理论力学第二章
理论力学第二章
M F d F d
2 2 2 4
F F F
3
4
F F F
3 4
3 4 3 4 1 2
M Fd F F d F d F d M M
平面内任意力偶可以合成一个合力偶,该合力偶系的平衡条件
尾相接,合力沿反方向构成封闭边。
二.平面汇交力系平衡的几何条件
平面汇交力系平衡的充要条件:
Fi 0
平面汇交力系平衡的几何条件:该力系各分力组成的力多边形自行封闭
例2.1 已知AC=CB,P=10kN,求铰链A的约束力和杆DC所受的力。支架
的横梁AB与斜杆DC以铰链C相连,并以铰链A、D连接于铅直墙上。杆DC
三.平面汇交力系合成的解析法
1.力在坐标轴上的投影与力沿轴的分解
FR=FRx+FRy=FRxi+FRy j
2.合矢量投影定理
合矢量投影定理:合力在某一轴上的投影,等于各分力在
同一轴上投影的代数和。
即:FRx=Fx1+Fx2+…+Fxn =∑Fx FRy=Fy1+Fy2+…+Fyn =∑Fy
3.平面汇交力系合成的解析法
2、力偶矩
力偶中两力所在平面称为力偶作用面. 力偶两力之间的垂直距离称为力偶臂.
两个要素 a.大小:力与力偶臂乘积
b.方向:转动方向
力偶矩:M=±Fd=±2A△ABC,代数量, 逆为正,顺为负。单位:N· m,或kN· m
力偶不能合成为一个力,或用一个力来等效替换; 力偶也不能用一个力来平衡。
四.同平面内力偶的等效定理
ix
例2.4 图示踏板,各杆自重不计,已知:F、α、l、B点坐标 (xB、yB)。求(1)力F对A点之矩;(2)平衡时杆CD的拉力。
理论力学第二章.
(a)
(b) 图2.1 力多边形
(c)
3
从图2—1b可见,在合成该平面汇交力的合力时,也可不必将中间力矢量
FR1 、 FR 2 一一求出。只需从力 F1 的终点B作出与力 F2 相等的矢量 BC ,再从
BC 的终点C作出一个与力 F3相等的矢量 CD ,最后从CD 的终点D作出一个与 F4 力相等的矢量力相等的矢量 DE 。连接 F1 的始点A与最后一个矢量的终点
FR F1 F2 Fn Fi
(2-1)
三、平面汇交力学平衡的几何条件
当力多边形自行闭合,即合力 FR 0,于是平面汇交力系平衡;反之,若平面汇 交力系平衡,即合力 FR 0。所以,平面汇交力系平衡的充分必要条件是:力多边形 自行闭合,或平面汇交力系的合力等于0,即
例2.1 AC和BC两杆用铰链C连接,两杆的另一端分别铰支在墙上,如 图2-2(a)示。在点C悬挂重10kN的物体,已知AB=AC=2m,BC=1m,如杆重 不计,求两杆所受的力。 解(1)取销钉C为研究对象; (2)画销钉C的受力图,如图2-2(b)示; (3)作封闭力三角形,如图2-2(c)示。 由于封闭的力三角形与三角形ABC相似,故
所以
F=11.5kN , NB=23.1kN
由作用力和反作用力的关系,碾子对障碍物的压力等于 23.1kN。
此题也可用力多边形方法用比例尺去量。
例2-3 已知: AC CB, F 10 kN ,各杆自重不计; 求:CD 杆及铰链 A 的受力.
解:CD 为二力杆,取 AB杆,画受力图. 用几何法,画封闭力三角形.
求:在中心作用的水平力F的大小和碾子对障碍物的压力。
解: ①选碾子为研究对象 ②取分离体画受力图
理论力学第二章
Ph
l
q dx x
0
l
0
x2 l
q dx
§2-4 平面力偶理论
一.力偶和力偶矩 1.力偶
由两个等值、反向、不共线的(平行)力组
成的力系称为力偶,记作 F, F
2.力偶矩 力偶中两力所在平面称为力偶作用面 力偶两力之间的垂直距离称为力偶臂 两个要素 a.大小:力与力偶臂乘积 b.方向:转动方向 力偶矩
力对点之矩是一个代数量,它的绝对值等于力的 大小与力臂的乘积,它的正负:力使物体绕矩心逆时 针转向时为正,反之为负.常用单位N·m或kN·m
二、合力矩定理 平面汇交力系
MO FR MO Fi
该结论适用于任何合力存在的力系
三、力矩与合力矩的解析表达式
MO F MO Fy MO Fx
求: 光滑螺柱AB所受水平力. 解:由力偶只能由力偶平衡的性 质,其受力图为
M 0
FAl M1 M2 M3 0
解得
FA
FB
M1 M2 l
M3
200N
例2-10 已知 M 2kN m,OA r 0.5m,θ 30 ;
1
求:平衡时的 M 2及铰链O,B处的约束力. 解:取轮,由力偶只能由力偶平衡的性质,画受力图.
