上海市高一数学上学期期末考试试题
上海市光明中学2019-2020学年度高一数学第一学期期末考试(详解版)
光明中学2019学年第一学期期末考试高一数学试题命题人 向宪贵 审题人 蔡晓荣 2020.01考生注意: l .本试卷共有19道试题,满分100分.考试时间90分钟.2.答卷前,考生务必在答题纸上将学校、班级、姓名、学号、准考证号等填写清楚.友情提示: 诚实守信,沉着冷静,细致踏实,自信自强!一、填空题(本大题共有10道小题,1-6题填对得3分,7-10题填对得4分,满分34分)1、函数12()f x x =的定义域是 ;2、不等式111x <-的解集为 ; 3、函数2()1(0)f x x x =-≥的反函数1()f x -= ;4、函数()ln(2)f x x =-的递增区间为 ;5、方程96370x x -⋅-=的解是 ;6、已知函数()f x 为偶函数,且当0x >时2()1f x =x x -+,则当0x <时()f x = ; 7、已知函数⎩⎨⎧≥-<=)4(),1()4(,2)(x x f x x f x ,那么(5)f 的值为____________;8、函数2()f x x bx c =++与函数21()x x g x x ++=在区间1[,2]2上的同一点处取相同的最小值,则()f x 在区间1[,2]2上的最大值是 ;9、直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 ;10、设函数定义域为R ,对于给定的正数K ,定义函数取函数.当=时,函数的单调递增区间为 .二、单选题(本大题共有4道题,每道题只有一个正确选项,选对得4分,满分16分)11、下面四个条件中,使a b >成立的充分而不必要的条件是( ).A 1a b >+ .B 1a b >- .C 22a b > .D 33a b >()y f x =(),(),(),().K f x f x K f x K f x K ≤⎧=⎨>⎩()2x f x -=K 12()K f x12、定义域为R 的函数()f x 是奇函数,且在[0,5]x ∈上是增函数,在[5,)+∞上是减函数,又(5)2f =,则()f x ( ).A 在[5,0]x ∈-上增函数且有最大值-2 .B 在[5,0]x ∈-上增函数且有最小值-2.C 在[5,0]x ∈-上减函数且有最大值-2 .D 在[5,0]x ∈-上减函数且有最小值-213、若函数()f x 为R 上的偶函数,且()f x 在[)0+∞,上单调递减,则不等式(21)()f x f x -≥的解集为( )A. 113⎡⎤⎢⎥⎣⎦,B. [)1,1,3⎛⎤-∞+∞ ⎥⎝⎦U C. (][),11,-∞+∞U D. (],1-∞ 14、有下面四个命题:①奇函数一定是单调函数;②函数3(0)xy k k =⋅>(k 为常数)图像可由3x y =的图像平移得到;③若幂函数a y x =是奇函数,则a y x =是定义域上的增函数;④既是奇函数又是偶函数的函数是0()y x R =∈.其中正确的有( ).A 3个 .B 2个 .C 1个 .D 0个三、解答题(本大题共有5道题,满分50分)15、(本题满分8分,第一问4分,第二问4分) 已知1{|39}3x A x =<<, {}2|log 0B x x =>. (1)求A B ⋂和A B ⋃;(2)定义{|A B x x A -=∈且}x B ∉,求A B -和B A -.16、(本题满分10分,第一问4分,第二问6分)函数()2x f x =和3()g x x =的图像的示意图如图所示,两函数的图像在第一象限只有两个交点()()111212,,,,A x y B x y x x <(1)请指出示意图中曲线12C C 、分别对应哪一个函数;(2)设函数()()()h x f x g x =-,则函数()h x 的两个零点为12x x 、,如果12[,1],[,1]x a a x b b ∈+∈+,其中,a b 为整数,指出,a b 的值,并说明理由.17、(本题满分10分,第一问4分,第二问6分) 已知函数3()log 0,13m x f x m m x -=>≠+(). (1)判断()f x 的奇偶性并证明;(2)若12m =,试用定义法判断()f x 在3,+∞()的单调性.18、(本题满分10分,第一问3分,第二问7分)科学家发现某种特别物质的温度y (单位:摄氏度)随时间x (时间:分钟)的变化规律满足关系式:122x x y m -=⋅+(04x ≤≤,0m >).(1)若2m =,求经过多少分钟,该物质的温度为5摄氏度;(2)如果该物质温度总不低于2摄氏度,求m 的取值范围.19、(本题满分12分,第一问3分,第二问4分,第三问5分)已知函数1()22x xf x =-,()(4lg )lg ()g x x x b b R =-⋅+∈. (1)若()0f x >,求实数x 的取值范围;(2)若存在12,[1,)x x ∈+∞,使得12()()f x g x =,求实数b 的取值范围;(3)若()0<g x 对于(0,)x ∈+∞恒成立,试问是否存在实数x ,使得[()]f g x b =-成立?若存在,求出实数x 的值;若不存在,说明理由.上海市光明中学2019学年第一学期期终考试高一数学试题参考答案一、填空题(本大题共有10道小题,1-6题填对得3分,7-10题填对得4分,满分34分)1、[)0,+∞2、(,0)(2,)-∞+∞U 3、1(1)f x x -≥-4、()2,+∞5、3log 7x =6、2()1f x =x +x +7、88、49、5(1,)4 10、二、单选题(本大题共有4道题,每道题只有一个正确选项,选对得4分,满分16分)11、A 12、B 13、A 14、C三、解答题(本大题共有5道题,满分50分)15、(本题满分8分,第一问4分,第二问4分)解:(1)()1{|39}1,23x A x =<<=-; --------1分 {}()2|log 01,B x x =>=+∞ --------2分()1,2A B ⋂=, --------3分()1,A B ⋃=-+∞--------4分(2) (]1,1A B -=-, --------2分[)2,B A -=+∞--------4分16、(本题满分10分,第一问4分,第二问6分)【解】(1)C 1对应的函数为3()g x x =,--------2分C 2对应的函数为()2x f x =. --------4分(2)计算得1,9a b == --------1分理由如下:令3()()()2x x f x g x x ϕ=-=-, --------2分 (,1)-∞-由于93103(1)10,(2)40,(0,(10)210909)2h h h h =>=-<=<=->-,--------4分 则函数()x ϕ的两个零点2(1,2),(9,10)i x x ∈∈--------5分 因此整数1,9a b == --------6分17、(本题满分10分,第一问4分,第二问6分)【解】(1)()f x 是奇函数;证明如下: 由303x x -+>解得3,3x x <->或; 所以()f x 的定义域为(,3)(3,)-∞-+∞U 关于原点对称. --------1分∵()3333m m x x f x log log x x --+-==-+-=()13()3m x log f x x -+=--, --------3分 故()f x 为奇函数.--------4分(2)任取1212,3,x x x x ∈+∞<(),且 - ()()1212123333m m x x f x f x log log x x ---=-++=()()()()12123333m x x log x x -++-, --------2分 ∵()()()()()112221333036x x x x x x -+-+-=<-,∴()()()()121203333x x x x <-+<+-,即()()()()1212330133x x x x -+<+-<, -------4分 当12m =时,()()()()12112233033x x log x x -+>+-,即()12()f x f x >.--------5分 故()f x 在3,+∞()上单调递减.--------6分18、(本题满分10分,第一问3分,第二问7分)【解】(1)由题意,当2m =,令122222252x x x xy -=⋅+=⋅+=, 04x ≤≤Q 时,解得1x =, -------2分因此,经过1分钟时间,该物质的温度为5摄氏度;--------3分(2)由题意得1222x x m -⋅+≥对一切04x ≤≤恒成立,则由1222x x m -⋅+≥,得出22222x x m ≥-,--------2分 令2x t -=,则1116t ≤≤,且222m t t ≥-,--------4分构造函数()221122222f t t t t ⎛⎫=-=--+ ⎪⎝⎭, 所以当12t =时,函数()y f t =取得最大值12,则12m ≥.--------6分 因此,实数m 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.--------7分19、(本题满分12分,第一问3分,第二问4分,第三问5分)【解】(1)()0f x >即22x x ->,∴x x >-,∴0x >.--------3分 (2)设函数()f x ,()g x 在区间[)1,+∞上的值域分别为A ,B ,因为存在[)12,1,x x ∈+∞,使得()()12f x g x =,所以A B ⋂≠∅,--------1分∵()122x x f x =-在[)1,+∞上为增函数,∴3,2A ⎡⎫=+∞⎪⎢⎣⎭,--------2分 ∵()()2lg 24g x x b =--++,[)1,x ∈+∞,∴()(],4g x b ∈-∞+,∴(],4B b =-∞+.--------3分 ∴342b +≥即52b ≥-.--------4分 (3)∵()()2lg 240g x x b =--++<对于()0,x ∈+∞恒成立,∴40b +<,4b <-,--------1分且()g x 的值域为(],4b -∞+.--------2分∵()122x x f x =-为增函数,--------3分 且0x <时,()0f x <,∴()0f g x ⎡⎤<⎣⎦.--------5分∴()0f g x b ⎡⎤+<⎣⎦,-------6分∴不存在实数x ,使得()f g x b ⎡⎤=-⎣⎦成立. --------7分。
上海市曹杨二中2021-2022学年高一上学期期末考试数学试题(解析版)
上海市曹杨二中 2021-2022 学年高一上学期期末考试数学试题一、填空题(本大题共有 12 小题,满分 54 分,第 1~6 题每题 4 分,第 7~12 题每题 5 分) 1.已知集合 A ={0,1,2},则集合 B ={b |b =3a ,a ∈A }=.(用列举法表示)2. 已知 a 为常数,若关于 x 的不等式 2x 2﹣6x +a <0 的解集为(m ,2),则 m = .3. 若一个扇形的弧长和面积均为3,则该扇形的圆心角的弧度数为.6.已知 lg2=a ,10b =3,用 a 、b 表示 log 56=.9. 已知实数 x 、y 满足 lg x +lg y =lg (x +y ),则 x +2y 的最小值为.10. 已知函数 y =f (x )是定义在 R 上的奇函数,且当 x >0 时,f (x )=x 2﹣ax +4.若 y =f(x )的值域为 R ,则实数 a 的取值范围是.二、选择题(本大题共有 4 题,满分 20 分,每题 5 分) 13.已知角 α 的终边经过点 P (2,﹣1),则 sin α+cos α=()14.已知 a 、b ∈R ,h >0.则“|a ﹣b |<2h ”是“|a |<h 且|b |<h ”的()4.已知全集 U ={1,2,3,4,5,6,7},集合 A 、B 均为 U 的子集.若 A ∩B ={5}, ,则 A =.5.已知幂函数的图像经过点,则该函数的表达式为.7.已知 ,化简:=.8.已知函数 y =f (x )的表达式为 ,则函数 y =f 〖f (x )〗的所有零点之和为.11.已知函数 y =f (x )的表达式为若存在实数 x 0,使得对于任意的实数 x 都有 f (x )≤f (x 0)成立,则实数 a 的取值范围是 . 12.已知常数 a >0,函数 y =(f x )、y =g (x )的表达式分别为、.若对任意 x 1∈ 〖﹣a ,a 〗,总存在 x 2 ∈ 〖﹣a ,a 〗,使得(f x 2 ) ≥g (x 1),则 a 的最大值为 .A .B .C .D .A. 充分不必要条件C .充要条件 B. 必要不充分条件D .既不充分也不必要条件15.在用计算机处理灰度图像(即俗称的黑白照片)时,将灰度分为256 个等级,最暗的黑色用 0 表示,最亮的白色用 255 表示,中间的灰度根据其明暗渐变程度用0 至 255 之间对应的数表示,这样可以给图像上的每个像素赋予一个“灰度值”.在处理有些较黑的图像时,为了增强较黑部分的对比度,可对图像上每个像素的灰度值进行转换,扩展低灰度级,压缩 高灰度级,实现如图所示的效果:则下列可以实现该功能的一种函数图象是( )A .0B .1C .2D .3三、解答题(本大题共有 5 题,满分 76 分)(1) 求集合 A 和集合 B ;(2) 求 A ∪B =B ,求实数 m 的取值范围.A .B .C .D .16.已知 x 、y 、z 是互不相等的正数,则在 x (1﹣y )、y (1﹣z )、z (1﹣x )三个值中,大 于 的个数的最大值是( )17.(14 分)已知 m ≥1,设集合,B ={x ||x ﹣2m |>m ﹣1}.18.(14分)已知函数y=f(x)是函数的反函数.(1)求函数y=f(x)的表达式,写出定义域D;(2)判断函数y=f(x)的单调性,并加以证明.19.(14分)培养某种水生植物需要定期向水中加入营养物质N.已知向水中每投放1个单位的物质N,则t(t∈〖0,24〗)小时后,水中含有物质N 的浓度增加y mol/L,y 与t 的函数关系可近似地表示为根据经验,当水中含有物质N 的浓度不低于2mol/L 时,物质N 才能有效发挥作用.(1)若在水中首次投放1 个单位的物质N,计算物质N 能持续有效发挥作用的时长;(2)若t=0 时在水中首次投放1 个单位的物质N,t=16 时再投放1 个单位的物质N,试判断当t∈〖16,24〗时,水中含有物质N 的浓度是否始终不超过3mol/L,并说明理由.2 12(1) 若函数 y =f (x )为偶函数,求 a 的值; (2) 若 a >0,求函数 y =f (x )•f (﹣x )的最小值;(3) 若方程 f (x )=6 有两个不相等的实数解 x 1、x ,且|x ﹣x |≤1,求 a 的取值范围.21.(18 分)已知定义在 R 上的函数 y =f (x )满足:y =f (x )在区间〖1,3)上是严格增函数,且其在区间〖1,3)上的图像关于直线 y =x 成轴对称. (1)求证:当 x ∈〖1,3)时,f (x )=x ;(2) 若对任意给定的实数 x ,总有 f (x +2)=f (x ),解不等式 f (x )≥x 2;(3)若 y =f (x )是 R 上的奇函数,且对任意给定的实数 x ,总有 f (3x )=3f (x ),求f (x )的表达式.20.(16 分)已知 a 为常数,设函数 y =f (x )的表达式为 .由根与系数的关系知 ,解得 m =1,a =4.故答案为:1.3.〖解 析〗根据扇形的面积公式 S = lr 可得:3= ×3r ,解得 r =2cm , 再根据弧长公式可得该扇形的圆心角的弧度数α= = .故答案为: . ▁ ▃ ▅ ▇ █ 参 *考 *答 * 案 █ ▇ ▅ ▃ ▁一、填空题(本大题共有 12 小题,满分 54 分,第 1~6 题每题 4 分,第 7~12 题每题 5 分) 1.{0,3,6}〖解 析〗由集合 A ={0,1,2},集合 B ={b |b =3a ,a ∈A }故集合 B 中的元素有 0,3,6,集合 B ={0,3,6},故答案为:{0,3,6}. 2.1〖解 析〗因为不等式 2x 2﹣6x +a <0 的解集为(m ,2),所以 m 和 2 是方程 2x 2﹣6x +a =0 的解,4.{5,7}〖解 析〗全集 U ={1,2,3,4,5,6,7},集合 A 、B 均为 U 的子集.〖解 析〗设幂函数的解析式为:y =x α,〖解 析〗∵10b =3,∴b =lg3,又∵lg2=a , A ∩B ={5}, ,∴A ={5,7}.故答案为:{5,7}.5.y =由函数图象经过点(4, ),则有 4α= ,解得:α=﹣ ,故答案为:y = .6.∴log 56= ==,故答案为:.7.〖解 析〗因为,所以 sin,8.2(1)当 x ⩽0 时,y =f (x )=0,x =0,(2)当 x >0 时,令 t =log 2x ,则 t ∈R ,y =f (t )=0, 若 t ⩽0,则 t =0,即 f (0)=0,所以 x =0(舍去), 若 t >0 时,则 log 2t =0,解得 t =1,即 log 2x =1,所以 x =2. 综上所述,函数 y =f 〖f (x )〗的零点为 0,2, 故函数 y =f 〖f (x )〗的所有零点之和为 2.故答案为:2.〖解 析〗∵实数 x 、y 满足 lg x +lg y =lg (x +y ),10.〖4,+∞)〖解 析〗函数 y =f (x )是定义在 R 上的奇函数,所以 f (0)=0,图象关于原点对称,且当 x >0 时,f (x )=x 2﹣ax +4.若 y =f (x )的值域为 R ,则当 x >0 时,f (x ) ≤ , min故实数 a 的取值范围是〖4,+∞).故答案为:〖4,+∞).所以 ==sin .故答案为: . 〖解 析〗函数 .9.2 +3∴xy =x +y ,且 x >0,y >0,∴ + =1, ∴x +2y =(x +2y )( + )= + +3≥2+3, 当且仅当 =,即 x = +1,y =1+时取等号, 则 x +2y 的最小值为 2 +3,故答案为:2+3.f (x )=x 2﹣ax +4 的图象开口向上,对称轴为 x = ,f (0)=4,则 >0,f (x ) min =f ( )= ﹣ +4≤0,解得 a ≥4,12.0 1 2 2 111.〖1,+∞)使得对于任意的实数 x 都有 f (x )≤f (x )成立,即函数有最大值 f (x ),又因为当 x >a 时,f (x )=﹣x +2,单调递减,且 f (x )<﹣a +2, 故当 x ≤a 时,f (x )=﹣x 2﹣2x =﹣(x +1)2+1,所以 1≥﹣a +2 且 a ≥﹣1,故 a ≥1,所以实数 a 的取值范围为〖1,+∞).故答案为:〖1,+∞).〖解 析〗∵对任意 x ∈〖﹣a ,a 〗,总存在 x ∈〖﹣a ,a 〗,使得 f (x )≥g (x ),二、选择题(本大题共有 4 题,满分 20 分,每题 5 分) 13.C〖解 析〗因为角 α 的终边经过点 P (2,﹣1),所以 sin α= =﹣ ,cos α= =,则 sin α+cos α=﹣ +=.故选:C .〖解 析〗函数若存在实数 x 0,∴存在 x ∈〖﹣a ,a 〗,使得 f (x )≥g (x ) 2 2 max = ,即≥在〖﹣a ,a 〗上有解,即 2a 2x 2﹣3x +2a ≤0 在〖﹣a ,a 〗上有解,设 h (x )=2a 2x 2﹣3x +2a ,其对称轴为 x = ,若 <a ,即 a > 时,此时Δ=9﹣16a 3<0,则 2a 2x 2﹣3x +2a ≤0 不成立;若 ≥a ,即 0<a ≤时,只需 h (x ) min≤0,即 h (a )<0 即可, 则 ,解得 0<a ≤ ;综上,实数 a 的最大值为 .故答案为: .14.B〖解析〗由|a﹣b|<2h 可得:﹣2h<a﹣b<2h,由|a|<h,|b|<h 可得:﹣h<a<h,﹣h<b<h,则﹣2h<a﹣b<2h,但是如﹣2<a﹣b<2 ﹣1<a<1 且﹣1<b<1,或者0<a<1 且﹣1<b<2 等等,所以“|a﹣b|<2h”是“|a|<h 且|b|<h”的必要不充分条件,故选:B.15.A〖解析〗根据处理前后的图片变化可知,相对于原图的灰度值,处理后图像上每个像素的灰度值值增加,所以图象在y=x 上方.