个单位长度B .先向左平移2个单位长度,再向下平移3个单位长度C .先向右平移2个单位长度,再向下平移3个单位长度D .先向右平移2个单位长度,再向上平移3个单位长度6.设A(-4,y 1),B(-3,y 2),C(0,y 3)是抛物线y =(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 27.如图所示的桥拱是抛物线形,其函数的解析式为y =-14x 2,当水位线在AB 位置时,水面宽12 m ,这时水面离桥顶的高度为( )A .3 mB .2 6 mC .4 3 mD .9 m,(第8题图)),(第10题图))8.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c<0;②a -b +c>1;③abc>0;④4a -2b +c<0;⑤c -a>1.其中所有正确结论的序号是( ) A .①② B .①③④ C .①②③⑤ D .①②③④⑤9.下列方程采用配方法求解较简便的是( ) A .3x 2+x -1=0 B .4x 2-4x -8=0 C .x 2-7x =0 D.()x -32=4x 210.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x ,y 应分别为( ) A .x =10,y =14 B .x =14,y =10 C .x =12,y =15 D .x =12,y =1211. 二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t =a +b +1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <112. 如图,O 是等边三角形的旋转中心,∠EOF =120°,∠EOF 绕点O 进行旋转,在旋转过程中,OE 与OF 与△ABC 的边构成的图形的面积( )A .等于△ABC 面积的13B .等于△ABC 面积的12 C .等于△ABC 面积的14 D .不能确定13. 点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( )A.y 3>y 2>y 1B.y 3>y 1=y 2C.y 1>y 2>y 3D.y 1=y 2>y 314. 如图,△ABC 是等边三角形,四边形BDEF 是菱形,其中线段DF 的长与DB 相等,将菱形BDEF 绕点B 按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论. 甲:线段AF 与线段CD 的长度总相等;乙:直线AF 和直线CD 所夹的锐角的度数不变. 那么,你认为( )A .甲、乙都对B .乙对甲不对C .甲对乙不对D .甲、乙都不对15. 如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b),则点A ′的坐标为( ).A . (-b ,a) B. (b ,a) C. (-b ,-a) D. (b ,-a)16. 平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图建立直角坐标系,抛物线的函数解析式为y =-16x 2+13x +32,绳子甩到最高处时刚好通过站在点(2,0)处跳绳的学生小明的头顶,则小明的身高为( )m .A.1.6B.1.5C.1.4 D1.314题图 15题图12题图2018-2019学年度上学期期中考试九年级数学试题卷二2分.把答案写在题中横线上)17.如图,把抛物线y=12x2平移得到抛物线m. 抛物线m经过点A(-6,0)和原点(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为.(第17题图) (第19题图)18.在二次函数y=2则m的值为.19.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为,∠APB=.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. (本题8分)(1)用公式法解方程x2-3x-7=0.(2)解方程:4x(2x-1)=3(2x-1)21. (本题7分)如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).(1)作出△ABC关于原点O中心对称的图形△A’B’C’;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.22.(本题8分)如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为点P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数.23. (9分)如图,一个二次函数的图象经过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.(1)求点C的坐标;(2)求这个二次函数的解析式,并求出该函数的最大值.24. (10分)已知关于x的函数y=ax2+x+1(a为常数).(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.25. (本题12分)感知:如图①,在△ABC 中,∠C =90°,AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合).连接AD ,将AD 绕着点D 逆时针旋转90°,得到DE ,连接BE ,过点D 作DF ∥AC 交AB 于点F ,可知△ADF ≌△EDB ,则∠ABE 的大小为________.并说明理由.探究:如图②,在△ABC 中,∠C =α(0°<α<90°),AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合),连接AD ,将AD 绕着点D 逆时针旋转α,得到DE ,连接BE ,求证:∠ABE =α. 应用:设图②中的α=60°,AC =2.当△ABE 是直角三角形时,AE =________.并说明理由.26. (本题12分)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资成本x 成正比例关系,种植花卉的利润y 2与投资成本x 的平方成正比例关系,并得到了表格中的数据:(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;(2)如果这位专业户计划用8万元资金投入种植花卉和树木,设他投入种植花卉金额m 万元,种植花卉和树木共获利润w 万元,求出w 与m 之间的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万元,在(2)的条件下,直接写出投资种植花卉的金额m 的范围.。
2018-2019学年上学期期中考试九年级数学试卷及答案

