指数函数试题
高一数学指数与指数函数试题答案及解析
高一数学指数与指数函数试题答案及解析1.设函数(x)=,则满足的的取值范围是().A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)【答案】D.【解析】当时,,,解得,因此,当时,,解得,因此,综上【考点】分段函数的应用.2.设函数则使得成立的的取值范围是()A.B.C.D.【答案】C【解析】当时,由,可得,即;当时,由,可得,即,综上.故选C【考点】函数的求值.3.已知定义在R上的函数满足,当时,,且.(1)求的值;(2)当时,关于的方程有解,求的取值范围.【答案】(1),(2)【解析】(1)由可知,代入表达式可求得的值.又,可求出的值;(2)由(1)可知方程为,对x进行讨论去绝对值符号,可得,据结合指数函数,二次函数的性质可求得的取值范围.试题解析:解:(1)由已知,可得又由可知 . 5分(2)方程即为在有解.当时,,令,则在单增,当时,,令,则,,综上: . 14分【考点】本题主要考查指数函数,二次函数求值域和分类讨论的数学思想方法.4.函数的图象必经过定点___________.【答案】【解析】∵指数函数过定点,∴函数过定点.【考点】函数图象.5.已知,,且,则与的大小关系_______.【答案】【解析】由,又由,所以,所以由可得,所以,,所以即.【考点】1.分数指数幂的运算;2.对数的运算;3.指数函数的单调性.6.函数在上的最大值比最小值大,则 .【答案】【解析】因为,根据指数函数的性质可知在单调递增,所以最大值为,最小值为,依题意有即,而,所以.【考点】指数函数的图像与性质.7.设,则的大小关系是()A.B.C.D.【答案】B【解析】把看成函数当时的函数值,因为,所以;把看成函数当时的函数值,因为,所以;把看成函数当时的函数值,因为 ,所以 .综上, ,故选B【考点】1、指数函数的性质;2、对数函数的性质.8.若,则__________.【答案】【解析】【考点】指数函数的运算法则9.已知,则的大小关系是.【答案】【解析】因为指数函数在R上单调递减,所以。
指数计算与指数函数
指数计算与指数函数一.选择题(共11小题)1.已知2x>21﹣x,则x的取值范围是()A.R B.x<C.x>D.∅2.运算的结果是()A.3 B.﹣3 C.±3 D.以上都不正确3.化简的结果是()A.a2B.a C.D.4.已知,则的值是()A.3 B.5 C.7 D.95.函数f(x)=a x(a>0,且a≠1)对于任意的实数x、y都有()A.f(xy)=f(x)•f(y)B.f(x+y)=f(x)•f(y)C.f(xy)=f(x)+f(y)D.f(x+y)=f(x)+f(y)6.若2x=3,2y=4,则2x+y的值为()A.7 B.10 C.12 D.347.函数f(x)=(a2﹣3a+3)a x是指数函数,则a的值为()A.1 B.3 C.2 D.1或38.若a=log20.5,b=20.5,c=0.52,则a,b,c三个数的大小关系是()A.a<b<c B.b<c<a C.a<c<b D.c<a<b9.已知函数f(x)=2x﹣b(2≤x≤4,b为常数)的图象经过点(3,1),则f(x)的值域为()A.[4,16] B.[2,10] C.[,2]D.[,+∞)10.函数f(x)=的定义域是()A.[O,+∞)B.[1,+∞)C.(﹣∞,0]D.(﹣∞,1]11.已知全集U=R,集合,B={x|x2﹣6x+8≤0},则图中阴影部分所表示的集合为()A.{x|x≤0}B.{x|2≤x≤4}C.{x|0<x≤2或x≥4} D.{x|0≤x<2或x>4}二.填空题(共11小题)12.=.13.计算:=,8=.14.计算:()﹣1+()0﹣9=.15.若10x=3,10y=4,则10x+y=.16.计算:的值是.17.×÷=.18.函数的单调增区间为.19.函数的值域为.20.函数y=2+a x﹣2(a>0且a≠1)的图象恒过定点,它的坐标为.21.若函数f(x)=2x的值域是[4,+∞),则实数x的取值范围为.22.函数的单调递增区间是.三.解答题(共8小题)23.计算:.24.计算(1)log54•log65+log69(2)(3)解不等式:x2+(a﹣3)x﹣3a>0.25.已知函数f(x)=a x(x≥0)的图象经过点(2,),其中a>0且a≠1.(1)求a的值;(2)求函数y=f(x)(x≥0)的值域.26.已知指数函数f(x)=a x(a>0,且a≠1)过点(﹣2,9)(1)求函数f(x)的解析式(2)若f(2m﹣1)﹣f(m+3)<0,求实数m的取值范围.27.已知函数y=|2x﹣2|(1)作出其图象;(2)由图象指出函数的单调区间;(3)由图象指出当x取何值时,函数有最值,并求出最值.28.已知函数f(x)=a x﹣1(a>0,a≠1)的图象经过点(3,).(1)求a的值;(2)求函数f(x)=a2x﹣a x﹣2+8,当x∈[﹣2,1]时的值域.29.已知函数y=2|x|,x∈R(1)作出其图象;(2)说出其单调减区间、奇偶性、最大值、最小值.30.已知f(x)=9x﹣2×3x+4,x∈[﹣1,2].(1)设t=3x,x∈[﹣1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.参考答案与试题解析一.选择题(共11小题)1.已知2x>21﹣x,则x的取值范围是()A.R B.x<C.x>D.∅【解答】解:2x>21﹣x,可得x>1﹣x,解得x>.故选:C.2.(2016秋•肃州区校级期中)运算的结果是()A.3 B.﹣3 C.±3 D.以上都不正确【解答】解:==3,故选:A3.(2015秋•枣庄期中)化简的结果是()A.a2B.a C.D.【解答】解:==,故选C.4.(2013秋•鹿城区校级期中)已知,则的值是()A.3 B.5 C.7 D.9【解答】解:∵,∴=,∴=7.故选:C.5.(2016秋•邹平县期中)函数f(x)=a x(a>0,且a≠1)对于任意的实数x、y都有()A.f(xy)=f(x)•f(y)B.f(x+y)=f(x)•f(y)C.f(xy)=f(x)+f(y)D.f(x+y)=f(x)+f(y)【解答】解:由函数f(x)=a x(a>0,且a≠1),得f(x+y)=a x+y=a x•a y=f(x)•f(y).所以函数f(x)=a x(a>0,且a≠1)对于任意的实数x、y都有f(x+y)=f(x)•f(y).故选B.6.(2017春•东莞市校级月考)若2x=3,2y=4,则2x+y的值为()A.7 B.10 C.12 D.34【解答】解:2x+y=2x•2y=3×4=12,故选:C.7.(2016秋•仙桃期末)函数f(x)=(a2﹣3a+3)a x是指数函数,则a的值为()A.1 B.3 C.2 D.1或3【解答】解:由题意得:,解得:a=2,故选:C.8.(2017•和平区模拟)若a=log20.5,b=20.5,c=0.52,则a,b,c三个数的大小关系是()A.a<b<c B.b<c<a C.a<c<b D.c<a<b【解答】解:a=log20.5<0,b=20.5>1,0<c=0.52<1,则a<c<b,则选:C.9.(2016秋•辛集市期末)已知函数f(x)=2x﹣b(2≤x≤4,b为常数)的图象经过点(3,1),则f(x)的值域为()A.[4,16] B.[2,10] C.[,2]D.[,+∞)【解答】解:因为函数f(x)=2x﹣b的图象经过点(3,1),所以1=23﹣b,则3﹣b=0,解得b=3,则函数f(x)=2x﹣3,由2≤x≤4得,﹣1≤x﹣3≤1,则2x﹣3≤2,所以f(x)的值域为[,2],故选C.10.(2016•海淀区一模)函数f(x)=的定义域是()A.[O,+∞)B.[1,+∞)C.(﹣∞,0]D.(﹣∞,1]【解答】解:要使函数有意义,则需2x﹣1≥0,即为2x≥1,解得,x≥0,则定义域为[0,+∞).故选A.11.(2016•鹰潭一模)已知全集U=R,集合,B={x|x2﹣6x+8≤0},则图中阴影部分所表示的集合为()A.{x|x≤0}B.{x|2≤x≤4}C.{x|0<x≤2或x≥4} D.{x|0≤x<2或x>4}【解答】解:由Venn图可知阴影部分对应的集合为A∩(∁U B),∵={x|x≥0},B={x|x2﹣6x+8≤0}={x|2≤x≤4},∴∁U B={x|x>4或x<2},即A∩(∁U B)={x|0≤x<2或x>4},故选:D.二.填空题(共11小题)12.(2016秋•昌平区校级期末)=4.【解答】解:=+1+=+1+=4,故答案为:4.13.(2016春•湖州期末)计算:=5,8=27.【解答】解:==5,8==27,故答案为:5,27.14.(2016秋•响水县校级月考)计算:()﹣1+()0﹣9=0.【解答】解:()﹣1+()0﹣9=2+1﹣3=0.故答案为:0.15.(2016秋•延川县校级期中)若10x=3,10y=4,则10x+y=12.【解答】解:∵10x=3,10y=4,则10x+y=10x•10y=3×4=12.故答案为:12.16.(2015秋•益阳校级期中)计算:的值是.【解答】解:原式==2﹣4=.故答案为.17.(2017春•长汀县校级月考)×÷=.【解答】解:原式=×÷=××=,故答案为:18.(2016秋•江阴市期中)函数的单调增区间为[2,+∞).【解答】解:令t=﹣x2+4x=﹣(x2﹣4x)=﹣(x﹣2)2+4,则f(x)=,再根据复合函数的单调性可得,本题即求函数t的减区间.再利用二次函数的性质可得t=﹣(x﹣2)2+4 的减区间为[2,+∞),故答案为[2,+∞).19.(2016秋•阜宁县期中)函数的值域为(0,] .【解答】解:∵x2﹣2x+2=(x﹣1)2+1≥1∴函数的值域为(0,]故答案为:(0,]20.(2015秋•大庆校级期末)函数y=2+a x﹣2(a>0且a≠1)的图象恒过定点,它的坐标为(2,3).【解答】解:令x=2,得y=a0+2=3,所以函数y=2+a x﹣2的图象恒过定点坐标是(2,3).故答案为:(2,3)21.(2016春•杭州期末)若函数f(x)=2x的值域是[4,+∞),则实数x的取值范围为[2,+∞).【解答】解:函数f(x)=2x,在定义域内为增函数,∴2x≥4,∴x≥2.∴实数x的取值范围为[2,+∞)故答案为:[2,+∞).22.(2015秋•虹口区校级期末)函数的单调递增区间是(﹣∞,0] .【解答】解:函数的单调递增区间,即函数y=|x|的减区间,而函数y=|x|的减区间为(﹣∞,0],故答案为:(﹣∞,0].三.解答题(共8小题)23.(2009秋•杭州月考)计算:.【解答】解:==24.(2014秋•惠来县校级期中)计算(1)log54•log65+log69(2)(3)解不等式:x2+(a﹣3)x﹣3a>0.【解答】解:(1)原式=.(2)原式=.(3)原式可化为:(x﹣3)(x+a)>0.①当a=﹣3时,化为(x﹣3)2>0,解得x≠3,此时不等式的解集为{x|x≠3};②当a>﹣3时,解得﹣a<x<3,此时不等式的解集为{x|﹣a<x<3};③当a<﹣3时,解得3<x<﹣a,此时不等式的解集为{x|3<x<﹣a}.25.(2017春•黄陵县校级月考)已知函数f(x)=a x(x≥0)的图象经过点(2,),其中a>0且a≠1.(1)求a的值;(2)求函数y=f(x)(x≥0)的值域.【解答】解:(1)∵函数f(x)=a x(x≥0)的图象经过点(2,),∴=a2,∴a=;(2)由(1)知f(x)=()x,∵x≥0,∴0<()x≤()0=1,即0<f(x)≤1.∴函数y=f(x)(x≥0)的值域为(0,1].26.(2016春•济南期末)已知指数函数f(x)=a x(a>0,且a≠1)过点(﹣2,9)(1)求函数f(x)的解析式(2)若f(2m﹣1)﹣f(m+3)<0,求实数m的取值范围.【解答】解:(1)将点(﹣2,9)代入到f(x)=a x得a﹣2=9,解得a=,∴f(x)=(2)∵f(2m﹣1)﹣f(m+3)<0,∴f(2m﹣1)<f(m+3),∵f(x)=为减函数,∴2m﹣1>m+3,解得m>4,∴实数m的取值范围为(4,+∞)27.(2014•奎文区校级模拟)已知函数y=|2x﹣2|(1)作出其图象;(2)由图象指出函数的单调区间;(3)由图象指出当x取何值时,函数有最值,并求出最值.【解答】解:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x 轴上方得到,如图所示:(2)结合函数的图象,可得函数的减区间为(﹣∞,1],增区间为(1,+∞).(3)数形结合可得,当x=1时,y miin=0.28.(2015秋•灌南县校级月考)已知函数f(x)=a x﹣1(a>0,a≠1)的图象经过点(3,).(1)求a的值;(2)求函数f(x)=a2x﹣a x﹣2+8,当x∈[﹣2,1]时的值域.【解答】解:(1)由题意:函数f(x)=a x﹣1(a>0,a≠1)的图象经过点(3,).则有:解得:.(2)由(1)可知,那么:函数f(x)=a2x﹣a x﹣2+8=﹣4+8∵x∈[﹣2,1]∴则,当,即x=﹣2时,f(x)max=53.当,即x=时,f(x)min=4所以函数的值域为[4,53].29.(2014春•宁强县校级期中)已知函数y=2|x|,x∈R(1)作出其图象;(2)说出其单调减区间、奇偶性、最大值、最小值.【解答】解:(1)函数y=2|x|,x∈R的图象由函数y=2x,经过一次横向的对折变换得到,故其图象如下图所示:(2)由(1)中函数图象可知:函数y=2|x|,x∈R单调减区间为:(﹣∞,0)、函数图象关于y轴对称,故为偶函数、无最大值、最小值为1.30.(2016秋•仙桃期末)已知f(x)=9x﹣2×3x+4,x∈[﹣1,2].(1)设t=3x,x∈[﹣1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.【解答】解:(1)设t=3x,∵x∈[﹣1,2],函数t=3x在[﹣1,2]上是增函数,故有≤t≤9,故t的最大值为9,t的最小值为.(2)由f(x)=9x﹣2×3x+4=t2﹣2t+4=(t﹣1)2+3,可得此二次函数的对称轴为t=1,且≤t≤9,故当t=1时,函数f(x)有最小值为3,当t=9时,函数f(x)有最大值为67.。
高三数学指数与指数函数试题答案及解析
高三数学指数与指数函数试题答案及解析1.若,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】B【解析】如图可知,“”“”,而“”“”,因此“”是“”的必要不充分条件.故选B.【考点】指对两种基本初等函数的图像和充要条件的概念.2.________.【答案】【解析】原式=【考点】1.指对数运算性质.3.已知函数f(x)=()x,g(x)=x,记函数h(x)=,则不等式h(x)≥的解集为________.【答案】(0,],【解析】记f(x)与g(x)的图象交点的横坐标为x=x而f()==<1=,f(1)=()1=>0=1,∴x∈(,1),得h(x)的图象如图所示,而h()=f()=,∴不等式h(x)≥的解集为(0,].4.已知,那么的大小关系是()A.B.C.D.【答案】B【解析】,因为,即,所以.故B正确.【考点】1指数函数的单调性;2对数函数的单调性.5.函数y=x2的值域是________.【答案】(0,1]【解析】∵x2≥0,∴x2≤1,即值域是(0,1].6.如图,过原点O的直线与函数y=2x的图像交于A,B两点,过点B作y轴的垂线交函数y=4x的图像于点C,若AC平行于y轴,则点A的坐标是________.【答案】(1,2)【解析】设C(a,4a),则A(a,2a),B(2a,4a).又O,A,B三点共线,所以=,故4a=2·2a,所以2a=0(舍去)或2a=2,即a=1,所以点A的坐标是(1,2).7.当x∈[-2,2]时,a x<2(a>0且a≠1),则实数a的取值范围是________.【答案】∪(1,)【解析】当x∈[-2,2]时,a x<2(a>0且a≠1),当a>1时,y=a x是一个增函数,则有a2<2,可得-<a<,故有1<a<;当0<a<1时,y=a x是一个减函数,则有a-2<2,可得a>或a<- (舍),故有<a<1.综上可得,a∈∪(1,).8.已知,,,则()A.B.C.D.【答案】D【解析】∵,,,∴.【考点】利用函数图象及性质比较大小.9. (2014·嘉兴模拟)已知a=,b=0.3-2,c=lo2,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.b>a>c【答案】D【解析】0<a=<=1,b=0.3-2>(0.3)0=1,c=lo2<0,所以b>a>c.10. (2014·郑州模拟)已知函数f(x)=e x+ax,g(x)=ax-lnx,其中a≤0.(1)求f(x)的极值.(2)若存在区间M,使f(x)和g(x)在区间M上具有相同的单调性,求a的取值范围.【答案】(1)f(x)的极小值为f(ln(-a))=-a+aln(-a);没有极大值(2)(-∞,-1)【解析】(1)f(x)的定义域为R,且f′(x)=e x+a.当a=0时,f(x)=e x,故f(x)在R上单调递增.从而f(x)没有极大值,也没有极小值.当a<0时,令f′(x)=0,得x=ln(-a).f(x)和f′(x)的情况如下:x(-∞,ln(-a))ln(-a)(ln(-a),+∞)故f(x)的单调递减区间为(-∞,ln(-a));单调递增区间为(ln(-a),+∞).从而f(x)的极小值为f(ln(-a))=-a+aln(-a);没有极大值.(2)g(x)的定义域为(0,+∞),且g′(x)=a-=.当a=0时,f(x)在R上单调递增,g(x)在(0,+∞)上单调递减,不合题意.当a<0时,g′(x)<0,g(x)在(0,+∞)上单调递减.当-1≤a<0时,ln(-a)≤0,此时f(x)在(ln(-a),+∞)上单调递增,由于g(x)在(0,+∞)上单调递减,不合题意.当a<-1时,ln(-a)>0,此时f(x)在(-∞,ln(-a))上单调递减,由于g(x)在(0,+∞)上单调递减,符合题意.综上,a的取值范围是(-∞,-1).x,y=a x,y=x+a的图象,可能正确的是() 11.在同一坐标系中画出函数y=loga【答案】D【解析】y=x+a在B,C,D三个选项中对应的a>1,只有选项D的图象正确.12.已知,,,则A.B.C.D.【答案】D【解析】由对数函数的性质知,,由幂函数的性质知,故有.【考点】对数、幂的比较大小13.设则的大小关系是()A.B.C.D.【答案】A【解析】因为,,所以,,选B.【考点】指数函数、对数函数的性质.14.已知函数,则=________.【答案】【解析】,故填.【考点】分段函数对数与指数15.已知函数,且函数有且只有一个零点,则实数的取值范围是( )A. B.. D.【答案】B【解析】如图,在同一坐标系中分别作出与的图象,其中a表示直线在y轴上截距,由图可知,当时,直线与只有一个交点.故选B.【考点】分段函数图像数形结合16.某驾驶员喝了mL酒后,血液中的酒精含量f(x)(mg/mL)随时间x(h)变化的规律近似满足表达式f(x)=《酒后驾车与醉酒驾车的标准及相应的处罚》规定为驾驶员血液中酒精含量不得超过0.02mg/mL,据此可知,此驾驶员至少要过________h后才能开车.(精确到1h)【答案】4【解析】当0≤x≤1时,≤5x-2≤,此时不宜开车;由≤0.02,得x≥4.17.已知+(0.5)-y< +(0.5)x,则实数x、y的关系为________.