例2-1
已知: P=20kN,R=0.6m, h=0.08m 求:
1.水平拉力F=5kN时,碾子对地面及障碍物的压力? 2.欲将碾子拉过障碍物,水平拉力F至少多大?
3.力F沿什么方向拉动碾子最省力,及此时力F多大??
解: 1.取碾子,画受力图. 用几何法,按比例画封闭力四边形
理论力学第2章
则: (0.2785 FR F )i (0.1691 F ) j (0.9463 F )k ;
求力系的主矩:即求各力对 在坐标轴上的矩 M xi , M yi , M zi 方法一:利用分力计算力矩:
x 3F
z
F3 y
3F
M x ( F3 ) M x ( F3 x ) M x ( F3 y ) M x ( F3z ) 6 6 0( F )(2b) 0 Fb; F3 z 6 3 M y ( F3 ) 0;
2 2
m
y
12420 3420
FR
o
x
对A、D点的主矩分别为:
M A M Ai 0.3F2 0.2F3 25N m M D M Di 0.4F1 sin 60 0.3F2 0.2F3 4.282N m
m
A
O M O
d
M d F
一个力不仅可以分解为几个力, 还可以分解为力和力偶。
2.2.2 力系等效定理
充要条件:两力系的主矢相等, 对同一点的主矩相等. 1 2 FR FR 1 2 Mo Mo
矩心O是任意选择的
1 1 1 M o M o OO FR 2 2 2 M o M o OO FR 1 2 Mo Mo
1. 几何法(力多边形法) 注意:主矢没有 作用点!
F3
F2
F4
F 1
F3
F4
F1
' FR F22 解析法力系的主矢
' FR 的三个投影为:
Fi Fxii Fyi j Fzi k
理论力学第二章
(1)
(2)
0
60
T2
T1 α
由(2)式解得:
N D Q - T2 sin
Q
Q 2 P sin 60
0
Q
3P
ND
END
(b)
[习题2-1] B
600
A
SAB SAC
A
B SAB
300
W (a)
W
200 700
C
∑X=0:
2.1 平面汇交力系合成与平衡的几何法 一、合成的几何法 1. 两个共点力的合成 公理3:作如右图所示。
A
F1
R α φ
F2
也可用力的三角形法则来作, 如右下图所示R : 合力R大小和方向可直接由图上
按比例尺寸量取,此法叫图解法。
除了上面介绍的图解法之外,也可用三角函数来计算 合力R的大小和方向: 由余弦定理求合力R的大小:
C
解: 2)用解析法求解
a. 取AC杆为分离体: b.画其受力图:
600
(二力体)
c.选择坐标系:
(1)
B y A RA
W = 5kN (三力体)
d.列平衡方程: ΣX=0: SBC = RA
ΣY=0: SBC· sin30o+RA· sin30o= W C x 将(1)代入得: SBC = RA 0 30 = W/(2· sin30o) SBC = W = 5 kN
第一篇
静力学
Statics
第2章
平面汇交力系 与平面力偶理论
引 言
力系的概念:
平面力系 ------ ? ...... 在同一平面上。 空间力系 ------ ???
理论力学 第二章
扭矩扳手
2-3 平面力对点之矩的概念及计算
一、力对点的矩(力矩) 力对点的矩(力矩)
M O ( F ) = ± F ⋅ d ,单位N•m或KN•m 单位N KN•
→
→
① ②
是代数量。 M O ( F ) 是代数量。
M O ( F ) 正负判定: 正负判定:
→
→
M O (F ) (F
+
→ →
-
③ 当F=0或d=0时, O (F ) =0。 =0或 =0时 M =0。 点O为矩心,d为力臂。 为矩心, 为力臂。 角 形面积,或是矢量积的模。 面积,或是矢量积的模。 ④ M O (F ) = ± 2⊿AOB= r × F 2⊿AOB= 力对点0矩的大小等于2 力对点0矩的大小等于2倍三
Fx = X i , F y = Y j
F = X +Y
2 2
→
→ →
→
X cos α = F
Y cos β = F
2-2 平面汇交力系合成与平衡的解析法
区分力沿轴的分力和力在两轴上的投影: 区分力沿轴的分力和力在两轴上的投影: 力沿轴的分力和力在两轴上的投影 • 分力是矢量,投影是代 分力是矢量, 数量,二者性质不同。 数量,二者性质不同。 • 在直角坐标系中,投影 在直角坐标系中, 的大小与分力的大小相 但在斜角坐标系中, 同,但在斜角坐标系中, 二者不等。 二者不等。
∑F = 0 ix
− FBA + F cos60 − F2 cos30 = 0 1
o o
∑F =0 iy
FBC − F cos30 − F cos60 = 0 1 2
o o
F = F2 = P 1
解得: FC = 27 32kN 解得: B .