九年级上册期中参考答案说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.三、解答题:16.(1)解:3x (x -2)=x -2,移项得:3x (x -2)-(x -2)=0 整理得:(x -2)(3x -1)=0 x -2=0或3x -1=0 解得:x 1=2或x 2=1………………………………………………………………5分18.证明:延长AD 交⊙O 于E ,…………………2分 ∵OC ⊥AD ,∴⌒AE =2⌒AC ,AE=2AD ,………………………………4分 ∵⌒AB =2⌒AC , ∴⌒AE =⌒AB, ∴AB=AE ,∴AB=2AD . ………………………………………………………………………9分 19.解:设人行通道的宽度为x 米,依据题意得:……………………………1分 (30-3x )•(24-2x )=480,………………………………………………………4分 整理得:x 2-22x +40=0,解得:x1=2,x2=20,………………………………………………………………7分当x=20时,30-3x=-30,24-2x=-16,不符合题意,………………………8分答:人行通道的宽度为2米.………………………………………………………9分20.解:(1)当S取得最大值时,飞机停下来,则S=60t-1.5t2=-1.5(t-20)2+600,此时t=20因此t的取值范围是0≤t≤20;…………………3分(2)函数图象如图,S=60t-1.5t2=-1.5(t-20)2+600.飞机着陆后滑行600米才能停下来.…………6分(3)因为t=20,飞机着陆后滑行600米才能停下来.当t=14时,s=546,所以600-546=54(米).AD于M,∴旋转角α=360°-60°=300°.综上当α为60°或者300°时,GC=GB.…………………………………………………………10分。
2018-2019年九年级上册数学期中测试题带答案

2018-2019年九年级上册期中测试题带答案C 两点同时出发,以 1 cm/s 的速度沿BC , CD 运动,到点C , D 时停止运动,设运动时间 为t(s),A OEF 的面积为S(cm 2),则S(cm 2)与t(s)的函数关系可用图象表示为 (B)二、填空题(每小题3分,共15分)11.已知x =- 1是方程x 2 + mx - 5 = 0的一个根,则 m = -4.12・如图,把Rt △ ABC 绕点A 逆时针旋转40°,得到Rt A AB' C'点C'恰好落在边 AB 上, 连接 BB ,则/ BB C = 20° 13・已知点A(4 , y 1), B( - 2, y 2)都在二次函数y = (x - 2)2- 1的图象上,贝V 屮,y 2的大小关 系是 y i v y 2.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个正确的 1•下列图形中,既是轴对称图形又是中心对称图形的是2•已知点P(2, 3),那么点 A.( - 3, -2) 3)3•方程x 2= 3x 的解是(C) =3 =3, X 2 = 04.若m , n 是一元二次方程 A. - 7P 关于原点的对称点的坐标是 B.( - 2,- 3) X 2— 5x - 2= 0的两个实数根, (D) (B)C.(2 , - 3)D.( - 2,=—3, X 2= 0则 m + n — mn 的值是(B)D. - 35•如图所示,边长为2的等边△ ABO 的边OB 在x 轴上, 得到等边厶OA 1B 1,则点A 1的坐标为(A) A.( .3, - 1) C.(1,— 一 3)6•已知二次函数 y = kx 2 - 7x - 7的图象和x 轴有交点,则 将厶ABO 绕原点O 逆时针旋转30 ° B.( .3, 1) D.(2 , - 1) k 的取值范围是(D)>-74>-g 且 k z 047扌巴抛物线 的解析式为 y = x 2 + 4先向左平移1个单位长度,再向下平移 3个单位长度,得到的抛物线 (A)=(x + 1)2+ 1 =(x - 1)2+ 7=(x - 1)2+ 1 =(x + 1)2+ 78.如图,在一幅长为 60 cm ,宽为40 cm 的矩形风景画的四周镶一条相同宽度的纸边,制成 一幅矩形挂图.若要使整个挂图的面积是 3 500 cm 2,设纸边的宽为x cm ,则x 满足的方程是(B)A ・(60 + x)(40 + x) = 3 5003 500 B ・(60 + 2x)(40 + 2x)=C ・(60 - x)(40 - x) = 3 5003 5009.二次函数y = ax 2 + bx + c(a ^ 0)的图象如图所示,给出下列结论:①v 0:③4a - 2b + c = 0;④a + b + c > 0・其中正确的是(D)A ・①②B ・②③C ・③④D ・①④D ・(60 - 2x)(40 - 2x)= b 2- 4ac > 0 :② 2a + b 10.如图,正方形 ABCD 中,AB = 8 cm ,对角线 AC , BD 相交于点O ,点E , F 分别从B , >-74114. 如图,小明在校运动会上掷铅球时,铅球的运动路线是抛物线 y =— 5(x + 1)(X — 7),铅球落在A 点处,则OA = 7_米.15. 如图,正方形AEFG 与正方形 ABCD 的边长都为2,正方形AEFG 绕正方形 ABCD 的顶 点A 旋转一周,在此旋转过程中,线段DF 的长可取的整数值可以为1或2或3或4.三、解答题(本大题共8个小题,满分75分) 16. (8分)用适当的方法解下列方程. (1) (2x + 1)2=— (2x + 1); 解:(2x + 1)2+ (2x + 1) = 0, (2x + 1)(2x + 1+ 1) = 0, (2x + 1)(2x + 2) = 0, ••• 2x + 1 = 0 或 2x + 2= 0. 1•-X 1 = — ^, X 2=— 1.(2) 2x 2— 4x — 9= 0. 解:2x 2— 4x = 9,9 x 2— 2x + 1 = 2 + 1 ,2 11 . ,V 22 (x — 1)2= 7,x = 1±^, …X 1= 1 + 〒,X 2= 1—〒. 17. (9 分)抛物线 y = x 2+ 2x — 3. (1) 用配方法求顶点坐标、对称轴;(2) 直接写出x 取何值时,y 随x 的增大而减小(3) 直接写出x 取何值时,y = 0; x 取何值时,y > 0; x 取何值时,y v 0. 解:(1)y = (x + 1)2— 4,顶点坐标为(—1, 4),对称轴为直线 x =— 1. ⑵•/ a = 1>0,抛物线开口向上,对称轴为直线 x =— 1,•••当x v — 1时,y 随x 的增大而减小.(3) 令 y = 0,艮卩 x 2+ 2x — 3 = 0,「. X 1=— 3, X 2 = 1,抛物线开口向上. 当 x =— 3或 x = 1 时,y = 0; 当 x v — 3或 x > 1 时,y > 0; 当一3v x v 1 时,y<0.18. (9分)已知关于x 的一元二次方程 x 2— 2x + m — 1 = 0有两个实数根 X 1, X 2. (1) 求m 的取值范围;(2) 当 x 1 + x 2= 6x 1x 2 时,求 m 的值.解:(1)■原方程有两个实数根,•• △= (— 2)2— 4(m — 1)》0,即4 — 4m + 4》0. 解得m < 2.