【答案】x+y<0【解析】由+(0.5)-y< +(0.5)x,得-(0.5)x< -(0.5)-y.设f(x)=-(0.5)x,则f(x)<f(-y),由于0< 0.5<1,所以函数f(x)是R上的增函数,所以x<-y,即x+y<018.设a>0,f(x)=是R上的偶函数.(1)求a的值;(2)判断并证明函数f(x)在[0,+∞)上的单调性;(3)求函数的值域.【答案】(1)a=1(2)f(x)在[0,+∞)上为增函数(3)[2,+∞)【解析】(1)因为f(x)为偶函数,故f(1)=f(-1),于是=+3a,即.因为a>0,故a=1.(2)设x2>x1≥0,f(x1)-f(x2)=(3x2-3x1)(-1).因为3x为增函数,且x2>x1,故3x2-3x1>0.因为x2>0,x1≥0,故x2+x1>0,于是<1,即-1<0,所以f(x1)-f(x2)<0,所以f(x)在[0,+∞)上为增函数.(3)因为函数为偶函数,且f(x)在[0,+∞)上为增函数,故f(0)=2为函数的最小值,于是函数的值域为[2,+∞).19.若xlog34=1,求的值.【答案】【解析】由xlog34=1,知4x=3,∴=20.设函数f(x)=x2-4x+3,g(x)=3x-2,集合M={x∈R|f(g(x))>0},N={x∈R|g(x)<2},则M∩N为() A.(1,+∞)B.(0,1)C.(-1,1)D.(-∞,1)【答案】D【解析】M:f(g(x))=(3x-2)2-4(3x-2)+3>0,令t=3x-2,则原不等式等价于t2-4t+3>0,解得t>3或t<1,∴3x-2>3或3x-2<1.∴3x>5或3x<3.∴x>log35或x<1.即M={x|x>log35或x<1}.N:3x-2<2⇒3x<4⇒x<log34,∴N={x|x<log34},∴M∩N={x|x<1},故选D.21.函数y=e|lnx|-|x-1|的图象大致是()【答案】D【解析】y=e|lnx|-|x-1|=当x≥1时,y=1,排除C,当x=时,y=,排除A,B,故选D.22.已知函数f(x)=2x+x,g(x)=x-,h(x)=log2x-的零点分别为x1,x2,x3,则x1,x 2,x3的大小关系是______________.【答案】x3>x2>x1【解析】x3>x2>x1[解析] 由f(x)=2x+x=0,g(x)=x-=0,h(x)=log2x-=0得2x=-x,x=,log2x=.在平面直角坐标系中分别作出y=2x与y=-x,y=x与y=,y=log2x与y=的图像,如图所示,由图像可知-1<x1<0,0<x2<1,x3>1,所以x3>x2>x1.23.已知函数f(x)=2x-2,则函数y=|f(x)|的图象可能是()【答案】B【解析】|f(x)|=|2x-2|=易知函数y=|f(x)|的图象的分段点是x=1,且过点(1,0),(0,1),又|f(x)|≥0,故选B.【误区警示】本题易误选A或D,出现错误的原因是误以为y=|f(x)|是偶函数.24.设函数f(x)=的最小值为2,则实数a的取值范围是.【答案】[3,+∞)【解析】当x≥1时,f(x)≥2,当x<1时,f(x)>a-1,由题意知,a-1≥2,∴a≥3.25.函数f(x)=的值域为________.【答案】(-∞,2)【解析】分段函数是一个函数,其定义域是各段函数定义域的并集,值域是各段函数值域的并集.当x≥1时,log x≤0,当x<1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2).26.设的定义域为D,若满足条件:存在,使在上的值域是,则称为“倍缩函数”.若函数为“倍缩函数”,则t的范围是()A.B.C.D.【答案】D【解析】因为函数在其定义域上是增函数,且函数为“倍缩函数”,且在上的值域是,所以,即,所以方程必有两个不等的实数根。
(精选试题附答案)高中数学第四章指数函数与对数函数真题
(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数真题单选题1、设a=log2π,b=log6π,则()A.a−b<0<ab B.ab<0<a−bC.0<ab<a−b D.0<a−b<ab答案:D分析:根据对数函数的性质可得a−b>0,ab>0,1b −1a<1,由此可判断得选项.解:因为a=log2π>log22=1,0=log61<b=log6π<log66=1,所以a>1,0<b<1,所以a−b>0,ab>0,故排除A、B选项;又1b −1a=a−bab=logπ6−logπ2=logπ3<logππ<1,且ab>0,所以0<a−b<ab,故选:D.2、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2−2x−2=0的一个近似根(精确度0.1)为().A.1.2B.1.4C.1.3D.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125>0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375=0.0625<0.1,所以满足精确度0.1;所以方程x 3+x 2−2x −2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B . 故选:B3、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.4、已知函数f (x )={a +a x ,x ≥03+(a −1)x,x <0(a >0 且a ≠1),则“a ≥3”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A分析:先由f(x)在R 上单调递增求得a 的取值范围,再利用充分条件,必要条件的定义即得. 若f(x)在R 上单调递增, 则{a >1a −1>0a +1≥3 , 所以a ≥2,由“a ≥3”可推出“a ≥2”,但由“a ≥2”推不出 “a ≥3”, 所以“a ≥3”是“f(x)在R 上单调递增”的充分不必要条件. 故选:A.5、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质) 由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m11−m,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x)在(1,+∞)上单调递增,所以f(10)>f(8),即a>b,又因为f(9)=9log910−10=0,所以a>0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用a,b的形式构造函数f(x)=x m−x−1(x>1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、已知函数f(x)={2,x>mx2+4x+2,x≤m,若方程f(x)−x=0恰有三个根,那么实数m的取值范围是()A.[−1,2)B.[−1,2]C.[2,+∞)D.(−∞,−1]答案:A分析:由题意得,函数y=f(x)与函数y=x有三个不同的交点,结合图象可得出结果.解:由题意可得,直线y=x与函数f(x)=2(x>m)至多有一个交点,而直线y=x与函数f(x)=x2+4x+2(x≤m)至多两个交点,函数y=f(x)与函数y=x有三个不同的交点,则只需要满足直线y=x与函数f(x)=2(x>m)有一个交点直线y=x与函数f(x)=x2+4x+2(x≤m)有两个交点即可,如图所示,y=x与函数f(x)=x2+4x+2的图象交点为A(−2,−2),B(−1,−1),故有m≥−1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[−1,2).故选:A.7、已知x ,y ,z 都是大于1的正数,m >0,log x m =24,log y m =40,log xyz m =12,则log z m 的值为( ) A .160B .60C .2003D .320答案:B分析:根据换底公式将log x m =24,log y m =40,log xyz m =12,化为log m x =124,log m y =140,log m xyz =112,再根据同底数的对数的加减法运算即可得解. 解:因为log x m =24,log y m =40,log xyz m =12, 所以log m x =124,log m y =140,log m xyz =112,即log m x +log m y +log m z =112,∴log m x =112−log m y −log m z =112−124−140=160, ∴log z m =60. 故选:B .8、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍. 对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍.对于D,f(x)=√x3为R上的增函数,符合题意,故选:D.9、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A10、如图所示,函数y=|2x−2|的图像是()A.B.C.D.答案:B分析:将原函数变形为分段函数,根据x=1及x≠1时的函数值即可得解.∵y=|2x−2|={2x−2,x≥12−2x,x<1,∴x=1时,y=0,x≠1时,y>0. 故选:B.填空题11、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2=(1+1232)(1+1216)(1+128)×(1−128)×2=(1+1232)(1+1216)×(1−1216)×2=(1+1232)×(1−1232)×2=(1−1264)×2=2−1263所以答案是:2−1263﹒12、不等式log4x≤12的解集为___________.答案:(0,2]分析:根据对数函数的单调性解不等式即可. 由题设,可得:log 4x ≤log 4412,则0<x ≤412=2, ∴不等式解集为(0,2]. 所以答案是:(0,2].13、在用二分法求函数f (x )的零点近似值时,若第一次所取区间为[−2,6],则第三次所取区间可能是______.(写出一个符合条件的区间即可) 答案:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可). 分析:根据二分法的概念,可求得结果.第一次所取区间为[−2,6],则第二次所取区间可能是[−2,2],[2,6];第三次所取区间可能是[−2,0],[0,2],[2,4],[4,6].所以答案是:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可).14、设函数f(x)={2x +1,x ≤0|lgx |,x >0,若关于x 的方程f 2(x )−af (x )+2=0恰有6个不同的实数解,则实数a 的取值范围为______. 答案:(2√2,3)分析:作出函数f(x)的图象,令f(x)=t ,结合图象可得,方程t 2−at +2=0在(1,2]内有两个不同的实数根,然后利用二次函数的性质即得;作出函数f(x)={2x +1,x ≤0|lgx |,x >0的大致图象,令f (x )=t ,因为f 2(x )−af (x )+2=0恰有6个不同的实数解, 所以g (t )=t 2−at +2=0在区间(1,2]上有2个不同的实数解,∴{Δ=a 2−8>01<a2<2g (1)=3−a >0g (2)=6−2a ≥0 , 解得2√2<a <3,∴实数a 的取值范围为(2√2,3). 所以答案是:(2√2,3).15、函数y =log a (kx −5)+b (a >0且a ≠1)恒过定点(2,2),则k +b =______. 答案:5分析:根据对数函数的图象与性质,列出方程组,即可求解. 由题意,函数y =log a (kx −5)+b 恒过定点(2,2),可得{2k −5=1b =2 ,解得k =3,b =2,所以k +b =3+2=5.所以答案是:5. 解答题16、(1)计算:(1100)−12−√(1−√2)2−8×(√5−√3)0+816;(2)已知x +x −1=4,求x 12+x −12. 答案:(1)3;(2)x 12+x −12=√6.分析:(1)根据指数幂的运算法则进行计算,求得答案; (2)先判断出x >0,然后将x 12+x −12平方后结合条件求得答案. (1)原式=[(100)−1]−12−(√2−1)−8+(23)16,=10012−√2+1−8+212=10+1−8=3.(2)由于x +x−1=4>0,所以x >0,(x 12+x −12)2=x +x −1+2=6,所以x 12+x −12=√6.17、(1)证明对数换底公式:log b N =log a N log a b(其中a >0且a ≠1,b >0且b ≠1,N >0)(2)已知log 32=m ,试用m 表示log 3218. 答案:(1)证明见解析;(2)log 3218=2+m 5m.分析:(1)将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. (2)利用换底公式将等号左边化为以3为底的对数,然后根据对数运算法则化简即得. (1)设log b N =x ,写成指数式b x =N . 两边取以a 为底的对数,得xlog a b =log a N .因为b >0,b ≠1,log a b ≠0,因此上式两边可除以log a b ,得x =log a N log a b.所以,log b N =log a N log a b.(2)log 3218=log 318log 332=log 332+log 32log 325=2+log 325log 32=2+m 5m.小提示:本题考查换底公式的证明和应用,属基础题,关键是将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. 18、已知函数f (x )=a x −1a x +1(a >0,且a ≠1). (1)若f (2)=35,求f (x )解析式; (2)讨论f (x )奇偶性.答案:(1)f (x )=2x −12x +1;(2)奇函数.分析:(1)根据f (2)=35,求函数的解析式;(2)化简f (−x ),再判断函数的奇偶性. 解:(1)∵f (x )=a x −1a x +1,f (2)=35.即a 2−1a 2+1=35,∴a =2.即f (x )=2x −12x +1.(2)因为f (x )的定义域为R ,且f (−x )=a −x −1a −x +1=1−a x1+a x =−f (x ),所以f (x )是奇函数.19、如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?答案:(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.分析:(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得S =x(50−2x),根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,由题意得,x(50−2x)=300,解得x 1=15,x 2=10,∵50−2x ≤25,∴x ≥12.5,∴x=15,所以,AB的长为15米时,矩形花园的面积为300平方米;(2)由题意得,S=x(50−2x)=−2x2+50x=−2(x−12.5)2+312.5,12.5≤x<25∴x=12.5时,S取得最大值,此时,S=312.5,所以,当x为12.5米时,S有最大值,最大值是312.5平方米.。
指数函数大全.doc
高一数学测试题(指数函数)1一、选择题1.设指数函数/(Q = /(d 〉O,dHl ),则下列等式中令疋硒的是 ()A. fix+y)=f(x) • J(y)C. f(nx) = [f(x)]lJ (neg)D. [/(厂)]"=[/(x)]“•[/(),)]” gNJ2.函数),=(兀一5)°+(兀一2「2()A. [x\x^ 5,x^ 2}B. {x\x>2}C. {x\x>5}D. {兀 | 2 v 兀 v 5或x > 5}A. 2B. 3C. 4D.--8A 循+1 DV5-1V5±lc 1土石A. -----------C.D.22224.方程=x2(0<6Z<l )的解的个数为A. 0个B. 1 个C. 2个D. 0个或1个5.函数f(x)=2-|Ai 的值域是3.若指数函数y =/在[一1川上的最大值与最小值的差是1,则底数。
等于( )A. (0,1]B. (0,1)(0,+oo)C. D. R6. 函数/(%) =,贝'J f(-3)=偶函数, 在R 上为减函数8.函数 ^ =(-)一x^+x+2得单调递增区间是偶函数,-A*7.已知HQ = " _幺,则下列正确的是A.奇函数,在R 上为增函数B. 上为增函数C.奇函数,在R 上为减函数D.248100 ; ( 2 )血Zb 十―上 忖+ 2畅+ 4莎I %2 = 6f 3([、.广-8 13不等式冷 <3®的解集是.、L +av恒成立,则a 的取值范围是a®h =15.定义运算:12 . 计算:(7、0.52- < 9丿(a~b \则函数/(x) = 2P2f 的值域为— b (d 〉b)16.已知 f (x)二实数a 的収值范围是(2-°严+ 1 (兀G ),满足对任意的XZ ,都有、/(")—、/(£)>0成立,则 a(x > 1)16.如图所示的是某池塘屮的浮萍蔓延的面枳伽2)与时间/(月)的关系:y = R,有以下叙述: ①这个指数函数的底数是2;②第5个月吋,浮萍的面积就会超过30m 2: ③浮萍从牛/蔓延到12加2需要经过1.5个月; ④浮萍每个月增加的面积都相等;9•已知a>0,且Ef (x )宀•当x*l,l )时,均有f (x )冷,则实如的取值范围是()A ・[*,l]u(l,2] B. [*, 1] C.(0,*] u[4,+co) 10.已知偶函数f(x),且 f(x+2)=f(2-x),当-2WxW0 时,f(x)=2x,则 f(2010) = () A. 2010 B.4 C. - D. -44、填空题(每小题4分,共计28分)11.当口>0且oHl 时,函数/⑴二护一2—3必过定点B • [2,+oo)C. [1,2]D.D. R 0 12 3⑤ 若浮萍蔓延到2加2、3加2、6加2所经过的时间分别为4、(2、」则人+/2=『3・其中正确的是—三、解答题:18.已知° + "=7,求下列各式的值:3 32 _ ^2 L _1(1) : ; 8 (2) a22; 3 (3) a1 - a\a>\) ,2l4sa 2 -a 2 19.已知函数y = a 2x +2a x - 在区间[-1, 1]上的最大值是14,求o的值.沪3220. (1)已知/(x) = ------------- +加是奇函数,求常数加的值;y-1(2)画出函数y=|3v -l|的图彖,并利用图彖回答:比为何值时,方程|3”-1中 无解?有一解?有两解?21. (14分)已知函数/(兀)=^■二a x +1(1) 判断函数f(x)的奇偶性; (2) 求/(x)的值域;⑶证明/(x)在(一8, +8)上是增函数.⑷若f(-x 2+3x)+f(m-x-x 2)>0对任意的XG [0,1]均成立, 求实数m 的取值范围。