理论力学第2章平面任意力系
空载时轨道A 、 B的约束反力,并问此起重机在使用过程中有无翻
倒的危险。
解:
(1)起重机受力图如图
(2)列平衡方程 :
MA 0:
Q
Q(6 2) RB 4 W 2 P(12 2) 0
MB 0:
Q(6 2) W 2 P(12 2) RA 4 0
6m
解方程得:
W
P
12m
RA 170 2.5P
FR' Fi Fxi Fy j
MO MO (Fi )
3. 平面任意力系的简化结果
(1)FR´= 0,Mo ≠ 0, (2)FR´ ≠ 0,Mo = 0, (3)FR´≠ 0,Mo ≠ 0, (4)FR´= 0,Mo = 0,
合力偶,合力偶矩,MO MO (Fi )
合力,合力作用线通过简化中心O。
3
F2
j
F3
x
(437.6)2 (161.6)2
F1
1 1
100
Oi
1 2
466.5N
200
MO 21.44N m
y
合力及其与原点O的距离如图(c) 。 MO
x
y
d
x
O
FR FR′ 466.5N FR´
FR
O
d MO 45.96mm
(b)
(c)
FR
10
例11 水平梁AB受按三角形分布的载荷作用,如图示。载荷的
M
l
l
30
B
D
° F
3l
P
q
A
21
解:T字形刚架ABD的受力如图所示。
M
l
l
Fx 0
30
B
FAx 1 • q • 3a Fcos30 0
理论力学第二章汇交力系与平面力偶系
FBC= 224.23 kN 代入(3)、(4)解得
tan θ = 1.631 , θ = 58.5°
FA= 303.29 kN
y
FBC
FD
C
45°
30°
x
W2
y
FA
θB
x
45°
W1 F'BC
第二章 汇交力系与平面力偶系
§2–1 平面汇交力系的合成与平衡
投影法的符号法则: 当由平衡方程求得某一未知力的值
y
FBC
B 30°
x
FAB
FD 30° W
b
联立求解,得
FAB= -54.5kN , FBC= 74.5kN
反力FAB为负值,说明该力实际指向与图上假定指向相反。 即杆AB实际上受拉力。
第二章 汇交力系与平面力偶系
§2–1 平面汇交力系的合成与平衡
例2–5 如图已知W1=100 kN, W2=250 kN。不计各
Fx F cos
Fy
Fy F cos
O 2、力在空间直角坐标轴上的投影:
F
Fx x
一次投影法:
Z
Fx F cos Fy F cos
F
O
y
FZ F cos
第二章 汇交力系与平面力偶系
x
★§2–2 空间汇交力系的合成与平衡 二次投影法:
已知力F 和某一平面(oxy)的夹
角为θ,又已知力F 在该平面
杆自重,A,B,C,D各点均为光滑铰链。试求平衡状
态下杆AB内力及与水平的夹角。
A
θB
D
W1
45° C
30°
W2 第二章 汇交力系与平面力偶系
§2–1 平面汇交力系的合成与平衡
理论力学第二章
rm2 h
rm
p 1 e
p mh2 k2
r p
E k 4 (e2 1)
1 e cos
2mh2
e 1 2mh2 E k4
质点的总 机械能与 轨道偏心 率的关系
e<1, 则 E<0, 则轨道为椭圆 e=1, 则 E=0, 则轨道为抛物线 e>1, 则 E>0, 则轨道为双曲线
r r2 F (r)
m
r 2 h
r
dr
d
d
dt
dr d
h r2
dr
d
h d
d
(1) r
进行变换 u 1 r
将
r h du
d hu2
代入 r r 2 F(r)
m
r
h
d 2u
d 2
h 2u 2
d 2u
d 2
mh2u
2
(
d 2u
d 2
u)
F (u)
有心运动的轨道微分方程 --- Binet (比内)公式
• 有心力的特性:
– ◆ 质点做有心运动时角动量守恒(质点所受到的力 始终沿着力心,导致其对力心的力矩始终为0)
– ◆ 质点做有心运动时,机械能守恒(有心力是保守 力,质点在保守力的作用下运动,只发生势能和动 能的相互转化,总的机械能保持恒定)
dL
M
dt
E T V
• 有心运动的运动方程
– 在平面极坐标系下面考虑有心运动,则质点的动量 矩(角动量)与极坐标平面垂直,质点运动微分方 程为:
p
mh2 p
u2
mh2 p
1 r2
§2.2 距离平方反比引力下的质点运动
•
理论力学第二章
M O FR M O Fi