⑵•- X 1 + X 2= 2, X 1X 2= m — 1 且 x 2 + x 2 = 6x 1x 2,•- (X 1 + X 2)2 — 2X 1X 2= 6X 1X 2,即(X 1 + X 2)2 — 8X 1X 2=0.2 3••• 22- 8(m —1) = 0. A m =3 3T m=2<2,•符合条件的m的值为~219. (9分)在创城活动中,某小区想借助如图所示的互相垂直的两面墙(墙体足够长),在墙角区域用28 m长的篱笆围成一个矩形花园.设AB = x m.(1) 若围成花园的面积为192 m2,求x的值;⑵已知在点0处有一棵树,且与墙体AD的距离为6 m,与墙体CD的距离为15 m.如果在围建花园时,要将这棵树围在花园内(含边界上,树的粗细忽略不计),那么能围成的花园的最大面积是多少解:⑴由题意,得x(28 —x) = 192,解得xu 12, X2= 16.答:x的值是12或16.⑵设矩形花园的面积为S,贝U S = x(28 —x) = —x2+ 28x = —(x —14)2+ 196.T—1v 0,A当x v 14时,S随x的增大而增大,当x> 14时,S随x的增大而减小.x > 6,根据题意,得28 —x > 15,解得6W x w 13.•••当x= 13时,S取得最大值,S最大=195.答:能围成的花园的最大面积是195 m220. (9分)四边形ABCD是正方形,E, F分别是DC和CB的延长线上的点,且DE = BF,连接AE , AF , EF.(1)试判断△ AEF的形状,并说明理由;⑵填空:△ ABF可以由△ ADE绕旋转中心A点,按顺时针方向旋转90°得到;⑶若BC = 8,则四边形AECF的面积为64.(直接写结果)解:△ AEF是等腰直角三角形.理由:T四边形ABCD是正方形,F是BC延长线上一点,•AB = AD,/ DAB =Z ABF = Z D = 90°在厶ADE和厶ABF中,•△ADE ◎△ ABF(SAS). • AE = AF,/ DAE =Z FAB.T/ DAB =Z DAE +Z BAE = 90°FAE = Z FAB + Z BAE =Z DAB = 90°.•△AEF 是等腰直角三角形.21. (10分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1) 求y与x的函数关系式并直接写出自变量x的取值范围;(2) 每件商品的售价定为多少元时,每个月可获得最大利润最大的月利润是多少元(3) 每件商品的售价定为多少元时,每个月的利润恰为2 200元根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于 2 200元解:(1) T设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.•上涨后每件商品的利润为(10 + x)元,每月能销售(210 —10x)件商品.由题意,得y= (210 —10x)(50 + x —40)=—10x2+ 110x+ 2 100=—10(x —2+ 2 (0 v x w 15 且x 为整数).⑵•/ a=- 10v 0,「.当x =时,y有最大值2 .•/ 0v x w 15,且x 为整数,当x= 5 时,50 + x= 55, y= 2 400,当x= 6 时,50+ x = 56, y =2 400. •••当售价定为每件55或56元,每个月的利润最大,最大的月利润是 2 400元.⑶当y= 2 200 时,一10x2+ 110x+ 2 100 = 2 200,解得X i= 1, X2= 10.•••当x= 1 时,50 + x= 51,当x= 10 时,50 + x = 60.•••当售价定为每件51或60元,每个月的利润为 2 200元.当售价定为51或60元,每个月的利润为 2 200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于 2 200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于 2 200元). 22. (10分)如图〔,△ ABC和厶AED都是等腰直角三角形,/ BAC = / EAD = 90°点B在线段AE上,点C在线段AD上.(1) 请直接写出线段BE与线段CD的数量关系;⑵如图2,将图1中的△ ABC绕点A顺时针旋转角a (V aV 360 °①(1)中的结论是否成立若成立,请利用图2证明;若不成立,请说明理由;1②当AC = ^ED时,探究在厶ABC旋转的过程中,是否存在这样的角a,使以A , B , C, D四点为顶点的四边形是平行四边形若存在,请直接写出角a的度数;若不存在,请说明理由.解:(1)BE = CD.(2) ①成立•证明:•••△ ABC 和厶AED 都是等腰直角三角形,•/BAC = / EAD = 90 ° AB =AC , AE = AD.又•••/ BAE = Z BAC -Z CAE,/ CAD = Z EAD -Z CAE,•/ BAE =Z CAD.AB = AC ,在厶ABE 和厶ACD 中,Z BAE =Z CAD ,AE = AD ,• △ ABE ◎△ ACD(SAS). • BE = CD.②存在,a= 45°或315°或225°.23. (11分)如图:经过点E( —2, 0)的直线y= mx + n与抛物线y= ax2+ bx + 6(a^0)相交于点A(^, §和B(4 , t).点P是线段AB上异于A、B的动点,过点P作PC丄x轴于点D,交抛物线于点C.(1) 直线的解析式是y = x+ 2;抛物线的解析式是y= 2x2—8x + 6 ;(2) 是否存在这样的P点,使线段PC的长有最大值若存在,求出这个最大值;若不存在,请说明理由;(3) 若厶PAC为直角三角形,直接写出点P的坐标.解:(2)存在点P,使PC的长有最大值.设点P的坐标为(p, p+ 2),将x= p代入抛物线的解析式中,得y = 2p2—8p+ 6,所以点C的坐标是(p, 2p2—8p + 6),所以PC= p + 2 —2p2+ 8p—6=—2(p —9)2+ 4^.4 8所以,当p=9时,线段PC的长有最大值,最大值为詈,此时点P的坐标为(4,予.⑶连接AC.因为点P在直线y = x + 2上,且直线与x轴正方向夹角为45 ° 所以/ APC = 45°当厶PAC是直角三角形时,存在两种情况:①当/ P i AC i = 90。
2018-2019学年第一学期期中考试数学试题及答案