故选:A.16.C〖解析〗假设x(1﹣y)、y(1﹣z)、z(1﹣x)三个值都大于,则x(1﹣y)y(1﹣z)z(1﹣x),即x(1﹣x)y(1﹣y)z(1﹣z),∵x、y、z 是互不相等的正数,∴1﹣y>0,1﹣z>0,1﹣x>0,∴x(1﹣x)=,当且仅当x=1﹣x 即x=时,等号成立,同理y(1﹣y),z(1﹣z),又x,y,z 互不相等,∴x(1﹣x)y(1﹣y)z(1﹣z),这与x(1﹣x)y(1﹣y)z(1﹣z)矛盾,∴假设不成立,∴x(1﹣y)、y(1﹣z)、z(1﹣x)三个值不可能都大于,取x=,y=,z=,则x(1﹣y)==,y(1﹣z)==,z(1﹣x)=×=,此时x(1﹣y)、y(1﹣z)、z(1﹣x)中有两个值都大于,所以在x(1﹣y)、y(1﹣z)、z(1﹣x)三个值中,大于的个数的最大值是2,故选:C.三、解答题(本大题共有 5 题,满分76 分)17.解:(1)∵m≥1,集合={x| <0}={x|3<x<6},B={x||x﹣2m|>m﹣1}={x|x﹣2m<1﹣m 或x﹣2m>m﹣1}={x|x<m+1 或x>3m﹣1}.19.(1)解:当 0≤t ≤12 时,由题得 ,解之得 4≤t ≤12;当 12<t ≤24 时,由题得,解之得 12≤t ≤16;所以 4≤t ≤16.20.解:(1)若函数 y =f (x )为偶函数,则 f (﹣x )=f (x ),即=,12 1 2 1 2 1 23 1 3 2(2)f (x )单调递增,证明如下,设﹣1<x <x <1, 则 x ﹣1<0,x ﹣1<0,x ﹣x <0,所以 t (x )<t (x ),所以 log t (x )<log t (x ),所以 y =f (x )在(﹣1,1)上单调递增.所以物质 N 能持续有效发挥作用的时长为12 小时.(2) 解:当 t ∈〖16,24〗时,水中含有物质 N 的浓度为 ymol /L ,当且仅当 t =20 时等号成立.所以当 t ∈〖16,24〗时,水中含有物质 N 的浓度的最大值为3mol/L . 所以当 t ∈〖16,24〗时,水中含有物质 N 的浓度始终不超过 3mol/L .整理得(a ﹣1)(2x ﹣2﹣x )=0,所以 a ﹣1=0,即 a =1.(2)∵A ∪B =B ,∴A B ,∴6≤m +1 或 3≥3m ﹣1,解得 m ≥5 或 1≤m ,∴实数 m 的取值范围是〖1, 〗∪〖5,+∞).18.解:(1)由 ,得,所以 x =log 3,所以 f (x )=log 3,D =(﹣1,1),设 t (x )= =﹣1﹣ ,则 t (x 1 )﹣t (x )=2 ﹣=<0,则.(2)函数 y =f (x )•f (﹣x )=()()=a 2+1+a (22x +),所以函数 y =f (x )•f (﹣x )的最小值为 a 2+2a +1.(3) 当 a ≤0 时,f (x )在R 上递增,f (x )=6 只有一个实根,不成立;方程 f (x )=6 有两个不等的实根等价为 y =f (x )与 y =6 的图象有两个交点.且 36﹣4a >0,即 0<a <9,则 a 的取值范围是〖8,9).21.(1)证明:依题意, x ∈〖1,3),函数 y =f (x )的图象上任意点(x ,y )关于直线 y=x 对称点(y ,x )在函数 y =f (x )的图象上, 则有:x =f (y ),且 1≤y <3,于是得:f (f (x ))=x ,显然 f (x )=x 满足 f (f (x ))=x ,当 f (x )≠x 时,若 f (x )>x ,而 1≤f (x )<3, 又 y =f (x )在区间〖1,3)上是严格增函数, 则 f (f (x ))>f (x ),即 x >f (x )与 f (x )>x 矛盾,若 f (x )<x ,而 1≤f (x )<3,又 y =f (x )在区间〖1,3)上是严格增函数,则 f (f (x ))<f (x ),即 x <f (x ),与 f (x )<x 矛盾, 所以当 x ∈〖1,3)时,f (x )=x ;(2)由(1)知,函数 y =f (x )在区间〖1,3)上的值域为〖1,3),函数 y =f (x +2)的图象可由 y =f (x )的图象向左平移 2 个单位而得,因为 a >0,22x + ≥2 =2,当且仅当 22x = ,即 x =0 时等号成立,所以 a 2+1+a (22x + )≥a 2+2a +1,当 a >0 时, ≥2 ,当且仅当 2x = 时,f (x )取得最小值 2 ,当直线 y =6 与 y =f (x )相切时,2 =6,解得 a =9;设 t =2x (t >0),则 t + =6,即 t 2﹣6t +a =0,可得 t 1+t 2=6,t 1t 2 =a ,① 由|x 1 ﹣x |≤1,可设 x >x ,可得 2 1 2 ≤2,即 ≤2,②由①②可得 t 2 ≥2,且 t =3﹣ 2 ,解得 8≤a <9,因对任意给定的实数x,总有f(x+2)=f(x),则函数y=f(x)在R上的图象可由数y=f(x)(x∈〖1,3))的图像向左向右每2个单位平移而得,于是得函数y=f(x)在R上的值域为〖1,3),由x2<3 得:﹣<x<,当﹣3≤x<﹣1 时,1≤x+4<3,则f(x)=f(x+2)=f(x+4)=x+4,由f(x)≥x2 得:x2≤x+4,解得≤x≤,则有≤x<﹣1,当﹣1≤x<1 时,1≤x+2<3,则f(x)=f(x+2)=x+2,由f(x)≥x2 得:x2≤x+2,解得﹣1≤x≤2,则有﹣1≤x<1,当1≤x<3 时,由f(x)≥x2 得:x2≤x,解得0≤x≤1,则有x=1,综上得:≤x≤1,所以不等式f(x)≥x2 的解集是〖,1〗;(3)因对任意给定的实数x,总有f(3x)=3f(x),n∈N*,当3n≤x<3n+1 时,有1 ,则f(x)=f(3×)=3f(3×)=32f()=…=3n f()=3n×=x,n∈N*,当3﹣n≤x<3﹣n+1 时,有1≤3n•x<3,则f(x)=f(3x)=f(32x)=…=f(3n x)=×3n x=x,显然x≥1,函数y=3x的值域是〖3,+∞),函数y=3﹣x+1的值域是(0,1〗,则n取尽一切正整数,{x|3﹣n≤x<3﹣n+1}∪{x|1≤x<3}∪{x|3n≤x<3n+1}=(0,+∞),因此,当x∈(0,+∞)时,f(x)=x,而y=f(x)是R 上的奇函数,则当x∈(﹣∞,0)时,﹣x∈(0,+∞),f(x)=﹣f(﹣x)=x,又f(0)=0,所以,x∈R,f(x)=x,即函数f(x)的表达式是f(x)=x.上海市曹杨二中 2021-2022 学年高一上学期期末考试数学试题一、填空题(本大题共有 12 小题,满分 54 分,第 1~6 题每题 4 分,第 7~12 题每题 5 分) 1.已知集合 A ={0,1,2},则集合 B ={b |b =3a ,a ∈A }=.(用列举法表示)2. 已知 a 为常数,若关于 x 的不等式 2x 2﹣6x +a <0 的解集为(m ,2),则 m = .3. 若一个扇形的弧长和面积均为3,则该扇形的圆心角的弧度数为.6.已知 lg2=a ,10b =3,用 a 、b 表示 log 56=.9. 已知实数 x 、y 满足 lg x +lg y =lg (x +y ),则 x +2y 的最小值为.10. 已知函数 y =f (x )是定义在 R 上的奇函数,且当 x >0 时,f (x )=x 2﹣ax +4.若 y =f(x )的值域为 R ,则实数 a 的取值范围是.二、选择题(本大题共有 4 题,满分 20 分,每题 5 分) 13.已知角 α 的终边经过点 P (2,﹣1),则 sin α+cos α=()14.已知 a 、b ∈R ,h >0.则“|a ﹣b |<2h ”是“|a |<h 且|b |<h ”的()4.已知全集 U ={1,2,3,4,5,6,7},集合 A 、B 均为 U 的子集.若 A ∩B ={5}, ,则 A =.5.已知幂函数的图像经过点,则该函数的表达式为.7.已知 ,化简:=.8.已知函数 y =f (x )的表达式为 ,则函数 y =f 〖f (x )〗的所有零点之和为.11.已知函数 y =f (x )的表达式为若存在实数 x 0,使得对于任意的实数 x 都有 f (x )≤f (x 0)成立,则实数 a 的取值范围是 . 12.已知常数 a >0,函数 y =(f x )、y =g (x )的表达式分别为、.若对任意 x 1∈ 〖﹣a ,a 〗,总存在 x 2 ∈ 〖﹣a ,a 〗,使得(f x 2 ) ≥g (x 1),则 a 的最大值为 .A .B .C .D .A. 充分不必要条件C .充要条件 B. 必要不充分条件D .既不充分也不必要条件15.在用计算机处理灰度图像(即俗称的黑白照片)时,将灰度分为256 个等级,最暗的黑色用 0 表示,最亮的白色用 255 表示,中间的灰度根据其明暗渐变程度用0 至 255 之间对应的数表示,这样可以给图像上的每个像素赋予一个“灰度值”.在处理有些较黑的图像时,为了增强较黑部分的对比度,可对图像上每个像素的灰度值进行转换,扩展低灰度级,压缩 高灰度级,实现如图所示的效果:则下列可以实现该功能的一种函数图象是( )A .0B .1C .2D .3三、解答题(本大题共有 5 题,满分 76 分)(1) 求集合 A 和集合 B ;(2) 求 A ∪B =B ,求实数 m 的取值范围.A .B .C .D .16.已知 x 、y 、z 是互不相等的正数,则在 x (1﹣y )、y (1﹣z )、z (1﹣x )三个值中,大 于 的个数的最大值是( )17.(14 分)已知 m ≥1,设集合,B ={x ||x ﹣2m |>m ﹣1}.18.(14分)已知函数y=f(x)是函数的反函数.(1)求函数y=f(x)的表达式,写出定义域D;(2)判断函数y=f(x)的单调性,并加以证明.19.(14分)培养某种水生植物需要定期向水中加入营养物质N.已知向水中每投放1个单位的物质N,则t(t∈〖0,24〗)小时后,水中含有物质N 的浓度增加y mol/L,y 与t 的函数关系可近似地表示为根据经验,当水中含有物质N 的浓度不低于2mol/L 时,物质N 才能有效发挥作用.(1)若在水中首次投放1 个单位的物质N,计算物质N 能持续有效发挥作用的时长;(2)若t=0 时在水中首次投放1 个单位的物质N,t=16 时再投放1 个单位的物质N,试判断当t∈〖16,24〗时,水中含有物质N 的浓度是否始终不超过3mol/L,并说明理由.2 12(1) 若函数 y =f (x )为偶函数,求 a 的值; (2) 若 a >0,求函数 y =f (x )•f (﹣x )的最小值;(3) 若方程 f (x )=6 有两个不相等的实数解 x 1、x ,且|x ﹣x |≤1,求 a 的取值范围.21.(18 分)已知定义在 R 上的函数 y =f (x )满足:y =f (x )在区间〖1,3)上是严格增函数,且其在区间〖1,3)上的图像关于直线 y =x 成轴对称. (1)求证:当 x ∈〖1,3)时,f (x )=x ;(2) 若对任意给定的实数 x ,总有 f (x +2)=f (x ),解不等式 f (x )≥x 2;(3)若 y =f (x )是 R 上的奇函数,且对任意给定的实数 x ,总有 f (3x )=3f (x ),求f (x )的表达式.20.(16 分)已知 a 为常数,设函数 y =f (x )的表达式为 .由根与系数的关系知 ,解得 m =1,a =4.故答案为:1.3.〖解 析〗根据扇形的面积公式 S = lr 可得:3= ×3r ,解得 r =2cm , 再根据弧长公式可得该扇形的圆心角的弧度数α= = .故答案为: . ▁ ▃ ▅ ▇ █ 参 *考 *答 * 案 █ ▇ ▅ ▃ ▁一、填空题(本大题共有 12 小题,满分 54 分,第 1~6 题每题 4 分,第 7~12 题每题 5 分) 1.{0,3,6}〖解 析〗由集合 A ={0,1,2},集合 B ={b |b =3a ,a ∈A }故集合 B 中的元素有 0,3,6,集合 B ={0,3,6},故答案为:{0,3,6}. 2.1〖解 析〗因为不等式 2x 2﹣6x +a <0 的解集为(m ,2),所以 m 和 2 是方程 2x 2﹣6x +a =0 的解,4.{5,7}〖解 析〗全集 U ={1,2,3,4,5,6,7},集合 A 、B 均为 U 的子集.〖解 析〗设幂函数的解析式为:y =x α,〖解 析〗∵10b =3,∴b =lg3,又∵lg2=a , A ∩B ={5}, ,∴A ={5,7}.故答案为:{5,7}.5.y =由函数图象经过点(4, ),则有 4α= ,解得:α=﹣ ,故答案为:y = .6.∴log 56= ==,故答案为:.7.〖解 析〗因为,所以 sin,8.2(1)当 x ⩽0 时,y =f (x )=0,x =0,(2)当 x >0 时,令 t =log 2x ,则 t ∈R ,y =f (t )=0, 若 t ⩽0,则 t =0,即 f (0)=0,所以 x =0(舍去), 若 t >0 时,则 log 2t =0,解得 t =1,即 log 2x =1,所以 x =2. 综上所述,函数 y =f 〖f (x )〗的零点为 0,2, 故函数 y =f 〖f (x )〗的所有零点之和为 2.故答案为:2.〖解 析〗∵实数 x 、y 满足 lg x +lg y =lg (x +y ),10.〖4,+∞)〖解 析〗函数 y =f (x )是定义在 R 上的奇函数,所以 f (0)=0,图象关于原点对称,且当 x >0 时,f (x )=x 2﹣ax +4.若 y =f (x )的值域为 R ,则当 x >0 时,f (x ) ≤ , min故实数 a 的取值范围是〖4,+∞).故答案为:〖4,+∞).所以 ==sin .故答案为: . 〖解 析〗函数 .9.2 +3∴xy =x +y ,且 x >0,y >0,∴ + =1, ∴x +2y =(x +2y )( + )= + +3≥2+3, 当且仅当 =,即 x = +1,y =1+时取等号, 则 x +2y 的最小值为 2 +3,故答案为:2+3.f (x )=x 2﹣ax +4 的图象开口向上,对称轴为 x = ,f (0)=4,则 >0,f (x ) min =f ( )= ﹣ +4≤0,解得 a ≥4,12.0 1 2 2 111.〖1,+∞)使得对于任意的实数 x 都有 f (x )≤f (x )成立,即函数有最大值 f (x ),又因为当 x >a 时,f (x )=﹣x +2,单调递减,且 f (x )<﹣a +2, 故当 x ≤a 时,f (x )=﹣x 2﹣2x =﹣(x +1)2+1,所以 1≥﹣a +2 且 a ≥﹣1,故 a ≥1,所以实数 a 的取值范围为〖1,+∞).故答案为:〖1,+∞).〖解 析〗∵对任意 x ∈〖﹣a ,a 〗,总存在 x ∈〖﹣a ,a 〗,使得 f (x )≥g (x ),二、选择题(本大题共有 4 题,满分 20 分,每题 5 分) 13.C〖解 析〗因为角 α 的终边经过点 P (2,﹣1),所以 sin α= =﹣ ,cos α= =,则 sin α+cos α=﹣ +=.故选:C .〖解 析〗函数若存在实数 x 0,∴存在 x ∈〖﹣a ,a 〗,使得 f (x )≥g (x ) 2 2 max = ,即≥在〖﹣a ,a 〗上有解,即 2a 2x 2﹣3x +2a ≤0 在〖﹣a ,a 〗上有解,设 h (x )=2a 2x 2﹣3x +2a ,其对称轴为 x = ,若 <a ,即 a > 时,此时Δ=9﹣16a 3<0,则 2a 2x 2﹣3x +2a ≤0 不成立;若 ≥a ,即 0<a ≤时,只需 h (x ) min≤0,即 h (a )<0 即可, 则 ,解得 0<a ≤ ;综上,实数 a 的最大值为 .故答案为: .14.B〖解析〗由|a﹣b|<2h 可得:﹣2h<a﹣b<2h,由|a|<h,|b|<h 可得:﹣h<a<h,﹣h<b<h,则﹣2h<a﹣b<2h,但是如﹣2<a﹣b<2 ﹣1<a<1 且﹣1<b<1,或者0<a<1 且﹣1<b<2 等等,所以“|a﹣b|<2h”是“|a|<h 且|b|<h”的必要不充分条件,故选:B.15.A〖解析〗根据处理前后的图片变化可知,相对于原图的灰度值,处理后图像上每个像素的灰度值值增加,所以图象在y=x 上方.故选:A.16.C〖解析〗假设x(1﹣y)、y(1﹣z)、z(1﹣x)三个值都大于,则x(1﹣y)y(1﹣z)z(1﹣x),即x(1﹣x)y(1﹣y)z(1﹣z),∵x、y、z 是互不相等的正数,∴1﹣y>0,1﹣z>0,1﹣x>0,∴x(1﹣x)=,当且仅当x=1﹣x 即x=时,等号成立,同理y(1﹣y),z(1﹣z),又x,y,z 互不相等,∴x(1﹣x)y(1﹣y)z(1﹣z),这与x(1﹣x)y(1﹣y)z(1﹣z)矛盾,∴假设不成立,∴x(1﹣y)、y(1﹣z)、z(1﹣x)三个值不可能都大于,取x=,y=,z=,则x(1﹣y)==,y(1﹣z)==,z(1﹣x)=×=,此时x(1﹣y)、y(1﹣z)、z(1﹣x)中有两个值都大于,所以在x(1﹣y)、y(1﹣z)、z(1﹣x)三个值中,大于的个数的最大值是2,故选:C.三、解答题(本大题共有 5 题,满分76 分)17.解:(1)∵m≥1,集合={x| <0}={x|3<x<6},B={x||x﹣2m|>m﹣1}={x|x﹣2m<1﹣m 或x﹣2m>m﹣1}={x|x<m+1 或x>3m﹣1}.19.(1)解:当 0≤t ≤12 时,由题得 ,解之得 4≤t ≤12;当 12<t ≤24 时,由题得,解之得 12≤t ≤16;所以 4≤t ≤16.20.解:(1)若函数 y =f (x )为偶函数,则 f (﹣x )=f (x ),即=,12 1 2 1 2 1 23 1 3 2(2)f (x )单调递增,证明如下,设﹣1<x <x <1, 则 x ﹣1<0,x ﹣1<0,x ﹣x <0,所以 t (x )<t (x ),所以 log t (x )<log t (x ),所以 y =f (x )在(﹣1,1)上单调递增.所以物质 N 能持续有效发挥作用的时长为12 小时.(2) 解:当 t ∈〖16,24〗时,水中含有物质 N 的浓度为 ymol /L ,当且仅当 t =20 时等号成立.所以当 t ∈〖16,24〗时,水中含有物质 N 的浓度的最大值为3mol/L . 所以当 t ∈〖16,24〗时,水中含有物质 N 的浓度始终不超过 3mol/L .整理得(a ﹣1)(2x ﹣2﹣x )=0,所以 a ﹣1=0,即 a =1.(2)∵A ∪B =B ,∴A B ,∴6≤m +1 或 3≥3m ﹣1,解得 m ≥5 或 1≤m ,∴实数 m 的取值范围是〖1, 〗∪〖5,+∞).18.解:(1)由 ,得,所以 x =log 3,所以 f (x )=log 3,D =(﹣1,1),设 t (x )= =﹣1﹣ ,则 t (x 1 )﹣t (x )=2 ﹣=<0,则.(2)函数 y =f (x )•f (﹣x )=()()=a 2+1+a (22x +),所以函数 y =f (x )•f (﹣x )的最小值为 a 2+2a +1.(3) 当 a ≤0 时,f (x )在R 上递增,f (x )=6 只有一个实根,不成立;方程 f (x )=6 有两个不等的实根等价为 y =f (x )与 y =6 的图象有两个交点.且 36﹣4a >0,即 0<a <9,则 a 的取值范围是〖8,9). 21.(1)证明:依题意, x ∈〖1,3),函数 y =f (x )的图象上任意点(x ,y )关于直线 y=x 对称点(y ,x )在函数 y =f (x )的图象上,则有:x =f (y ),且 1≤y <3,于是得:f (f (x ))=x ,显然 f (x )=x 满足 f (f (x ))=x ,当 f (x )≠x 时,若 f (x )>x ,而 1≤f (x )<3,又 y =f (x )在区间〖1,3)上是严格增函数,则 f (f (x ))>f (x ),即 x >f (x )与 f (x )>x 矛盾,若 f (x )<x ,而 1≤f (x )<3,又 y =f (x )在区间〖1,3)上是严格增函数,则 f (f (x ))<f (x ),即 x <f (x ),与 f (x )<x 矛盾,所以当 x ∈〖1,3)时,f (x )=x ;(2) 由(1)知,函数 y =f (x )在区间〖1,3)上的值域为〖1,3),函数 y =f (x +2)的图象可由 y =f (x )的图象向左平移 2 个单位而得,因为 a >0,22x + ≥2 =2,当且仅当 22x = ,即 x =0 时等号成立, 所以 a 2+1+a (22x + )≥a 2+2a +1,当 a >0 时, ≥2 ,当且仅当 2x = 时,f (x )取得最小值 2 ,当直线 y =6 与 y =f (x )相切时,2 =6,解得 a =9; 设 t =2x (t >0),则 t + =6,即 t 2﹣6t +a =0,可得 t 1+t 2=6,t 1t 2 =a ,①由|x 1 ﹣x |≤1,可设 x >x ,可得 2 1 2 ≤2,即 ≤2,② 由①②可得 t 2 ≥2,且 t =3﹣ 2,解得 8≤a <9,因对任意给定的实数x,总有f(x+2)=f(x),则函数y=f(x)在R上的图象可由数y=f(x)(x∈〖1,3))的图像向左向右每2个单位平移而得,于是得函数y=f(x)在R上的值域为〖1,3),由x2<3 得:﹣<x<,当﹣3≤x<﹣1 时,1≤x+4<3,则f(x)=f(x+2)=f(x+4)=x+4,由f(x)≥x2 得:x2≤x+4,解得≤x≤,则有≤x<﹣1,当﹣1≤x<1 时,1≤x+2<3,则f(x)=f(x+2)=x+2,由f(x)≥x2 得:x2≤x+2,解得﹣1≤x≤2,则有﹣1≤x<1,当1≤x<3 时,由f(x)≥x2 得:x2≤x,解得0≤x≤1,则有x=1,综上得:≤x≤1,所以不等式f(x)≥x2 的解集是〖,1〗;(3)因对任意给定的实数x,总有f(3x)=3f(x),n∈N*,当3n≤x<3n+1 时,有1 ,则f(x)=f(3×)=3f(3×)=32f()=…=3n f()=3n×=x,n∈N*,当3﹣n≤x<3﹣n+1 时,有1≤3n•x<3,则f(x)=f(3x)=f(32x)=…=f(3n x)=×3n x=x,显然x≥1,函数y=3x的值域是〖3,+∞),函数y=3﹣x+1的值域是(0,1〗,则n取尽一切正整数,{x|3﹣n≤x<3﹣n+1}∪{x|1≤x<3}∪{x|3n≤x<3n+1}=(0,+∞),因此,当x∈(0,+∞)时,f(x)=x,而y=f(x)是R 上的奇函数,则当x∈(﹣∞,0)时,﹣x∈(0,+∞),f(x)=﹣f(﹣x)=x,又f(0)=0,所以,x∈R,f(x)=x,即函数f(x)的表达式是f(x)=x.。