平面汇交力系 M 0 FR M 0 Fi 合力矩定理:平面汇交力系的合力对于平面内任一点之矩等于 所有各分力对于各点之矩的代数和
三、力矩的解析表达式
M O F M O Fy M O Fx x F sin y F cos x Fy y Fx
重点:平面汇交力系可简化为一个合力,其合力的大小与方向 等于各分力的矢量和(几何和)合力作用线通过汇交点
特例:共线力系合成:作用线在一条直线上,矢量和即为代数和
力系合成的目的:简化力系,研究平衡问题
二.平面汇交力系平衡的几何条件
平衡条件
Fi 0
FR 0
平面汇交力系平衡的必要和充分条件是:该力系的力 多边形自行封闭. 力的多边形起点和终点重合
平衡方程
F 0 Fyi 0
xi
平面汇交力系平衡的 充要条件是:各力在两个坐标轴 上的投影的代数和分别等于零。
i可省,两个独立方程,可求两个未知量。
例2-3求图示支座的AB的反力,各杆的自重忽略,
ABC BAC 300
解:
取坐标如图,取C点为 研究对象进行受力分析
FA
A
B
FA1
三.平面力偶系的合成和平衡条件
已知:M1 , M 2 , M n ;
任选一段距离d
M1 F1 d
M2 F2 d
M1 F1d
M 2 F2d
Mn Fn d
M n Fnd
= =
=
FR F1 F2 Fn
FR F1 F2 Fn
平面内力矩的解析表达式
M O FR M O Fi
理论力学第二章(汇交力系)
2) 合力
力矢量合成的力多边形法则: 1) 各分力首尾相接,次序可变;
R 为封闭边。
z F3 FR F2 F1 x
5
2、空间汇交力系合成的几何法
r r r r r r FR = F1 + F2 + F3 + F4 = Σ Fi ,
合成为一个合力,合力的大小与方向等于 各分力的矢量和,合力的作用线过汇交点.
FR = F1 + F2 + L + Fn = ∑ Fi
向两个坐标轴投影,
FR = FRx + FRy = (∑ Fix ) + (∑ Fiy )
2 2 2
2
FR
合力方向 FRx ∑ Fix FRy cos θ = = , sin θ = = FR FR FR 合力投影定理:
∑F
FR
iy
10 合力在任一轴上的投影等于各分力在同一轴上投影的代数和。
FDA
P
FDB=FDC=289N。
18
例 :起重机起吊重量P = 1 kN, ABC 在 yz 平面内,求:立柱 x’ AB、绳BC,BD,BE 的拉力。 解:B点有四个未知力汇 交,故先从C点求解,
[C] 平面汇交力系 z 750
B 450 E FBE FBD 450 450 D x A y 450 F BA 450 FCB FBC 300 FCA
汇交力系的平衡条件为:力系中各力在x、y、z三个坐标 轴的每一轴上投影之代数和均为零。 14 汇交力系平衡的几何条件为:力多边形自行封闭。
汇交力系平衡条件的应用
例:园柱物置于光滑的燕尾槽内,已知:P 为 500 N,求: 接触处A、B的约束力。
理论力学 第二章
平面任意力系1第二章平面力系第二部分平面任意力系平面任意力系:各力的作用线在同一平面内,既不汇交于一点,又不相互平行的力系。
[例]第二章平面力系第二部分平面任意力系§2–5 力的平移定理§2–6 平面任意力系向一点简化§2–7 平面任意力系的简化结果• 合力矩定理§2–8 平面任意力系的平衡条件和平衡方程§2–9 平面平行力系的平衡方程§2–10 静定与超静定问题的概念•物体系统的平衡§2–11 平面简单桁架的内力分析平面任意力系习题课§2-5 力的平移定理力的平移定理:作用在刚体上点A的力可以平行移到任一点B,但必须同时附加一个力偶。
这个力偶的矩等于原来的力对新作用点B的矩。
FF[证] 力力系),力偶(力FFF''+'FFF''',,F说明:①力的平移定理揭示了力与力偶的关系:力力+力偶(例断丝锥)②力平移的条件是附加一个力偶M,且M与d有关,M=F•d③力的平移定理是力系简化的理论基础。