2018-2019学年第一学期九年级(上)期中数学试卷 时间:100分钟 满分:150分一、选择题(共12小题,每小题4分,满分48分) 1.一元二次方程240x -=的解为( ) A .12x =,22x =- B .2x =-C . 2x =D .12x =,20x =2.若反比例函数y=(k ≠0)的图象经过点P (﹣2,3),则该函数的图象不经过的点是( )A .(3,﹣2)B .(1,﹣6)C .(﹣1,6)D .(﹣1,﹣6) 3.如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是( )A .B .C .D .4.将一块正方形铁皮的四角各剪去一个边长为3cm 的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm 3,则原铁皮的边长为( )A . 10cmB . 13cmC . 14cmD . 16cm 5.如图,在▱ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF :FC 等于( )A .3:2B .3:1C .1:1D .1:2 6.如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口景区,游玩后任选一个出口离开,则她选择从A 口进入,从C ,D 口离开的概率是( ).A .12B .13C .16D .237.下列命题是真命题的是( ) A .邻边相等的矩形是正方形 B .一组邻边相等的四边形是菱形 C .对角线相等的四边形是矩形 D .平行四边形的对角线相等8.根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x9.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是()A.x<﹣1或x> B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>110.如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,﹣4)C.(2,﹣1) D.(8,﹣4)11.如图,在△ABC中,点P在边AB上,则在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()A.①②④ B.①③④ C.②③④D.①②③12.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD 于M、N两点.若AM=2,则线段ON的长为()A.B.C.1 D.二、填空题(共6小题,每小题4分,满分24分)13.已知1=x 是方程022=++ax x 的一个根,则a 为 14.已知=,则= .15.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上, 每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是 .16.若矩形ABCD 的两邻边长分别为一元二次方程x 2﹣7x+12=0的两个实数根,则矩形ABCD 的对角线长为 .17.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x <0)的图象经过点C ,则k 的值为 .18.如图,矩形EFGH 的四个顶点分别在矩形ABCD 的各条边上,AB =EF ,FG =2,GC =3.有以下四个结论:①∠BGF =∠CHG ;②△BFG ≌△DHE ;③21=BF BG ;④矩形EFGH 的面积是43.其中一定成立的是____________.(把所有正确结论的序号填在横线上)三、解答题(共9小题,满分78分) 19.(6分)解一元二次方程:(1)x 2﹣3x+2=0; (2)2x 2﹣x ﹣3=0.20.(6分)将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数关系式;(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?21.(6分)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)22.(8分)山东省济南市为加快新旧动能转化的进程,对试点的先行区的工业企业进行调研,2017年完成工业总产值500亿元.如果要在2019年达到720亿元,(1)这两年每年的工业总产值平均增长率是多少?(2)政府计划2021年先行区的工业企业总产值要达到1000亿元,若继续保持上面的增长率,该目标是否可以完成?23.(8分)初三(1)班要举行一场毕业联欢会,规定每个同学同时转动下图中①、②两个转盘(每个转盘分别被二等分和三等分),若两个转盘停止后指针所指的数字之和为奇数,则这个同学要表演唱歌节目;若数字之和为偶数,则要表演其他节目.试求出这个同学表演唱歌节目的概率(要求用树状图或列表方法求解).24.(10分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC 相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.25.(10分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.26.(12分)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2)(1)求这两个函数的表达式;(2)求△ABO的面积;(3)观察图象,①直接写出y1>y2时自变量x的取值范围;②直接写出方程=ax+b的解.27.(12分)已知:在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系并证明;2018-2019学年第一学期期中考试九年级数学试卷答案二、填空题(每题4分,共24分)13. -3 14. 51 15. 9416. 5 17. -6 18. ①②④三、解答题19.(6分)(1)解:(x-1)(x-2)=0 ······ (1分) ∴ x-1=0或x-2=0 ······· (2分)∴ x 1=1,x 2=2 ······ (3分)(2) 解:这里a=2,b=-1,c=-3∵b 2-4ac=(-1)2-4×2×(-3)=25······(1分)45122251x ±=⨯±=∴·······(2分) 即1,2321-==x x ·········(3分) 20.(6分)解:(1)由题意得:a=0.1,S=700, 代入反比例函数关系S=中,解得:k=Sa=70, ···············(2分) 所以函数关系式为:S=; ············(3分) (2)将a=0.08代入S=得:S===875千米, ·········(5分)故该轿车可以行驶875千米; ···················(6分)21. (6分)解:根据该密封纸盒的三视图知道它是一个六棱柱,∵其高为12cm ,底面边长为5cm ,∴其侧面积为6×5×12=360(cm 2), ··············· (3分) 纸盒的上、下底面的面积和为:12×5××5×=75(cm 2),···· (5分)∴其表面积为(75+360)cm 2.······· (6分) 22. (8分)解:(1)设这两年每年的工业总产值平均增长率是x ,········ (1分)根据题意,得:500(1+x )2=720, ············ ( 3分) 解得:x 1=0.2 x 2=﹣2.2(舍), ········ (5分) 答:这两年每年的工业总产值平均增长率是20%;··········(6分)(2)∵720×(1+20%)2=1036.8>1000,∴若继续保持上面的增长率,该目标可以完成. ········ (8分)23.(8分) 解法一解:所有等可能的结果如下从上图可知:所有等可能的结果一共有6种,即(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)(5分)(7分)∴这个同学表演唱歌节目的概率21. (8分)24.(10分)25.