高一上学期期末考试数学试题(原卷版)
A. 的最小正周期为
B. 图象的一个对称中心为
C. 的值域为
D. 图象的一条对称轴方程为
12.定义:实数 满足 则称 比 远离 .已知函数 的定义域为 任取 等于 和 中远离0的那个值则()
高一数学试卷
试卷120分钟满分:150分
一选择题:本题共8小题每小题5分共40分.在每小题给出的四个选项中只有一项是符合题目要求的.
1.下列函数中周期为 的是()
A. B.
C. D.
2.函数 的单调递增区间为()
A. B.
C. D.
3.函数 的部分图象如图所示则 可能是()
A B.
C. D.
4.已知角 的终边在射线 上则 的值为()
17.已知复数 .
(1)若 是实数求 的值;
(2)若复数 在复平面内对应的点在第三象限且 求实数 的取值范围.
18 已知 .
(1)若 三点共线求 满足的等量关系;
(2)在(1)条件下求 的最小值.
19.问题:在 中内角A 所对的边分别为a .
(1)求A;
(2)若 的面积为 ________求 .
请在① ;② ;③ 这三个条件中选择一个补充在上面的横线上并完成解答.
20.某网红景区拟开辟一个平面示意图如图 五边形 观光步行道 为景点电瓶车专用道 .
(1)求 的长;
(2)请设计一个方案使得折线步行道 最长(即 最大).
21.如图所示在 中 与 相交于点 . 的延长线与边 交于点 .
(1)试用 表示 ;
(2)设 求 的值.
22.已知 的内角 所对的边分别为 向量 .
上海市七宝中学2013-2014学年高一第一学期期末考试数学模拟试题A
2013学年第一学期期末考试高一数学模拟试题一、填空题(每小题3分,共36分)1.函数写出命题“若00x y >>且,则220x y +>”的否命题 2.已知集合{}1,A x =,{}21,B x =且A B =,则x = 0 .3.若集合{}2M x x =<,{}lg (1)N x y x ==-,则M N = )2,1( .4.已知实数,a b 满足222a b +=,则ab 的最大值为 1 . 5.函数31()lg 1xf x x x-=++的奇偶性为 奇函数 .6.函数()2234x x x f --⎪⎭⎫⎝⎛=π的单调递增区间是 .7.若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数,且f (2)=0,则使得f (x )<0 的x 的取值范围是 )2,2(- .8.已知关于x 的方程265x x a -+=有四个不相等的实数根,则a 的取值范围是 )4,0( .9.函数133,0()31,0x x x f x x ⎧⎪+≤=⎨⎪+>⎩,若()2f a >,则实数a 的取值范围是]),0(0,1(+∞⋃- .10.若函数2x by x -=+在(,4)(2)a b b +<-上的值域为(2,)+∞,则b a += 6- . 11.定义全集U 的子集A 的特征函数为1,()0,A U x Af x x A∈⎧=⎨∈⎩ð,这里U A ð表示A 在全集U 中的补集,那么对于集合U B A ⊆、,下列所有正确说法的序号是 (1)(2)(3) .(1))()(x f x f B A B A ≤⇒⊆ (2)()1()U A A f x f x =-ð (3)()()()A B A B f x f x f x =⋅ (4)()()()A B A B f x f x f x =+ 12.对任意的120x x <<,若函数1()f x a x x =-的大致图像为如图所示的一条折线(两侧的 射线均平行于x 轴),试写出a 、b 应满足的 条件是 0,0=+>-b a b a . 二、选择题(每小题3分,共12分)13.条件甲:23log 2x =是条件乙:3log 1x =成立的( B )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件14.若函数)1,0()1()(≠>--=-a a a a k x f xx在R 上既是奇函数,又是减函数,则)(log )(k x x g a +=的图像是( A )15.已知0x 是函数1()21x f x x=+-的一个零点.若()()10201,,,x x x x ∈∈+∞,则 (B ) A .()()120,0f x f x << B .()()120,0f x f x <>C .()()120,0f x f x ><D .()()120,0f x f x >>16.设)(x f 是定义在R 上的函数.①若存在R x x ∈21,,21x x <,使)()(21x f x f <成立,则函数)(x f 在R 上单调递增; ②若存在R x x ∈21,,21x x <,使)()(21x f x f ≤成立,则函数)(x f 在R 上不可能单调递减; ③若存在02>x 对于任意R x ∈1都有)()(211x x f x f +<成立,则函数)(x f 在R 上递增; ④对任意R x x ∈21,,21x x <,都有)()(21x f x f ≥成立,则函数)(x f 在R 上单调递减. 则以上真命题的个数为( B ) A.0 B.1 C.2 D.3 三、解答题(10+10+10+10+12=52分)17.设全集U R =,集合1{|||1},{|2}2x A x x a B x x +=-<=≤-. (1)求集合B ; (2)若U A B ⊆ð,求实数a 的取值范围.[12025022(,2)5,)2x x x x B +-≤--∴≥-=-∞⋃+∞ 分分[){12152,52||1(1,1)2342U U aa B x a A a a A Ba -≥+≤=-<∴=-+⊆∴≤≤ ðð分分分18.已知不等式230x x m -+<的解集为{}1,x x n n R <<∈,函数()24f x x ax =-++.(1)求,m n 的值;(2)若()y f x =在(,1]-∞上递增,解关于x 的不等式()2log 320a nx x m -++-<.解:(1) 由条件得:131n n m+=⎧⎨⋅=⎩, 所以22m n =⎧⎨=⎩4 分 (2)因为()24f x x ax =-++在(),1-∞在(),1-∞上递增, 所以12a≥,2a ≥. 2 分()()22log 32log 230a a nx x m x x -++-=-+<.所以2223022310x x x x ⎧-<⎪⎨-+>⎪⎩ 分, 所以⎪⎪⎩⎪⎪⎨⎧<><<211230x x x 或.所以102x <<或312x <<. 2 分19.设幂函数()(1)(,)kf x a x a R k Q =-∈∈的图像过点2). (1)求,a k 的值;(2)若函数()()21h x f x b =-+-在[0,1]上的最大值为2,求实数b 的值.(1)1122222k a a k -=∴==∴= 分分(2)2()f x x =222()21()()1[0,1]h x x bx b h x x b b b x =-++-=--+-+∈max 1)1,(1)22b h h b ≥=== 分2max 2)01,()122b h h b b b b <<==-+=∴= 舍)分max 3)0,(0)1212b h h b b ≤==-=∴=- 分综上:212b b ∴==- 或分20.有时可用函数0.115ln ,(6)() 4.4,(6)4a x a xf x x x x ⎧+≤⎪⎪-=⎨-⎪>⎪-⎩描述某人学习某学科知识的掌握程度,其中x 表示某学科知识的学习次数(*x N ∈),()f x 表示对该学科知识的掌握程度,正实数a 与学科知识有关.(1)证明:当7x ≥时,掌握程度的增加量(1)()f x f x +-总是单调递减的;(2)根据经验,学科甲、乙、丙对应的a 的取值区间分别为(115,121]、(121,127]、(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.0.050.0.42(3)(4)(3)(4)(3)(4)0.320.115ln0.85,2,66x x x x x x a ae a a e a ≥--≥---->∴≥+==--= (1)当x 7时,f(x+1)-f(x)=分而当7时,函数y=单调递增,且 故f(x+1)-f(x)单调递减.当7,掌握程度的增长量f(x+1)-f(x)总是单调递减.分 ()由题意可知分 整理得 解得(](]050.05620.506123.0,21123.0121,127123.0121,133.1e ⋅≈⨯=-∈∈ 分由此可知,该学科是乙和丙学科。
上海外国语大学附属大境中学高一上学期期末考试数学试题
学年上外附中高一年级第一学期期末试卷一、填空题1.已知集合,若,则__________.【答案】或0或-3【解析】【分析】根据集合间的包含关系分情况讨论,分别解出集合中x的值,注意要满足集合间元素的互异性.【详解】集合,若,则=3,解得,代入检验符合题意,或者=9,解得,当x=3时,集合A不满足元素的互异性,故x=-3;或者x=,解得x=1或0,当x=1时集合元素不满足互异性,故x=0.故或0或-3.故答案为:或0或-3.【点睛】这个题目考查了集合间的包含关系,以及集合元素的互异性的应用. 与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集;(2)看这些元素满足什么限制条件;(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性.2.“”是“”的__________条件.【答案】必要非充分【解析】【分析】不等式“”的充要条件为0<x<1,根据小范围推大范围得到最终结果.【详解】不等式“”的充要条件为0<x<1,根据小范围可以推导大范围,得到“”是“”的必要非充分.故答案为:必要非充分.【点睛】这个题目考查了充分必要条件的判断,判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p 是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.3.当时,函数的最大值为__________.【答案】21【解析】【分析】根据题干中的条件可得到二次函数的对称轴,再由二次函数的性质得到最值即可.【详解】当时,函数,对称轴为x=2,在所给区间内,根据二次函数的性质得到在x=-3处取得最大值,代入得到21.故答案为:21.【点睛】这个题目考查了二次函数在小区间上的最值的求法,一般是讨论轴和区间的位置关系,结合二次函数图像的性质得到相应的最值.4.函数的单调递增区间为__________.【答案】【解析】【分析】通过换元,找到内外层函数的单调性,根据复合函数单调性的判断方法,得到单调区间. 【详解】函数,设t=,函数化为,外层函数是减函数,要求整个函数的增区间,只需要求内层函数的减区间,即t=的减区间,为.故答案为:.【点睛】这个题目考查了复合函数单调区间的求法,满足同增异减的规则,难度中等.5.若函数的定义域为[0,2],则函数的定义域是______________.【答案】【解析】【分析】根据抽象函数定义域以及分母不为零列不等式,解得定义域.【详解】由题意得,即定义域为【点睛】本题考查函数定义域,考查基本求解能力.6.若为奇函数,为偶函数,且,令,则_________.【答案】0【解析】【分析】对函数赋值得到,令x=-2,得到,联立两个方程可得到参数m的值.【详解】已知为奇函数,为偶函数,,设,结合两个方程得到,得到m=0.故答案为:0.【点睛】这个题目考查了函数奇偶性的应用,比较基础,关于函数奇偶性常用的性质有:偶函数f(x)=f(-x),奇函数f(-x)=-f(x).7.已知,则,则的最大值为_________.【答案】【解析】【分析】根据不等式,代入数值得到最值即可.【详解】根据不等式,将数值代入得到等号成立的条件为:x=y=1.故答案为:.【点睛】这个题目考查了不等式的应用,利用等号成立的条件求最值,注意等号成立的条件。
上海市浦东新区高一上学期期末考试数学试卷含答案
上海市浦东新区2021--2022学年度第一学期期末考试高一年级数学试卷试卷共 4 页考生注意:1、答卷前,考生务必将姓名、班级、学号等在指定位置填写清楚; 2、本试卷共有21道试题,满分100分,考试时间90分钟;3、请考生用黑色水笔或圆珠笔将答案写在答题(卡)卷上;一、填空题(每小题3分,共36分) 1、若43πα=,则α的终边在第________象限. 2、如果32a =,那么3log 8=______.(用a 表示)3、设集合{}1,A a =,{}21,B a =.若A B =,则实数a 的值为______.4、某扇形的圆心角为2弧度,半径为4cm ,则该扇形的面积为___________2cm .5、已知常数0a >且1a ≠,假设无论a 为何值,函数12x y a -=+的图像恒经过一个定点,则这个点的坐标为_________.6、若幂函数()f x 过点()2,8,则满足不等式()()310f a f a -+-≤的实数a 的取值范围是______.7、已知()()sin cos πθπθ-++=1tan tan θθ+的值是___________.8、设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩,若0()1f x >,则0x 的取值范围是________. 9、设x R ∈,求方程|2||23||35|x x x -+-=- 的解集__________ 10、设,0a b >,若41a b +=,则22log log a b +的最大值为__________.11、已知函数223,[,0]y x x x m =++∈的最大值为3,最小值为2,则实数m 的取值范围是____________.12、已知R λ∈,函数()24,43,x x f x x x x λλ-≥⎧=⎨-+<⎩,若函数()y f x =图像与x 轴恰有两个交点,则实数λ的取值范围是______________.二、选择题:(每题3分,共12分)13、下列四个命题中,为真命题的是( )A .若a b >,则22ac bc > B.若a b >,c d >,则a c b d ->- C .若||a b >,则22a b > D .若a b >,则11a b< 14、若不等式20ax bx c ++>的解集是{|x 1123x -<<},则不等式20cx bx a +<+的解集是( ). A .(3,2)- B.(2,3)- C. (,2)(3,)-∞-+∞ D. (,3)(2,)-∞-+∞15、用反证法证明命题“三角形的内角中至少有一个不大于60°”成立时,假设正确的是( ) A .假设三内角都不大于60° B .假设三内角都大于60°C .假设三内角至少有一个大于60°D .假设三内角至多有两个大于60°16、若存在实数a ,使得当[0,]x m ∈(0m >)时,都有2|21|||4x x a -+-≤,则实数m 的最大值是( )A .1B .32 C .2 D . 52【提示】由各选项知最大值m t ≤,由214x -≤,解得3522x -≤≤,这样必须有52m ≤,然后不等式变形为22421421x x a x x -+-≤≤+--,记()2421f x x x =+--,()2421g x x x =-+-,分类讨论去绝对值符号,可得()f x 的最小值是3,因此()g x 的最大值性质不大于3,才存在a 保证不等式恒成立,由最大值()3g m ≤可得m 的范围,得m 的最大值; 三、解答题:(共52分)17、(本题8分)已知集合{||2|3}A x x =-<,集合12{|0}7xB x x -=>-,求集合A B18、(本题8分) 已知sin 0αα=,求 (1)222sin3sin cos 5cos αααα-+的值;(2)若[0,2)απ∈,求角α的值19、(本题12分)某农户利用墙角线互相垂直的两面墙,将一块可折叠的长为a m 的篱笆墙围成一个鸡圈,篱笆的两个端点,A B 分别在这两墙角线上,现有三种方案:方案甲:如图1,围成区域为三角形AOB ; 方案乙:如图2,围成区域为矩形OACB ;方案丙:如图3,围成区域为梯形OACB ,且60OAC ∠=︒.(1)在方案乙、丙中,设m AC x =,分别用x 表示围成区域的面积()22S m ,()23S m ;(2)为使围成鸡圈面积最大,该农户应该选择哪一种方案,并说明理由.20、(本题10分) 设函数()y f x =的表达式为2()||f x x x a =+-,其中a 为实常数. (1)判断函数()y f x =的奇偶性,并说明理由;(2)设0a >,函数()()f x g x x=在区间(0,]a 上为严格减函数,求实数a 的最大值.21、(本题14分) 已知函数()y f x =的定义域为D ,若存在实数a ,b ,对任意的x D ∈,有2-∈a x D ,且使得()(2)2f x f a x b +-=均成立,则函数()y f x =的图像关于点(,)a b 对称,反之亦然,我们把这样的函数()f x 叫做“ψ函数;(1)已知“ψ函数”的图像关于点(1,2)对称,且(0,1)x ∈时,1()f x x x=-;求(1,2)x ∈时,函数()f x 的解析式;(2)已知函数123()1234x x x x f x x x x x +++=+++++++,问()f x 是否为“ψ函数”?请说明理由; (3)对于不同的“ψ函数”()f x 与()g x ,若()f x 、()g x 有且仅有一个对称中心,分别记为(,)m p 和(,)n q , ①求证:当m n =时,()()f x g x +仍为“ψ函数”;②问:当m n ≠时,()()f x g x +是否仍一定为“ψ函数”?若是,请说明理由;若不一定是,请举出具体的反例;【提示】(1)根据函数图像的对称关系列关系式计算即可;(2)根据“ψ函数”的定义,结合题给的具体函数解析式,计算出a ,b 的值即可得出结果;(3)①根据定义验证即可;②根据定义,举出具体函数验证结论,所举函数不唯一;答案解析2021--2022学年度第一学期期末高一年级数学卷试卷共 4 页考生注意:1、答卷前,考生务必将姓名、班级、学号等在指定位置填写清楚; 2、本试卷共有21道试题,满分100分,考试时间90分钟;3、请考生用黑色水笔或圆珠笔将答案写在答题(卡)卷上;一、填空题(每小题3分,共36分) 1、若43πα=,则α的终边在第________象限. 