任意力系向一点简化汇交力系+力偶系未知力系)(已知力系)汇交力系力,F R '(主矢) ,(作用在简化中心)力偶系力偶,M O (主矩) ,(作用在该平面上)§2-6平面任意力系向一点简化大小:主矢方向:与简化中心的关系:'R F 123'R iF F F F F =+++=∑ 主矢12312 ()()()O O O O i M M M M M F M F M F =+++=++=∑主矩2222'''()()R Rx Ry x y F F F F F =+=+∑∑11tg tg xRyRx yF F F F α--==∑∑(移动效应)(与简化中心位置无关)[因主矢等于各力的矢量和]大小:主矩M O 方向:与简化中心的关系:()O O i M M F =∑(转动效应)固定端(插入端)约束在工程中常见的雨搭车刀方向规定+ —(与简化中心有关)[因主矩等于各力对简化中心取矩的代数和]固定端(插入端)约束说明①认为F i 这群力在同一平面内;②将F i 向A 点简化得一力和一力偶;③F RA 方向不定可用正交分力F Ay ,F Ax 表示;④F Ay ,F Ax , M A 为固定端约束力;⑤F Ay , F Ax 限制物体平动, M A 限制转动。
理论力学第二章
3.用解析法求平面汇交力系的合力
合力FR的大小和方向可由下式确定 :
FR FRx FRy tan FRy FRx F F
y 2 2
y F1 A
F F
2 2 x y
x
α
F2 FR
x
F3
式中 α为合力FR与x轴所夹的锐角。
四、平面汇交力系的平衡条件
作用在同一平面内的力偶系称为平面力偶系。
1.平面力偶系的合成
平面力偶系可以合成为一个合 力偶,合力偶矩等于平面力偶系中 各个力偶矩的代数和。用式子表示 为:
M M1 M2
Mn M
M1、M 2、 、M n表示原力
式中 M表示合力偶矩,
偶系中各力偶的力偶矩。
2.平面力偶系的平衡条件
难点:主矢和主矩的概念;物体系平衡问题的求 解
力 系
平 面 力 系
各力的作用线都在 同一平面内的力系 称为平面力系。
平面汇交力系 平面平行力系 平面力偶系 平面任意力系
作用线汇交 于一点
2-1
平面汇交力系
一、平面汇交力系合成的几何法
1.
两个汇交力的合成
F1 FR F1 A F2
b
F2
c
o
FR
力三角形法则。
力偶特点:
1.力偶中的二力不满足二力平衡公理,故不是平衡力系。 2.力偶不能合成为一个合力,所以不能用一个力来代替。 3.力偶在任何坐标轴上的投影都等于零。
4.力偶不会引起物体的移动效应,只能使物体发生转动效应
(纯转动)。
力偶与单个力一样,是构成力的基本元素。
2.力偶矩
力偶对物体的转动效应由组成力偶的力的大小与力偶 臂的乘积,即力偶矩确定。记作:记作M(F,F′)或M, 即 M(F,F′)= M =±Fd 方向:逆正,顺负。 单位:KN.m或N.m 力偶对物体的转动效应取决于力偶矩的大小、力偶的 转向及力偶的作用面,此即力偶的三要素。
理论力学第2章-汇交力系
Fz F k
(2-5)
力在某一轴上的投影,等于该力与沿该轴方向的单 位矢量之标积。
这结论也适用于在任何一轴上的投影。
例如,设有一轴,沿该轴正向的单位矢量为n, 则力F在 轴上的投影为
F F n
设n在坐标系Oxy 中的方向余弦为l1 、l2 、l3 ,则
F Fxl1 Fyl2 Fzl3
F Fxi Fy j Fzk
(2-3)
i、j、k是沿坐标轴正向的单位
矢量,
Fx、Fy、Fz分别是力F在x、y、
z轴上的投影。
2.3.1.1 直接投影法
已知F与坐标轴正向的夹角分别为、、 , cos
Fz F cos
(2-4)
Fx Fy
F F
i j
cos FR ,
k
FR z FR
F
z
FR
(2-12)
例2-2 如图所示平面汇交力系,已知: F1 20kN F2 30kN
F3 10kN F4 25kN 试求汇交力系的合力矢。
解 (1)求合力矢FR在坐标轴上的投影:
FRx F1 cos 30 F2 cos 60 F3 cos 45 F4 cos 45 10 3 15 5 2 12.5 2 12.93 kN
平面汇交力系:各力作用线在同一平面内且 汇交于同一点的力系。
空间汇交力系:各力作用线不在同一平面内 且汇交于同一点的力系。
2.1 汇交力系合成的几何法
2.1.1 合成的几何法
F1
A
F2 FR F3
F4
b F3
c
F2 a FR1
FR2 F4
F1 o FR
d
FR = F1 + F2 + F3 + F4
理论力学第2章
力作用线通过三角形的几何中心。
★力对点之矩与力对轴之矩
★力偶系
F1r1 rBA r2
F2
力 偶(couple): 大 小相等,方向相反,不 共线的两个力所组成 的力系.