(10分)(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,···············(2分)∴AD:AC=AC:AB,∴AC2=AB•AD;···············(3分)(2)证明:∵E为AB的中点,∴CE=AB=AE,·························(4分)∴∠EAC=∠ECA,····················(5分)∵∠DAC=∠CAB,∴∠DAC=∠ECA,·························(6分)∴CE∥AD;······························(7分)(3)解:∵CE∥AD,∠DAC=∠ACE,∠ADC=∠CED∴△AFD∽△CFE,·················(8分)∴AD:CE=AF:CF,∵CE=AB,AB=6∴CE=×6=3,∵AD=4,∴,∴.·······························(10分)26.(12分)解:(1)把点A (1,4)代入y 1=,得到k=4, ··· (2分)∴y 1=,把点B (m ,﹣2)代入得到,m=﹣2,把A (1,4)和点B (﹣2,﹣2)代入y 2=ax+b 得到 ⎩⎨⎧-=+-=+224b a b a ,解得,∴y 2=2x+2. ······· (4分)(2)直线AB 与y 轴交于点C (0,2), ·· (5分)∴S △ABO =S △BOC +S △AOC =×2×2+×2×1=3. ···(8分)(3)(4)①由图象可知得y 1≥y 2成立的自变量x 的取值范围:x <﹣2或0<x <1. ··········· (10分) ②方程=ax+b 的解是x 1=﹣2,x 2=1.············(12分)27.(12分)。
2018—2019第一学期期中九年级数学参考答案

2018—2019第一学期期中九年级数学参考答案1.C 2.A 3.B 4.B 5.C 6.D 7.D 8.A 9.B 10.C10题解析:①x = 1时,y 1 = a + b + c ,y 1>0,∴a + b + c >0 ②a = b 时,x =12但不知a 的正负性无法判断y 1与y 2 ③y 1 = a + b + c ,y 2 = 4a + 2b + c ∴2130y y a b -=+> 又a + b <0 ∴2a >0 ∴a >0 ④ ()2213y ax a x a =+-+-∴x = 1时,y 1 =2130a a a +-+-> ∴a >1,开口向上 对称轴 x 2111122a a a-=-=-+>-且x <0 又()222313y ax ax x a a x x =+-+-=+-- ∴恒过(-1,-2) 又对称轴x >-1 ∴顶点的纵坐标小于-2 ∴顶点在第三象限11.4 12.-1 13.()2720018450x += 14.(-5,4) 15.416.16题解析:取AC 的中点M 设MD = a ∴AB = 2a由题可知:AB + AE = EC 设AE = b EC = 2a + b ∴AE =2a + 2b ∴AM = MC = a + b ∴EM = a ∴ED ⊥DF ∴MF = a ∴CF = b 又AC ⇒CF ⇒b ∴EF = 5b作AG ⊥BC 于G ,BG =52bAC ⇒b ,GC =5·5b ∴BC = 8b = 8 ∴b = 1 ∴12S BCAG =⨯⨯=182⨯17.解:(3)(1)0x x -+= 4分 30x -=或 10x += 6分13x =,21x =-8分 (其他方法按步骤给分)18.解:设每个支干长出的小分支数目为xx 2 + x + 1=91 4分 解得x 1 = 9,x 2 = -10 6分又∵x >0 ∴x = 9 7分答:每个支干长出的小分支数目为9。
2018-2019学年度九年级上期中数学试卷含答案

2018-2019学年度第一学期期中考试试卷九年级 数学 2017.11本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分。
考试用时120分钟。
注意事项:1.答题前,考生务必将姓名、学校、考场号、座位号、考试号填涂在答题卷相应的位置上.2.答题必须用0.5mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一、选择题(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑)1. 一元二次方程2650x x --=配方可变形为A. 2(3)14x -=B. 2(3)4x -=C.2(3)14x +=D. 2(3)4x += 2. 圆锥的底面半径为2,母线长为6,则侧面积为A. 4πB. 6πC. 12πD. 16π 3. 若0234a b c ==≠,则a cb+的值为 A.3 B.2 C.12D.134. 如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若20C ∠=︒,则CDA ∠的度数为A. 120°B. 125°C. 110°D. 115°5. 已知关于x 的方程20x bx c ++=的两根分别是1-,1+则bc 的值是A. 2B.C. 2+D.2-6. 如图,线段AB 与⊙O 相切于点B ,线段AO 与⊙O 相交于点C ,12,8AB AC ==,则⊙O 半径长为B.5C.6D.107. 在ABC ∆中,//DE BC ,若:1:2,4ADE BDE S S DE ∆∆==,则BC 的长为 A. 8 B. 10 C. 12 D. 16 8. 如图,ABC ∆是⊙O 的内接三角形,30C ∠=︒,⊙O 的半径为5,若点P 是⊙O 上的一点,在ABP ∆中,PB AB =,则PA 的长为 A.5C.21. (本题满分6分)如图,P 是⊙O 外一点,C 是⊙O 上一点,求证:ACB APB ∠>∠.22. (本题满分6分)如图,在长32米宽20米的矩形耕地上,修筑同样宽的三条矩形道路,要使耕地面积达到570平方米,则道路宽度是多少米?23. (本题满分7分)如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D ,且A D ∠=∠. (1)求ACD ∠的度数;(2)若CD =求图中阴影部分的面积.24. (本题满分7分)已知关于x 的一元二次方程220x x m -+=有两个实数根 (1)求m 的范围;(2)若方程两个实数根为1x 、2x ,且1238x x +=,求m 的值.25. (本题满分8分)如图⊙O 是ABC ∆的外接圆,45ABC ∠=︒,延长BC 于D ,连接AD ,使得//AD OC ,AB 交OC 于E .(1)求证:AD 与⊙O 相切;(2)若25,2AE CE ==.求⊙O 的半径和AB 的长度.26. (本题满分6分)如图,在ABC ∆中,点,D E 分别是边AB 上的点,CD 平分ECB ∠,且2BC BD BA =g . (1)求证:A ECD ∠=∠;(2)求证:AB CEBC ED=.27. (本题满分10分) 如图,已知ABC ∆内接于⊙O , AB 是直径,点D 在⊙O 上,//ODBC ,过点D 作DE AB ⊥,垂足为E ,连接CD 交OE 边于点F .(1)求证: ODF BDE ∠=∠; (2)求证: DOE ABC ∆∆:;(3)连接OC ,设DOE ∆的面积为1S ,四边形BCOD 的面积为2S ,若23OE OD =,求12S S 的值.28. (本题满分10分)如图,C为AOBOC=,N为边OB上∠的边OA上一点,6异于点O的一动点,P是线段CN上一点,过点P分别作//PQ OA交OB于点Q,//PM OB交OA于点M.(1)若4,1OM OQ==,①求ON的长;②若以M为圆心MP长为半径的⊙M与CN相切,求CN的长;(2)点N在边OB上运动时,四边形OMPQ始终保持为菱形.那么11-OM ON 值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.。