【提示】注意:高中研究“角”的前提 【答案】三; 【解析】+3παπ=;【说明】本题考查了角是“旋转”的量;高中研究角,前提:在直角坐标系中,顶点在原点,始边在x 轴的正半轴上;2、如果32a =,那么3log 8=______.(用a 表示) 【提示】注意:指数与对数的互化; 【答案】3a ;【解析】方法1、由332log 2aa =⇒=,而33log 83log 23a ==;方法2、333log 83log 23log 33aa ===;【说明】本题主要考查指数与对数的互化或对数的换底公式; 3、设集合{}1,A a =,{}21,B a =.若A B =,则实数a 的值为______.【提示】注意:集合相等的隐含条件; 【答案】0;【解析】由已知,得20a a a =⇒=或1a =(舍去); 【说明】本题考查了集合相等与集合元素的互异性;4、某扇形的圆心角为2弧度,半径为4cm ,则该扇形的面积为___________2cm . 【提示】注意:扇形的面积公式的相关要素; 【答案】16; 【解析】由221112416222S lr r α===⨯⨯=; 【说明】本题考查了扇形的面积公式,注意:角的单位须:弧度;5、已知常数0a >且1a ≠,假设无论a 为何值,函数12x y a -=+的图像恒经过一个定点,则这个点的坐标为_________.【提示】注意:“指数函数”的图像特征;【答案】(13),【解析】由指数函数xy a =的图像恒经过一个定点(01),,所以,函数12x y a -=+的图像恒经过一个定点(13),;【说明】本题考查了指数函数xy a =的图像特征;6、若幂函数()f x 过点()2,8,则满足不等式()()310f a f a -+-≤的实数a 的取值范围是______. 【提示】注意:幂函数的定义并判断单调性; 【答案】(],2-∞;【解析】由题意,不妨设幂函数()af x x =,因为,若幂函数()f x 过点()2,8,则幂函数为3y x =;又,幂函数为3y x =为奇函数;则不等式()()310f a f a -+-≤,等价为()()()()3131f a f a a a -≤-⇔-≤-,解得2a ≤;【说明】本题既考查了利用待定系数法求幂函数;又综合考查了函数的奇偶性、单调性的交汇;7、已知()()sin cos πθπθ-++=1tan tan θθ+的值是___________.【提示】注意:转化为“同角”; 【答案】3;【解析】由已知()()sin cos 3πθπθ-++=sin cos 3θθ-=;又1tan tan θθ+=sin cos 1cos sin sin cos θθθθθθ+=, 再据21(sin cos )12sin cos 3θθθθ=-=-,解得1sin cos 3θθ=,所以,1tan tan θθ+=sin cos 13cos sin sin cos θθθθθθ+==; 【说明】本题既考查了诱导公式,又综合考查了平方关系及其变式2(sin cos )12sin cos θθθθ±=±;8、设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩,若0()1f x >,则0x 的取值范围是________. 【提示】注意:分段函数;在给定区间上利用单调性进行转化; 【答案】(,1)(1,)-∞-+∞;【解析】当00x ≤时,由已知,得0010211221x x x --->⇔>⇔<-,即01x <-;当00x >时,由已知,得111222000111x x x >⇔>⇔>,即01x > 综上,可得01x <-或01x >;【说明】本题考查了依据分段函数,结合指数函数与幂函数的单调性进行等价转化为不等式解之; 9、设x R ∈,求方程|2||23||35|x x x -+-=- 的解集__________ 【提示】注意:题设中“(2)(23)(35)x x x -+-=-”的特点;【答案】3(,][2,)2-∞+∞;【解析】由三角不等式|35||(2)(23)||2||23|x x x x x -=-+-≤-+-,等号成立条件是:(2)(23)|0x x -⋅-≥,解得32x ≤或2x ≥,即3(,][2,)2-∞+∞; 【说明】本题基本方法是:分段讨论或借助函数数形结合,计算量大;但是,若能理解与用好“新教材”中的三角不等式与等号成立条件,则简捷合理;10、设,0a b >,若41a b +=,则22log log a b +的最大值为__________.【提示】注意:限制条件,研究“最大值”的目标是:小于等于常数,并保证等号成立; 【答案】4-;【解析】由,0a b >,若41a b +=,结合基本不等式,得1142416a b ab ab =+≥⇔≤(等号,当且仅当“41a b +=且4a b =”时成立); 而22221log log log log 416a b ab +=≤=- 【说明】本题既考查了基本不等式,又考查了对数的运算法则;有一定的综合性;11、已知函数223,[,0]y x x x m =++∈的最大值为3,最小值为2,则实数m 的取值范围是____________. 【提示】画出函数的图像,对称轴为1x =-,函数在对称轴的位置取得最小值2,令2()233f x x x =++=,可求得0x =,或2x =-,进而得到参数范围; 【答案】[2,1]--;【解析】函数2()23f x x x =++的图象是开口朝上,且以直线1x =-为对称的抛物线, 当1x =-时,函数取最小值2,令2()233f x x x =++=,则0x =,或2x =-,若函数2()23f x x x =++在[],0m 上的最大值为3,最小值为2,则[]2,1m ∈--,故答案为:[]2,1--;【说明】本题主要考查一元二次函数给定,区间变化;数形结合解答这类填充、选择题最有效;12、已知R λ∈,函数()24,43,x x f x x x x λλ-≥⎧=⎨-+<⎩,若函数()y f x =图像与x 轴恰有两个交点,则实数λ的取值范围是______________.【提示】注意:关键词“函数()y f x =图像”、“x 轴恰有两个交点” 【答案】 (]()1,34,+∞;【解析】方法1、由题意,函数()y f x =图像与x 轴恰有两个交点,就是方程()0f x =有两个根; 分别解出方程40x -=有一个根:14x =,方程2430x x -+=有两个根21x =或33x =;所以,当1λ≤时,方程()0f x =有1个根;当13λ<≤时,方程()0f x =有2个根; 当34λ<≤时,方程()0f x =有3个根;当4λ>时,方程()0f x =有2个根; 综上,(]()1,34,λ∈+∞;方法2、画出函数()24,43,x x f x x x x λλ-≥⎧=⎨-+<⎩的图像,如图据图,得(同方法1)【说明】本题主要考查了分段函数、初等函数的图像;以及新教材中“零点”的定义与“三种等价”形式,渗透了函数与方程思想与数形结合的数学思想方法的考查; 二、选择题:(每题3分,共12分)13、下列四个命题中,为真命题的是( )A .若a b >,则22ac bc > B.若a b >,c d >,则a c b d ->- C .若||a b >,则22a b > D .若a b >,则11a b< 【提示】注意:不等式性质; 【答案】C ;【解析】由不等式性质22||0a b a b >>⇒> 【说明】本题考查了不等式性质; 14、若不等式20ax bx c ++>的解集是{|x 1123x -<<},则不等式20cx bx a +<+的解集是( ). A .(3,2)- B.(2,3)- C. (,2)(3,)-∞-+∞ D. (,3)(2,)-∞-+∞【提示】注意:一元二次不等式与一元二次方程的沟通; 【答案】B ;【解析】由不等式20ax bx c ++>的解集是{|x 1123x -<<},则 得0a <且方程20ax bx c ++=的两个根为:112x =-或213x =,由11()()023c a =-⨯<,则0c >,所以,方程2 0cx bx a +=+的两个根为: 32x =-或43x =,则不等式2 0cx bx a +<+的解集是(2,3)-;【说明】本题综合考查了一元二次不等式与一元二次方程的沟通与一元二次方程根的定义;15、用反证法证明命题“三角形的内角中至少有一个不大于60°”成立时,假设正确的是( ) A .假设三内角都不大于60° B .假设三内角都大于60°C .假设三内角至少有一个大于60°D .假设三内角至多有两个大于60°【提示】注意审题,关键词“至少有一个不大于”; 【答案】B【说明】本题考查了新教材中新增必修的知识点“反证法”;16、若存在实数a ,使得当[0,]x m ∈(0m >)时,都有2|21|||4x x a -+-≤,则实数m 的最大值是( )A .1B .32 C .2 D . 52【提示】由各选项知最大值m t ≤,由214x -≤,解得3522x -≤≤,这样必须有52m ≤,然后不等式变形为22421421x x a x x -+-≤≤+--,记()2421f x x x =+--,()2421g x x x =-+-,分类讨论去绝对值符号,可得()f x 的最小值是3,因此()g x 的最大值性质不大于3,才存在a 保证不等式恒成立,由最大值()3g m ≤可得m 的范围,得m 的最大值; 【答案】C ;【解析】由各选项知最大值m t ≤,因为214x -≤,解得3522x -≤≤,所以52m ≤;不等式2214x x a -+-≤可化为22421421x x a x x -+-≤≤+--.设()2421f x x x =+--,()2421g x x x =-+-,因为()22123021252x x x f x x x x m ⎧⎛⎫++≤< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+≤≤ ⎪⎪⎝⎭⎩的最小值为3,所以当[]()0,0x m m ∈>时,都有()3g x ≤.若10,2x ⎡⎤∈⎢⎥⎣⎦,()2233g x x x =--≤-;若1,2x m ⎡⎤∈⎢⎥⎣⎦,()2253g x x x =+-≤,所以2280m m +-≤,解得2m ≤.综上,所求实数m 的最大值为2; 故选:C ;【说明】本题综合考查了分段函数、函数的最值、绝对值不等式、一元二次函数在给定区间上求最值;解题的切入点是:通过绝对值的性质挖掘自变量x 的隐含条件,由此得出52m ≤的隐含条件;从而,等价为一元二次函数在给定区间上求最值与恒成立问题; 三、解答题:(共52分)17、(本题8分)已知集合{||2|3}A x x =-<,集合12{|0}7xB x x -=>-,求集合A B 【提示】先利用“解不等式”知识,化简集合; 【解析】由条件可知,(1,5)A =-,1(,7)2B =,所以,(1,7)AB =-;【说明】本题考查了简单的绝对值不等式、分式不等式的解法与集合的并集运算;18、(本题8分) 已知sin 0αα=,求 (1)222sin3sin cos 5cos αααα-+的值;(2)若[0,2)απ∈,求角α的值【提示】注意:关于sin ,cos αα的“齐次式”的运算技巧,已知三角比求角,注意角的范围;【解析】由条件可知sin αα=,所以tan α=222222222sin 3sin cos 5cos 2tan 3tan 52sin 3sin cos 5cos =sin cos tan 1ααααααααααααα-+-+-+=++,所以,原式(2)由tan α=[0,2)απ∈,所以,25,33ππα=; 【说明】本题考查了同角三角比之间关系与已知三角比求角;而本题若注意“关于sin ,cos αα的“齐次式””,采用先化简后计算,则解答更简捷;19、(本题12分)某农户利用墙角线互相垂直的两面墙,将一块可折叠的长为a m 的篱笆墙围成一个鸡圈,篱笆的两个端点,A B 分别在这两墙角线上,现有三种方案:方案甲:如图1,围成区域为三角形AOB ; 方案乙:如图2,围成区域为矩形OACB ;方案丙:如图3,围成区域为梯形OACB ,且60OAC ∠=︒.(1)在方案乙、丙中,设m AC x =,分别用x 表示围成区域的面积()22S m ,()23S m ;(2)为使围成鸡圈面积最大,该农户应该选择哪一种方案,并说明理由. 【提示】(1)根据矩形面积与梯形的面积公式表示即可得答案;(2)先根据基本不等式研究方案甲得面积的最大值为24a ,再根据二次函数的性质结合(1)研究2S ,3S 的最大值即可得答案;【答案】(1)22S x ax =-+,0x a <<;23333S x =,0x a <<;(2)农户应该选择方案三; 【解析】(1)对于方案乙,当AC x =时,()m BC a x =-,所以矩形OACB 的面积()22S x a x x ax =-=-+,0x a <<;对于方案丙,当AC x =时,()m BC a x =-,由于60OAC ∠=︒ 所以113,22OA a x x a x OB =-+=-=, 所以梯形OACB 的面积为311313322222S a x a x a x ⎛⎫⎛⎫=-+-=- ⎪ ⎪⎝⎭⎝⎭2333=,0x a <<.(2)对于方案甲,设,AO x BO y ==,则222x y a +=,所以三角形AOB 的面积为2221112224x y a S xy +=≤⋅=,当且仅当2x y ==时等号成立,故方案甲的鸡圈面积最大值为24a ;对于方案乙,由(1)得22222244a a a S x ax x ⎛⎫=-+=--+≤ ⎪⎝⎭,0x a <<,当且仅当2a x =时取得最大值24a ,故方案乙的鸡圈面积最大值为24a ;对于方案丙,22343S x ax ⎫==-⎪⎝⎭2222242393a a x a x ⎤⎛⎫⎫=--=-⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦,0x a <<. 当且仅当23a x =22; 由于()()()123max max max S S S =<所以农户应该选择方案丙,此时鸡圈面积最大;【说明】本题综合考查了利用函数模型建立函数关系式;然后通过求相应函数的“最值”,确定选择方案; 20、(本题10分) 设函数()y f x =的表达式为2()||f x x x a =+-,其中a 为实常数. (1)判断函数()y f x =的奇偶性,并说明理由;(2)设0a >,函数()()f x g x x=在区间(0,]a 上为严格减函数,求实数a 的最大值. 【提示】(1)利用奇偶性的定义,讨论0a =和0a ≠即可;(2)利用单调性的定义得出120x x a -<,进而得出20a a a ⎧≥⎨>⎩即可求出;【答案】(1)当0a =时,()y f x =为偶函数,当0a ≠时,()y f x =为非奇非偶函数;(2)1; 【解析】(1)可得()f x 的定义域为R ,关于原点对称,()22()||||f x x x a x x a -=-+--=++, 当0a =时,()()f x f x -=,则()f x 为偶函数,当0a ≠时,()()f x f x -≠且()()f x f x -≠-,则()f x 为非奇非偶函数;(2)当(]0,x a ∈,2()()1x x a f x ag x x x x x+-===+-,任取120x x a <<≤, 则()()()()121212121212x x x x a a a g x g x x x x x x x ---=+--=,因为,120x x a <<≤,所以,120x x -<且2120x x a <<,因为,()g x 在区间(0,a ]上为严格减函数,所以,120x x a -<,即12a x x >恒成立,所以,2a a a ⎧≥⎨>⎩,解得01a <≤,所以, a 的最大值为1;【说明】本题综合考查了函数奇偶性的判断依据与方法,与分类讨论进行了简单的交汇;以及利用定义证明单调性的基本方法与步骤;【注意】利用定义判断函数单调性的步骤:(1)在定义域内任取12x x <;(2)计算()()12f x f x -并化简整理;(3)判断()()12f x f x -的正负; (4)得出结论,若()()120f x f x -<,则()f x 单调递增;若()()120f x f x ->,则()f x 单调递减; 21、(本题14分) 已知函数()y f x =的定义域为D ,若存在实数a ,b ,对任意的x D ∈,有2-∈a x D ,且使得()(2)2f x f a x b +-=均成立,则函数()y f x =的图像关于点(,)a b 对称,反之亦然,我们把这样的函数()f x 叫做“ψ函数;(1)已知“ψ函数”的图像关于点(1,2)对称,且(0,1)x ∈时,1()f x x x=-;求(1,2)x ∈时,函数()f x 的解析式;(2)已知函数123()1234x x x x f x x x x x +++=+++++++,问()f x 是否为“ψ函数”?请说明理由; (3)对于不同的“ψ函数”()f x 与()g x ,若()f x 、()g x 有且仅有一个对称中心,分别记为(,)m p 和(,)n q , ①求证:当m n =时,()()f x g x +仍为“ψ函数”;②问:当m n ≠时,()()f x g x +是否仍一定为“ψ函数”?若是,请说明理由;若不一定是,请举出具体的反例;【提示】(1)根据函数图像的对称关系列关系式计算即可;(2)根据“ψ函数”的定义,结合题给的具体函数解析式,计算出a ,b 的值即可得出结果;(3)①根据定义验证即可;②根据定义,举出具体函数验证结论,所举函数不唯一; 【答案】(1)()12(12)2f x x x x=++<<-;(2)()f x 是“ψ函数”;(3)()()f x g x +①仍为“ψ函数”;m n ≠②时,()()f x g x +不一定是“ψ函数”;【解析】(1)根据“ψ函数”的概念,()()24f x f x +-=,所以, ()()42f x f x =--,()1,2x ∈时,()()20,1x -∈,又 ()0,1x ∈时,()1f x x x=-, ()1,2x ∈时,()()()114242222f x f x x x x x ⎡⎤=--=---=++⎢⎥--⎣⎦, 即()1,2x ∈时,()f x 的解析式为 ()12(12)2f x x x x=++<<-; (2)方法1、根据题意,取52a =-,上式计算得()()58f x f x +--=,此时 4b =;所以函数()f x 是“ψ函数”; 方法2、()1234123412111134x x x x f x x x x x x x x x +++=+++=----++++++++, 所以,()5441121113f x x x x x --=------------;所以,()(5)8f x f x +--=;所以,()f x 关于点5(,4)2-对称,故函数()f x 是ψ函数; (3)根据题意,()()()()22,22f x f m x p g x g n x q +-=+-=,m n =①时,()()()()()22222f x f n x g x g n x p q p q +-++-=+=+,所以此时()()f x g x +仍为“ψ函数”;m n ≠时,()()f x g x +不一定是“ ψ函数”;设()1f x x=,易知函数()f x 图像关于 ()0,0对称,得0,0m p ==; 设()1xg x x =+,知函数()g x 图像关于()1,1-对称,得1,1n q =-=, ()()2123221222312342122232412311114123421222324f x f a x x x x x a x a x a x a x x x x x a x a x a x a x x x x x x x x x x a x a x a x a +-+++--+-+-+=+++++++++++-+-+-+-++++=++++++++++++--------此时,()()11x f x g x x x +=++,其图像不关于某一点对称,即不是“ ψ函数”;结论得证; 【说明】本题借助“新定义”,考查了新教材依据奇函数的定义,研究奇函数的图像关于原点对称的过程、方法与拓展;体现了考试试题“源于教材,又高于教材”的特点;。
上海市同济大学附属七一中学2022-2023学年高一数学第一学期期末综合测试试题含解析
【解析】利用辅助角公式化简即可.