F1
力偶作用面(acting plane of
F2
a couple) : 二力所在平面。
力偶臂(arm of couple):二力作用线之间的垂直距离。
■空间任意力系简化
主矢的特点: ◆ 对于给定的力系,主矢唯一; ◆ 主矢仅与各力的大小和方向有关,主矢不 涉及作用点和作用线,因而主矢是自由矢。
主矩的特点:
◆力系主矩MO与矩心( O )的位置有关;
◆ 力系主矩是定位矢,其作用点为矩心。
■空间任意力系简化
FB
MC
MD
FC
FA
ME
怎样判断不同力系的 运动效应是否相同?
M rBA F
★力偶系
MO = MO(F) + MO(F´)
= rA×F + rB× F´
= rA× F - rB× F
=( rA - rB )× F
O1
= rBA× F
? MO1 =
其方向亦可由 右手定则确定。
★力偶系
●力偶的性质
性质一 : 力偶无合力,即主矢FR=0. 性质二 : 力偶对刚体的运动效应
FA 8.66kN
FA为正值,表明所设的 F
AB
A方向正确, 为 压 杆。
力对点的矩
■力偶系
★力对点之矩与力对轴之矩 ★力偶系
★力对点之矩与力对轴之矩
1、力对点之矩
( m o ment of a force about a
力对点之矩是力使物体绕某点转动效果的度量。
理论力学第二章
返回
第二章 刚体静力分析基础
第二章 刚体静力分析基础
本章介绍刚体、力、平面内力对点之矩、力偶、力系等基本概念及静力学公 理,并在介绍约束和约束反力概念的基础上,具体分析工程实际中常见的几种典 型约束的特点及其约束力的性质,着重阐述物体受力分析的方法和受力图的画法, 为学习静力学打下必要的基础。
目录
第二章 刚体静力分析基础\刚体和力的概念 分布在狭长面积上的力可看作线分布力,其集度单位为N/m或
kN/m。图示在梁AB上沿长度方向作用着向下的均匀分布力,其集 度为q=2 kN/m。
目录
第二章 刚体静力分析基础\刚体和力的概念 5.力系、平衡力系等效力系、合力的概念 作用于一个物体上的若干个力称为力系。 如果作用于物体上的力系使物体处于平衡状态,则称该力系为
目录
第二章 刚体静力分析基础\刚体和力的概念
4.集中力和分布力
作用于物体上某一点处的力称为集中 力。对于集中力,可以用一个矢量来表示 (如图)。该矢量的长度AB按一定比例尺 绘出表示力的大小;矢量的方向表示力的 方向;矢量的始端(点A)或终端(点B) 表示力的作用点;矢量AB所沿的直线(图 上的虚线)表示力的作用线。由于表示力 的矢量不仅有大小和方向还有确定的始端 (或终端),所以常称其为定位矢量。规 定用黑体字母F表示力的矢量,而用普通 字母F表示力的大小。在国际单位制(SI)中, 力的单位为牛顿(N)或千牛顿(kN)。
目录
第二章 刚体静力分析基础\刚体和力的概念 物体之间相互接触时,其接触处多数情况下并不是一个点,而
是一个面。因此,无论是施力物体还是受力物体,其接触处所受的 力都是作用在接触面上的,这种分布在一定面积上的力称为分布力。 分布力的大小用力的集度表示,例如,水对容器壁的压力是作用在 一定面积上的分布力,其大小用面积集度表示,单位为N/m2或 kN/m2。
理论力学第二章
T
T1
T2
二、平面汇交力系合成的几何法
设有一个平面汇交力系 F1、F2、F3、F4作用于汇交点,如图2-1a
所示。我们可以依次地应用力三角形法则来求该平面汇交力系的
合力。即先将力 F1与 F2合成为一个力 FR1,再将力FR1与F3 合成 为一个力 FR2,最后将力FR2 与F4合成,即得该平面汇交力系的合 力 FR ,且合力的作用线通过汇交点,如图2-1b所示。
第二章 平面汇交力系和平面力偶系
2.1 平面汇交力系合成与平衡的几何法 2.2 平面汇交力系合成与平衡的解析法 2.3 平面力对点之矩的概念与计算 2.4 平面力偶
武汉大学出版社
1
§2-1 平面汇交力系合成与平衡的几何法
一.平面汇交力系的概念
平面汇交力系:各力在同一平面内,作用线交于一
点的力系。
例:起重机的挂钩。
例2-3
已知:图示平面共点力系; 求:此力系的合力.