2018-2019学年九年级上学期期中考试数学试题(含答案)

2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表:则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ).A .B .(2,2)C .D .(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A.20cmB .18cmC .D .10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ).A .12-B .C .2-D . 二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 22(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、B 同时出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →C 的方向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、Q 停止运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.P22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?23.(本题满分8分)受益于国家支付新能源汽车发展和“一带一路”发展战略等多重因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =,由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,x =∴P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴BC ,OC ,故(B ,代入2y ax =中得:6a =,a =.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+. 17.±218.3三、解答题(共76分)19.⑴ 5)3(22=-x⑴ 01422=+-x x2103±=-x -----------------------2分 21)1(2=-x ---------------------- 2分2103±=x ----------------------- 4分 221±=x ----------------------- 4分 ⑶ 03322=--x x ⑷03)32=+--x x ( 3,3,2-=-==c b a03)32=---)((x x -------- 1分03342>=-ac b ------------- 1分0]31)[3=---)((x x43332233)3(±=⨯±--=x -- 2分04)3=+--)((x x ------- 2分 4333433321-=+=x x ,-----4分 4,321==x x --------------- 4分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,AC =BC = ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,AF ,AF AB AE AC =EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-, ∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。
2018-2019学年第一学期九年级数学期中检测试卷(附答案)

学校 班级 姓名 考号 ………………………………………密……………………………………封……………………………………线………………………………………2018-2019学年第一学期期中检测试卷九年级 数学一、选择题(每小题3分,共30分)1.下面四个标志是中心对称图形的是( )2.在下列方程中,一元二次方程是( )A .x 2﹣2xy +y 2=0B .x (x +3)=x 2﹣1C .x 2﹣2x =3D .x +=0 3.方程02=+x x 的解是( ) A .x =±1B .x =0C .1x 0x 21-==,D .x =14.抛物线3)2(2+-=x y 的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 5. 把一元二次方程2x 2-3x +1=0转化为 (x +a )2=b 的形式,正确的是( )A . 23162x ⎛⎫-= ⎪⎝⎭ B .2312416x ⎛⎫-= ⎪⎝⎭ C . 231416x ⎛⎫-= ⎪⎝⎭ D .以上都不对 6.不解方程判断下列方程中无实数根的是( )A .-x 2=2x -1 B .4x 2+4x +54=0 C 20x -= D .(x +2)(x -3)=-57. 关于x 的方程ax 2-3x +3=0是一元二次方程,则a 的取值范围是( ) A .a>0 B .a ≠0 C .a =1 D .a ≥08.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每 月增长率为x,则由题意列方程应为( )A .200(1+x )2=1000B .200+200×2x =1000C .200+200×3x =1000D .200[1+(1+x )+(1+x )2]=1000 9.已知一个直角三角形的两条直角边的长恰好是方程07822=+-x x 的两个根,则这个直角三角形的斜边长是( )A B .3 C .6 D .910.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.把一元二次方(x -3)2 = 4化为一般形式是________________,其中二次项为______,一次项系数为______,常数项为_____.12.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后的抛物线解析式为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【难度星级】★★
【答案】A
【解析】由题意知,四边形 CDPE 为平行四边形;当 CP 平分 ACB 时,DCP ECP DPC ,所以
DC DP ;所以四边形 CDPE 为菱形.