【详解】
.
故选:D
二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)
11、
【解析】由直线 ,即 ,此时直线恒过点 ,
则直线 的斜率 ,直线 的斜率 ,
若直线 与线段 相交,则 ,即 ,
所以实数 的取值范围是
点睛:本题考查了两条直线的位置关系的应用,其中解答中把直线与线段有交点转化为直线间的斜率之间的关系是解答的关键,同时要熟记直线方程的各种形式和直线过定点的判定,此类问题解答中把直线与线段有交点转化为定点与线段端点斜率之间关系是常见的一种解题方法,着重考查了学生分析问题和解答问题的能力
【详解】选项A:当 时,当 时, ,
当 时, ,
当 时, ,
综上,函数 的值域为 ,故A正确;
选项B:当 时, 的单调递减区间为 ,
当 时,函数 为单调递增函数,无单调减区间,
所以函数 的单调递减为 ,故B正确;
选项C:当 时,令 ,解得 或 (舍去),
当 时,要使 有 解,即 在 上有 解,只需求出 的值域即可,
C. 与 的定义域都为 , ,对应法则相同,故C正确;
D. 的定义域为 , 的定义域为 ,定义域不同,故D错误;
故选:C
【点睛】易错点睛:本题考查判断两个函数是否是同一函数,判断时,注意考虑函数的定义域和对应法则是否完全相同,属于基础题.
8、C
【解析】利用二次函数和指数函数的值域可判断A选项;利用二次函数和指数函数的单调性可判断B选项;利用函数 的零点个数求出 的取值范围,可判断C选项;解方程 可判断D选项.
因为点 在函数 的图像上,所以 , .
因为点 在函数 的图像上,所以 .
2021-2022学年高一上学期期末考试数学试题含答案
2021—2022学年第一学期质量检测高一年级数学试题班级:_________________ 姓名:_________________ 座号:________________第Ⅰ卷(选择题 共60分)一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 52. 下列函数中与y x =是同一函数的是( ) (1)2y x =(2)log x a y a =(3)log xa ay a =(4)33y x =(5)()n n y x n N +=∈A. (1)(2)B. (2)(3)C. (2)(4)D. (3)(5)3. 某国近日开展了大规模COVID -19核酸检测,并将数据整理如图所示,其中集合S 表示( )A. 无症状感染者B. 发病者C. 未感染者D. 轻症感染者4. 要得到函数4y sinx =-(3π)的图象,只需要将函数4y sin x =的图象 A. 向左平移12π个单位 B. 向右平移12π个单位 C. 向左平移3π个单位 D. 向右平移3π个单位5. 已知函数22,0(),03x x f x x x +≤⎧=⎨<≤⎩,若()9f x =,则x 的值是( ) A. 3 B. 9C. 1-或1D. 3-或36. 已知扇形的弧长是4cm ,面积是22cm ,则扇形的圆心角的弧度数是( ) A. 1 B. 2C.4 D. 1或47. 已知函数2()8x f x e x x =-+,则在下列区间中()f x 必有零点的是( ) A. (-2,-1) B. (-1,0)C. (0,1)D. (1,2)8. 下图是函数sin()y x ωϕ=+的部分图象,则sin()x ωϕ+=( )A. sin 3x π⎛⎫+⎪⎝⎭B. sin 23x π⎛⎫- ⎪⎝⎭C. sin 26xD. sin 23x π⎛⎫-⎪⎝⎭9. 设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c大小关系为( )A. a b c <<B. b a c <<C. b c a <<D. c a b <<10. 设f (x )为偶函数,且在区间(-∞,0)上是增函数,(2)0f -=,则xf (x )<0的解集为( ) A. (-1,0)∪(2,+∞) B. (-∞,-2)∪(0,2) C. (-2,0)∪(2,+∞)D. (-2,0)∪(0,2)11. 中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,,a b c ,三角形的面积S可由公式S =求得,其中p 为三角形周长的一半,这个公式也被称为海伦----秦九韶公式,现有一个三角形的边长满足10,8a b c +==,则此三角形面积的最大值为( )A. 6B. 9C. 12D. 1812. 设函数()()21ln 11f x x x=+-+,则使()()21f x f x >-成立的x 的取值范围是 A. 1,13⎛⎫ ⎪⎝⎭B. ()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭C. 11,33⎛⎫- ⎪⎝⎭D. 11,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭13. 已知函数()()314,1log ,1a a x a x f x x x ⎧-+<=⎨≥⎩在R 上是减函数,则实数a 的取值范围是( ) A. ()0,1B. 10,3⎛⎫ ⎪⎝⎭C. 11,73⎡⎫⎪⎢⎣⎭D. 1,17⎡⎤⎢⎥⎣⎦第Ⅱ卷(非选择题 共90分)二、填空题(共4小题,每小题5分,本题共20分.请把正确答案填在答题卡中相应题号的横线上)14. 552log 10log 0.25+=____________.15. 如果二次函数()()215f x x a x =--+在区间1,12⎛⎫⎪⎝⎭上是增函数, 则实数a 的取值范围为________.16. 已知sin 2cos 3sin 5cos αααα-+=-5,那么tan α=________.17. 如图1是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中3sin 5BAC ∠=,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图2的数学风车,则图2“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为_______________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)18. 已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >. (1)若A B =∅,求a 的取值范围; (2)若A B A =,求a 的取值范围.19. 已知角á的终边经过点P 43(,)55-. (1)求sin á的值;(2)求sin tan()2sin()cos(3)πααπαππα⎛⎫-- ⎪⎝⎭+-的值.20. 已知()f x 是定义在[1,1]-上的偶函数,且[1,0]x ∈-时,2()1xf x x =+. (1)求函数()f x 的表达式;(2)判断并证明函数在区间[0,1]上的单调性.21. 某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x 万件,其总成本为()G x 万元,其中固定成本为3万元,并且每生产1万件的生产成本为1万元(总成本=固定成本+生产成本),销售收入()R x 满足29,05()2510,5x x x R x x x x ⎧-+≤≤⎪=⎨++>⎪⎩,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题: (1)写出利润函数()y f x =的解析式(利润=销售收入−总成本); (2)工厂生产多少万件产品时,可使盈利最多?22. 已知函数()()2cos 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭满足下列3个条件: ①函数()f x 的周期为π;②3x π=是函数()f x 的对称轴;③7012f π⎛⎫=⎪⎝⎭. (1)请任选其中二个条件,并求出此时函数()f x 解析式;(2)若,33x ππ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的最值.23. 已知函数2()log (21)x f x kx =+-的图象过点25(2,log )2.(Ⅰ)求实数k 的值; (Ⅱ)若不等式1()02f x x a +->恒成立,求实数a 的取值范围; (Ⅲ)若函数1()2()241f x x x h x m +=+⋅-,2[0,log 3]x ∈,是否存在实数0m <使得()h x 的最小值为12,若存在请求出m 的值;若不存在,请说明理由.24. 已知函数2()21f x ax x a =-+-(a 为实常数).(1)若0a >,设()f x 在区间[1,2]的最小值为()g a ,求()g a 的表达式: (2)设()()f x h x x=,若函数()h x 在区间[1,2]上是增函数,求实数a 的取值范围.参考答案第Ⅰ卷(选择题 共60分)一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 5【答案】B2. 下列函数中与y x =是同一函数的是( ) (1)2y x =(2)log x a y a =(3)log xa ay a =(4)33y x =(5)()n n y x n N +=∈A. (1)(2)B. (2)(3)C. (2)(4)D. (3)(5)【答案】C3. 某国近日开展了大规模COVID -19核酸检测,并将数据整理如图所示,其中集合S 表示( )A. 无症状感染者B. 发病者C. 未感染者D. 轻症感染者 【答案】A4. 要得到函数4y sinx =-(3π)的图象,只需要将函数4y sin x =的图象 A. 向左平移12π个单位 B. 向右平移12π个单位C. 向左平移3π个单位D. 向右平移3π个单位【答案】B5. 已知函数22,0(),03x x f x x x +≤⎧=⎨<≤⎩,若()9f x =,则x 的值是( ) A. 3 B. 9C. 1-或1D. 3-或3【答案】A6. 已知扇形的弧长是4cm ,面积是22cm ,则扇形的圆心角的弧度数是( ) A. 1 B. 2C.4 D. 1或4【答案】C7. 已知函数2()8x f x e x x =-+,则在下列区间中()f x 必有零点的是( ) A. (-2,-1) B. (-1,0)C. (0,1)D. (1,2)【答案】B8. 下图是函数sin()y x ωϕ=+的部分图象,则sin()x ωϕ+=( )A. sin 3x π⎛⎫+⎪⎝⎭B. sin 23x π⎛⎫- ⎪⎝⎭C. sin 26xD.sin 23x π⎛⎫- ⎪⎝⎭【答案】B9. 设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c大小关系为( )A. a b c <<B. b a c <<C. b c a <<D.c a b <<【答案】D10. 设f (x )为偶函数,且在区间(-∞,0)上是增函数,(2)0f -=,则xf (x )<0的解集为( ) A. (-1,0)∪(2,+∞) B. (-∞,-2)∪(0,2) C. (-2,0)∪(2,+∞)D. (-2,0)∪(0,2)【答案】C11. 中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,,a b c ,三角形的面积S 可由公式()()()S p p a p b p c =---求得,其中p 为三角形周长的一半,这个公式也被称为海伦----秦九韶公式,现有一个三角形的边长满足10,8a b c +==,则此三角形面积的最大值为( )A. 6B. 9C. 12D. 18【答案】C12. 设函数()()21ln 11f x x x =+-+,则使()()21f x f x >-成立的x 的取值范围是 A. 1,13⎛⎫ ⎪⎝⎭B. ()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭C. 11,33⎛⎫- ⎪⎝⎭D. 11,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A13. 已知函数()()314,1log ,1a a x a x f x x x ⎧-+<=⎨≥⎩在R 上是减函数,则实数a 的取值范围是( ) A. ()0,1 B. 10,3⎛⎫ ⎪⎝⎭C. 11,73⎡⎫⎪⎢⎣⎭D. 1,17⎡⎤⎢⎥⎣⎦【答案】C第Ⅱ卷(非选择题 共90分)二、填空题(共4小题,每小题5分,本题共20分.请把正确答案填在答题卡中相应题号的横线上)14. 552log 10log 0.25+=____________. 【答案】15. 如果二次函数()()215f x x a x =--+在区间1,12⎛⎫⎪⎝⎭上是增函数,则实数a 的取值范围为________.【答案】(]2∞-, 16. 已知sin 2cos 3sin 5cos αααα-+=-5,那么tan α=________.【答案】-231617. 如图1是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中3sin 5BAC ∠=,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图2的数学风车,则图2“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为_______________.【答案】24:25三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)18. 已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >. (1)若A B =∅,求a 的取值范围; (2)若AB A =,求a 的取值范围.【答案】(1)[]1,2- (2)()(),45,-∞-+∞19. 已知角á的终边经过点P 43(,)55-. (1)求sin á的值;(2)求sin tan()2sin()cos(3)ααπαππα-- ⎪⎝⎭+-的值. 【答案】(1)35;(2)54-. 20. 已知()f x 是定义在[1,1]-上的偶函数,且[1,0]x ∈-时,2()1x f x x =+. (1)求函数()f x 的表达式;(2)判断并证明函数在区间[0,1]上的单调性.【答案】(1)22,[0,1]1(),[1,0)1x x x f x x x x -⎧∈⎪⎪+=⎨⎪∈-⎪+⎩(2)单调减函数,证明见解析21. 某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x 万件,其总成本为()G x 万元,其中固定成本为3万元,并且每生产1万件的生产成本为1万元(总成本=固定成本+生产成本),销售收入()R x 满足29,05()2510,5x x x R x x x x ⎧-+≤≤⎪=⎨++>⎪⎩,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题: (1)写出利润函数()y f x =的解析式(利润=销售收入−总成本);(2)工厂生产多少万件产品时,可使盈利最多?【答案】(1)()283,05257,5x x x f x x x ⎧-+-≤≤⎪=⎨+>⎪⎩(2)4万件22. 已知函数()()2cos 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭满足下列3个条件: ①函数()f x 的周期为π;②3x π=是函数()f x 的对称轴;③7012f π⎛⎫=⎪⎝⎭. (1)请任选其中二个条件,并求出此时函数()f x 解析式;(2)若,33x ∈-⎢⎥⎣⎦,求函数()f x 的最值. 【答案】(1)答案见解析,()2cos 23f x x π⎛⎫=+ ⎪⎝⎭;(2)最大值2;最小值2-. 23. 已知函数2()log (21)x f x kx =+-的图象过点25(2,log )2. (Ⅰ)求实数k 的值; (Ⅱ)若不等式1()02f x x a +->恒成立,求实数a 的取值范围; (Ⅲ)若函数1()2()241f x x x h x m +=+⋅-,2[0,log 3]x ∈,是否存在实数0m <使得()h x 的最小值为12,若存在请求出m 的值;若不存在,请说明理由. 【答案】(1)12k =(2)0a ≤(3)518m =- 24. 已知函数2()21f x ax x a =-+-(a 为实常数).(1)若0a >,设()f x 在区间[1,2]的最小值为()g a ,求()g a 的表达式:(2)设()()f x h x x=,若函数()h x 在区间[1,2]上是增函数,求实数a 的取值范围. 【答案】(1)163,04111()21,442132,2a a g a a a a a a ⎧-<<⎪⎪⎪=--≤≤⎨⎪⎪->⎪⎩;(2)1,02⎡⎫-⎪⎢⎣⎭。
2022-2023学年上海市上海中学高一上学期期末考试数学试卷带讲解
【分析】根据幂函数的定义及性质列方程与不等式求解即可得实数 的取值集合.
【详解】解:因为幂函数 ,所以 ,
解得 或 ,
幂函数 的图像与两条坐标轴均没有公共点,所以 ,即 ,
所以 或 均符合题意,则实数 的取值集合是 .
故答案为: .
7.不等式 的解为______.
【答案】
【分析】根据幂函数的性质确定幂函数 的奇偶性与单调性即可解不等式.
A.若 ,则函数 的图象关于原点对称
B.若 , ,则方程 有大于2的实根
C.若 , ,则方程 有两个实根
D.若 , ,则方程 有三个实根
【答案】B
【分析】A.取 , 判断;B.由 , 仍是奇函数,2仍是它的一个零点,再由上下平移判断;C.取 , 判断;D.取 , 判断.
【详解】A.若 , ,则函数 不是奇函数,其图象不可能关于原点对称,故错误;
(3)根据保序同构函数的定义可知 为单调递增的函数,结合对勾函数的单调性即可求解.