解:用解析法
FRx
F ix
F1
cos 30
F2
cos 60
F3
cos 45
F4
cos 45
129.3N
FRy
F iy
F1
sin
30
F2
sin
60
F3
sin
45
F4
sin
45
112.3N
FR
FCA AC 1 P AB
FCB BC 1 P AB 2
图2-2
解得
FCA 10 kN, FCB 5 kN
也可给P一定比例,量出FCA和FCB的大小,如取比例尺为1cm=5kN,作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 力系的等效与简化2-1试求图示中力F 对O 点的矩。
解:(a )l F F M F M F M M y O y O x O O ⋅==+=αsin )()()()(F (b )l F M O ⋅=αsin )(F(c ))(sin cos )()()(312l l Fl F F M F M M y O x O O +--=+=ααF (d )2221sin )()()()(l l F F M F M F M M y O y O x O O +==+=αF2-2 图示正方体的边长a =0.5m ,其上作用的力F =100N ,求力F 对O 点的矩及对x 轴的力矩。
解:)(2)()(j i k i Fr F M +-⨯+=⨯=Fa A O m kN )(36.35)(2⋅+--=+--=k j i k j i Fam kN 36.35)(⋅-=F x M2-3 曲拐手柄如图所示,已知作用于手柄上的力F =100N ,AB =100mm ,BC =400mm ,CD =200mm ,α = 30°。
试求力F 对x 、y 、z 轴之矩。
解:)cos cos sin (sin )4.03.0()(2k j i k j F r F M αααα--⨯-=⨯=F D Ak j i αααα22sin 30sin 40)sin 4.03.0(cos 100--+-=力F 对x 、y 、z 轴之矩为:m N 3.43)2.03.0(350)sin 4.03.0(cos 100)(⋅-=+-=+-=ααF x M m N 10sin 40)(2⋅-=-=αF y Mm N 5.7sin 30)(2⋅-=-=αF z M2—4 正三棱柱的底面为等腰三角形,已知OA=OB =a ,在平面ABED 内沿对角线AE 有一个力F , 图中θ =30°,试求此力对各坐标轴之矩。
习题2-1图A r A习题2-2图(a )习题2-3图(a)ABr 解:)sin 45sin cos 45cos cos ()(k j i i F r F M θθθ+︒+︒-⨯=⨯=F a A O )45sin cos sin (k j ︒+-=θθaF 力F 对x 、y 、z 轴之矩为:0)(=F x M230sin )(aF aF M y -=︒-==F Fa aF M z 4645sin 30cos )(=︒︒=F2-5 如图所示,试求力F 对A 点之矩及对x 、y 、z 轴之矩。
解:F r F M ⨯=AB A )(5354F F d d d-k j i = =)743(51k j i -+-Fd)34(5)(j i j F M +⨯=Fd O力F 对x 、y 、z 轴之矩为:0)(=F x M ;0)(=F y M ;Fd M z 54)(-=F2—6 面。
求这四个力偶的合力偶。
解:4321M M M M M+++=k j i )53()54(43241M M M M M +--+-=m N 8.1284.14⋅---=k j i2-7 已知一平面力系对A (3,0),B A B = 0,M C =–10kN ·m 。
试求该力系合力的大小、方向和作用线。
解:由已知M B = 0知合力F R 过B 点; 由M A = 20kN ·m ,M C = -10kN ·m 知F R 位于A 、C 间,且CD AG 2=(图a )在图(a )中,设 OF = d ,则 θcot 4=dCD AG d 2)sin 3(==+θ (1)θθsin )25.4(sin dCE CD -== (2)即 θθsin )25.4(2sin )3(dd -=+d d -=+93, 3=d F 点的坐标为(-3, 0) 合力方向如图(a ),作用线如图过B 、F 点;习题2-4图习题2-5图习题2-6图 (a ) 43 M 1M 2 M 3M 4习题2-7图34tan =θ 8.4546sin 6=⨯==θAG8.4R R ⨯=⨯=F AG F M AkN 6258.420R ==F 即 )kN 310,25(R =F作用线方程:434+=x y讨论:本题由于已知数值的特殊性,实际G 点与E 点重合。
2-8 已知F 1 = 150N ,F 2 = 200N ,F 3 = 300N ,F =F '= 200N 。
求力系向点O 的简化结果,并求力系合力的大小及其与原点O 的距d 。
80200100131121FFF'1yRF 'o2.7xoM yRF oxd解:N .64375210145cos 321-=--︒-=∑F F F F xN .61615110345sin 321-=+-︒-=∑F F F F ym N 44.2108.02.0511.045sin )(31⋅=-⨯+⨯︒=∑F F F M O F向O 点简化的结果如图(b );合力如图(c ),图中N 5.466)()(22'R =∑+∑=y x F F F ,m N 44.21⋅=O M合力N 5.466'R R ==F F ,mm 96.45R==F M d O2-9 图示平面任意力系中F 1 = 402N ,F 2 = 80N ,F 3 = 40N ,F 4 = 110M ,M = 2000 N ·mm 。