9. 为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外
围增加一圈等宽的白边,已知图案的长为 2 米,宽为 1 米,图案面积占整幅宣传版面面积的 90%,若
【答案】B
【解析】读懂题意,图案加上四周的白边才构成了宣传版面.
10. 如图,在矩形 ABCD 内有一点 F,FB 与 FC 分别平分∠ABC 和∠BCD,点 E 为矩形 ABCD 外一点,连 接 BE、CE,现添加以下条件:①BE∥CF,CE∥BF;②BE=CE,BC=BF;③BE∥CF,CE⊥BE;④ BE=CE,CE∥BF。其中能判定四边形 BECF 是正方形的共有( ) A. 1 个 B. 2 个 C. 3 个 D. 4 个
2018-2019 学年第一学期九年级阶段性测评
数学试卷
一、选择题(每小题 2 分,共 20 分)
1. 若 a c 2(b d≠0) ,则 a c 是( )
bd
bd
A. 1
B. 2
C. 1
D. 4
2
【考点】比例的性质
【难度星级】★
【答案】B
【解析】 a 2b,c 2d, a c 2b 2d 2 . bd bd
2. 将方程 (x 1)(2x 3) 1 化成“ ax2 bx c 0 ”的形式,当 a=2 时,则 b,c 的值分别为( )
A. b 1,c 3 C. b 1,c 4 【考点】一元二次方程的一般式
【难度星级】★
【答案】C
B. b 5,c 3 D. b 5,c 4
【解析】化为一般式得 2x2 x 4 0 ,所以 b 1,c 4 .
答:则售价应降低 2 元.
21. (本题 6 分) 如图,在△ABC 中,点 D,E,F 分别在 AB,AC,BC 边上,若四边形 DEFB 为菱形,且 AB=8,BC=12, 求菱形 DEFB 的边长.
【考点】相似三角形的基本性质 【难度星级】★ 【答案】 24
5
【解析】∵四边形 DEFB 是菱形,∴假设 BD=BF=DE=x,DE∥BF,
63 7. 配方法解方程 x2 8x 5 0 ,将其化为 (x a)2 b 的形式,正确的是( )
A. (x 4)2 11
B. (x 4)2 21
C. (x 8)2 11 【考点】配方法 【难度星级】★ 【答案】D
D. (x 4)2 11
【解析】 x2 8x 5 0 x2 8x 16 11 x 42 11.
-6 -
【考点】利用树状图和列表法求两步实验的概率 【难度星级】★ 【答案】 1
2
【解析】如下图所示: 列表法:
A
B
C
D
A
(A,B) (A,C) (A,D)
B
(B,A)
(B,C) (B,D)
C
(C,A) (C,B)
(C,D)
D
(D,A) (D,B) (D,C)
由列表可知,两次抽取卡片的所有可能出现的结果有 12 种情况,每种情况出现的可能性相同,
在 RtBOC 中, OB BC2 OC2 2 3 , FG 1 BD OB 2 3 .
2
三、解答题(本大题含 8 个小题,共 60 分)解答应写出必要的文字说明、推理过程或演算步骤. 16. (每小题 4 分,共 8 分)解下列方程
(1) x2 6x 3 0 ;
(2) 3x(x 2)=2(x 2)
【考点】一元二次方程的应用-增长率问题与每每问题 【难度星级】★★ 【答案】⑴50% ⑵2
【解析】⑴设增长率为 x ,则有100 1 x2 225 , x1 0.5, x2 2.5 (舍去)
答:这两年“早黑宝”种植面积的平均增长率是 50%.
⑵设售价应该降低 m 元,根据题意可列方程: 20 m 12200 50m 1800 解得 m 22 0, m1 m2 2 .
别为点 F、G,则正方形 FBGE 与正方形 ABCD 的相似比为
.