【小问1详解】
【小问2详解】
假设存在一个从集合 到集合 的“保序同构函数”,
由“保序同构函数”的定义可知,集合 和集合 中的元素必须是一一对应的,
不妨设整数0和1在 中的像分别为 和 ,
根据保序性,因为 ,
所以 ,
又 也是有理数,但是 没有确定的原像,
因为0和1之间没有另外的整数了,
故假设不成立,故不存在从集合 到集合 的“保序同构函数”;
(1)写出服药后 与 之间的函数关系式 ;
(2)进一步测定:每毫升血液中的含药量不少于 毫克时,药物对治疗疾病有效,求服药一次治疗疾病的有效时间.
【答案】代入函数 的解析式,求出 的值,将点 的坐标代入函数 的解析式,由此可得出函数 的解析式;
2020-2021年上海市各区高中高一上数学期末考试试卷含答案
复旦附中2020学年第一学期高一年级数学期末考试试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1.函数()2()log 2f x x =+−的定义域为____________. 【答案】()2,4【解析】由已知得,2420x x ⎧⎪⇒<<−>>2.不等式()()2233131x x −>+的解集为____________. 【答案】()1,0−【解析】()()2233131x x −>+>的解, 解得10x −<<3.函数2()log (31),[0,5]f x x x =+∈的反函数是____________.【答案】21,[0,4]3x y x −=∈【解析】由已知得,[][]312,0,5,0,4yx x y +=∈∈所以()f x 的反函数是21,[0,4]3x y x −=∈4.对于实数,,,a b c d ,定义a b ad bc c d−=. 设函数22log (1)1()log 1x f x x −−=,则方程()1f x =的解为 .【答案】2x =【解析】由已知得,222()log (1)log log (1),(1)f x x x x x x =−+=−> 令方程()1f x =,即(1)2x x −=,2,1x x ==−(舍) 故答案为2x = 5.若函数()1axf x x =+在区间(0,)+∞是严格增函数,则实数a 的取值范围是___ _____.【答案】0a >【解析】由已知得,()1()111a x a ax af x a x x x +−===−+++ 因为函数()1axf x x =+在区间(0,)+∞是严格增函数 所以实数a 的取值范围是0a >6.已知函数24()min 1,log f x x x ⎧⎫=+⎨⎬⎩⎭,若函数()()g x f x k =−恰有两个零点,则k 的取值范围为_______________. 【答案】(1,2)【解析】由已知得,当04x <≤时,241log x x +≥,当4x >时,241log x x+< 故241,4()log ,04x f x xx x ⎧+>⎪=⎨⎪<≤⎩ 因为函数()()g x f x k =−恰有两个零点等价于函数()f x 与y k =的图像有两个交点, 作出函数图像可知,k 的取值范围为(1,2)7.已知函数15()||(0)2f x x x x =+−>,则()f x 的递减区间是_______. 【答案】1(0,)2,(1,2)【解析】由已知得,151,021522()||5112222x x x x f x x x x x x ⎧+−<≤≥⎪⎪=+−⎨⎪−−<<⎪⎩=或,则()f x 的递减区间是1(0,)2,(1,2)8.若函数()232x x f x −=+⋅的图像关于直线x m =成轴对称图形,则m =___ . 【答案】3log 212=m 【解析】对任意的R x ∈,)()(x m f m x f −=+成立,故m x x m m x m x −−−−+⋅+=⋅+232232,整理得0)232)(22(=⋅−−−−mmxx,所以0232=⋅−−m m ,即3log 212=m9.若关于x 的不等式1202x x m −−<在区间[0,1]内恒成立,则实数m 的取值范围为_____.【答案】⎪⎭⎫ ⎝⎛223,【解析】题源选自【2017年浦东一模10】 由1|2|02x x m −−<,得122x x m −<,∴11222xx xm −<−<, 即112222xx x xm −<<+在区间[0,1]内恒成立, 函数1()22xx f x =−在区间[0,1]内单调递增,()f x ∴的最大值为32;令1()22x x g x =+,2(12)x t t =≤≤, 则1y t t=+在[1,2]上为增函数,由内函数2x t =为增函数,1()22x xg x ∴=+在区间[0,1]内单调递增,()g x 的最小值为2.∴322m <<.故答案为:322m <<. 10.已知函数22()(815)()f x x x ax bx c =++++是偶函数,若方程21ax bx c ++=在区间[]1,2上有解,则实数a 的取值范围是_____________.【答案】11,83⎡⎤⎢⎥⎣⎦【解析】题源选自【2020年普陀一模10】函数整理为()()()()432()815815815f x ax a b x a b c x b c x c =+++++++++,因为函数是偶函数,需80a b +=,1580b c +=,即8b a =−,15158c b a =−=,所以21ax bx c ++=可整理:281510ax ax a −+−=.令()28151g x ax ax a =−+−,对称轴4x =在区间[]1,2的右侧,可保证区间内函数()g x 单调,根据零点存在性定理:()()120g g ⋅≤,即()()81514161510a a a a a a −+−⋅−+−≤,易得11,83a ⎡⎤∈⎢⎥⎣⎦11.若函数()221++=+x x af x x ()0x ≥的值域为[),a +∞,则实数a 的取值范围是_____.【答案】(],2−∞【解析】由已知得,()22(1)11(1)(0)1121x x a f x x a a x x x x x +−++++=+−==+≥++因为(0)f a =,所以①当10a −≤ 时,即1a ≤时,1()(1)1a f x x x −=+++在[)0,+∞上的增函数, 所以min ()(0)f x f a ==满足值域为[),a +∞,此时1y x =+为增函数,11a y x −=+也为增函数,因此()y f x =为增函数,②当11a −>时,即2a >时,1()(1)1a f x x x −=+++在1)−上单调递减,在单调递增,min ()1)f x f ∴=−且(0)1)f f >不满足值域为[),a +∞,舍去 ③当011a <−≤时,即12a <≤时,()y f x =在[)0,+∞上单调递增, 所以min ()()(1)f x f x f a ∴≥==满足的值域为[),a +∞ 综上所述,a 的取值范围为2a ≤,即(,2]a ∈−∞12.已知集合[][],14,9A t t t t =+++,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是____________. 【答案】1或3−【解析】题源选自【2019年上海春考12】 【法一】当0t >时,当[],1a t t ∈+,则[]4,9t t aλ∈++,当[]4,9a t t ∈++,则[],1t t aλ∈+,即当a t =时,9t aλ≤+;当9a t =+时,t aλ≥,即()9t t λ=+;即当1a t =+时,4t aλ≥+,当4a t =+时,1t aλ≤+,即()()14t t λ=++,所以()()()914t t t t +=++,解得1t =.当104t t +<<+时, 当[],1a t t ∈+,则[],1t t aλ∈+,当[]4,9a t t ∈++,则[]4,9t t aλ∈++,即当a t =时,1t aλ≤+,当1a t =+时,t aλ≥,即()1t t λ=+;即当4a t =+时,9t aλ≤+,当9a t =+时,4t aλ≥+即()()49t t λ=++,所以()()()149t t t t +=++,解得3t =−.当90t +<时,同理可得,无解【法二】存在正数λ,使得对任意1a A ∈,都存在2a A ∈,使得12a a λ=, 当0t >时, 思考 当1a t =时,()()124,9a a t t t t λ=∈++⎡⎤⎣⎦ 当11a t =+时,()()()()1214,19a a t t t t λ=∈++++⎡⎤⎣⎦ 当14a t =+时,()()()124,14a a t t t t λ=∈+++⎡⎤⎣⎦ 当19a t =+时,()()()129,19a a t t t t λ=∈+++⎡⎤⎣⎦二、选择题(本大题共4题,满分20分,每题5分)每题有且只有一个正确选项.考生在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知()f x 为定义在R 上的奇函数,当0x <时,()3xf x =,则函数()f x 的值域为( )A .()1,1−B .[)0,1C .RD .[]0,1 【答案】A【解析】因为()f x 为定义在R 上的奇函数,所以(0)0f = 又因为0x <时,()3xf x =,所以()(0,1)f x ∈当0x >时,则0x −<所以()()3x f x f x −=−−=−,所以()(1,0)f x ∈− 综上所述,函数的值域为()1,1−,故选A14.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比. 按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至5000,则C 大约增加了( ) A .20% B .23%C .28%D .50%【答案】B 【解析】将信噪比SN从1000提升至5000时,C 大约增加了 222log (15000)log (11000)log (11000)W W W +−++2225000lg1000log 5001log 10012lg 2lg1000log 1001lg 2lg lg −−=≈120.2323%3lg −=≈= 故选B15.若函数1()ln f x x a x=−+在区间(1,)e 上存在零点,则常数a 的取值范围( ) A. 01a << B.11a e << C. D. 【答案】C【解析】因为1()ln ,(1,)f x x a x e x=−+∈ 1e -1<a <11e+1<a <1所以()()10f f e ⋅<因为1(1)ln110,()ln 0f a f e e a e=−+<=−+> 所以常数a 的取值范围16.设函数()f x 的定义域是R ,已知以下三个陈述句:p :存在a ∈R 且0a ≠,对任意的x ∈R ,均有(2)(2)()x a x f f f a +<+恒成立;1q :()f x 严格递减,且()0f x >恒成立;2q :()f x 严格递增,存在00x <,使得0()0f x =;用这三个陈述句组成了两个命题,命题S :“若1q ,则p ”;命题T :“若2q ,则p ”,则关于S,T ,以下说法正确的是( )A. 两个命题S,T 都是真命题B. 只有命题S 是真命题C. 只有命题T 是真命题D. 两个命题S,T 都不是真命题 【答案】A【解析】本题考察函数的性质1q :当0a >时,()0f a >,()f x 单调递减,且()0f x >而()()()222()22x a x x axx f f f f a ''++>⇒<<+ ,()()22()x a x f f f a +⇒<+,符合p所以1q 可推得p ,“若1q ,则p ”成立,所以S 为真2q :当00a x =<时,()0f a =,()f x 单调递增而,22x a x x a x ++<<()()()()22202()x a x x x f f f f f a +⇒<=+=+ ()()222()x a x f f f a +⇒<+所以2q 可推得p ,“若2q ,则p ”成立,所以T 为真 综上所述,命题S ,T 均为真命题,故选A1e-1<a <1三、解答题(本大题共5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分) 已知函数()()2151m h x m m x+=−+为幂函数,且为奇函数.(1)求m 的值;(2)求函数()()=+g x h x 在11,2x ⎡⎤∈−⎢⎥⎣⎦的值域.【解析】(1)2511m m −+=, 解得0m =或5m =. 即()h x x =或()6h x x =.又因为函数()h x 为奇函数,所以()h x x =,0m =.(2)()()g x h x x ==+设t =11,2x ⎡⎤∈−⎢⎥⎣⎦,所以t ⎡∈⎣,212tx −=. 所以()22111122t y t t −=+=−−+(此处可用单调性代替)当1t =时,max 1y =,当0t =时,min 12y =,故值域为1,12⎡⎤⎢⎥⎣⎦.18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数()12|log |h x x =. (1)求()h x 在11,22a a ⎡⎤⎛⎫> ⎪⎢⎥⎣⎦⎝⎭上的最大值;(2)设函数()f x 的定义域为I ,若存在区间A I ⊆,满足:对任何1x A ∈,都存在2x A ∈(其中A 表示A 在I 上的补集),使得()()12f x f x =,则称区间A 为()f x 的“Γ区间”.已知12()|log |h x x =(1,22x ⎡∈⎤⎢⎥⎣⎦),若1,2A a ⎡⎫=⎪⎢⎣⎭是函数()h x 的“Γ区间”,求a 的最大值.【解析】(1)()1212h h ⎛⎫==⎪⎝⎭,① 若112a <≤,则()h x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,所以()h x 的最大值为112h ⎛⎫= ⎪⎝⎭; ② 若12a <≤,则()h x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,a 上单调递增,因此此时()()1212h a h h ⎛⎫≤==⎪⎝⎭,所以()h x 的最大值为112h ⎛⎫= ⎪⎝⎭; ③ 若2a >,则()h x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,a 上单调递增, 因此此时()()122h a h h ⎛⎫≥= ⎪⎝⎭,所以()h x 的最大值为()12|log |h a a =; 综上知:若122a <≤,则()h x 的最大值为1;若2a >,则()h x 的最大值为12|log |a ;(2)由已知: ①当112a <≤时,()f x 在1[,)2a 上的值域为12(|log |,1]a , ()f x 在[,2]a 上的值域为[0,1],因为[]12(|log ,1|]0,1a ⊆, 满足条件,所以此时1,2a ⎡⎫⎪⎢⎣⎭是()f x 的“Γ区间”; ②当12a <≤时,()f x 在1,2a ⎡⎫⎪⎢⎣⎭上得到值域为[]0,1,()f x 在[],2a 上的值域为12|log |,2a ⎡⎤⎣⎦,此时,120|log |,2a ⎡⎤∉⎣⎦所以此时1,2a ⎡⎫⎪⎢⎣⎭不是()f x 的“Γ区间”; 故所求a 的最大值为1. 19.(本题满分14分,第1小题满分6分,第2小题满分8分)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献. 生产口罩的固定成本为400万元,每生产x 万箱,需另投入成本()p x 万元,当产量不足60万箱时,()21502p x x x =+;当产量不小于60万箱时,()64001011860p x x x=+−. 若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完. (1)求口罩销售利润y (万元)关于产量x (万箱)的函数关系式; (2)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大? 【解析】(1)当060x <<时,2211100504005040022y x x x x x ⎛⎫=−+−=−+− ⎪⎝⎭;当60x ≥时,6400640010010118604001460y x x x x x ⎛⎫⎛⎫=−+−−=−+ ⎪ ⎪⎝⎭⎝⎭. 所以,2150400,060,264001460,60,,x x x x N y x x x N x ⎧−+−<<∈⎪⎪=⎨⎛⎫⎪−+≥∈ ⎪⎪⎝⎭⎩(2)当060x <<时,221150400(50)85022y x x x =−+−=−−+, 当50x =时,y 取得最大值,最大值为850万元; 当60x ≥时,6400146014601300y x x ⎛⎫=−+≤−= ⎪⎝⎭, 当且仅当6400x x=时,即80x =时,y 取得最大值,最大值为1300万元. 综上,当产量为80万箱时,该口罩生产厂在生产中获得利润最大,最大利润为1300万元.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) 设0a >,函数1()12xf x a =+⋅. (1)若1a =,求()f x 的反函数1()f x −;(2)求函数()()y f x f x ⋅−=的最大值(用a 表示) ;(3)设()()(1)g x f x f x =−−.若对任意(,0]x ∈−∞,)(()0g x g ≥恒成立,求a 的取值范围.【解析】(1)()f x 值域(0,1)21log yx y−= 121()log (01)xf x x x−−=<<(定义域可不写) (2)21(1)(22)x x y a a −=+++2121a a ≤=++当0x =时,等号成立 所以最大值为2121a a ++ (3)2()2232x xag x a a −=⋅++, 令2(0,1]xt =∈,因此223ay a t a t−=++ 在1t =时取得最小值,即22a t t+ 在1t =时取得最小值 由函数22y a t t =+在严减,在)+∞严增得1≥整理得,0a <≤另解,222()(2)322xx x a g x a a −⋅=+⋅+令2(0,1]x t =∈,则2232aty a t at −=++,由已知,当(0,1]t ∈时,2223232at aa t at a a −−≥++++恒成立,整理得,2(1)(2)0t a t −−≥恒成立,由10t −<得,220a t −≤恒成立,得0a <≤21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 已知函数()f x x x a =−,其中a 为常数. (1)当1a =时,解不等式()2f x <;(2)若()f x 是奇函数,判断并证明()f x 的单调性; (3)若在[0,2]上存在2021个不同的实数(1,2,,2021)i x i =,122021x x x <<<,使得122320202021()()()()()()8f x f x f x f x f x f x −+−++−=,求实数a 的取值范围.解:(1) 当1x ≥时,220x x −−<,即12x ≤< 当1x <时,220x x −+>,即1x <综上,该不等式的解集为(,2)−∞− (2)0a = 在R 上严增(分0x ≥和0x <两种情况写不给分) 证明略 (3)①当0a ≤时,()()f x x x a =−在[0,2]上是严格增函数122311()()()()()()()()n n n f x f x f x f x f x f x f x f x −∴−+−++−=−,取值范围是(0,2(2)]a −2(2)8a ∴−≥ 解得:2a ≤−②当4a ≥时,()()f x x a x =−在[0,2]上是增函数122311()()()()()()()()n n n f x f x f x f x f x f x f x f x −∴−+−++−=−取值范围是(0,2(2)]a −2(2)8a ∴−≥ 解得:6a ≥③当24a ≤<时,由三角不等式,122312()()()()()()()(0)(2)224(4)44242n n f x f x f x f x f x f x a a af f f a a −−+−++−≤−−=⨯−+=−+<不满足条件 ④当02a <<时,由三角不等式,122312()()()()()()2()(0)()(2)24(4)44222n n f x f x f x f x f x f x a a af f f a f a a −−+−++−≤−−+=−+=−+<,不满足条件综上,a 的取值范围为(,2][6,)−∞−+∞虹口区2020学年第一学期高一年级数学期末考试试卷2021.01一. 填空题1. 已知集合{1,1,2}A =−,2{|0}B x x x =+=,则A B =【答案】{1}−2. 不等式301x x +≤−的解集为 【答案】[3,1)−3. 函数4()f x x x =+,1[,4]2x ∈的值域为【答案】17[4,]24. 