各力作用位置如图所示,图中尺寸的单位为mm 。
求(1)力系向O 点简化的结果;(2)力系的合力的大小、方向及合力作用线方程。
FFFF (0,30)(20,20)(20,-30)(-50,0)45yxRF 'ooM yxoRF (0,-6)解:N 15045cos 421R -=--︒=∑=F F F F F x x045sin 31R =-︒=∑=F F F F y y(a)yxRF O θθCG ADEF423d5.4-习题2-8图习题2-9图N 150)()(22'R =∑+∑=y x F F Fm m N 900305030)(432⋅-=--+=∑=M F F F M M O O F向O 点简化结果如图(b );合力如图(c ),其大小与方向为N 150'R R i F F -==设合力作用线上一点坐标为(y x ,),则x y O O yF xF M M R R R )(-==F将O M 、'R y F 和'R x F 值代入此式,即得合力作用线方程为:mm 6-=y2-10 图示等边三角形板ABC ,边长a ,今沿其边缘作用大小均为F P 的力,方向如图(a )所示,求三力的合成结果。
若三力的方向改变成如图(b )所示,其合成结果如何?解(a )0'R =∑=i F Fa F a F M A P P 2323=⋅=(逆) 合成结果为一合力偶a F M P 23=(逆) (b )向A 点简化i F P 'R 2F -=(←)a F M A P 23=(逆) 再向'A 点简化,a F M d A 43'R==合力i F P R 2F A -=(←)2-11 图示力系F 1 = 25kN ,F 2 = 35kN ,F 3 = 20kN ,力偶矩m = 50kN ·m 。
各力作用点坐标如图。
试计算(1)力系向O 点简化的结果;(2)力系的合力。
解(1)向O 点简化 kN 10'R k F F =∑=i)(F M M O O ∑=mkN )10580(200 002 3- 35- 0 00 2 2 250 00 2- 3 50⋅+-=+++=j i kj i k j i k j i j(2)合力kN 10R k F =设合力作用线过点)0,,(y x ,则F F FF F F 习题2-10图 F F F A 'A d R F F 'A M 习题2-11图z xoM M a)0,0,(a A RF 'RFj i M kj i 10580100 00 +-==O x y 5.10-=x ,0.8-=y ,0=z合力作用线过点(-10.5,-8.0,0)。
2-12 图示载荷F P =1002N , F Q =2002N ,分别作用在正方形的顶点A 和B 处。
试将此力系向O 点简化,并求其简化的最后结果。
解:N )(100P k i F +-=N )(200Q k j i F +--=mN )300200(200200- 20001 1 1000 1000 0 1 )(⋅-=-+-=j i kj i k j i F O MN )300200300('R k j i F F +--=∑=iQ P F F F r M ⨯+⨯=B A O合力 N )300200300('R R k j i F F +--== 设合力过点(0,,y x ),则j i M kj i 300200300200- 3000 -==-O y x得 1=x ,32=y ,0=z 即合力作用线过点(0,32,1)。
2-13 图示三力F 1、 F 2和 F 3的大小均等于F ,作用在正方体的棱边上,边长为a 。
求力系简化的最后结果。
解:先向O 点简化,得k F F ='R , k j M Fa Fa O +=因0'R ≠⋅O M F ,故最后简化结果为一力螺旋。
该力螺旋k F F ='R ,k M Fa = 设力螺旋中心轴过)0,,(y x O ',则 j M F r Fa O ==⨯'1R即j k j i Fa Fy x = 0 00 得 a x -=,0=y ,0=z即合成最后结果的力螺旋中心轴上一点坐标为(0,0,a -)。
习题2-12图习题2-13图2-14 某平面力系如图所示,且F 1=F 2=F 3=F 4= F ,问力系向点A 和B 简化的结果是什麽?二者是否等效?解:(1)先向A 点简化,得)(2Rj i F -='F ;Fa M A 2= (2)再向B 点简化,得)(2Rj i F -='F ;0=B M 二者等效,若将点B 处的主矢向点A 平移,其结果与(1)通。
2-15 某平面力系向两点简化的主矩皆为零,此力系简化的最终结果可能是一个力吗?可能是一个力偶吗?可能平衡吗?解:可能是一个力,也可能平衡,但不可能是一个力偶。
因为(1),平面力系向一点简化的结果为一主矢和一主矩,而由已知是:向两点简化的主矩皆为零,即简化结果可能为(0,R ='A M F ),(0,R ='B M F )(主矢与简化中心无关),若0R≠'F ,此时已是简化的最后结果:一合力'R R F F =经过A 点,又过B 点。