新课程必修第一册《指数函数与对数函数》基础测试题及答案解析
新课程必修第一册《指数函数与对数函数》基础测试题及答案解析时间:120分钟 满分:150分一、选择题(本大题共8小题,每小题5分,共40分) 1.若a<12,则化简42a -12的结果是( )A .2a -1B .-2a -1C .1-2aD .-1-2a2.函数y =lg x +lg (5-3x)的定义域是( )A .[0,53) B .[0,53] C .[1,53)D .[1,53]3.若a>1,则函数y =a x与y =(1-a)x 2的图象可能是下列四个选项中的( )4.函数f(x)=ln(x +1)-2x的零点所在的大致区间是( )A .(1,2)B .(0,1)C .(2,e)D .(3,4)5.若0<a<1,在区间(-1,0)上函数f(x)=log a (x +1)是( )A .增函数且f(x)>0B .增函数且f(x)<0C .减函数且f(x)>0D .减函数且f(x)<06.已知函数f(x)=⎩⎪⎨⎪⎧log 3x ,x>02x, x≤0,则f(f(19))等于( )A .4B .14C .-4D .-147.函数f(x)=4x+12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称8.下列式子中成立的是( )A .log 0.44<log 0.46B .1.013.4>1.013.5C .3.50.3<3.40.3D .log 76<log 67二、多项选择题(本大题共4小题,每小题5分,共20分) 9.下列函数中,是奇函数且存在零点的是( )A .y =x 3+x B .y =log 2x C .y =2x 2-3D .y =x |x |10.下列说法正确的是( ) A .函数()1f x x=在定义域上是减函数 B .函数()22xf x x =-有且只有两个零点 C .函数2xy =的最小值是1D .在同一坐标系中函数2xy =与2xy -=的图象关于y 轴对称11.若函数1xy a b =+-(0a >,且1a ≠)的图像经过第一、三、四象限,则下列选项中正确的有( ) A .1a >B .01a <<C .0b >D .0b <12.定义运算a ⊕b =⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,设函数f (x )=1⊕2-x,则下列命题正确的有( )A .f (x )的值域为[1,+∞)B .f (x )的值域为(0,1]C .不等式f (x +1)<f (2x )成立的范围是(-∞,0)D .不等式f (x +1)<f (2x )成立的范围是(0,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13. 函数()()2lg lg x f x x =-的零点为________. 14.函数f(x)=ax -1+3的图象一定过定点P ,则P 点的坐标是________.15.如果函数y =log a x 在区间[2,+∞)上恒有y>1,那么实数a 的取值范围是________.16.若函数f (x )=log a x (a >0,且a ≠1)在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,最小值为m ,函数g (x )=(3+2m )x 在[0,+∞)上是增函数,则a +m =______. 三、解答题(本大题共6小题,共70分) 17.(10分)(1)计算:(-3)0-120+(-2)-2-1416-;(2) 设log a 2=m ,log a 3=n ,求a 2m +n的值;18.(12分)(1) log 49-log 212+5lg210-.(2)12lg 25lg 2lg ++()1lg 0.01+-; 19.(12分)设函数f(x)=2x+a 2x -1(a 为实数).(1)当a =0时,若函数y =g(x)为奇函数,且在x>0时g(x)=f(x),求函数y =g(x)的解析式;(2)当a<0时,求关于x 的方程f(x)=0在实数集R 上的解. 20.(12分)已知函数f (x )=log ax +1x -1(a >0且a ≠1), (1)求f (x )的定义域;(2)判断函数的奇偶性和单调性.21.(12分)已知-3≤12log x ≤-32,求函数f (x )=log 2x 2·log 2x4的最大值和最小值.22.(12分) 已知函数2328()log 1mx x nf x x ++=+. (Ⅰ)若4,4m n ==,求函数()f x 的定义域和值域;(Ⅱ)若函数()f x 的定义域为R ,值域为[0,2],求实数,m n 的值.答案及解析:一、单选题1.C [∵a <12,∴2a -1<0.于是,原式=41-2a2=1-2a .]2.C [由函数的解析式得:⎩⎪⎨⎪⎧lg x ≥0,x >0,5-3x >0,即⎩⎪⎨⎪⎧x ≥1,x >0,x <53.所以1≤x <53.]3.C [∵a >1,∴y =a x在R 上是增函数,又1-a <0,所以y =(1-a )x 2的图象为开口向下的抛物线.] 4.A f(1)=ln2-2=ln 2e 2<ln1=0,f(2)=ln3-1=ln 3e>ln1=0,所以函数f(x)=ln(x +1)-2x的零点所在的大致区间是(1,2).5.C [当-1<x <0,即0<x +1<1,且0<a <1时,有f (x )>0,排除B 、D.设u =x +1,则u 在(-1,0)上是增函数,且y =log a u 在(0,+∞)上是减函数,故f (x )在(-1,0)上是减函数.]6.B [根据分段函数可得f (19)=log 319=-2,则f (f (19))=f (-2)=2-2=14.]7.D 易知f(x)的定义域为R ,关于原点对称.∵f(-x)=4-x+12-x =1+4x2x =f(x),∴f(x)是偶函数,其图象关于y 轴对称.8.D [A 选项中由于y =log 0.4x 在(0,+∞)单调递减, 所以log 0.44>log 0.46;B 选项中函数y =1.01x在R 上是增函数, 所以1.013.4<1.013.5;C 选项中由于函数y =x 0.3在(0,+∞)上单调递增, 所以3.50.3>3.40.3;D 选项中log 76<1,log 67>1,故D 正确.] 二、多选题9.解析:选AD A 中,y =x 3+x 为奇函数,且存在零点x =0,与题意相符;B 中,y =log 2x 为非奇非偶函数,与题意不符;C 中,y =2x 2-3为偶函数,与题意不符;D 中,y =x |x |是奇函数,且存在零点x =0,与题意相符. 10.解析:对于A ,()1f x x=在定义域上不具有单调性,故命题错误; 对于B ,函数()22xf x x =-有三个零点,一个负值,两个正值,故命题错误;对于C ,∵|x |≥0,∴2|x |≥20=1,∴函数y =2|x |的最小值是1,故命题正确;对于D ,在同一坐标系中,函数y =2x 与y =2﹣x 的图象关于y 轴对称,命题正确.故选CD 11.解析:因为函数1xy a b =+- (0a >,且1a ≠)的图像经过第 一、三、四象限,所以其大致图像如图所示:由图像可知函数为增函数,所以1a >.当0x =时,110y b b =+-=<,故选AD.12.解析:选AC 由函数f (x )=1⊕2-x,有f (x )=⎩⎪⎨⎪⎧1,1≥2-x,2-x ,1<2-x,即f (x )=⎩⎪⎨⎪⎧2-x,x <0,1,x ≥0,作出函数f (x )的图象,如图所示,根据函数图象得f (x )的值域为[1,+∞),故A 正确,B 错误;若不等式f (x +1)<f (2x )成立,由函数图象知,当2x <x +1<0即x <-1时成立,当⎩⎪⎨⎪⎧2x <0,x +1≥0即-1≤x <0时也成立.所以不等式f (x +1)<f (2x )成立时,x <0.故C 正确,D 错误.故选A 、C. 三、填空题13. 解析:由题知:()2lg lg 0x x -=,得(l g 1g )l 0x x -=,∴lg 0x =或lg 1x =,∴1x =或10x =.故答案为:1x =或10x = 14.(1,4)解析 由于函数y =a x恒过(0,1),而y =ax -1+3的图象可看作由y =a x的图象向右平移1个单位,再向上平移3个单位得到的,则P 点坐标为(1,4). 15.(1,2)解析 当x ∈[2,+∞)时,y >1>0,所以a >1,所以函数y =log a x 在区间[2,+∞)上是增函数,最小值为log a 2,所以log a 2>1=log a a ,所以1<a <2.16.解析:当a >1时,函数f (x )=log a x 是正实数集上的增函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,因此有f (4)=log a 4=2⇒a =2,所以m =log 212=-1,此时g (x )=x 在[0,+∞)上是增函数,符合题意,因此a +m =2-1=1;当0<a <1时,函数f (x )=log a x 是正实数集上的减函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,因此有f ⎝ ⎛⎭⎪⎫12=log a 12=2⇒a =22,所以m =log 224=-4,此时g (x )=-5x 在[0,+∞)上是减函数,不符合题意. 答案:1 17.解 (1)原式=1-0+1-22-()1442-=1+14-2-1=1+14-12=34.(2) ∵log a 2=m ,log a 3=n , ∴a m =2,a n=3. ∴a 2m +n=a 2m ·a n =(a m )2·a n =22·3=12.18.解 (1) 原式=log 23-(log 23+log 24)+2lg 510=log 23-log 23-2+25=-85.(2) ()11222lg 252100.1-⎡⎤⨯⨯⨯⎢⎥⎣⎦()172227lg 521010lg 102⎛⎫=⨯⨯⨯==⎪⎝⎭;19.解 (1)当a =0时,f (x )=2x-1, 由已知g (-x )=-g (x ),则当x <0时,g (x )=-g (-x )=-f (-x )=-(2-x-1) =-(12)x+1,由于g (x )为奇函数,故知x =0时,g (x )=0, ∴g (x )=⎩⎪⎨⎪⎧2x-1, x ≥0-12x+1, x <0.(2)f (x )=0,即2x+a2x -1=0,整理,得:(2x )2-2x+a =0, 所以2x=1±1-4a 2,又a <0,所以1-4a >1,所以2x=1+1-4a2, 从而x =log 21+1-4a2.20.解 (1)要使此函数有意义,则有⎩⎪⎨⎪⎧x +1>0x -1>0或⎩⎪⎨⎪⎧x +1<0x -1<0,解得x >1或x <-1,此函数的定义域为 (-∞,-1)∪(1,+∞),关于原点对称. (2)f (-x )=log a -x +1-x -1=log a x -1x +1=-log ax +1x -1=-f (x ). ∴f (x )为奇函数.f (x )=log a x +1x -1=log a (1+2x -1),函数u =1+2x -1在区间(-∞,-1)和区间(1,+∞)上单调递减. 所以当a >1时,f (x )=log a x +1x -1在(-∞,-1),(1,+∞)上递减; 当0<a <1时,f (x )=log ax +1x -1在(-∞,-1),(1,+∞)上递增. 21.解 ∵f (x )=log 2x2·log 2x4=(log 2x -1)(log 2x -2) =(log 2x )2-3log 2x +2=(log 2x -32)2-14,∵-3≤12log x ≤-32.∴32≤log 2x ≤3. ∴当log 2x =32,即x =22时,f (x )有最小值-14;当log 2x =3,即x =8时,f (x )有最大值2.22.(1)解 (Ⅰ)若4,4m n ==,则232484()log 1x x f x x ++=+,由2248401x x x ++>+,得到2210x x ++>,得到1x ≠-,故定义域为{}1x x ≠-.令224841x x t x ++=+,则2(4)840t x x t --+-= 当4t =时,0x =符合.当4t ≠时,上述方程要有解,则2644(4)0,t t ⎧∆=--≥⎨≠⎩,得到04t ≤<或48t <≤,又1x ≠-,所以0t ≠,所以08t <≤,则值域为3(,log 8]-∞.(Ⅱ)由于函数()f x 的定义域为R ,则22801mx x nx ++>+恒成立,则06440m mn >⎧⎨-<⎩,即016m mn >⎧⎨>⎩,令2281mx x nt x ++=+,由于()f x 的值域为[0,2],则[1,9]t ∈,而 2()80t m x x t n --+-=,则由644()()0,t m t n ∆=---≥解得[1,9]t ∈ ,故1t =和9t =是方程644()()0t m t n ---=即2()160t m n t mn -++-=的两个根,则10169m n mn +=⎧⎨-=⎩,得到55m n =⎧⎨=⎩,符合题意.所以5,5m n ==.。
指数问题测试题及答案
指数问题测试题及答案一、选择题1. 下列哪个表达式表示2的3次方?A. 2^3B. 2×3C. 3^2D. 2+3答案:A2. 计算2的5次方的结果是多少?A. 32B. 25C. 16D. 10答案:A3. 如果3的x次方等于27,那么x的值是多少?A. 3B. 4C. 6D. 9答案:A二、填空题4. 指数法则中,任何数的0次方等于______。
答案:15. 如果a^m = a^n,那么m等于______。
答案:n6. 指数运算中,底数相同,指数相加的法则是a^(m+n) = ______。
答案:a^m × a^n三、简答题7. 解释什么是指数函数,并给出一个例子。
答案:指数函数是一种数学函数,其中一个变量的幂等于另一个变量。
例如,y = 2^x,这是一个指数函数,其中2是底数,x是指数。
8. 描述如何计算5的4次方,并给出结果。
答案:5的4次方是将5自身乘以4次,即5 × 5 × 5 × 5 = 625。
四、计算题9. 计算下列表达式的值:(a) 4^3(b) (2^2)^3答案:(a) 4^3 = 4 × 4 × 4 = 64(b) (2^2)^3 = 4^3 = 4 × 4 × 4 = 6410. 如果8^x = 2^12,求x的值。
答案:由于8 = 2^3,我们可以将8^x写成(2^3)^x = 2^(3x)。
因此,2^(3x) = 2^12,所以3x = 12,解得x = 4。
五、证明题11. 证明对于任何正数a和b,a^b × b^a总是大于或等于a^a × b^b。
答案:由于a和b都是正数,我们可以应用AM-GM不等式(算术平均值-几何平均值不等式),即对于任意的正数x和y,有(x + y)/2 ≥ √(xy)。
将x设为a^b,y设为b^a,我们得到:(a^b + b^a)/2 ≥ √(a^b × b^a)两边同时平方,得到:(a^b + b^a)^2/4 ≥ a^b × b^a展开左边,得到:a^(2b) + 2a^b × b^a + b^(2a) ≥ 4a^b × b^a简化得到:a^(2b) - 2a^b × b^a+ b^(2a) ≥ 0这可以重写为:(a^b - b^a)^2 ≥ 0由于平方总是非负的,所以上述不等式成立。
2023年一轮复习《指数函数》提升训练(含解析)
2023年一轮复习《指数函数》提升训练一、单选题(本大题共12小题,共60分)1.(5分)函数f(x)=ln(x−1x)的图象是()A. B.C. D.2.(5分)已知函数f(x)=a x+b(a>0且a≠1)的定义域和值域都是[−1,0],则a+ b=( )A. −12B. −32C. −52D. −12或−523.(5分)已知A={ x|−2<x<1},B={ x|2x>1},则A∩(∁R B)为()A. (−2,1)B. (−∞,1)C. (0,1)D. (−2,0]4.(5分)已知全集U=R,集合A={x||x|⩽1,x∈R},集合B={x|2x⩾1,x∈R},则集合A∪B=()A. (−∞,1]B. [0,1]C. [−1,0]D. [−1,+∞)5.(5分)函数y=ln(5−x)+√2x−8的定义域是()A. [2,3)B. [3,5)C. (−∞,3)D. (2,3)6.(5分)设集合A={ x|e x>1},B={ x||x|>2},则A∩B=()A. (−2,0)B. (1,2)C. (2,+∞)D. (1,+∞)7.(5分)已知实数a,b,c满足不等式0<a<b<c<1,且M=2a,N=5−b,P=(17)c,则M、N、P的大小关系为()A. M>N>PB. P<M<NC. N>P>MD. P>N>M8.(5分)若2x+5y⩽2−y+5−x,则有()A. x+y⩾0B. x+y⩽0C. x−y⩽0D. x−y⩾09.(5分)设集合A ={ x |2x ⩾4),集合B ={ x |−1⩽x ⩽5),则A ∩B =( )A. { x |−1⩽x ⩽2}B. { x |2⩽x ⩽5}C. { x |x ⩾−1}D. { x |x ⩾2}10.(5分)函数y =3|log 3x|的图象是( )A. B. C. D.11.(5分)定义在R 上的奇函数f(x)满足f(x +1)=f(−x),当x ∈(0,12]时,f(x)=log 12(1−x),则f(x)在区间(1,32)内是( )A. 减函数且f(x)>0B. 减函数且f(x)<0C. 增函数且f(x)>0D. 增函数且f(x)<012.(5分)已知a =log 23+log 2√3,b =log 29−log 2√3,c =log 32,则a ,b ,c 的大小关系是( )A. a =b <cB. a =b >cC. a <b <cD. a >b >c二 、填空题(本大题共4小题,共20分)13.(5分)已知实数x ,y 均大于零,且x +2y =4,则log 2x +log 2y 的最大值为______. 14.(5分)已知函数f(x)=ln (√1+x 2−x)+2,则f(≶3)+f(≶13)= ______ .15.(5分)已知存在实数x ,y ∈(0,1),使得不等式1x +11−x <2y 2−y+t 成立,则实数t的取值范围为__________.16.(5分)设f(x)是R 上的偶函数,且在[0,+∞)上递减,若f(12)=0,若f(log 14x)>0,那么x 的取值范围是 ______ .三 、解答题(本大题共6小题,共72分)17.(12分)已知函数f(x)=3x ,且f(a +2)=18,g(x)=3ax −4x 的定义域为[-1,1].(1)求3a 的值及函数g(x)的解析式; (2)试判断函数g(x)的单调性;(3)若方程g(x)=m 有解,求实数m 的取值范围. 18.(12分)设a ∈R ,函数f(x)=2x −a 2x +a.(1)若a >0,判断并证明函数f(x)的单调性;(2)若a ≠0,函数f(x)在区间[m,n ](m <n)上的取值范围是[k2m ,k2n ](k ∈R),求ka 的范围.19.(12分)已知函数f(x)=√−x 2+5x −6的定义域为A ,集合B={x |2⩽2x ⩽16},非空集合C={x |m +1⩽x ⩽2m −1},全集为实数集R. (1)求集合A ∩B 和∁R B;(2)若A ∪C =A ,求实数m 取值的集合.20.