计算:7log 222220log 2log 3log 579+−+= 【答案】45. 用“二分法”求方程340x x +−=在区间(1,2)内的实根,首先取区间中点 1.5x =进行判断,那么下一个取的点是x = 【答案】1.256. 已知条件:211p k x k −≤≤−,:33q x −≤<,且p 是q 的必要条件,则实数k 的取 值范围为 【答案】(,2]−∞−7. 不等式|2||1|5x x ++−≤的解集为 【答案】[3,2]−8.(A 组题)已知函数()3x f x a =+的反函数为1()y f x −=,若函数1()y f x −=的图像过 点(3,2),则实数a 的值为 【答案】6−(B 组题)已知函数||()2x a f x −=在区间[1,)+∞上是严格增函数,则实数a 的取值范围为 【答案】(,1]−∞9.(A 组题)已知集合1{|||3A x x m m =−<+,其中,x m ∈Z ,且0}m >,1{|||3B x x =+< 2m ,其中,x m ∈Z ,且0}m >,则AB 的元素个数为 (用含正整数m 的式子表示) 【答案】2m(B 组题)若集合2{|560}A x x x =+−=,{|30,}B x ax a =+=∈R ,且B A ⊂,则满足条件的实数a 的取值集合为 【答案】1{3,0,}2−10.(A 组题)已知函数2230()30x x x f x x x x ⎧+≥=⎨−<⎩,若2(3)(2)0f a f a −+>,则实数a 的 取值范围为【解析】画图可知,可知()y f x =是R 上的奇函数,严格增函数,由2(3)(2)0f a f a −+>得2(3)(2)(2)f a f a f a −>−=−,所以232a a −>−,解得(,3)(1,)a ∈−∞−+∞.(B 组题)已知函数()y f x =是定义在实数集R 上的偶函数,若()f x 在区间(0,)+∞上 是严格增函数,且(2)0f =,则不等式()0f x x≤的解集为 【答案】(,2](0,2]−∞−二. 选择题11. 已知a 、b 都是实数,那么“a b >”是“33a b >”的( C )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件12. 函数412x xy +=的图像的对称性为( B ) A. 关于x 轴对称 B. 关于y 轴对称C. 关于原点对称D. 关于直线y x =对称 13. 已知全集U =R 及集合21{|284a A a −=≤<,且}a ∈Z ,2{|3100Bb b b =+−>, 其中}b ∈R ,则AB 的元素个数为( B )A. 4B. 3C. 2D. 114. 已知函数2x y x =+,ln y x x =+,lg y x x =+的零点依次为1x 、2x 、3x ,则1x 、2x 、3x 的大小关系为( D )A. 123x x x <<B. 213x x x <<C. 231x x x <<D. 132x x x <<【解析】转化为123()2,()ln ,()lg xf x f x x f x x ===与y x =−交点的横坐标的大小关系,易得132x x x <<,故选D.15.(A 组题)设()y f x =是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意 的[,2]x t t ∈+,不等式()2()f x t f x +≥恒成立,则实数t 的取值范围是( A )A. )+∞B. [2,)+∞C. (0,2]D. [1][2,3]−【解析】当0x ≥时,2()f x x =满足2())f x f =,易得在R 上,2())f x f =,则对任意[,2]x t t ∈+,不等式())f x f t +≥恒成立,易得()y f x =是定义在R 上的严格增函数,所以x t +≥恒成立,所以1)t x ≥恒成立,所以1)(2)t t ≥−+,解得)t ∈+∞. (B 组题)若函数||y x a =−−与1ay x =+在区间[1,2]上都是严格减函数,则实数a 的 取值范围为( D )A. (,0)−∞B. (1,0)(0,1]−C. (0,1)D. (0,1]三. 解答题16. 已知a 、b 是任意实数,求证:4433a b a b ab +≥+,并指出等号成立的条件.【解析】因为()()()()44334343a b a b ab a a b b ab +−+=−+− ()3333()()()a a b b b a a b a b =−+−=−−()22222213()()24a b a ab b a b a b b ⎡⎤⎛⎫=−++=−++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故()()44330a b a b ab +−+≥,即4433a b a b ab +≥+,当且仅当a b =时,等号成立.17. 某居民小区欲在一块空地上建一面积为12002m 的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m ,东西的人行通道宽4m ,如图所示(图中单位:m ),问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少? 【解析】设矩形停车场的南北侧边长为x 米,则其东西侧边长为1200x 米, 人行通道占地面积为12007200(6)81200848S x x x x ⎛⎫=++−=++⎪⎝⎭,由平均值不等式,得7200848482244896S x x =++≥+=⨯+=, 当且仅当72008x x =,即30x =时,min 96S =,此时120040x=, 设计矩形停车场的南北侧边长为30m ,则其东西侧边长为40m ,才能使人行通道占地面积最小,最小面积是2528m .18. 已知函数23||1x y x −=+. (1)作出这个函数的大致图像; (2)讨论关于x 的方程23||1x t x −=+的根的个数. 【解析】(1)因为235211x y x x −==−++, 故先将5y x=−的图像向左平移1个单位,再向上平移2个单位,得到函数521y x =−+的图像,再将函数521y x =−+的图像在x 轴下方部分 翻折到x 轴上方,便得到函数23||1x y x −=+的大致图像; (2)当0t <时,方程23||1x t x −=+的根的个数为0, 当0t =或2t =时,方程23||1x t x −=+的根的个数为1, 当02t <<或2t >时,方程23||1x t x −=+的根的个数为2.19. 已知函数16()1x f x a a+=−+(0a >,1a ≠)是定义在R 上的奇函数.(1)求实数a 的值及函数()y f x =的值域;(2)若不等式()33x t f x ⋅≥−在[1,2]x ∈上恒成立,求实数t 的取值范围. 【解析】(1)由()f x 是定义在R 上的奇函数得6(0)0,10f a a=−=+,解得3a =, 此时31()31x x f x −=+,故对于任意的x R ∈,有3131()()03131x x x x f x f x −−−−+−=+=++,即()f x 是定义在R 上的奇函数,所以3a =,令31()31x x f x y −==+,则1301x y y +=>−,解得11y −<<, 即函数()y f x =的值域为(1,1)−;(2)法一:由(1)得31()31x x f x −=+,于是不等式()33x t f x ⋅≥−可化为()23(2)3(3)0xx t t −+⋅+−≤,令3[3,9]x u =∈(因为[1,2]x ∈),则不等式2(2)(3)0u t u t −+⋅+−≤在[3,9]u ∈上恒成立,令2()(2)(3)g u u t u t =−+⋅+−,则()0g u ≤在[3,9]u ∈上恒成立,等价于(3)0(9)0g g ≤⎧⎨≤⎩,即(3)93(2)(3)0(9)819(2)(3)0g t t g t t =−++−≤⎧⎨=−++−≤⎩151522t t t ≥⎧⎪⇔⇔≥⎨≥⎪⎩,所以,实数t 的取值范围是15,2⎡⎫+∞⎪⎢⎣⎭. 法二:由(1)得31()31x x f x −=+,当[1,2]x ∈时,()0f x >,于是不等式()33x t f x ⋅≥−可化为 ()()()()2333131433431()313131x x x xx x x xt f x −+−−−≥===−−−−−, 令31[2,8]x v −=∈(因为[1,2]x ∈),则由函数4()φv v v =−在[2,8]上是严格增函数知max 15()(8)2φv φ==, 所以,实数t 的取值范围是15,2⎡⎫+∞⎪⎢⎣⎭. 20.(A 组题)已知函数212log (1)0()log (1)0x x f x x x +≥⎧⎪=⎨−<⎪⎩.(1)判断函数()y f x =的奇偶性;(2)对任意的实数1x 、2x ,且120x x +>,求证:12()()0f x f x +>; (3)若关于x 的方程23[()]()04f x af x a +−+−=有两个不相等的正根,求实数a 取值范围. 【解析】(1)2(0)log (10)0f =+=,当0x >时,0x −<,有122()log [1()]log (1)()f x x x f x −=−−=−+=−,即()()f x f x −=−,当0x <时,0x −>,有212()log [1()]log (1)()f x x x f x −=+−=−−=−,即()()f x f x −=−,综上,函数()y f x =在R 上是奇函数;(2)因为函数2log y x =在(0,)+∞上是严格增函数,函数1u x =+在R 上也是严格增函数,故函数2log (1)y x =+在[0,)+∞上是严格增函数, 由(1)得函数()y f x =在R 上是奇函数,由奇函数的单调性得, 函数12log (1)y x =−在(,0)−∞上也是严格增函数,从而函数()y f x =在R 上是严格增函数,由120x x +>,得12x x >−,所以()()()122f x f x f x >−=−, 即()()120f x f x +>;(3)由(1)得函数()y f x =在R 上是奇函数,故原方程可化为23[()]()04f x af x a −+−=, 令()f x t =,则当0x >时,()0t f x =>,原方程有两个不相等的正根等价于:关于t 的方程2304t at a ⎛⎫−+−= ⎪⎝⎭有两 个不相等的正根,即23401343001,343344a a a a a a a a a a ⎧⎛⎫⎧∆=−−> ⎪⎪⎪<>⎝⎭⎪⎪⎪>⇔>⇔<<>⎨⎨⎪⎪⎪⎪−>>⎩⎪⎩或或,所以实数a 取值范围为3,1(3,)4⎛⎫+∞ ⎪⎝⎭.(B 组题)设a 是正常数,函数2()log )f x ax =满足(1)(1)0f f −+=. (1)求a 的值,并判断函数()y f x =的奇偶性;(2)是否存在一个正整数M ,使得()M f x >对于任意x ∈恒成立?若存在,求出M 的最小值,若不存在,请说明理由.【解析】(1)由(1)(1)0f f −+=得22log )log )0a a +=,即()22log 20a −=,注意到0a >,解得1a =,于是)2()log f x x =+,对于任意实数x ||0x x x x >=+≥,0x +>恒成立,故()y f x =的定义域是R ,在R 中任取一个实数x ,都有x R −∈,并且))22()log log f x x x −=−=)22log log ()x f x ==−+=−,故()()f x f x −=−,因此)2log y x =是奇函数;(2)设12,x x 是区间上任意给定实数,且12x x <,易知2212011x x <+<+,故120x x <+<,因为2log y x =在(0,)+∞上是严格增函数,故))2122log log x x +<+,从而)2log y x =在上是严格增函数,此时函数的最大值为2log (2,由()M f x >对于任意x ∈恒成立,得2log (2M >+, 又M 是正整数,故M 的最小值是2.附加题对于定义在D 上的函数()y f x =,设区间[,]m n 是D 的一个子集,若存在0(,)x m n ∈,使得函数()y f x =在区间0[,]m x 上是严格减函数,在区间0[,]x n 上是严格增函数,则称函数()y f x =在区间[,]m n 上具有性质P .(1)若函数2y ax bx =+在区间[0,1]上具有性质P ,写出实数a 、b 所满足的条件; (2)设c 是常数,若函数3y x cx =−在区间[1,2]上具有性质P ,求实数c 的取值范围. 【解析】(1)当函数2y ax bx =+在区间[0,1]上具有性质P 时,由其图像在R 上是抛物线, 故此抛物线的开口向上(即0a >),且对称轴是(0,1)2bx a=−∈, 于是实数a 、b 所满足的条件为20a b −<<;(2)记3()f x x cx =−,设12,x x 是区间[1,2]上任意给定的两个实数,总有()()()()2212121122f x f x x x x x x x c −=−++−,若3c ≤,当12x x <时,总有120x x −<且2211220x x x x c ++−>, 故()()120f x f x −<,因此3y x cx =−在区间[1,2]上是严格增函数,舍去,若12c ≥,当12x x <时,总有120x x −<且2211220x x x x c ++−<, 故()()120f x f x −>,因此3y x cx =−在区间[1,2]上是严格减函数,舍去,若312c <<,当12x x <且12,x x ⎡∈⎢⎣时,总有120x x −<且2211220x x x x c ++−<,因此3y x cx =−在区间⎡⎢⎣上是严格减函数,当12x x <且12,x x ⎤∈⎥⎦时,总有120x x −<且2211220x x x x c ++−>,故()()120f x f x −<,因此3y x cx =−在区间⎤⎥⎦上是严格增函数,因此,当(3,12)c ∈时,函数3y x cx =−在区间[1,2]上具有性质P .控江中学2020学年度第一学期期终考试高一数学试卷一、填空题(本大题共12小题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知全集{}{}210,27U x x A x x =<≤=<<,则A =_________. 【答案】[]7,102.设实数a 满足2log 4a =,则a =_________. 【答案】163.已知幂函数235()(1)m m f x m x −−=−的图像不经过原点,则实数m =_________.【答案】24.函数2()21f x x ax =−−在区间[]1,3上为严格减函数的充要条件是_________. 【答案】3a ≥5.函数22()log (1)f x x =−的定义域为_________. 【答案】(1,1)− 6.设函数2,0(),,0x x f x x x −≤⎧=⎨>⎩若()9f α=,则α=_________. 【答案】3或9−7.若函数()(1)xf x a a =>在[]1,2−上的最大值为4,则其最小值为_________.【答案】128.在同一平面直角坐标系中,函数()y g x =的图像与3xy =的图像关于直线y x =对称,而函数()y f x =的图像与()y g x =的图像关于y 轴对称,若()1f a =−,则a 的值是______.【解析】3()log g x x =,3()log ()()1g a a f a −=−==−,所以13a =−. 9.如果关于x 的方程53x x a −++=有解,则实数a 的取值范围是_________. 【解析】=53(5)(3)8a x x x x −++≥−−+=.10.若定义在R 上的奇函数()f x 在(0,)+∞上是严格增函数,且(4)0f −=,则使得()0xf x >成立的x 的取值范围是_________.【解析】()0xf x >,所以,()x f x 同号,又()f x 在(0,)+∞上是严格增函数且为奇函数,(4)0f −=,所以()f x 在(,0)(0,)−∞+∞和上是严格增函数, (4)(4)(0)0f f f −===画出大致图像,()x f x 和在(,4)(4,)−∞−+∞和上同号, 所以(,4)(4,)x ∈−∞−+∞.11. 函数()lg(221)x xf x a −=++−的值域是R ,则实数a 的取值范围是___________.【解析】2211x xa a −++−≥+,所以101a a +≤⇒≤−.12. 若直角坐标平面内两点,P Q 满足条件:①,P Q 都在函数()f x 的图像上;②,P Q 关于原点对称,则对称点(,)P Q 是函数()f x 的一个“匹配点对”(点对(,)P Q 与(,)Q P 看作同一个“匹配点对”),已知函数2241,0()2,0x x x x f x x e ⎧++<⎪=⎨≥⎪⎩,则()f x 的“匹配点对”有____个.【解析】根据题意:画出两函数的图像,并把2241(0)y x x x =++>的图像关于原点对称的图像,如图:观察图像可得, 他们的交点个数是:2二、选择题13.函数111y x =−+的值域是( C ) A.(,1)−∞ B.(1,)+∞ C.(,1)(1,)−∞+∞ D.(,)−∞+∞ 14.若,0a b c a b c >>++=,则下列各式正确的是( D ) A.ab bc > B.ac bc > C.a b b c > D.ab ac >15.已知函数1,0()0,01,0x f x x x >⎧⎪==⎨⎪−<⎩,若2()()F x x f x =⋅,则()F x 是( B )A.奇函数,在(,)−∞+∞上为严格减函数B.奇函数,在(,)−∞+∞上为严格增函数C.偶函数,在(,0)−∞上严格减,在(0,)+∞上严格增D.偶函数,在(,0)−∞上严格增,在(0,)+∞上严格减16.设0a b c >>>,则221121025()a ac c ab a a b ++−+−取得最小值时,a 的值为( A )2 C. 4D.【解析】2222111121025(5)()()a ac c a c a ab ab ab a a b ab a a b ++−+−+−+++−=− 211(5)()0224()a c ab a a b ab a a b =−+++−+≥++=−, 当且仅当50,1,()1ac ab a a b −==−=,即25a b c ===时取等号, 故选A.三、解答题17.已知函数2()21f x ax ax =++.(1)若实数1a =,请写出函数()3f x y =的单调区间(不需要过程); (2)已知函数()y f x =在区间[3,2]−上的最大值为2,求实数a 的值. 【解析】(1)当1a =时,222(())11333xx x f x y +++===,严格增区间是(1,)−+∞,严格减区间是(,1)−∞−; (2)①当0a >时,对称轴1[3,2]x =−∈−,所以(2)4412f a a =++=,解得18a =, ②当0a =时,()1f x =不合题意, ③当0a <时,对称轴1[3,2]x =−∈−, 所以(1)212f a a −=−+=,解得1a =−,综上,18a =或1a =−. 18.设函数()|2|,()2f x x a g x x =−=+.(1)当1a =时,求不等式()()f x g x ≤的解集;(2)求证:1,,222b b f f f ⎛⎫⎛⎫⎛⎫− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中至少有一个不小于12.【解析】(1)当1a =时,不等式()()f x g x ≤即|21|2x x −≤+,所以12212x x x ⎧≤⎪⎨⎪−+≤+⎩或12212x x x ⎧≥⎪⎨⎪−≤+⎩,解得133x −≤≤, 故解集为1,33⎡⎤−⎢⎥⎣⎦;(2)反证法,假设1,,222b b f f f ⎛⎫⎛⎫⎛⎫− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都小于12,则111111,,1222222a b a b a −<+<−<−<−<−<,前两式相加,得1122a −<<,由最后一个式子得1322a <<,矛盾,所以1,,222b b f f f ⎛⎫⎛⎫⎛⎫− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中至少有一个不小于12.19. 研究表明:在一节40分钟的网课中,学生的注意力指数y 与听课时间x (单位:分钟)之间的变化曲线如图所示,当[0,16]x ∈时,曲线是二次函数图像的一部分;当[16,40]x ∈ 时,曲线是函数0.880log ()y x a =++图像的一部分,当学生的注意力指数不高于68时, 称学生处于“欠佳听课状态”. (1)求函数()y f x =的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态” 的时间有多长?