094.北师大版九年级数学上册2.1 第2课时 一元二次方程的解及其估算1-教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时一元二次方程的解及其估算

1.经历一元二次方程的解或近似解的探索过程,增进对方程解的认识;(重点)

2.会用“夹逼法”估算方程的解,培养学生的估算意识和能力.(难点)

一、情景导入

在上一课时情境导入中,苗圃的宽满足方程x(x+2)=120,你能求出该方程的解吗?

二、合作探究

探究点一:一元二次方程的解

下列哪些数是方程x2-6x+8=0的根?

0,1,2,3,4,5,6,7,8,9,10.

解析:把0,1,2,3,4,5,6,7,8,9,10分别代入方程x2-6x+8=0中,发现当x=2和x=4时,方程x2-6x+8=0成立,所以x=2,x=4是方程x2-6x+8=0的根.解:2,4是方程x2-6x+8=0的根.

方法总结:(1)使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫一元二次方程的根.

(2)判断一个数是否为某个一元二次方程的根,我们只需要将这个数当作未知数的值分别代入原方程的左右两边,看左右两边代数式的值是否相等,若相等,则这个数是一元二次方程的根;若不相等,则这个数不是一元二次方程的根.

探究点二:估算一元二次方程的近似解

请求出一元二次方程x2-2x-1=0的正数根(精确到0.1).

解析:先列表取值,初步确定正数根x在哪两个整数之间,然后再用类似的方法逐步确定出x的近似正数根.

解:(1)列表,依次取x=0,1,2,3,…

x 0123…

x2-2x-1-1-2-12…

由上表可发现,当2<x<3时,-1<x-2x-1<2;

(2)

x 2.1 2.2 2.3 2.4 2.5…

x2-2x-1-0.79-0.56-0.31-0.040.25…

由上表可发现,当2.4<x<2.5时,-0.04<x-2x-1<0.25;

(3)取x=2.45,则x2-2x-1≈0.1025.

∴2.4<x<2.45,∴x≈2.4.

方法总结:(1)利用列表法估算一元二次方程根的取值范围的步骤是:首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计

算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.

(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.

三、板书设计

一元二次方程的解的估算,采用“夹逼法”:

(1)先根据实际问题确定其解的大致范围;

(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.

“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.

初中数学公式大全

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12 两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边

17 三角形内角和定理三角形三个内角的和等于180 °

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形

21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形

22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形

23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形

24 矩形性质定理 1 矩形的四个角都是直角

25 矩形性质定理 2 矩形的对角线相等

26 矩形判定定理 1 有三个角是直角的四边形是矩形

27 矩形判定定理 2 对角线相等的平行四边形是矩形

28 菱形性质定理 1 菱形的四条边都相等

29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

30 菱形面积= 对角线乘积的一半,即S= (a×b )÷2

31 菱形判定定理1 四边都相等的四边形是菱形

32 菱形判定定理2 对角线互相垂直的平行四边形是菱形

33 正方形性质定理1 正方形的四个角都是直角,四条边都相等

34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

35 定理1 关于中心对称的两个图形是全等的

36 定理2 关于中心对称的两个图形,对称点连线都经过对称中

心,并且被对称中心平分

37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

38 等腰梯形性质定理等腰梯形在同一底上的两个角相等

相关文档
最新文档