(12分)f(x)=a⋅4x−a⋅2x+1+1−b,a>0在区间[−1,2]上最大值9,最小值0.(1)求a,b的值(2)求不等式f(x)⩾1的解集.21.(12分)已知奇函数f(x)=12x−1+a.(1)求f(x)的定义域;(2)求a的值;(3)证明x>0时,f(x)>0.22.(12分)已知函数f(x)=2xa +a2x−1(a>0)是R上的偶函数.(1)求a的值;(2)解方程f(x)=134.答案和解析1.【答案】B;【解析】这道题主要考查了对数函数的定义域和复合函数的单调性,属于基础题.首先根据对数函数的性质,求出函数的定义域,再很据复合函数的单调性求出f(x)的单调性,问题得以解决.解:因为x−1x 1x>0,解得x>1或−1<x<0,所以函数f(x)=ln(x−1x 1x)的定义域为:(−1,0)∪(1,+∞).所以选项A、D不正确.当x∈(−1,0)时,g(x)=x−1x 1x是增函数,因为y=lnx是增函数,所以函数f(x)=ln(x−1x 1x)是增函数.故选B.2.【答案】B;【解析】当a>1时,f(x)单调递增,有f(−1)=1a+b=−1,f(0)=1+b=0,无解;当0<a<1时,f(x)单调递减,有f(−1)=1a+b=0,f(0)=1+b=−1,解得a=12,b=−2,所以a+b=−32.故选B.3.【答案】D;【解析】该题考查了集合的定义与运算问题,是基础题.解不等式得集合B,根据交集与补集的定义写出A∩(∁R B)即可.解:A={ x|−2<x<1},B={ x|2x>1}={ x|x>0},∴∁R B={ x|x⩽0},∴A∩(∁R B)=(−2,0].故选:D .4.【答案】D;【解析】【试题解析】此题主要考查集合的并集及其运算,考查指数不等式的求解,属于基础题. 先分别求出集合A 、B ,再根据集合的并集定义求解即可.解:集合A =\left{ x ||x|⩽1,x ∈R }=\left{ x |−1⩽x ⩽1,x ∈R }, 集合B =\left{ x |2x ⩾1,x ∈R }=\left{ x |x ⩾0,x ∈R }, 所以A ∪B =[−1,+∞). 故选D.5.【答案】B; 【解析】此题主要考查了函数的定义域及其求法,属基础题. 根据对数的真数大于0,和偶次根式被开方非负列式解得.解:由{5−x >02x −8⩾0,解得:3⩽x <5,故选B.6.【答案】C; 【解析】此题主要考查交集的运算,属于基础题. 可求出集合A ,B ,然后进行交集的运算即可.解:A ={ x |x >0},B ={ x |x <−2或x >2}; ∴A ∩B =(2,+∞). 故选C.7.【答案】A;【解析】解:∵0<a <b <c <1, ∴1<2a <2,15<5−b <1,17<(17)c <1, 5−b =(15)b >(15)c >(17)c , 即M >N >P , 故选:A根据幂函数指数函数的性质进行比较即可.这道题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键8.【答案】B;【解析】此题主要考查指数幂的运算性质,函数的单调性,是中档题.由已知构造函数f(x)=2x−5−x,易知f(x)=2x−5−x在R上为增函数,利用单调性即可得解.解:由已知可得2x−5−x⩽2−y−5y,令f(x)=2x−5−x,易知f(x)=2x−5−x在R上为增函数,因为2x−5−x⩽2−y−5y,即2x−5−x⩽−(5y−2−y),所以f(x)⩽f(−y)所以x⩽−y,即x+y⩽0.故选B.9.【答案】B;【解析】此题主要考查集合的交集运算,属于基础题.化简A,由交集运算即可求解.解:由A={ x|2x⩾4}={ x|x⩾2},集合B={ x|−1⩽x⩽5},则A∩B={ x|2⩽x⩽5}.故选:B.10.【答案】B;x|>0,则y>1,【解析】解:当0<x<1,|log3x|⩾0,则y⩾1,当x⩾1时,|log3故选:B根据对数函数和指数函数的图象的性质即可判断.该题考查了函数图象的识别和对数函数和指数函数的性质,属于基础题.11.【答案】B;【解析】解;因为定义在R上的奇函数满足f(x+1)=f(−x),所以f(x+1)=−f(x),即f(x+2)=−f(x+1)=f(x),所以函数的周期是2,则f(x)在(1,32)上图象和在(−1,−12)上的图象相同, 设x ∈(−1,−12),则x +1∈(0,12), 又当x ∈(0,12]时,f(x)=log 12(1−x),所以f(x +1)=log 12(−x),由f(x +1)=f(−x)得,f(−x)=log 12(−x),所以f(x)=−f(−x)=−log 12(−x),由x ∈(−1,−12)得,f(x)=−log 12(−x)在(−1,−12)上是减函数,且f(x)<f(−1)=0,所以则f(x)在区间(1,32)内是减函数且f(x)<0, 故选:B .根据条件推出函数的周期性,利用函数的周期性得:f(x)在(1,32)上图象和在(−1,−12)上的图象相同,利用条件、奇偶性、对数函数单调性之间的关系即可得到结论. 此题主要考查函数奇偶性和单调性的应用,利用条件推出函数的周期性是解决本题的关键,综合考查函数性质的综合应用,考查了转化思想.12.【答案】B;【解析】解:∵a =log 23+log 2√3=log 23√3,b =lo g 29−lo g 2√3=lo g √3=lo g 23√3>1,∴a =b >1,又0<c =log 32<1, ∴a =b >c . 故选:B .利用对数的运算性质可求得a =log 23√3,b =log 23√3>1,而0<c =log 32<1,从而可得答案.该题考查不等式比较大小,掌握对数的运算性质既对数函数的性质是解决问题之关键,属于基础题.13.【答案】1; 【解析】该题考查了基本不等式、对数的运算法则和单调性,属于基础题. 利用基本不等式、对数的运算法则和单调性即可得出.解:∵实数x ,y >0,且x +2y =4,∴4⩾2√2xy ,化为xy ⩽2,当且仅当x =2y =2时取等号. 则log 2x +log 2y =log 2(xy )⩽log 22=1. 因此log 2x +log 2y 的最大值是1.故答案为:1.14.【答案】4;【解析】解:∵f(−x)+f(x)=ln[√1+x2+x][√1+x2−x]+4=ln1+4=4,∴f(≶3)+f(≶13)=f(≶3)+f(−≶3)=4.故答案为:4.利用f(−x)+f(x)=ln[√1+x2+x][√1+x2−x]+4=4,即可得出.该题考查了函数的奇偶性、对数的运算性质,属于基础题.15.【答案】(3,+∞);【解析】此题主要考查基本不等式的运用,不等式恒成立问题,属于中档题.求出1x +11−x的最小值为4,得到t>4−2y2−y,由0<y<1得到4−2y2−y>3,即可得到答案.解:∵1x +11−x=(x+1−x)(1x+11−x)=2+1−xx+x1−x⩾2+2√1−=4,当x=0.5时,显然等号成立,∴1x +11−x的最小值为4,∴只需存在实数y∈(0,1),使得2y2−y+t>4成立即可,即t>4−2y2−y,易知当0<y<1时,y²−y<0,∴4−2y2−y>3,∴t>3,∴实数t的取值范围为(3,+∞).故答案为:(3,+∞).16.【答案】(12,2);【解析】解:∵f(x)是R上的偶函数,∴f(|x|)=f(x),∴f(log14x)=f(|log14x|),又∵f(x)在[0,+∞)上递减,且f(12)=0,∴f(|log14x|)>0=f(12),∴|log14x|<12,∴−12<12log2x<12,∴−1<log2x<1,∴12<x<2,故答案为:(12,2).首先,根据偶函数的性质,得到f(log 14x)=f(|log 14x|),然后,根据函数的单调性得到∴−12<12log 2x <12,从而得到相应的范围.此题主要考查了函数的单调性和奇偶性、函数的单调性的应用,对数的运算等知识,属于中档题,本题解题关键是准确把握偶函数的性质.17.【答案】解:(1)f (a +2)=3a+2=32⋅3a =18,所以3a =2,所以g (x )=(3a )x −4x =2x −4x . (2)g (x )=2x −4x =−(2x )2+2x , 令2x =t ∈[12,2],所以g (x )=μ(t )=−t 2+t =−(t −12)2+14在t ∈[12,2]上单调递减, 又t =2x 为单调递增函数, 所以g (x )在x ∈[−1,1]上单调递减.(3)由(2)知g (x )=μ(t )=−t 2+t =−(t −12)2+14在t ∈[12,2]上单调递减, 所以g (x )∈[−2,14],即m ∈[−2,14].;【解析】(1)将a +2代入函数的解析式,根据指数的运算性质可得3a =2,再代入即可得g (x )的解析式;(2)令2x =t ∈[12,2],所以g (x )=μ(t )=−t 2+t =−(t −12)2+14,根据二次函数的性质可得μ(t )单调递减,t =2x 为单调递增函数,根据复合函数的单调性可得结果; (3)利用二次函数的性质求出g (x )的范围即可.18.【答案】解:(1)当a >0时,因为2x >0,所以2x +a >0 所以函数f(x)=2x −a 2x +a 的定义域为R , 结论:函数f(x)=2x −a 2x +a (a >0)是增函数.证明:设对任意的x 1,x 2∈R ,且x 1<x 2, 则:f(x 1)−f(x 2)=2x 1−a2x 1+a −2x 2−a2x 2+a , =(2x 1−a)(2x 2+a)−(2x 2−a)(2x 1+a)(2x 1+a)(2x 2+a),=2a (2x 1−2x 2)(2x 1+a)(2x 2+a),因为x 1<x 2,所以2x 2>2x 1,即2x 1−2x 2<0,又因为2x 1+a >0,2x 2+a >0,a >0,所以2a (2x 1−2x 2)(2x 1+a)(2x 2+a)<0, 所以f(x 1)<f(x 2),即证.(2)因为m <n , 所以2m <2n ,从而12m >12n . 又由[k 2m,k 2n]知,k2m<k 2n,所以k <0,因为a ≠0,所以a <0或a >0. ①当a >0时,由(1)知,函数f(x)=2x −a 2x +a是增函数.因为函数f(x)在区间[m,n] (m <n)上的取值范围是 [k 2m,k 2n](k ∈R),所以{f(m)=k2m ,f(n)=k 2n ,即: {2m −a2m +a =k2m2n −a 2n+a=k2n, 从而关于x 的方程2x −a 2x +a=k 2x有两个互异实根.令t =2x ,则t >0,所以方程t 2−(a +k)t −ak =0(k <0)有两个互异正根, 所以 \matrixLatexcasesFa+k2>0,a+k)^{2}+4ak>0,\\-ak>0\end{cases}从而:-3+2\sqrt{2}< \frac{k}{a}< 0.<br/>②$当a <0时,函数$f(x)=1-\frac{2a}{2^{x}+a}在区间(-\infty,\log_{2}(-a)),(\log_{2}(-a),+\infty)上均单调递减,<br/>若[m,n]⊆(\log_{2}(-a),+\infty),则f(x)>1,于是\frac{k}{2^{m}}>0$,这与k <0矛盾,故舍去$;<br/>若[m,n]\subseteq(-\infty,\log_{2}(-a)),则f(x)< 1,<br/>于是\left{ \begin{array}{l}f(m)=\frac{k}{{2}^{n}}\\ f(n)=\frac{k}{{2}^{m}}\end{array}\right.,\;\;\;\;\;即:\;\left{ \begin{array}{l}\frac{{2}^{m}-a}{{2}^{m}+a}=\frac{k}{{2}^{n}}\;\;\;\;➀\\ \frac{{2}^{n}-a}{{2}^{n}+a}=\frac{k}{{2}^{m}}\;\;\;\;\;②\end{array}\right.,.<br/>所以\left{ \begin{array}{ll}{2}^{n}({2}^{m}-a)=k({2}^{m}+a)\\ {2}^{m}({2}^{n}-a)=k({2}^{n}+a)\end{array}\right.,两式相减并整理得,(k-a)(2^{n}-2^{m})=0,<br/>又2^{m}< 2^{n},故2^{n}-2^{m}>0,从而k-a=0.$因为a <0,所以$\frac{k}{a}=1.<br/>综上,\frac{k}{a}的范围是(-3+2\sqrt{2},0)∪{ 1}.$;【解析】此题主要考查函数的单调性,函数定义域与值域以及指数函数的性质,属于难题.(1)利用函数单调性的定义求证即可;(2)依题意,函数f(x)在区间[m,n] (m <n)上的取值范围是[k 2m ,k 2n](k ∈R),分别讨论a的范围即可求解.19.【答案】解:(1)∵函数f(x)=√−x 2+5x −6的定义域为A , ∴\mathopA={x |−x 2+5x −6⩾又由2⩽2x ⩽16得B=[1,4].∴ A ∩B =[2,3],∁R B =(−∞,1)∪(4,+∞). (2)∵A ∪C =A. ∴C ⊆A则{&m +1⩾2 2m −1⩽3 ,即1⩽m ⩽2.又要使集合C={ x|m+1⩽x⩽2m−1}为非空集合,则必须m+1⩽2m−1即m⩾2,综上可得m=2,所以实数m的取值集合为{2}.;【解析】此题主要考查集合的运算以及集合中参数的取值范围问题.属于基础题.(1)首先求出集合A与集合B,再求交集、补集;(2)由题意可知C⊆A,因此可建立不等式组,即可解出实数m的取值集合.20.【答案】解:(1)f(x)=a•4x-a•2x+1+1-b,a>0,设t=2x(12≤t≤4),则g(t)=a t2-2at+1-b=a(t-1)2-a-b+1,当t=1时,取得最小值1-a-b,即有1-a-b=0,①又t=4时,取得最大值8a-b+1=9,②由①②解得a=1,b=0;(2)f(x)≥1,即为4x-2x+1+1≥1,即有2x(2x-2)≥0,由于2x>0,则2x≥2,解得x≥1,则解集为{x|x≥1}.;【解析】(1)可令t=2x(12⩽t⩽4),则g(t)=at2−2at+1−b=a(t−1)2−a−b+1,考虑对称轴和区间关系,可得t=1取得最小值,t=4取得最大值,解a,b的方程组,即可得到所求值;(2)由指数不等式的解法,结合指数函数的单调性,即可得到所求范围.该题考查指数函数的性质和运用,考查可化为二次函数的最值的求法,考查换元法的运用,以及不等式的解法,属于中档题.21.【答案】解:(1)∵2x-1≠0,即2x≠1,∴x≠0故f(x)的定义域是(-∞,0)∪(0,+∞)(2)解:∵f(x)是奇函数又∵f(−x)=12−x−1+a=2x1−2x+a∴f(x)+f(−x)=12x−1+a+2x1−2x+a=0∴a=12(3)证明:当x>0时,2x>1,∴2x-1>0∴12x−1+12>0,即x>0时,f(x)>0;【解析】(1)根据2x−1≠0,即2x≠1,求解.(2)根据奇函数的概念,f(x)+f(−x)=12x−1+a+2x1−2x+a=0,求解.(3)根据不等式的性质证明,结合指数函数的单调性.该题考查了函数的概念,性质,属于容易题.22.【答案】解:(1)∵f(x)为偶函数,∴f(−x)=f(x)恒成立,∴2xa +a2x=2−xa+a2−x恒成立,即(1a−a)(2x−2−x)=0恒成立,∴1a−a=0,解得a=±1,∵a>0,∴a=1.(2)由(1)知f(x)=2x+2−x−1=134,∴4⋅(2x)2−17⋅2x+4=0,解得2x=4或14,∴x=±2,所以原方程的解为x=±2.;【解析】【试题解析】此题主要考查了偶函数的定义,一元二次方程的解法,考查了计算能力,属于基础题.(1)根据f(x)为偶函数可得出f(−x)=f(x)恒成立,从而可得出(1a−a)(2x−2−x)=0恒成立,从而可求出a=1;(2)根据(1)即可得出4⋅(2x)2−17⋅2x+4=0,然后解出x的值即可.。
高一数学必修 指数函数试题及答案
高一数学必修1指数函数试题及答案1.已知集合M={-1,1},N=x12<2x+1<4,x∈Z,则M∩N等于( ) A.{-1,1} B.{-1}C.{0} D.{-1,0}【解析】因为N={x|2-1<2x+1<22,x∈Z},又函数y=2x在R上为增函数,∴N={x|-1<x+1<2,x∈Z}={x|-2<x<1,x∈Z}={-1,0}.∴M∩N={-1,1}∩{-1,0}={-1}.故选B.【答案】 B2.设14<14b<14a<1,那么( )A.aa<ab<ba B.aa<ba<abC.ab<aa<ba D.ab<ba<aa【解析】由已知及函数y=14x是R上的减函数,得0<a<b<1.由y=ax(0<a<1)的单调性及a<b,得ab<aa.由0<a<b<1知0<ab<1.∵aba<ab0=1.∴aa<ba.故选C.也可采用特殊值法,如取a=13,b=12.【答案】 C3.已知函数f(x)=a-12x+1,若f(x)为奇函数,则a=________. 【解析】解法1:∵f(x)的定义域为R,又∵f(x)为奇函数,∴f(0)=0,即a-120+1=0.∴a=12.解法2:∵f(x)为奇函数,∴f(-x)=-f(x),即a-12-x+1=12x+1-a,解得a=12.【答案】124.函数y=2-x2+ax-1在区间(-∞,3)内递增,求a的取值范围.【解析】对u=-x2+ax-1=-x-a22+a24-1,增区间为-∞,a2,∴y的增区间为-∞,a2,由题意知3≤a2,∴a≥6.∴a的取值范围是a≥6.一、选择题(每小题5分,共20分)1.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A.y3>y1>y2 B.y2>y1>y3C.y1>y2>y3 D.y1>y3>y2【解析】y1=40.9=21.8,y2=80.48=21.44,y3=(12)-1.5=21.5,∵y=2x在定义域内为增函数,且1.8>1.5>1.44,∴y1>y3>y2.【答案】 D2.若142a+1<143-2a,则实数a的取值范围是( )A.12,+∞B.1,+∞C.(-∞,1) D.-∞,12【解析】函数y=14x在R上为减函数,∴2a+1>3-2a,∴a>12.故选A.【答案】 A3.设函数f(x)定义在实数集上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x-1,则有( )A.f(13)<f(32)<f(23)B.f(23)<f(32)<f(13)C.f(23)<f(13)<f(32)D.f(32)<f(23)<f(13)【解析】因为f(x)的图象关于直线x=1对称,所以f(13)=f(53),f(23)=f(43),因为函数f(x)=3x-1在[1,+∞)上是增函数,所以f(53)>f(32)>f(43),即f(23)<f(32)<f(13).故选B.【答案】 B4.如果函数f(x)=(1-2a)x在实数集R上是减函数,那么实数a的取值范围是( ) A.(0,12) B.(12,+∞)C.(-∞,12) D.(-12,12)【解析】根据指数函数的概念及性质求解.由已知得,实数a应满足1-2a>01-2a<1,解得a<12a>0,即a∈(0,12).故选A.【答案】 A二、填空题(每小题5分,共10分)5.设a>0,f(x)=exa+aex(e>1),是R上的偶函数,则a=________.【解析】依题意,对一切x∈R,都有f(x)=f(-x),∴exa+aex=1aex+aex,∴(a-1a)(ex-1ex)=0.∴a-1a=0,即a2=1.又a>0,∴a=1.【答案】 16.下列空格中填“>、<或=”.(1)1.52.5________1.53.2,(2)0.5-1.2________0.5-1.5.【解析】(1)考察指数函数y=1.5x.因为1.5>1,所以y=1.5x在R上是单调增函数.又因为2.5<3.2,所以1.52.5<1.53.2.(2)考察指数函数y=0.5x.因为0<0.5<1,所以y=0.5x在R上是单调减函数.又因为-1.2>-1.5,所以0.5-1.2<0.5-1.5.【答案】<,<三、解答题(每小题10分,共20分)7.根据下列条件确定实数x的取值范围:a<1a1-2x(a>0且a≠1).【解析】原不等式可以化为a2x-1>a12,因为函数y=ax(a>0且a≠1)当底数a大于1时在R上是增函数;当底数a大于0小于1时在R上是减函数,所以当a>1时,由2x-1>12,解得x>34;当0<a<1时,由2x-1<12,解得x<34.综上可知:当a>1时,x>34;当0<a<1时,x<34.8.已知a>0且a≠1,讨论f(x)=a-x2+3x+2的单调性.【解析】设u=-x2+3x+2=-x-322+174,则当x≥32时,u是减函数,当x≤32时,u是增函数.又当a>1时,y=au是增函数,当0<a<1时,y=au是减函数,所以当a>1时,原函数f(x)=a-x2+3x+2在32,+∞上是减函数,在-∞,32上是增函数.当0<a<1时,原函数f(x)=a-x2+3x+2在32,+∞上是增函数,在-∞,32上是减函数.9.(10分)已知函数f(x)=3x+3-x.(1)判断函数的奇偶性;(2)求函数的单调增区间,并证明.【解析】(1)f(-x)=3-x+3-(-x)=3-x+3x=f(x)且x∈R,∴函数f(x)=3x+3-x是偶函数.(2)由(1)知,函数的单调区间为(-∞,0]及[0,+∞),且[0,+∞)是单调增区间.现证明如下:设0≤x1<x2,则f(x1)-f(x2)=3x1+3-x1-3x2-2-x2=3x1-3x2+13x1-13x2=3x1-3x2+3x2-3x13x13x2=(3x2-3x1)?1-3x1+x23x1+x2.∵0≤x1<x2,∴3x2>3x1,3x1+x2>1,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数在[0,+∞)上单调递增,即函数的单调增区间为[0,+∞).。