(精确到1分钟)【解析】(1)当[0,16]x ∈时,设2()(12)84(0)f x b x b =−+<由(16)80f =,得:2(1612)84=80b −+,故14b =−...............2分 当[16,40]x ∈时,由(16)80f =,得:0.8log (16)8080a ++=, 故15a =−.................4分所以20.81(12)84,[0,16]()4log (15)80,(16,40]x x f x x x ⎧−−+∈⎪=⎨⎪−+∈⎩...........................6分(2)当[0,16]x ∈时,由21(12)84684x −−+≤,得:[0,4]x ∈......................3分当[16,40]x ∈时,由0.8log (15)8068x −+≤,得:12150.829.6x −≥+≈所以[30,40]x ∈...........................3分因此,在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有14分 钟..............8分.20. 已知1()log 1amxf x x −=−(0a >、1a ≠)是奇函数. (1)求实数m 的值;(2)判断函数()f x 在(1,)+∞上的单调性,并给出证明;(3)当(,2)x n a ∈−时,()f x 的值域是(1,)+∞,求实数a 与n 的值. 【解析】(1)因为函数()f x 是奇函数,所以()()0f x f x −+=在定义域内恒成立,所以11log log 011aa mx mx x x +−+=−−−,即11111mx mxx x +−⋅=−−−, 即22211m x x −=−在定义域内恒成立,所以21m =,又当1m =时,111mxx −=−−矛盾,所以1m =−; (2)由(1)得1()log 1a x f x x +=−,设11221111x x t x x x +−+===+−−−, 设12,1,)x x ∈+∞,且12x x >,则()()()211212122221111x x t t x x x x −−=−=−−−−, 因为12,1,)x x ∈+∞,且12x x >,所以122110,10,0x x x x −>−>−<, 所以120t t −<,即12t t <,当1a >时,12log log a a t t <,()()12f x f x <,()f x 严格减, 同理,当01a <<时,()f x 严格增;(3)函数()f x 的定义域为(,1)1,)−∞−+∞,①当21n a <−≤−时,01a <<,所以()f x 在(,2)n a −上严格增,要使得()f x 的值域是(1,)+∞,则1log 1121an n a +⎧=⎪−⎨⎪−=−⎩,无解; ②当12n a ≤<−时,3a >,所以()f x 在(,2)n a −上严格减,要使得()f x 的值域是(1,)+∞,则1,1log 13a n a a =⎧⎪−⎨=⎪−⎩,解得2a =+或2a =,综上,1,2n a ==+.21.若函数()f x 的定义域为D ,集合M D ⊆,若存在非零实数t 使得任意x M ∈都有x t D +∈,且()()f x t f x +>,则称()f x 为M 上的t −增长函数.(1)已知函数()g x x =,判断()g x 是否为区间[]1,0−上的32−增长函数,并说明理由; (2)已知函数()f x x =,且()f x 是区间[4,2]−−上的n −增长函数,求正整数n 的最小值;(3)如果()f x 是定义域为R 的奇函数,当0x ≥时,22()f x x a a =−−,且()f x 为R 上的4−增长函数,求实数a 的取值范围.【解析】(1)()g x x =是;因为[]1,0x ∀∈−,()3330222g x g x x x ⎛⎫⎛⎫+−=+−=> ⎪ ⎪⎝⎭⎝⎭; (2)由题意得,x n x +>对[4,2]x ∈−−恒成立等价于2222x nx n x ++>,即220nx n +>对[4,2]x ∈−−恒成立 因为0n >,所以22nx n +是关于x 的一次函数且单调递增,于是只需280n n −+>,解得8n >,所以满足题意的最小正整数n 为9.(3)由题意得2222222,(),2,x a x a f x x a x a x a x a ⎧+≤−⎪=−−<<⎨⎪−≥⎩已知任意x ∈R ,(4)()f x f x +≥,因为()f x 在22[,]a a −上递减,所以,4x x +不能同时在区间22[,]a a −上,因此2224()2a a a >−−=,注意到()f x 在2[2,0]a −上非负,在2[0,2]a 上非正若22244a a <≤,当22x a =−时,24[0,2]x a +∈,此时(4)()f x f x +≤,矛盾,因此244a >,即(1,1)a ∈−.当244a >时,下证()f x 为R 上的4-增长函数: ①当24x a +≤−,(4)()f x f x +>显然成立,②当224a x a −<+<时,2243x a a <−<−,此时2(4)(4)f x x a +=−+>−,22()2f x x a a =+<−,(4)()f x f x +>③当24x a +≥时,22(4)422()f x x a x a f x +=+−>+≥ 因此()f x 为R 上的4-增长函数综上,为使得()f x 为R 上的4-增长函数a 的取值范围是()1,1−.长宁区2020学年第一学期高一年级数学期末考试试卷(考试时间90分钟,本卷满分100分)一、填空题(本大题共12小题,每小题3分,共36分.答案填在答题纸相应位置). 1.已知全集为R ,集合{}32A x x =−≤<,则A = . 【答案】()[),32,−∞−+∞2.函数y =的定义域为 .【答案】[)1+∞,3.若幂函数a y x =在区间()0,+∞上是严格减函数,则实数a 的取值范围是 . 【答案】(),0−∞4.设一元二次方程2630x x −−=的两个实根为1x 、2x ,则2212x x += . 【答案】425.已知:31x m α<−,:2x β<,若α是β充分条件,则m 的取值范围是 . 【答案】1m ≤6.若()2log 10x −>,则x 的取值范围是 . 【答案】2x >7.设a 、b 都为正数,且4a b +=,则11a b+的最小值为 . 【答案】18.设关于x 的不等式21110a x b x c ++>与22220a x b x c ++>的解集分别为A 、B ,则不等式组2111222200a xb xc a x b x c ⎧++≤⎪⎨++>⎪⎩的解集可以用集合A 、B 的运算表示为 . 【答案】A B9.已知lg 2a =,103b =,试用a 、b 表示12log 25= . 【答案】()212a a b−+10.已知函数[]()220,1y x ax x =+∈的最小值为2−,则实数a = . 【答案】32−11.设关于x 的方程()223,x x ax b a b −+−=+∈R 解集为M ,关于x 的不等式()()2230x x −−≥的解集为N ,若集合M N =,则a b ⋅= .【答案】15−12.若函数()121log 1,1021,0x x x y x m−−−≤<⎧⎪=⎨⎪−≤≤⎩的值域为[]1,1−,则实数m 的取值范围为 .【答案】12m ≤≤二、选择题(本大题共4小题,每小题3分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的)13.下列四组函数中,两个函数相同的是( C ). .A y =2y =;.B 1y =和0y x =;.C {}()0,1y x x =∈和{}()20,1y x x =∈;.D 2log a y x =和2log a y x =.14.函数1312xy x ⎛⎫=− ⎪⎝⎭的零点所在区间为( B )..A 10,3⎛⎫ ⎪⎝⎭;.B 11,32⎛⎫⎪⎝⎭;.C 12,23⎛⎫⎪⎝⎭;.D 2,13⎛⎫ ⎪⎝⎭.15.在同一直角坐标系中,二次函数2y ax bx =+与幂函数()0b ay x x =>图像的关系可能为( A ).A .B .C .D 16.已知“非空集合M 的元素都是集合P 的元素”是假命题.给出下列四个命题: ①M 的元素不都是P 的元素; ②M 的元素都不是P 的元素; ③存在x P ∈且x M ∈;④存在x M ∈且x P ∉;这四个命题中,真命题的个数为( B )..A 1个;.B 2个;.C 3个.D 4个;【解析】①④正确.三、解答题(本大题共5小题,共52分.解答要写出文字说明、证明过程或演算步骤). 17.(本题满分6分)已知集合{}23A x x =−<,集合1207x B xx −⎧⎫=>⎨⎬−⎩⎭.求集合A B .【解析】{}()231,5A x x =−<=−,1210,772x B xx −⎧⎫⎛⎫=>=⎨⎬ ⎪−⎩⎭⎝⎭,所以()1,7A B =−18.(本题满分8分,共有2小题,第(1)小题4分,第(2)小题4分). 化简下列代数式(1)())1620a aa +<;(2)010a <<.【解析】(1)()163332a aa a a a a a a +=++=−−+=−;(21lg a ===−.19.(本题满分10分,共有2小题,第(1)小题5分,第(2)小题5分)甲、乙两城相距100km ,某天然气公司计划在两地之间建天然气站P 给甲、乙两城供气.设P 站距甲城km x ,为保证城市安全,天然气站距两城市的距离均不得少于10km .已知建设费用y (万元)与甲、乙两地的供气距离()km 的平方和成正比(供气距离指天然气站到城市的距离),当天然气站P 距甲城的距离为40km 时,建设费用为1300万元. (1)把建设费用y (万元)表示成P 站与甲城的距离()km x 的函数,并求定义域; (2)求天然气供气站建在距甲城多远时建设费用最小,并求出最小费用的值.【解析】(1)设比例系数为k ,则22(100)(1090)y k x x x ⎡⎤=+−≤≤⎣⎦又40,1300x y ==,所以()2213004060k =+,即14k =, 所以()22211(100)1005000(1090)42y x x x x x ⎡⎤=+−=−+≤≤⎣⎦(2)由(1)可得()22211(100)100500042y x x x x ⎡⎤=+−=−+⎣⎦, 所以()22111005000(50)125022y x x x =−+=−+, 所以当50x =时,y 有最小值为1250万元,所以天然气供气站建在距甲城50km 时费用最小,最小费用的值为1250万元.20.(本题满分14分,共有3小题,第(1)小题4分,第(2)小题5分,第(3)小题5分).设()2121x x f x −=+.(1)判断函数()y f x =的奇偶性,并说明理由; (2)求证:函数()y f x =在R 上是严格增函数; (3)若()()2110f t f t −+−<,求t 的取值范围. 【解析】(1)函数()y f x =为奇函数,证明如下:易知()2121x x f x −=+的定义域为(),−∞+∞,关于原点对称,()()()()22121122112221x xx xx xx x f x f x −−−−−−−−====−+++,所以()y f x =为奇函数; (2)任取12,x x R ∈,且12x x <易知()212122=1212121x x x x xf x −+−==−+++,()()()()()1212212212222222211212121212121x x x x x x x x f x f x −⎛⎫−=−−−=−= ⎪++++++⎝⎭因为12x x <,所以2112210,0,10,22212022x x x x x x >>−<+>+>,所以()()120f x f x −<,即()()12f x f x <, 所以函数()y f x =在R 上是严格增函数; (2)因为()y f x =在R 上是奇函数且严格增,所以()()()()()222110111f t f t f t f t f t −+−<⇔−<−−=−()()221120210t t t t t t ⇔−<−⇔+−>⇔+−>,解得1t >或2t <−,所以t 的取值范围是1t >或2t <−.21.(本题满分14分,共有3小题,第1小题4分,第2小题4分,第3小题6分)设()()2af x x a x=−+∈R . (1)求不等式()()11f x f x −−>的解集M ; (2)若函数()y f x =在()0,+∞上最小值为114a −+,求实数a 的值;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015学年位育中学高一第一学期期末考试试卷可能用到的相对原子质量:Na-23、Mg-24、Ag-108、K-39、N-14、 C-12、H-1、O-16、Cl-35.5 Br-80、I-127、S-32、Fe-56 一、选择题(每小题只有一个正确答案) 1、海水中含量最多的卤素是( )A. 氟B. 氯C. 溴D. 碘2、表示物质与其所含化学键类型、所属化合物类型完全正确的一组是( ) 物质MgCl 2SiO 2 NaOHNH 4Cl所含化学键类型 离子键、共价键 共价键 离子键、共价键 离子键、共价键 所属化合物类型离子化合物共价化合物共价化合物共价化合物选项ABCD3、在3 mL 碘水中,加入1 mL 四氯化碳,振荡静置后,观察到试管里的分层现象是( )4、某学生在实验室制备HCl 时可能进行如下操作:①连接好装置,检查气密性;②缓缓加热;③加入NaCl 固体;④把分液漏斗中的浓硫酸滴入烧瓶中;⑤多余的氯化氢用NaOH 溶液吸收;⑥用向上排空气法收集HCl 。
其中正确的操作顺序是( )A .①③④②⑥⑤B .①②③④⑤⑥C .③④②①⑥⑤D .①④③②⑥⑤ 5、在光照条件下,不会引起化学变化的是( ) ①氢气与氯气混合物 ②氯水 ③氢气与空气 ④溴化银 A. ①②③ B. ③ C. ①④ D. ②③④6、根据世界环保联盟的要求,广谱消毒剂ClO 2将逐渐取代Cl 2成为生产自来水的消毒剂。
工业上ClO 2常用NaClO 3和Na 2SO 3溶液混合反应制得,则反应后Na 2SO 3转化为( ) A .Na 2SO 4 B .SO 2 C .S D .Na 2S7、下列属于吸热反应的是( )A. 乙醇燃烧B. 二氧化碳和碳化合C. 氢氧化钠溶液与盐酸反应D. 生石灰与水混合8、卤素单质A 、B 、C 各0.1 mol ,在相同状况下跟H 2反应,放出热量关系是Q A > Q B > Q C ,下列叙述班级________流水号_______学号________姓名_________错误的是()A.单质的氧化性:A>B>C B.气态氢化物稳定性:HA<HB<HC C.原子半径:A<B<C D.元素的非金属性:A>B>C9、鉴别NaCl、NaBr、NaI可以选用的试剂有()A.碘水、淀粉溶液 B.氯水、四氯化碳C.氯水、碘化钾淀粉溶液 D.硝酸银溶液、稀硫酸10、固体烧碱溶于水明显放热,这是因为()①在溶解过程中,Na+和OH-与水结合成水合离子,这是个放热过程②Na+和OH-从烧碱固体表面向水中扩散的过程是吸热过程③过程①放热量超过了过程②的吸热量④过程②吸热量超过了过程①的放热量A.① B.①③ C.①②③ D.①③④11、右图是H2和Cl2反应生成HCl的能量变化示意图,由图可知()A. 反应物的能量总和小于生成物的能量B. 生成1 mol HCl(g)需吸收92.3 KJ的能量C. H2 (g) + Cl2 (g) →2HCl (g) + 184.6 KJD. H2 (g) + Cl2 (g) →2HCl (g) + Q (Q>184.6 KJ)12、关于某温度时的饱和溶液的说法中,正确的是()A. 溶解的溶质和未溶解的溶质质量相等B. 溶质不再溶解,因此从表面看溶质不再减少,也不再增加C. 升高温度,饱和溶液将变为不饱和溶液D. 溶质的溶解和结晶继续进行,且速率相等13、下列试剂的保存方法正确的是()A. 少量液溴要保存在细口瓶中,并在液溴上面加水封B. 氢氧化钠溶液保存在带有橡胶塞的滴瓶中C. 次氯酸钙可以敞口保存于空气中D. 溴化银固体应放在棕色瓶内保存14、用N A表示阿伏伽德罗常数,下列说法正确的是()A. 22.4 L O2的分子数约为N AB. 1 mol OH-所含的电子数为10N AC. 在标准状况下,11.2 L H2O的分子数约为0.5N AD. 0.1 mol铁与足量的盐酸完全反应,铁失去的电子数为0.1N A15、分离苯和水,应选用的装置是()16、在氧化还原反应中,氧化剂的氧化性强于氧化产物的氧化性,还原剂的的还原性强于还原产物的还原性。
在一定条件下,下列微粒的还原性顺序为:Cl- < Br- < Fe2+ < I- < SO2,由此判断以下反应在溶液中不能发生的是()A. 2Fe3+ + SO2 + 2H2O → 2Fe2+ + SO42- + 4H+B. 2Fe2+ + Cl2→ 2Fe3+ + 2Cl-C. 2Br- + 4H+ + SO42-→ SO2 + Br2 + 2H2OD. I2 + SO2 + 2H2O → 4H+ + SO42- + 2I-17、向含20.6 g NaBr的溶液中通入Cl2后,将溶液蒸干,得固体16.15 g,下列说法正确的是()A.反应的Cl2为0.05mol B.40%的Br-被氧化C.NaBr全部转化为NaCl D.16.15 g固体由NaCl和Br2组成二、填空题18、右图是铜锌原电池,某同学做完实验后记录如下:①Zn为正极,Cu为负极;②溶液中氢离子浓度变小;③电子流动的方向为:Zn→Cu;④Cu棒上有氢气产生;⑤若有1mol电子流过导线,则产生氢气1 mol;⑥该原电池产生氢气的速度比没有导线相连时慢。
上述记录中描述正确的是。
(请填编号)19、有A、B、C三种元素,它们之间能形成化合物AC。
已知B和C原子核外电子层数相同,而最外层电子数之和为10。
A2+和B原子具有相同的电子层数。
C原子最外层电子数为次外层电子数的3倍,请回答下列问题:(1)写出A离子的结构示意图:__________。
(2)化合物AC中存在的化学键为_______键,写出AC的电子式_______。
(3)写出化合物BC2的结构式:_________。
20、氮化硅(Si 3N 4)陶瓷材料可用于原子反应堆。
氮化硅可由下列反应制得___SiO 2 + ___C + ___N 2___Si 3N 4 + ___CO注意:Si 3N 4中氮元素的化合价为-3 (1)配平上述化学反应方程式。
(2)该反应中氧化剂是_______,被氧化的元素是______。
(3)若生成1 mol Si 3N 4,则反应过程中转移______个电子。
21、海带含有丰富的碘,为了从海带中提取碘,设计并进行以下实验:完成下列填空:(1)步骤③的操作名称是 ;步骤⑤的操作名称是 。
(2)步骤④所发生反应的离子方程式是 。
(3)步骤⑤中不能用酒精代替苯的理由是 。
(4)检验提取碘后的水层是否还含有单质碘的方法是 。
三、计算题22、现有KBr 和KCl 的混合物3.87 g ,溶于水并加入过量的AgNO 3溶液后,产生6.63 g 沉淀,试计算:(1)原混合物中KBr 和KCl 物质的量。
(2)原混合物中KCl 的质量分数。
23、电解饱和食盐水是一项重要的化学工业,其反应原理为:________________________(填写该反应的化学方程式)。
(1)当电解产生0.4 mol NaOH 时,计算S. T. P.下,在阴极能收集到气体的体积为多少升?①灼烧海带海带灰海带灰 悬浊液含碘离子溶液 含碘水溶液水层苯层单质碘②浸泡新制氯水 苯 ③④ ⑤ ⑥(2)已知室温时某饱和食盐水的溶质质量分数为0.265,取200 g该饱和食盐水进行电解,当NaCl 反应了一半时停止电解,此时溶液的密度为1.086 g/cm3,分别求出所得混合溶液中NaCl质量分数(保留三位小数)和NaOH的物质的量浓度(保留三位小数)。
2015年位育中学高一第一学期化学期末考试答案一、选择题(每小题3分)1 2 3 4 5 6 7 8 9 10B B D A B A B B B C11 12 13 14 15 16 17C D C B C C A二、填空题18、②③④。
(请填编号)(3分)19、(8分)(1)(2分)(2)离子键,。
(4分,每个2分)(3)O=C=O(2分)20、(8分)(1)3SiO2 + 6C + 2N2Si3N4 + 6CO(2分)(2)N2,(4分,每个2分)(3)12N A(2分)21、(11分)(1)过滤(2分);萃取分液(2分)。
(2)2I- + Cl2→ I2 + 2Cl-(2分)(3)酒精能与水互溶(2分)(4)取样,加入淀粉溶液,如果溶液变蓝,则还有单质碘。
(3分)三、计算题22、(6分)(1)KBr和KCl物质的量都是0.02 mol。
(4分,每个2分)(2)原混合物中KCl的质量分数38.5%。
(2分)23、(13分)通电2NaCl + 2H2O 2NaOH + H2↑+ Cl2↑(3分)(1)氢气:4.48L(3分)(2)NaCl质量分数(保留三位小数):0.144或者14.444%。
(3分)NaOH的物质的量浓度(保留三位小数):2.681 mol/L。
(4分)。