【考点】相似图形的性质
【难度星级】★★
【答案】 2 2
【解析】BEG 为等腰直角三角形, BG 1 2 ; 又 BE BC, BG 2 .
BE 2 2
BC 2
14. 如图,正方形 ABCD 中,AB=2,对角线 AC,BD 相交于点 O,将△OBC 绕点 B 逆时针旋转得到△O’BC ’,
【考点】一元二次方程的基本解法
【难度星级】★
【答案】⑴ x1 3
6, x2 3
6
⑵
x1
2,
x2
2 3
-5 -
17. (本题 6 分) 已知:如图,矩形 ABCD 中,对角线 AC 与 BD 交于点 O,BE⊥AC 于点 E,CF⊥BD 于点 F. 求证:BE=CF
【考点】矩形的性质和全等三角形的判定 【难度星级】★ 【答案】见解析 【解析】BE=CF.
其中甲乙两人中恰好有一人介绍“晋祠园林”的情况有
6
种,所以
P甲乙两人恰有一人介绍“晋祠园林”
=
1 2
19. (本题 6 分)
如图,矩形 ABCD 中,AB=4,点 E、F 分别在 AD、BC 边上,且 EF⊥BC.若矩形 ABFE∽矩形 DEFC,
且相似比为 1:2,求 AD 的长.
【考点】相似图形的基本性质 【难度星级】★ 【答案】10
∠EFG=90°,则 FG 的长为
.
【考点】菱形的性质 【难度星级】★★★ 【答案】 2 3 【解析】连接 AC、BD,
F、G 分别为 AB、AD 的中点, FG // BD ; 四边形 ABCD 为菱形, BD AC, FG AC ; 又 FG EF, EF // AC ; ABC 为等腰三角形,BAC BCA ; 又 EF // AC ,BFE BEF, BF BE ; E 为 BC 的中点,AE 为 BC 的中垂线, AC AB 4,OC 2 ;
-3 -
二、填空题(每小题 2 分,共 10 分)
11. 一元二次方程 x2 3x 0 的根为
.
【考点】解一元二次方程
【难度星级】★
【答案】 x1 0, x2 3
【解析】 x2 3x 0 x x 3 0 x1 0, x2 3 .
12. 经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现有两人经BC,点 P 是 AB 边上的一点,过 P 作 PD∥BC,PE∥AC,分别交 AC、BC 于 D、E,连接 CP,若四边形 CDPE 是菱形,则线段 CP 应满足的条件是( ) A. CP 平分∠ACB B. CP⊥AB C. CP 是 AB 边上的中线 D. CP=AP
当射线 O’C ’ 经过点 D 时,线段 DC ’ 的长为
.
【考点】正方形的性质 【难度星级】★★ 【答案】 6 2
-4 -
【解析】 AB 2,OC OC 2, BD 2 2 ;
在 RtOBD 中, OD BD2 OB2 6 ;
DC OD OC 6 2 15. 如图,在菱形 ABCD 中,AB=4,AE⊥BC 于点 E,点 F,G 分别是 AB,AD 的中点,连接 EF,FG,若
设白边的宽为 x 米,则根据题意可列出方程( )
A. 90% (2 x)(1 x) 2 1
B. 90% (2 2x)(1 2x) 2 1
C. 90% (2 2x)(1 2x) 2 1
D. (2 2x)(1 2x) 2 1 90%
【考点】一元二次方程的面积问题
【难度星级】★★
【解析】 62 4 1 9 0 ,所以有两个相等实根. 6. 小明要用如图两个转盘做“配紫色”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,
停止时所指的颜色恰好配成紫色的概率为( ) A. 1
6 B. 1
4 C. 1
3 1 D. 2 【考点】概率统计
【难度星级】★★
【答案】C
【解析】由列表或树状图可知,总共有 6 种等可能的情况,其中能配成紫色(即一蓝一红)的情况有 2 种,所以 P 2 1 .
【考点】正方形的判定
【难度星级】★★★
【答案】D
【解析】易知 FCB FBC 45,F 90,CF BF . ① BE // CF,CE // BF ,四边形 BECF 为平行四边形.又 F 90,CF BF ,四边形 BECF 为正方
形. ② BE CE, BE BF , BF CF ,四边形 BECF 为菱形.又 F 90, 四边形 BECF 为正方形. ③ BE // CF,CE BE , F 90, FBE F E 90, 四边形 BECF 为矩形. 又CF BF,四边形 BECF 为正方形. ④ CE // BF,FCE 90,BCE 45 . BE CE,CBE 45,FBE 90 . 四边形 BECF 为矩形.又CF BF,四边形 BECF 为正方形.
-1 -
【考点】平行线分线段成比例定理
【难度星级】★★
【答案】D
【解析】D 选项中 OE EB . OF FC
5. 一元二次方程 x2 6x 9 0 的根的情况是( )
A. 有两个相等的实数根
B. 有两个不相等的实数根
C. 只有一个实数根
D. 没有实数根
【考点】根的判别式
【难度星级】★
【答案】A
3. 矩形、菱形、正方形的对角线都具有的性质是( )
A. 对角线相等
B. 对角线相互平分
C. 对角线相互垂直
D. 对角线互相垂直平分
【考点】特殊平行四边形对角线性质
【难度星级】★
【答案】B