高一数学指数与指数函数试题
高一数学指数与指数函数试题1.每次用相同体积的清水洗一件衣物,且每次能洗去污垢的,若洗n次后,存在的污垢在1%以下,则n的最小值为_______.【答案】4【解析】因为每次洗去后存在的污垢为原来的所以洗n次后,存在的污垢为原来的,由解得,因此n的最小值为【考点】指数函数实际应用2..【答案】【解析】原式=【考点】指数与对数3.若,则的取值范围为________________.【答案】【解析】当即时,,当即时,,所以的取值范围是.【考点】1.指数与对数的运算;2.分类讨论的思想.4.计算(1);(2).【答案】(1);(2).【解析】(1)由对数的运算法则,利用,将其化简有;(2)由指数的运算法则,利用,,将其化简有.试题解析:(1)原式6分(2)原式12分考点:1、有理数指数幂的运算性质;2、对数的运算性质.5.设,,,则的大小顺序为()A.B.C.D.【答案】B【解析】因为,,,所以,故选B.【考点】1.指数函数的单调性;2.对数函数的单调性.6.我国大西北某地区荒漠化土地面积每年平均比上一年增长,专家预测经过年可能增长到原来的倍,则函数的图像大致为()【答案】D【解析】设初始年份的荒漠化土地面积为,则1年后荒漠化土地面积为,2年后荒漠化土地面积为,3年后荒漠化土地面积为,所以年后荒漠化土地面积为,依题意有即,,由指数函数的图像可知,选D.【考点】1.指数函数的图像与性质;2.函数模型及其应用.7.幂函数的图象经过点),则其解析式是.【答案】【解析】设幂函数为,因为其图像过点,,即,x=2,函数解析式为【考点】幂函数的概念以及指数的运算8.函数在区间[0,1]上的最大值和最小值之和为.【答案】4【解析】因为在[0,1]上单调递增,在[0,1]上单调递减,所以在 [0,1]单调递增,所以y的最大值为,最小值为,所以最大值和最小值之和为4.【考点】指数函数和对数函数的单调性及利用单调性求最值9.计算 .【答案】14【解析】【考点】指数幂的运算;对数的运算10.计算 .【答案】14【解析】【考点】指数幂的运算;对数的运算11.(1)计算:(2)已知,求的值.【答案】(1);(2).【解析】(1)此题主要考查学生对指数运算法则、对数运算性质的掌握情况,以及对指数式、对数式整体与局部的认识,属基础题;(2)经过审题,若从已知条件中求出难度较大,由指数运算法则知,,所以所求式子中的,. 试题解析:(1)原式= 6分(2)因为得得所以原式= 12分【考点】1.指数运算法则;2.对数运算性质.12.已知,那么用表示是()A.B.C.D.【答案】B【解析】,所以答案选.【考点】指数对数的计算13.方程的解是.【答案】【解析】方程化为【考点】指数式的运算点评:本题极简单,对于基本指数运算的考查14.计算等于()A.B.C.D.1【答案】D【解析】根据题意,由于化简变形为,故可知答案为D.【考点】对数式的运算点评:解决的关键是利用对数的运算性质来化简求解,属于基础题。
高一数学指数与指数函数试题答案及解析
高一数学指数与指数函数试题答案及解析1.若,则在,,,中最大值是()A.B.C.D.【答案】C【解析】由指数函数的性质,得,;由幂函数的性质得,因此最大的是.【考点】指数函数和幂函数的性质.2.设,,,则()A.b<a<c B.c<a<b C.c<b<a D.a<c<b【答案】B【解析】,,【考点】指数函数和对数函数的性质.3.设均为正数,且,,.则()A.B.C.D.【答案】C【解析】分别为方程的解,由图可知.【考点】函数图像4.若函数的图像与轴有公共点,则的取值范围是()A.B.C.D.【答案】B【解析】函数与轴有公共点,即设函数,,有交点,函数如图:,即,故选B.【考点】函数图像5.已知函数和函数,其中为参数,且满足.(1)若,写出函数的单调区间(无需证明);(2)若方程在上有唯一解,求实数的取值范围;(3)若对任意,存在,使得成立,求实数的取值范围.【答案】(1)的单调增区间为,,单调减区间为;(2)或;(3).【解析】(1)当时,,由二次函数的图像与性质可写出函数的单调区间;(2)先将在上有唯一解转化为在上有唯一解,进而两边平方得到或,要使时,有唯一解,则只须或即可,问题得以解决;(3)对任意,存在,使得成立的意思就是的值域应是的值域的子集,然后分别针对与两种情形进行讨论求解,最后将这两种情况求解出的的取值范围取并集即可.试题解析:(1)时, 1分函数的单调增区间为,,单调减区间为 4分(2)由在上有唯一解得在上有唯一解 5分即,解得或 6分由题意知或即或综上,的取值范围是或 8分(3)则的值域应是的值域的子集 9分①时,在上单调递减,上单调递增,故 10分在上单调递增,故 11分所以,即 12分②当时,在上单调递减,故在上单调递减,上单调递增,故所以,解得.又,所以 13分综上,的取值范围是 14分.【考点】1.二次函数的图像与性质;2.指数函数的图像与性质;3.函数的单调性与最值.6.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】因为指数函数(且)的图像过点,则,得.【考点】指数函数的定义.7.将函数的图像向左平移一个单位,得到图像,再将向上平移一个单位得到图像,作出关于直线对称的图像,则的解析式为 .【答案】【解析】根据平移口诀“上加下减”可得函数解析式为,函数解析式为,因为图像与图像关于直线对称,所以函数与函数互为反函数。
(完整版)指数函数及其性质习题(含答案)
指数函数及其性质习题(含答案)一、单选题的图象可能是( ) 1.在同一坐标系内,函数y=x a(a≠0)和y=ax+1aA.B.C.D.−1,若f(a)=1,则f(−a)=()2.已知函数f(x)=(e x+e−x)ln1−x1+xA.1B.−1C.3D.−33.已知函数f(x)=(x−a)(x−b)(其中a>b)的图象如图所示,则函数g(x)=a x +b的图象大致是( )A.B..C.D.4.已知a=log40.7,b=log23,c=0.20.6,则a,b,c的大小关系是( )A.c<b<a B.a<c<b C.b<a<c D.a<b<c5.函数y=a x+1−3(a>0,且a≠1)的图象一定经过的点是( )A.(0,−2)B.(−1,−3)C.(0,−3)D.(−1,−2)6.在同一坐标系中,函数y=2−x与y=−log2x的图象都正确的是()A.B.C.D .7.设a =20.5,b =0.52,c =log 20.5,则a,b,c 的大小关系为A . c >a >bB . c >b >aC . a >b >cD . b >a >c8.若01a b <<<,则b a , a b , log b a ,)A .B .C .D .9.若a ,b ,c 满足2a =3,b =log 25,3c =2,则( )A . c <a <bB . b <c <aC . a <b <cD . c <b <a二、填空题10.已知: 12a a -+=,则22a a -+=__________.11.函数()2x f x =在[]1,3-上的最小值是__________. 12.函数y=a x+2-1(a>0且a≠1)的图象恒过定点________.13.求值:2log 323−log 3427−31+log 32=__________.14.函数f(x)=(12)−x2+2x+1的单调减区间为________. 15,.16.计算:. 17.若函数()()23x f x a =-在R 上是减函数,则实数a 的取值范围是________18.已知函数()x f x a b =+ ()0,1a a >≠的定义域和值域都是[]1,0-,则b a =__________.三、解答题19.(1)计算:(−3)−(1−0.5−2)÷(338)13;(2)已知a =log 32,3b =5用a,b 表示log 3√30.20.(1)(2)已知15a a-+=,求22a a -+和.21.计算: (1))213013210.027163217---⎛⎫--+-+⋅ ⎪⎝⎭. (222.化简求值 (1) (827)23+(0.008)−23×225(2) 12523+(12)−2−(127)−13+10012+lg3+14lg9−lg √3lg81−lg2723.已知定义在R 上的函数f(x)=b−2x2x +a 是奇函数.⑴求a , b 的值,并判断函数f(x)在定义域中的单调性(不用证明);⑵若对任意的t ∈R ,不等式f(t 2−2t)+f(2t 2−k)<0恒成立,求实数k 的取值范围.24.若函数f(x)=a x −1(a >0,且a ≠1)的定义域和值域都是[0,2],求实数a 的值.25.(本小题满分10分)已知函数f(x)=log 4(4x +1)+kx(k ∈R)是偶函数.(1)求实数k 的值;(2)设g(x)=log 4(a ⋅2x +a),若f(x)= g(x)有且只有一个实数解,求实数a 的取值范围.26.计算:(1) (−338)−23+0.002−12−10(√5−2)−1+(√2−√3)0; (2)lg 5(lg 8+lg 1 000)+3lg 22+lg 16+lg 0.06. 27.已知f(x)=4x−1−2x +5,x ∈[−2,2].(1)求f(x)的值域.(2)若f(x)>3m 2+am +2对任意a ∈[−1,1]和x ∈[−2,2]都成立,求m 的取值范围.28.计算下列各式的值;(1)(2)参考答案1.B【解析】【分析】分两种情况讨论,利用函数的单调性,筛选排除即可得结果【详解】若a>0,y=x a在(0,+∞)递增,排除A,B选项,y=ax+1a递增,排除D;纵轴上截距为正数,排除C,即a>0时,不合题意;若a<0,y=x a在(0,+∞)递减,可排除C,D选项,由y=ax+1a递减可排除A,故选B.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及x→0+,x→0−,x→+∞,x→−∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.2.D【解析】分析:先化简f(a)=1得到(e a+e−a)ln1+a1−a=−2,再求f(−a)的值.详解:由题得(e a+e−a)ln1−a1+a −1=1,∴(e a+e−a)ln1−a1+a=2,∴−(e a+e−a)ln1+a1−a=2,∴(e a+e−a)ln1+a1−a=−2.所以f(−a)=(e−a+e a)ln1+a1−a−1=−2−1=−3.故答案为:D点睛:(1)本题主要考查函数求值和指数对数运算,意在考查学生对这些基础知识的掌握能力和运算能力.(2)解答本题的关键是整体代入求值.3.D【解析】【分析】根据二次函数的图象得到−1<b<0,a>1,继而得到g(x)=a x+b的图象经过一二三象限,问题得以解决.【详解】因为a,b 是二次函数的零点,由二次函数f (x )=(x −a )(x −b )(其中a >b )的图象可知−1<b <0,a >1, 所以g (x )=a x +b 的图象经过一二三象限,只有选项D 符合题意,故选D.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象4.B【解析】【分析】利用指数与对数的单调性与中间量0,1可求得三个数大小。
高一数学指数与指数函数试题答案及解析
高一数学指数与指数函数试题答案及解析1.设,则的大小关系是().A.B.C.D.【解析】,,,因此.【考点】指数函数和对数函数的性质.2.若点在函数的图象上,则的值为.【答案】【解析】由点在函数的图象上得,所以,故应填入.【考点】指数函数及特殊角的三角函数.3.设,则下列不等式成立的是()A.若,则B.若,则C.若,则D.若,则【答案】A【解析】对于A,B考查函数f(x)=2x+2x,g(x)=2x+3x的单调性与图象:可知函数f(x)、g(x)在R上都单调递增,若2a+2a=2b+3b,则a>b,因此A正确;对于C,D分别考查函数u(x)=2x-2x,v(x)=2x-3x单调性与图象:当时,u′(x)<0,函数u(x)单调递减;当时,u′(x)>0,函数u(x)单调递增.故在x=取得最小值.当0<x<时,v′(x)<0,函数v(x)单调递减;当x>时,v′(x)>0,函数v (x)单调递增.故在x=取得最小值,据以上可画出图象.据图象可知:当2a-2a=2b-3b,a>0,b>0时,可能a>b或a<b.因此C,D不正确.综上可知:只有A正确.故答案为A.【考点】用导数研究函数的单调性和图象;命题的真假判断与应用.4.若,则()A.B.C.D.【答案】D【解析】由得,所以.【考点】指对数式的互化,指数运算法则.5.若函数的图像与轴有公共点,则的取值范围是()A.B.C.D.【答案】B【解析】函数与轴有公共点,即设函数,,有交点,函数如图: ,即,故选B.【考点】函数图像6.三个数的大小关系为()A.B.C.D.【答案】D【解析】;;。
所以,故D正确。
【考点】指数对数函数的单调性。
7.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算8.如图,在平面直角坐标系中,过原点O的直线与函数的图象交于A,B两点,过B作y轴的垂线交函数的图象于点C,若AC平行于y轴,则点A的坐标是.【答案】【解析】设,则,因为AC平行于y轴,所以,因此.又三点三点共线,所以由得,因此.【考点】指数函数运算,向量共线.9.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】因为指数函数(且)的图像过点,则,得.【考点】指数函数的定义.10.我国大西北某地区荒漠化土地面积每年平均比上一年增长,专家预测经过年可能增长到原来的倍,则函数的图像大致为()【答案】D【解析】设初始年份的荒漠化土地面积为,则1年后荒漠化土地面积为,2年后荒漠化土地面积为,3年后荒漠化土地面积为,所以年后荒漠化土地面积为,依题意有即,,由指数函数的图像可知,选D.【考点】1.指数函数的图像与性质;2.函数模型及其应用.11.若,则下列结论正确的是()A.B.C.D.【答案】C【解析】指数函数、对数函数的底数大于1 时,函数为增函数,反之,为减函数,对于幂函数而言,当时,在上递增,当时,在上递减,而,所以,故选C.【考点】1.指数函数;2.对数函数;3.幂函数的性质.12.设函数,如果,求的取值范围.【答案】【解析】对分段函数需分情况讨论,再解指数及对数不等式时,需将实数转化为同底的指数或对数,然后根据指数、对数的单调性解不等式。
高一数学必修1《指数函数》单元测试题
高一数学必修1:《指数函数》单元测试题班级 姓名一、选择题1、 若指数函数y a x=+()1在()-∞+∞,上是减函数,那么( ) A 、01<<-a B 、 01<<a C 、 a =-1 D 、 a <-12、已知310x =,则这样的( ) A 、 存在且不只一个 B 、 存在且只有一个 C 、 存在且x <2D 、 根本不存在 3、下列函数图象中,函数y a a a x=>≠()01且,与函数y ax =-()1的图象只能是( ) y y y yO x O x O x O x A B C D 11114、函数f x x ()=-23在区间()-∞,0上的单调性是( )A 、 有时是增函数有时是减函数B 、常数C 、增函数D 、减函数5、函数f x x ()=-21,使f x ()≤0成立的的值的集合是( ) A 、 {}xx =0 B 、 {}xx <1 C 、{}xx <0 D 、 {}xx =16、若函数(1)x y a b =+-(0a >且1a ≠)的图象不经过第二象限,则有 ( )A 、1a >且1b <B 、1a >且0b ≤C 、01a <<且0b >D 、01a <<且1b ≤7、函数fx g x x x ()()==+22,,使f x gx ()()=成立的x 的值的集合( ) A 、是φ B 、有且只有一个元素 C 、有两个元素 D 、有无数个元素 8、知函数f (x )=⎩⎪⎨⎪⎧ 2x +1,x <1x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于( )A.21B.54 C .9 D .2 9、f(x+1)的定义域是[-1,2],则)(1-2f x 的定义域是( )A 、[0,2]B 、[21-,3]C 、[43-,1] D 、[0,1]10、已知集合M ={-1,1},N =⎭⎬⎫⎩⎨⎧∈<<+Z x x x ,42211,则M ∩N 等于( )A 、{-1,1}B 、{-1}C 、{0}D 、{-1,0}11、设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( ) A 、y 3>y 1>y 2 B 、y 2>y 1>y 3 C 、y 1>y 3>y 2 D 、y 1>y 2>y 312、若(12)2a +1<(12)3-2a ,则实数a 的取值范围是( ) A 、(-∞,12) B 、 (-∞,1) C 、(1,+∞) D 、(12,+∞) 二、填空题 13、 函数y x =-322的定义域是_________。
指数函数(经典题、易错题)
指数函数(经典题、易错题)指数函数(经典题、易错题)一.选择题(共22小题)1.若函数,且0≤x≤1,则有()A.f(x)≥1B.C.D.2.函数y=()x2+2x﹣1的值域是()A.(﹣∞,4)B.(0,+∞)C.(0,4]D.[4,+∞)3.函数的值域为()A.(0,1]B.(0,+∞)C.(1,+∞)D.(﹣∞,+∞)4.函数y=4x+2x+1+5,x∈[1,2]的最大值为()A.20B.25C.29D.315.函数y=3|x|﹣1的定义域为[﹣1,2],则函数的值域为()A.[2,8]B.[0,8]C.[1,8]D.[﹣1,8]6.函数的值域是()A.(0,+∞)B.(0,1)C.(0,1]D.[1,+∞)7.(2011?山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.B.C.1D.8.设a、b、c、d都是大于零且不等于1的实数,y=ax、y=bx、y=cx、y=dx在同一坐标系中的图象如图(1)所示,则a、b、c、d的大小关系是()A.a>b>c>dB.a>b>d>cC.a>d>c>bD.a>c>b>d9.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()A.a<b<c<dB.a<b<d<cC.b<a<d<cD.b<a<c<d10.(2012?四川)函数y=ax﹣a(a>0,a≠1)的图象可能是()A.B.C.D.11.把函数y=2x﹣2+3的图象按向量平移,得到函数y=2x+1﹣1的图象,则向量=()A.(﹣3,﹣4)B.(3,4)C.(﹣3,4)D.(3,﹣4)12.函数y=3x﹣1的图象大致是()A.B.C.D.13.函数f(x)=4x+5×2x﹣1+1的值域是()A.(0,1)B.[1,+∞)C.(1,+∞)D.[0,1]14.已知a=,b=,c=,则下列关系中正确的是()A.a<b<cB.c<a<bC.a<c<bD.b<a<c15.若a>0,a≠1,则函数y=ax﹣1的图象一定过点()A.(0,1)B.(1,1)C.(1,0)D.(0,﹣1)16.已知a,b∈R,且a>b,则下列不等式中恒成立的是()A.a2>b2B.()a<()bC.lg(a﹣b)>0D.>117.函数的单调增区间为()A.[﹣1,+∞)B.(﹣∞,﹣1]C.(﹣∞,+∞)D.(﹣∞,0]18.函数y=ax﹣1+1(0<a≠1)的图象必经过点()A.(0,1)B.(1,1)C.(1,2)D.19.已知a=30.2,b=0.2﹣3,c=3﹣0.2,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.c>a>bD.b>c>a20.(2005?山东)下列大小关系正确的是()A.0.43<30.4<log40.3B.0.43<log40.3<30.4C.log40.3<0.43<30.4D.log40.3<30.4<0.4321.设,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.b>c>aD.c>b>a22.比较a,b,c的大小,其中a=0.22,b=20.2,c=log0.22()A.B.c>a>bC.a>b>cD.b>a>c二.填空题(共2小题)23.函数的单调递增区间是_________ .24.(2005?上海)方程4x+2x﹣2=0的解是_________ .指数函数(经典题、易错题)参考答案与试题解析一.选择题(共22小题)1.若函数,且0≤x≤1,则有()A.f(x)≥1B.C.D.考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:结合指数函数数在[0,1]上的单调性可求.解答:解:∵0≤x≤1且函数单调递减∴故选D点评:本题主要考查了指数函数的单调性的应用,属于基础试题.2.函数y=()x2+2x﹣1的值域是()A.(﹣∞,4)B.(0,+∞)C.(0,4]D.[4,+∞)考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:本题是一个复合函数,求其值域可以分为两步来求,先求内层函数的值域,再求函数的值域,内层的函数是一个二次型的函数,用二次函数的性质求值域,外层的函数是一个指数函数,和指数的性质求其值域即可.解答:解:由题意令t=x2+2x﹣1=(x+1)2﹣2≥﹣2∴y=≤=4∴0<y≤4故选C点评:本题考查指数函数的定义域和值域、定义及解析式,解题的关键是掌握住复合函数求值域的规律,由内而外逐层求解.以及二次函数的性质,指数函数的性质.3.函数的值域为()A.(0,1]B.(0,+∞)C.(1,+∞)D.(﹣∞,+∞)考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:画出f(x)的图象,由f(x)图象f(x)可得的值域.解答:解:函数的图象如图:由f(x)的图象可得:f(x)的值域为(0,+∞).故选B.点评:本题考查指数函数的值域,用到了指数函数的图象.4.函数y=4x+2x+1+5,x∈[1,2]的最大值为()A.20B.25C.29D.31考点:指数函数的定义、解析式、定义域和值域;函数的最值及其几何意义.1091931专题:计算题.分析:由x∈[1,2],知2≤2x≤4,把y=4x+2x+1+5转化为y=(2x+1)2+4,当2x=4时,ymax=(4+1)2+4=29.解答:解:∵x∈[1,2],∴2≤2x≤4,∴y=4x+2x+1+5=(2x)2+2×2x+5=(2x+1)2+4,当2x=4时,ymax=(4+1)2+4=29.故选C.点评:本题考查指数函数的性质和应用,解题时要认真审题,注意配方法的合理运用.5.函数y=3|x|﹣1的定义域为[﹣1,2],则函数的值域为()A.[2,8]B.[0,8]C.[1,8]D.[﹣1,8]考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:设t=|x|可得出t∈[0,2],根据指数函数的单调性求出值域即可.解答:解:设t=|x|∵函数y=3|x|﹣1的定义域为[﹣1,2],∴t∈[0,2]∴y=3t﹣1∴y=3t﹣1在t∈[0,2]的值域为[0,8]故选B.点评:本题考查了指数函数的定义域和值域,求出函数y=3t﹣1的定义域是解题的关键,属于基础题.6.函数的值域是()A.(0,+∞)B.(0,1)C.(0,1]D.[1,+∞)考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:本题是一个复合函数,求其值域可以分为两步来求,先求内层函数的值域,再求函数的值域,内层的函数是一个二次型的函数,用二次函数的性质求值域,外层的函数是一个指数函数,和指数的性质求其值域即可.解答:解:由题意令t=x2≥0∴y=≤=1∴0<y≤1故选C点评:本题考查指数函数的定义域和值域、定义及解析式,解题的关键是掌握住复合函数求值域的规律,由内而外逐层求解.以及二次函数的性质,指数函数的性质.7.(2011?山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.B.C.1D.考点:指数函数的图像与性质.1091931专题:计算题.分析:先将点代入到解析式中,解出a的值,再根据特殊三角函数值进行解答.解答:解:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴=.故选D.点评:对于基本初等函数的考查,历年来多数以选择填空的形式出现.在解答这些知识点时,多数要结合着图象,利用数形结合的方式研究,一般的问题往往都可以迎刃而解.8.设a、b、c、d都是大于零且不等于1的实数,y=ax、y=bx、y=cx、y=dx在同一坐标系中的图象如图(1)所示,则a、b、c、d的大小关系是()A.a>b>c>dB.a>b>d>cC.a>d>c>bD.a>c>b>d考点:指数函数的图像与性质.1091931专题:综合题.分析:通过作直线x=1与图象交于四点,利用这几个点的位置关系,从而确定a,b,c,d的大小关系.解答:解:∵a1=a,∴作直线x=1与图象分别交于A,B,C,D点,则它们纵坐标分别为:a,b,c,d由图a>b>c>d故选A.点评:本题考查了指数函数的图象与性质,同时考查了数形结合的思想方法,是个基础题.9.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()A.a<b<c<dB.a<b<d<cC.b<a<d<cD.b<a<c<d考点:指数函数的图像与性质.1091931专题:数形结合.分析:要比较a、b、c、d的大小,根据函数结构的特征,作直线x=1,与y=ax,y=bx,y=cx,y=dx 交点的纵坐标就是a、b、c、d,观察图形即可得到结论.解答:解:作辅助直线x=1,当x=1时,y=ax,y=bx,y=cx,y=dx的函数值正好是底数a、b、c、d直线x=1与y=ax,y=bx,y=cx,y=dx交点的纵坐标就是a、b、c、d观察图形即可判定大小:b<a<d<c故选:C.点评:本题主要考查了指数函数的图象与性质,同时考查了数形结合的数学思想,分析问题解决问题的能力,属于基础题.10.(2012?四川)函数y=ax﹣a(a>0,a≠1)的图象可能是()A.B.C.D.考点:指数函数的图像变换.1091931专题:计算题.分析:a>1时,函数y=ax﹣a在R上是增函数,且图象过点(1,0),故排除A,B.当1>a>0时,函数y=ax﹣a在R上是减函数,且图象过点(1,0),故排除D,由此得出结论.解答:解:函数y=ax﹣a(a>0,a≠1)的图象可以看成把函数y=ax的图象向下平移a个单位得到的.当a>1时,函数y=ax﹣a在R上是增函数,且图象过点(1,0),故排除A,B.当1>a>0时,函数y=ax﹣a在R上是减函数,且图象过点(1,0),故排除D,故选C.点评:本题主要考查指数函数的图象变换,指数函数的单调性和特殊点,体现了分类讨论的数学思想,属于中档题.11.把函数y=2x﹣2+3的图象按向量平移,得到函数y=2x+1﹣1的图象,则向量=()A.(﹣3,﹣4)B.(3,4)C.(﹣3,4)D.(3,﹣4)考点:指数函数的图像变换.1091931专题:计算题.分析:我们可以用待定系数法解答本题,先设出平移向量的坐标,根据函数图象的平移法则,我们可以求出平移后函数的解析式,根据已知我们可构造出一个关于h,k的二元一次方程组,解方程组即可求出平移向量的坐标.解答:解:设平移向量=(h,k)则函数y=2x﹣2+3的图象平移后得到的函数解析式为:y=2x﹣h﹣2+3+k即x﹣h﹣2=x+1且3+k=﹣1解得h=﹣3,k=﹣4故向量=(﹣3,﹣4)故选A点评:本题考查的知识点是函数图象的平移变换,其中根据平移法则“左加右减,上加下减”构造关于h,k的二元一次方程组,是解答本题的关键.12.函数y=3x﹣1的图象大致是()A.B.C.D.考点:指数函数的图像变换.1091931专题:作图题.分析:可利用排除法解此选择题,由特殊点(0,0)在函数图象上可排除A、B;由特殊性质函数的值域为(﹣1,+∞),排除C,即可得正确选项解答:解:由函数y=3x﹣1的图象过(0,0)点,排除A、B,由函数y=3x﹣1的值域为(﹣1,+∞),排除C故选 D点评:本题考查了指数函数的图象变换,排除法解选择题13.函数f(x)=4x+5×2x﹣1+1的值域是()A.(0,1)B.[1,+∞)C.(1,+∞)D.[0,1]考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:令2x=t,t>0,则函数f(x)=t2+t+1,利利用二次函数的性质求出值域.解答:解:令2x=t,t>0,则函数f(x)=t2+t+1=﹣>﹣=1,且由二次函数的性质知,函数f(x)=﹣无最大值,故值域为(1,+∞).故选 C.点评:本题考查指数函数的单调性和值域,二次函数的值域的求法,体现了换元的思想.14.已知a=,b=,c=,则下列关系中正确的是()A.a<b<cB.c<a<bC.a<c<bD.b<a<c考点:指数函数的单调性与特殊点.1091931专题:常规题型.分析:利用幂的运算性质将a化简;由于三个数同底;研究指数函数的单调性,判断出三个数的大小.解答:解:∵∵是同底数的幂考查指数函数是减函数故选D点评:本题考查指数函数的单调性取决于底数的范围、考查利用指数函数的单调性比较幂的大小.15.若a>0,a≠1,则函数y=ax﹣1的图象一定过点()A.(0,1)B.(1,1)C.(1,0)D.(0,﹣1)考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:令令x﹣1=0求出x的值,代入解析式求出定点的坐标.解答:解:令x﹣1=0得,x=1,代入数y=ax﹣1=1,∴函数y=ax﹣1的图象一定过点(1,1),故选B.点评:本题考查了指数函数的图象过定点(0,1)的应用,令指数为零求解即可,是基础题.16.已知a,b∈R,且a>b,则下列不等式中恒成立的是()A.a2>b2B.()a<()bC.lg(a﹣b)>0D.>1考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:不妨设 a=﹣1,b=﹣2,代入各个选项进行检验可得 A、C、D 都不正确,只有B正确,从而得到结论.解答:解:令 a=﹣1,b=﹣2,代入各个选项进行检验可得 A、C、D 都不正确,只有B正确,故选B.点评:本题考查不等式的性质,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.17.函数的单调增区间为()A.[﹣1,+∞)B.(﹣∞,﹣1]C.(﹣∞,+∞)D.(﹣∞,0]考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:分别判断出各段函数在其定义区间的单调性,根据同增异减口诀,先判断内层函数的单调性,再判断外层函数单调性,若两函数单调性相同,则此复合函数在此定义域上为增函数,反之则为减函数.解答:解:外层函数是,内层函数是y=x2+2x由题意可得外层函数是减函数∵根据复合函数同增异减的性质∴只要找到y=x2+2x的减区间即可∵y=x2+2x的对称轴是x=﹣1∴它的减区间为(﹣∞,﹣1)∴函数的增区间为(﹣∞,﹣1).点评:复合函数的单调性一般是看函数包含的两个函数的单调性(1)如果两个都是增的,那么函数就是增函数(2)一个是减一个是增,那就是减函数(3)两个都是减,那就是增函数.18.函数y=ax﹣1+1(0<a≠1)的图象必经过点()A.(0,1)B.(1,1)C.(1,2)D.(0,2)考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:由a0=1,可得当x=1时,函数y=ax﹣1+1=a0+1=2,从得到函数y=ax﹣1+1(0<a≠1)的图象必经过的定点坐标.解答:解:由a0=1,可得当x=1时,函数y=ax﹣1+1=a0+1=2,故函数y=ax﹣1+1(0<a≠1)的图象必经过点(1,2),故选C.点评:本题主要考查指数函数的单调性及特殊点,属于基础题.19.已知a=30.2,b=0.2﹣3,c=3﹣0.2,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.c>a>bD.b>c>a考点:指数函数单调性的应用.1091931专题:计算题.分析:先取中间量1,利用指数函数的图象性质,判断c最小,排除C、D;再将a、b两数变形比较,即可得正确选项解答:解:利用指数函数的图象性质知a>1,b>1,而c<1,故c最小,排除C、D∵a=<31=3,b==53=125∴b>a故选B点评:本题主要考查了幂的大小的比较,利用指数函数图象和幂的运算性质比较大小的技巧20.(2005?山东)下列大小关系正确的是()A.0.43<30.4<log40.3B.0.43<log40.3<30.4C.log40.3<0.43<30.4D.log40.3<30.4<0.43考点:指数函数单调性的应用.1091931专题:常规题型.分析:结合函数y=0.4x,y=3x,y=log4x的单调性判断各函数值与0和1的大小,从而比较大小.解答:解:∵0<0.43<0.40=1,30.4>30=1,log40.3<log0.41=0∴log40.3<0.43<30.4故选C点评:本题是指数函数与对数函数的单调性的简单应用,在比较指数(对数)式的大小时,若是同底的,一般直接借助于指数(对数)函数的单调性,若不同底数,也不同指(真)数,一般与1(0)比较大小.21.设,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.b>c>aD.c>b>a考点:指数函数单调性的应用.1091931专题:证明题.分析:先利用指数函数y=为R上的单调减函数,比较a、b的大小,排除A、B,再利用幂函数y=x3在R上为增函数,比较b、c的大小,即可得正确选项解答:解:考察函数y=为R上的单调减函数,∴,即a<b,排除A、B;∵b3=,c3==,∴b3>c3,考察幂函数y=x3在R上为增函数,∴b>c,排除D;故选 C点评:本题主要考查了指数函数、幂函数的图象和性质,利用函数的单调性比较大小的方法和技巧,属基础题22.比较a,b,c的大小,其中a=0.22,b=20.2,c=log0.22()A.b>c>aB.c>a>bC.a>b>cD.b>a>c考点:指数函数单调性的应用;不等式比较大小.1091931专题:计算题.分析:将log0.22看作函数y=log0.2x当x=2时所对应的函数值小于零,将a=0.22看作函数y=0.2x 当x=2时所对应的函数值小于1,将b=20.2看作函数y=2x当x=0.2时所对应的函数值大于1.解答:解:根据对数函数的性质可知c=log0.22<0根据指数函数的性质可知0<0.22<1,20.2>1∴b>a>c故选D点评:本题主要考查在数的比较中,我们要注意函数思想的应用.二.填空题(共2小题)23.函数的单调递增区间是(﹣1,+∞).考点:指数函数综合题.1091931专题:计算题.分析:令t=x2+2x﹣3,则y=3t,本题即求函数t=x2+2x﹣3的增区间,由二次函数的性质可得函数t=x2+2x﹣3的增区间为(﹣1,+∞).解答:解:函数=,令t=x2+2x﹣3,则y=3t.故本题即求函数t=x2+2x﹣3的增区间.由二次函数的性质可得函数t=x2+2x﹣3的增区间为(﹣1,+∞),故答案为(﹣1,+∞).点评:本题主要考查指数型复合函数的单调性的应用,二次函数的性质,属于中档题.24.(2005?上海)方程4x+2x﹣2=0的解是0 .考点:指数函数综合题.1091931专题:计算题;转化思想.分析:先换元,转化成一元二次方程求解,进而求出x的值.解答:解:令t=2x,则t>0,∴t2+t﹣2=0,解得t=1或t=﹣2(舍)即2x=1;即x=0;故答案为0.点评:考查了指数运算,对于不是同底的指数问题,首先换成同一底数,体现了换元的思想,在换元中注意新变量的取值范围.属容易题.。
指数函数与对数函数的综合运用试题
指数函数与对数函数的综合运用试题1. 填空题a) 当指数函数 y = 2^x 与对数函数 y = log2(x) 交点的横坐标为_______。
b) 对数函数 y = log2(x) 的定义域为 _______。
2. 选择题a) 若指数函数 y = 3^x 与对数函数 y = log3(x) 相等,则 x = ______。
A. 0B. 1C. 2D. 3b) 设指数函数 y = 5^x 与对数函数 y = log5(x) 相交于点 P,若 P 的纵坐标为 2,则 P 的横坐标为 _______。
A. 1/2B. 1C. 2D. 43. 计算题已知指数函数 y = 2^(2x) 和对数函数 y = log2(log2(x)),求两函数交点的横坐标。
4. 解答题已知指数函数 y = 2^x 和对数函数 y = log2(x),证明它们在 x = 1 处相交。
解答:设指数函数和对数函数的交点为点 P,横坐标为 x,纵坐标为 y。
根据题意,有以下方程组:2^x = log2(x)化简得:x = log2(log2(x))将 x 代入方程 2^x = log2(x) 中,得到:2^log2(log2(x)) = log2(x)根据指数函数和对数函数的性质,上式可以化简为:log2(log2(x)) = log2(x)再次应用对数函数的性质,得到:log2(x) = log2(x)因此,当 x = 1 时,指数函数与对数函数相交。
5. 应用题某公司的股票价格符合指数函数 y = 3^x 的模型,而该公司的市值则符合对数函数 y = log3(x) 的模型。
已知该公司股票价格为 81 元时,市值为 9 亿元。
求该公司股票价格为 243 元时的市值。
解答:设股票价格为 x 元时,市值为 y 亿元。
根据题意,有以下方程组:3^x = ylog3(y) = x将 x = log3(x) 代入方程组 3^x = y 中,得到:3^(log3(y)) = y根据对数函数的性质,上式可以化简为:y = y因此,当股票价格为 243 元时,市值仍为 9 亿元。
高中试卷-专题4.2 指数函数(含答案)
专题4.2 指数函数1、指数函数的概念:一般地,函数x y a = 叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠12、指数函数的图象和性质0<a<1a>1图像定义域R , 值域(0,+∞)(1)过定点(0,1),即x=0时,y=1(2)在R 上是减函数(2)在R 上是增函数性质(3)当x>0时,0<y<1;当x<0时,y>1(3)当x>0时,y>1;当x<0时,0<y<1图象特征函数性质向x 轴正负方向无限延伸函数的定义域为R 函数图象都在x 轴上方函数的值域为R +图象关于原点和y 轴不对称非奇非偶函数共性函数图象都过定点(0,1)过定点(0,1)自左向右看,图象逐渐下降减函数在第一象限内的图象纵坐标都小于1当x>0时,0<y<1;在第二象限内的图象纵坐标都大于1当x<0时,y>10<a<1图象上升趋势是越来越缓函数值开始减小极快,到了某一值后减小速度较慢;自左向右看,图象逐渐上升增函数在第一象限内的图象纵坐标都大于1当x>0时,y>1;在第二象限内的图象纵坐标都小于1当x<0时,0<y<1a>1图象上升趋势是越来越陡函数值开始增长较慢,到了某一值后增长速度极快;注意: 指数增长模型:y=N(1+p)x 指数型函数: y=ka x 3 考点:(1)a b =N, 当b>0时,a,N 在1的同侧;当b<0时,a,N 在1的 异侧。
(2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。
掌握利用单调性比较幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。
(3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。
指数函数的解析式、定义域、值域练习题含答案
指数函数的解析式、定义域、值域练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 已知集合A={x|x2−4x+3<0},B={y|y=2x,x>1},则A∩(∁R B)=().A.(1,2]B.[2,3)C.(1,3)D.(0,2]2. 设集合A={x|y=2x}, B={x|x3−x<0}则∁A B=( )A.(−∞,0)∪(3,+∞)B.(−∞,0]∪[3,+∞)C. [0,3]D.[3,+∞)3. 若函数y=(2a−1)x(x是自变量)是指数函数,则a的取值范围是()A.a>0且a≠1B.a≥0且a≠1C.a>且a≠1D.a4. 若函数f(x)=(a2−a−1)a x是指数函数,则()A.a=lB.a=2C.a=1或a=2D.a>0且a≠15. 函数f(x)=a x(a>0,且a≠1)的图象经过点P(3,127),则f(−2)=()A.19B.√33C.13D.96. 已知集合A={x|1+5x−3≤0},B={y|y=2x},则A∩B=()A.[−2,3)B.[−2,3]C.(0,3)D.(0,3]7. 下列函数中,不能化为指数函数的是( )A.y=2x⋅3xB.y=2x−1C.y=32xD.y=4−x8. 已知函数f(x)=a x(a>1),则函数f(f(x))的值域是()A.(0, +∞)B.(1, +∞)C.[1, +∞)D.R)x2+2x−1的值域是()9. 函数y=(12A.(−∞, 4)B.(0, +∞)C.(0, 4]D.[4, +∞)10. 函数f(x)=(a2−3a+3)⋅a x是指数函数,则a的值为()A.1B.3C.2D.1或311. 若关于x的方程:9x+(4+a)⋅3x+4=0有解,则实数a的取值范围为()A.(−∞, −8)∪[0, +∞)B.(−8, −4)C.[−8, −4]D.(−∞, −8]12. 已知函数y=(a−1)x是指数函数,且当x<0时,y>1,则实数a的取值范围是________.13. 若函数y=(2a2−3a+2)a x是指数函数,则a=________.14. 若函数y=(m−3)a x+2−n(a>0,且a≠1)是指数函数,则m=________,n=________.15. 已知2a=7,则a=________;已知x+x−1=4,则x2+x−2=________.)−x2+2x+8的值域是________.16. 函数y=(12(x>0)的值域为________.17. 函数f(x)=2x1+2x+118. 函数y=(a2−3a+1)⋅a x是指数函数,则a等于________.).19. 已知函数f(x)=a x(a>0且a≠1)的图象经过点(2, 19(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a x2−2x(x≥0)的值域.20. 若函数y=(a2−3a+3)⋅a x是指数函数,求实数a的值.21. 函数f(x)=a⋅2x+2−x(a∈R).(1)当a=0时,求函数y=f(x2−1)的值域;(2)当x<0时,函数y=f(x)−4有两个零点,求实数a的取值范围.22. 已知函数y=a x(a>0,且a≠1)在[2,4]上的最大值与最小值之和为20,记f(x)=xa x+√2.(1)求a的值;(2)求证:f(x)+f(1−x)为定值;(3)求f(12021)+f(22021)+⋯+f(20202021)的值.23. 已知幂函数f(x)=(m−1)2x m2−4m+2在(0,+∞)上单调递增,函数g(x)=2x−k.(1)求m的值;(2)当x∈[1,2)时,记f(x),g(x)的值域分别为集合A,B,且A∩B=B,求实数k的取值范围.24. 已知函数f(x)=(13)ax2−4x+3,(1)若a=−1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.(3)若f(x)的值域是(0, +∞),求a的取值范围.25. 设函数f(x)=3x−2x3x+2x.(1)判断f(x)的奇偶性并证明;(2)当x∈[−1,+∞)时,求f(x)的值域.参考答案与试题解析指数函数的解析式、定义域、值域练习题含答案一、选择题(本题共计 11 小题,每题 3 分,共计33分)1.【答案】A【考点】指数函数的定义、解析式、定义域和值域一元二次不等式的解法交、并、补集的混合运算【解析】利用二次不等式的解法得A={x|1<x<3},利用指数函数的单调性得B,再利用集合的运算得解.【解答】解:由题设得A={x|1<x<3},B={y|y=2x,x>1}={y|y>2},∁R B={y|y≤2},所以A∩(∁R B)=(1,2].故选A.2.【答案】C【考点】分式不等式的解法指数函数的定义、解析式、定义域和值域补集及其运算【解析】此题暂无解析【解答】<0}={x|x<0或x>3}解:∵A={x|y=2x}=R, B={x|x3−x∴∁A B={x|0≤x≤3},即∁A B=[0,3].故选C.3.【答案】C【考点】指数函数的定义、解析式、定义域和值域【解析】根据指数函数的定义,列出不等式组求出a的取值范围.【解答】函数y=(2a−1)x(x是自变量)是指数函数,则,解得a >且a ≠1;所以a 的取值范围是{a|a >且a ≠1}.4.【答案】B 【考点】指数函数的定义、解析式、定义域和值域【解析】根据指数函数的定义,列出不等式组求出a 的值.【解答】函数f(x)=(a 2−a −1)a x 是指数函数,所以{a 2−a −1=1a >0a ≠1, 解得a =2.5.【答案】D【考点】指数函数的定义、解析式、定义域和值域【解析】把点的坐标代入函数解析式求出a 的值,写出函数解析式,计算f(−2)的值.【解答】因为函数f(x)=a x 的图象过点P(3,127), 所以a 3=127,解得a =13,所以f(x)=(13)x , 所以f(−2)=(13)−2=9. 6.【答案】C【考点】指数函数的定义、解析式、定义域和值域交集及其运算【解析】此题暂无解析【解答】解:∵ 1+5x−3≤0,y =2x ,解得−2≤x <3,y >0,∴ A ∩B =(0,3).故选C .7.【答案】B【考点】指数函数的定义、解析式、定义域和值域【解析】对于A,y =2x ⋅3x =6x 是指数函数;对于B,y =2x−1=2x−1不是指数函数;对于C,y =32x =9x 是指数函数;对于D,y =4−x =(14)x 是指数函数. 【解答】解:根据指数函数的定义可得:对于A ,y =2x ⋅3x =(2⋅3)x =6x ,是指数函数;对于B ,y =2x−1=2x 2,不是指数函数;对于C ,y =32x =(32)x =9x ,是指数函数;对于D ,y =4−x =(4−1)x =(14)x,是指数函数.故选B .8.【答案】B【考点】函数的值域及其求法指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答9.【答案】C【考点】指数函数的定义、解析式、定义域和值域【解析】本题是一个复合函数,求其值域可以分为两步来求,先求内层函数的值域,再求函数的值域,内层的函数是一个二次型的函数,用二次函数的性质求值域,外层的函数是一个指数函数,和指数的性质求其值域即可.【解答】解:由题意令t =x 2+2x −1=(x +1)2−2≥−2∴ y =(12)t ≤(12)−2=4 ∴ 0<y ≤4故选C10.【答案】C【考点】指数函数的定义、解析式、定义域和值域【解析】由指数函数的定义,得a 2−3a +3=1,且a >0,a ≠1,解出即可.【解答】解:由指数函数的定义,得{a 2−3a +3=1,a >0,且a ≠1,解得:a =2.故选C .11.【答案】D【考点】指数函数的定义、解析式、定义域和值域【解析】可分离出a +4,转化为函数f(x)=−32x +43x 的值域问题,令3x =t ,利用基本不等式和不等式的性质求值域即可.【解答】解:∵ a +4=−32x +43x ,令3x =t(t >0),则−32x +43x =−(t +4t )因为(t +4t )≥4,所以−32x +43x≤−4, ∴ a +4≤−4,所以a 的范围为(−∞, −8]故选D .二、 填空题 (本题共计 7 小题 ,每题 3 分 ,共计21分 ) 12.【答案】(1,2)【考点】指数函数的定义、解析式、定义域和值域【解析】讨论指数函数的底数,确定指数函数的性质,从而确定参数范围.【解答】解:由题意可知:当a −1>1,即a >2时,若x <0,此时函数y =(a −1)x ∈(0,1),不合题意,舍去;当0<a −1<1,即1<a <2时,若x <0,此时函数y =(a −1)x ∈(1,+∞),满足题意. 综上:1<a <2.故答案为:(1,2).13.【答案】12【考点】指数函数的定义、解析式、定义域和值域【解析】指数函数是形式定义,即y =a x ,(a >0,且a ≠1),从而求a .【解答】解:由题意得,{a >0,a ≠1,2a 2−3a +2=1,解得a =12,故答案为:12.14.【答案】4,2【考点】指数函数的定义、解析式、定义域和值域【解析】依题意,建立关于m ,n 的方程组,解出即可.【解答】由函数y =(m −3)a x +2−n 是指数函数可得{m −3=12−n =0 ,解得{m =4n =2. 15.【答案】log 27,14【考点】指数函数的定义、解析式、定义域和值域正整数指数幂有理数指数幂的运算性质及化简求值【解析】利用指数式与对数式的互化,求出a 的值,对x +x −1=4两边平方,利用完全平方公式即可求出x 2+x −2的值.【解答】由2a =7可得:a =log 27,∵ x +x −1=4,∴ (x +x −1)2=x 2+2+x −2=16, ∴ x +x −1=14,16.【答案】[1512,+∞)【考点】二次函数的性质指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】解:设函数g(x)=−x 2+2x +8, ∵ a =−1<0,∴ 函数开口向下,有最大值, 当x =−b 2a =−22×(−1)=1时,g(x)max =g(1)=−12+2×1+8=9, ∴ 函数g =−x 2+2x +8的值域为(−∞,9], ∵ y =(12)x 为减函数,∴ 函数y =(12)−x2+2x+8的最小值为(12)9=1512, ∴ 函数y =(12)−x2+2x+8的值域为[1512,+∞). 故答案为:[1512,+∞).17.【答案】(13,12) 【考点】指数函数的定义、解析式、定义域和值域 函数的值域及其求法【解析】解:f(x)=12+2−x .∵ x >0,∴ −x <0,0<2−x <1,∴ 13<f (x )<12.故答案为:(13,12).【解答】解:f(x)=12+2−x .∵ x >0,∴ −x <0,0<2−x <1,∴ 13<f (x )<12.故答案为:(13,12).18.【答案】3【考点】指数函数的定义、解析式、定义域和值域【解析】根据指数函数的定义是y =a x (a >0且a ≠1),列出条件表达式,求出a 的值.【解答】解:根据题意,得;{a >0a ≠1a 2−3a +1=1, 解得a =3.故答案为:3.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )19.【答案】解:(1)f(x)=a x (a >0且a ≠1)的图象经过点(2, 19), ∴ a 2=19,∴ a =13.(2)∵ f(x)=(13)x 在R 上单调递减,又2<b 2+2,∴ f(2)≥f(b 2+2).(3)∵ x ≥0,x 2−2x ≥−1,∴ (13)x2−2x ≤(13)−1=3, ∴ 0<f(x)≤(0, 3].【考点】指数函数单调性的应用指数函数的定义、解析式、定义域和值域【解析】(1)代值计算即可,(2)根据指数函数的单调性即可求出,(3)根据指数函数的单调性和二次函数函数的性质即可求出.【解答】解:(1)f(x)=a x (a >0且a ≠1)的图象经过点(2, 19), ∴ a 2=19,∴ a =13. (2)∵ f(x)=(13)x 在R 上单调递减, 又2<b 2+2,∴ f(2)≥f(b 2+2).(3)∵ x ≥0,x 2−2x ≥−1,∴ (13)x2−2x ≤(13)−1=3, ∴ 0<f(x)≤(0, 3].20.【答案】解:∵ 函数y =(a 2−3a +3)⋅a x 是指数函数,∴ a 2−3a +3=1且a >0且a ≠1,即a 2−3a +2=0,解得a =1(舍)或a =2.故a =2.【考点】指数函数的定义、解析式、定义域和值域【解析】根据指数函数的性质解方程a 2−3a +3=1即可.【解答】解:∵ 函数y =(a 2−3a +3)⋅a x 是指数函数,∴ a 2−3a +3=1且a >0且a ≠1,即a 2−3a +2=0,解得a =1(舍)或a =2.故a =2.21.【答案】解:(1)a =0时f (x )=2−x ,所以f (x 2−1)=21−x 2,令t =1−x 2,t ∈(−∞,1],此时y =2t ,t ≤1因为y =2t 在(−∞,1]上是增函数,所以0<y ≤2,所以y =f (x 2−1)的值域是(0,2].(2)当x <0时,y =f (x )−4=a ⋅2x +12x −4=a⋅(2x )2−4⋅2x +12x 有两个零点,所以a ⋅(2x )2−4⋅2x +1=0在(−∞,0)上有两个不等的实根,即a =4⋅2x −1(2x )2=42x −(12x )2,令u =12x ∈(1,+∞),则a =−u 2+4u 有两不等实根,因为y =−(u −2)2+4在(1,2]上是增函数,在(2,+∞)上是减函数,且当u =1时,y =3,当u =2时,y =4,所以a ∈(3,4).【考点】指数函数的单调性与特殊点指数函数的定义、解析式、定义域和值域函数的零点与方程根的关系函数的零点【解析】无无【解答】解:(1)a =0时f (x )=2−x ,所以f (x 2−1)=21−x 2,令t =1−x 2,t ∈(−∞,1],此时y =2t ,t ≤1因为y =2t 在(−∞,1]上是增函数,所以0<y ≤2,所以y =f (x 2−1)的值域是(0,2].(2)当x <0时,y =f (x )−4=a ⋅2x +12x −4=a⋅(2x )2−4⋅2x +12x 有两个零点,所以a ⋅(2x )2−4⋅2x +1=0在(−∞,0)上有两个不等的实根,即a =4⋅2x −1(2x )2=42x −(12x )2, 令u =12x ∈(1,+∞),则a =−u 2+4u 有两不等实根,因为y =−(u −2)2+4在(1,2]上是增函数,在(2,+∞)上是减函数,且当u =1时,y =3,当u =2时,y =4,所以a ∈(3,4).22.【答案】(1)解:函数y =a x (a >0,且a ≠1)在[2,4]上的最大值与最小值之和为20, 而函数y =a x 在[2,4]上是单调函数,∴ a 2+a 4=20,解得a =2或−2(舍),∴ a =2.(2)证明:由(1)知,a =2,∴ f (x )=x2x +√2, ∴ f (x )+f (1−x )=x 2x +√21−x21−x +√2 =2x2x +√222+√2×2x=x 2x +√2+√2√2+2x =1.(3)解:由(2)知,f(x)+f(1−x)=1, ∵ 12021+20202021=1,22021+20192021=1, 10102021+10112021=1,∴ f (12021)+f (22021)+⋯+f (20202021) =[f (12021)+f (20202021)]+[f (22021)+f (20192021)]+⋯+[f (10102021)+f (10112021)]=1010. 【考点】指数函数单调性的应用指数函数的定义、解析式、定义域和值域根式与分数指数幂的互化及其化简运算指数函数的性质【解析】【解答】(1)解:函数y =a x (a >0,且a ≠1)在[2,4]上的最大值与最小值之和为20, 而函数y =a x 在[2,4]上是单调函数,∴ a 2+a 4=20,解得a =2或−2(舍),∴ a =2.(2)证明:由(1)知,a =2,∴ f (x )=x2x +√2,∴ f (x )+f (1−x )=x2x +√21−x 21−x +√2 =2x2x +√222+√2×2x =x 2x +√2+√2√2+2x=1. (3)解:由(2)知,f(x)+f(1−x)=1,∵ 12021+20202021=1,22021+20192021=1, 10102021+10112021=1, ∴ f (12021)+f (22021)+⋯+f (20202021)=[f (12021)+f (20202021)]+[f (22021)+f (20192021)]+⋯+[f (10102021)+f (10112021)]=1010. 23.【答案】解:(1)由题可得:{(m −1)2=1,m 2−4m +2>0,解得m =0.(2)由(1)得f (x )=x 2对称轴为x =0,又x ∈[1,2),∴ f(x)值域A =[1,4).∵ g (x )=2x −k 在x ∈[1,2)单调递增,∴ g(x)值域B =[2−k,4−k).∵ A ∩B =B ,∴ B ⊆A ,∴ {2−k ≥1,4−k ≤4,解得:0≤k ≤1.【考点】幂函数的性质幂函数的概念、解析式、定义域、值域指数函数的定义、解析式、定义域和值域集合的包含关系判断及应用【解析】【解答】解:(1)由题可得:{(m −1)2=1,m 2−4m +2>0,解得m =0.(2)由(1)得f (x )=x 2对称轴为x =0,又x ∈[1,2),∴ f(x)值域A =[1,4).∵ g (x )=2x −k 在x ∈[1,2)单调递增,∴ g(x)值域B =[2−k,4−k).∵ A ∩B =B ,∴ B ⊆A ,∴ {2−k ≥1,4−k ≤4,解得:0≤k ≤1.24.【答案】解:(1)当a =−1时,f(x)=(13)−x 2−4x+3,令g(x)=−x 2−4x +3,由于g(x)在(−∞, −2)上单调递增,在(−2, +∞)上单调递减,而y =(13)t 在R 上单调递减,所以f(x)在(−∞, −2)上单调递减,在(−2, +∞)上 单调递增,即函数f(x)的递增区间是(−2, +∞),递减区间是(−∞, −2).)ℎ(x),由于f(x)有最大值3,(2)令ℎ(x)=ax2−4x+3,y=(13所以ℎ(x)应有最小值−1,=−1,因此12a−164a解得a=1.即当f(x)有最大值3时,a的值等于1.(3)由指数函数的性质知,)ℎ(x)的值域为(0, +∞).要使y=(13应使ℎ(x)=ax2−4x+3的值域为R,若a≠0,则ℎ(x)为二次函数,其值域不可能为R.因此只能有a=0.故a的取值范围是a=0.【考点】复合函数的单调性对数函数、指数函数与幂函数的衰减差异指数函数综合题函数的最值及其几何意义指数函数的定义、解析式、定义域和值域【解析】)−x2−4x+3,令g(x)=−x2−4x+3,结合指数函数的单(1)当a=−1时,f(x)=(13调性,二次函数的单调性和复合函数的单调性,可得f(x)的单调区间;(2)令ℎ(x)=ax2−4x+3,y=ℎ(x),由于f(x)有最大值3,所以ℎ(x)应有最小值−1,进而可得a的值.(3)由指数函数的性质知,要使y=ℎ(x)的值域为(0, +∞).应使ℎ(x)=ax2−4x+ 3的值域为R,进而可得a的取值范围.【解答】)−x2−4x+3,解:(1)当a=−1时,f(x)=(13令g(x)=−x2−4x+3,由于g(x)在(−∞, −2)上单调递增,在(−2, +∞)上单调递减,)t在R上单调递减,而y=(13所以f(x)在(−∞, −2)上单调递减,在(−2, +∞)上单调递增,即函数f(x)的递增区间是(−2, +∞),递减区间是(−∞, −2).)ℎ(x),由于f(x)有最大值3,(2)令ℎ(x)=ax2−4x+3,y=(13所以ℎ(x)应有最小值−1,=−1,因此12a−164a解得a =1.即当f(x)有最大值3时,a 的值等于1.(3)由指数函数的性质知,要使y =(13)ℎ(x) 的值域为(0, +∞).应使ℎ(x)=ax 2−4x +3的值域为R ,若a ≠0,则ℎ(x)为二次函数,其值域不可能为R . 因此只能有a =0.故a 的取值范围是a =0.25.【答案】解:(1)f(x)为奇函数,理由:f(−x)=3−x −2−x 3−x +2−x=13x −12x 13x +12x=2x −3x3x ⋅2x 3x +2x3x ⋅2x=2x −3x3x +2x ,则有−f(−x)=3x −2x3x +2x =f(x),∴ f(x)为奇函数.(2)f(x)=3x −2x 3x +2x =3x ⋅(2−x )−13x (2−x )+1=(32)x −1(32)x +1=1−2(32)x +1, 令g(x)=(32)x ,当x ∈[−1,0]时,g(x)∈[23,1],∴ f(x)∈[−15,0],当x ∈(0,+∞)时,g(x)∈(1,+∞),∴ f(x)∈(0,1),∴ 综上所述,当x ∈[−1,+∞)时,f(x)的值域为[−15,1). 【考点】指数函数的定义、解析式、定义域和值域奇偶性与单调性的综合奇函数函数的值域及其求法【解析】(1)根据函数奇偶性的定义判断f(x)的奇偶性.(2)根据函数单调性的定义判断和证明函数的单调性.【解答】解:(1)f(x)为奇函数,理由:f(−x)=3−x −2−x 3−x +2−x =13x −12x 13x +12x =2x −3x3x ⋅2x 3x +2x3x ⋅2x=2x −3x 3x +2x ,则有−f(−x)=3x −2x 3x +2x =f(x),∴ f(x)为奇函数.(2)f(x)=3x −2x 3x +2x =3x ⋅(2−x )−13x (2−x )+1=(32)x −1(32)x +1=1−2(32)x +1, 令g(x)=(32)x ,当x ∈[−1,0]时,g(x)∈[23,1],∴ f(x)∈[−15,0],当x ∈(0,+∞)时,g(x)∈(1,+∞),∴ f(x)∈(0,1),∴ 综上所述,当x ∈[−1,+∞)时,f(x)的值域为[−15,1).。
(精选试题附答案)高中数学第四章指数函数与对数函数经典大题例题
(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数经典大题例题单选题1、已知y 1=(13)x,y 2=3x ,y 3=10−x ,y 4=10x ,则在同一平面直角坐标系内,它们的图象大致为()A .B .C .D .答案:A分析:根据指数函数的单调性及图像特征进行比较,即可判断.y 2=3x 与y 4=10x 是增函数,y 1=(13)x 与y 3=10−x =(110)x是减函数,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A .故选:A2、若函数y =(m 2−m −1)⋅m x 是指数函数,则m 等于( )A .−1或2B .−1C .2D .12 答案:C分析:根据题意可得出关于实数m 的等式与不等式,即可解得实数m 的值.由题意可得{m 2−m −1=1m >0m ≠1,解得m =2. 故选:C.3、已知函数f(x)=2x −x −1,则不等式f(x)>0的解集是( ).A .(−1,1)B .(−∞,−1)∪(1,+∞)C .(0,1)D .(−∞,0)∪(1,+∞)答案:D分析:作出函数y =2x 和y =x +1的图象,观察图象可得结果.因为f (x )=2x −x −1,所以f (x )>0等价于2x >x +1,在同一直角坐标系中作出y =2x 和y =x +1的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式2x>x+1的解为x<0或x>1.所以不等式f(x)>0的解集为:(−∞,0)∪(1,+∞). 故选:D.小提示:本题考查了图象法解不等式,属于基础题.4、已知函数f(x)=11+2x,则对任意实数x,有()A.f(−x)+f(x)=0B.f(−x)−f(x)=0C.f(−x)+f(x)=1D.f(−x)−f(x)=13答案:C分析:直接代入计算,注意通分不要计算错误.f(−x)+f(x)=11+2−x +11+2x=2x1+2x+11+2x=1,故A错误,C正确;f(−x)−f(x)=11+2−x −11+2x=2x1+2x−11+2x=2x−12x+1=1−22x+1,不是常数,故BD错误;故选:C.5、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I 1,高速列车的声强为I 2,由声强级得95=10lg (I 110−12),45=10lg (I 210−12),求出I 1、I 2相除可得答案.设普通列车的声强为I 1,高速列车的声强为I 2,因为普通列车的声强级是95dB ,高速列车的声强级为45dB ,所以95=10lg (I 110−12),45=10lg (I210−12), 95=10lg (I110−12)=10(lgI 1+12),解得−2.5=lgI 1,所以I 1=10−2.5, 45=10lg (I210−12)=10(lgI 2+12),解得−7.5=lgI 2,所以I 2=10−7.5, 两式相除得I 1I 2=10−2.510−7.5=105, 则普通列车的声强是高速列车声强的105倍.故选:B.6、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则a 的取值范围是( ) A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2)答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,∴{0<a <1a −2<0(a −2)×0+3a ≤a 0,解得0<a ≤13,∴a 的取值范围是(0,13].故选:C .7、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg 101≈2.0043,lg 99≈1.9956) ( )天.A .200天B .210天C .220天D .230天答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x =1.01x ,即(1.010.99)x =100,∴x =log 1.010.99100=lg 100lg 1.010.99=lg 100lg 10199=2lg 101−lg 99 ≈22.0043−1.9956=20.0087≈230.故选:D .8、若函数f (x )=ln(ax +√x 2+1)是奇函数,则a 的值为( )A .1B .-1C .±1D .0答案:C分析:根据函数奇函数的概念可得ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0,进而结合对数的运算即可求出结果.因为f (x )=ln(ax +√x 2+1)是奇函数,所以f (-x )+f (x )=0.即ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0恒成立,所以ln [(1−a 2)x 2+1]=0,即(1−a 2)x 2=0 恒成立,所以1−a 2=0,即a =±1.当a =1时,f (x )=ln(x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意;当a =−1时,f (x )=ln(−x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意;故选:C.9、中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:C=Wlog2(1+SN),它表示:在受噪声干扰的信道中,最大信息传递速率C取决于信道带宽W、信道内信号的平均功率S、信道内部的高斯噪声功率N的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计,按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至5000,则C大约增加了()(附:lg2≈0.3010)A.20%B.23%C.28%D.50%答案:B分析:根据题意写出算式,再利用对数的换底公式及题中的数据可求解.将信噪比SN 从1000提升至5000时,C大约增加了Wlog2(1+5000)−Wlog2(1+1000)Wlog2(1+1000)=log25001−log21001log21001≈lg5000lg2−lg1000lg2lg1000lg2=lg53=1−lg23≈0.23=23%.故选:B.10、若n<m<0,则√m2+2mn+n2−√m2−2mn+n2等于()A.2m B.2n C.−2m D.−2n答案:C分析:根据根式的计算公式,结合参数范围,即可求得结果.原式=|m+n|−|m−n|,∵n<m<0,∴m+n<0,m−n>0,∴原式=−(m+n)−(m−n)=−2m.故选:C小提示:本题考查根式的化简求值,属简单题,注意参数范围即可. 填空题11、已知0<a<1,化简:√a43−2a+a23=______.答案:a 13−a23分析:根据指数幂的基本运算结合指数函数的性质即可求解.解:√a 43−2a +a 23=√(a 23−a 13)2=|a 23−a 13|, 因为0<a <1,23>13,所以a 23<a 13,所以√a 43−2a +a 23=a 13−a 23. 所以答案是:a 13−a 23. 12、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果. √a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34,所以答案是:a 34.13、设x 13=2,则√x 53⋅x −1=___________.答案:4分析:由根式与有理数指数幂的关系,结合指数幂的运算性质,求值即可.由√x 53⋅x −1=x 53⋅x −1=x 23=(x 13)2=22=4. 所以答案是:4.14、若log 2[log 3(log 4x )]=0,则x =________.答案:64分析:利用对数的运算性质以及指数式与对数式的互化即可求解.log 2[log 3(log 4x )]=0⇒log 3(log 4x )=1⇒log 4x =3⇒x =43=64.所以答案是:64小提示:本题考查了对数的运算性质以及指数式与对数式的互化,考查了基本运算求解能力,属于基础题.15、已知10p =3,用p 表示log 310=_____.答案:1p ##p −1 分析:根据指数和对数的关系,以及换底公式,分析即得解.∵10p =3,∴p =lg3,∴log 310=1g101g3=11g3=1p . 所以答案是:1p .解答题16、已知函数f (x )=ax 2+bx +1(a ≠0)的图象关于直线x =1对称,且函数y =f (x )+2x 为偶函数,函数g (x )=1−2x .(1)求函数f (x )的表达式;(2)求证:方程f (x )+g (x )=0在区间[0,1]上有唯一实数根;(3)若存在实数m ,使得f (m )=g (n ),求实数n 的取值范围.答案:(1)f (x )=(x −1)2(2)证明见解析(3)(−∞,0]分析:(1)根据二次函数的对称轴以及奇偶性即可求解a,b ,进而可求解析式,(2)根据函数的单调性以及零点存在性定理即可判断,(3)将条件转化为函数值域,即可求解.(1)∵f (x )=ax 2+bx +1的图象关于直线x =1对称,∴−b 2a =1⇒b =−2a .又y =f (x )+2x =ax 2+(b +2)x +1为偶函数,∴b =−2,a =1.∴f (x )=x 2−2x +1=(x −1)2.(2)设ℎ(x )=f (x )+g (x )=(x −1)2+1−2x ,∵ℎ(0)=1>0,ℎ(1)=−1<0,∴ℎ(0)·ℎ(1)<0.又f (x )=(x −1)2,g (x )=1−2x 在区间[0,1]上均单调递减,∴ℎ(x )在区间[0,1]上单调递减,∴ℎ(x )在区间[0,1]上存在唯一零点.∴方程f (x )+g (x )=0在区间[0,1]上有唯一实数根.(3)由题可知f (x )=(x −1)2≥0,g (x )=1−2x <1,若存在实数m ,使得f (m )=g (n ),则g (n )∈[0,1),即1−2n ≥0,解得n ≤0.∴n 的取值范围是(−∞,0].17、已知f (x )是定义在R 上的偶函数,当x ≥0时,f (x )是二次函数,其图象与x 轴交于A (1,0),B (3,0)两点,与y 轴交于C (0,6).(1)求f (x )的解析式;(2)若方程f (x )−2a +2=0有两个不同的实数根,求a 的取值范围.答案:(1)f (x )={2x 2−8x +6,x ≥0,2x 2+8x +6,x <0.(2){0}∪(4,+∞)分析:(1)当x ≥0时,利用待定系数法得到f (x )=2x 2−8x +6,再使用奇偶性,得出f (x )=2x 2+8x +6(x <0)即可;(2)利用数形结合解决.(1)依题意可设,当x ≥0时,f (x )=k (x −1)(x −3).由f (0)=6,得3k =6,∴k =2,∴f (x )=2(x −1)(x −3)=2x 2−8x +6(x ≥0).当x <0时,−x >0,则f (−x )=2x 2+8x +6.又f (x )是偶函数,∴f (−x )=f (x ),∴f (x )=2x 2+8x +6(x <0).∴f (x )={2x 2−8x +6,x ≥0,2x 2+8x +6,x <0.(2)依题意知f (x )=2a −2有两个不同的实数根,即y =f (x )与y =2a -2在同一坐标系中的图象有两个不同的交点. 作出函数f (x )的图象,如图所示.由图,可知只需满足条件2a -2=-2或2a −2>6,∴a =0或a >4,即实数a 的取值范围是{0}∪(4,+∞).18、(1)求值:[(−3)2]32+0.125−13+(√23)6−(37)0(2)化简4√a 23⋅b −13÷(−23a −13b −13) 答案:(1)32;(2)−6a分析:(1)根据指数幂的运算性质即可得解.(2)根据指数幂的运算性质即可得解.(1)原式=(32)32+(0.53)−13+(213)6−1=33+0.5−1+22−1=27+2+4−1=32 (2)原式=4a 23⋅b −13−23a −13b −13=4×(−32)a 23+13⋅b −13+13=−6a ⋅b 0=−6a19、已知a 12+a −12=3,求下列各式的值.(1)a +a −1;(2)a 2+a −2;(3)a 32+a −32+2a 2+a −2+3.答案:(1)7(2)47(3)25 分析:(1)将所给的等式两边平方,整理即可求得a +a −1的值;(2)将(1)中所得的结果两边平方,整理即可求得a 2+a −2的值;(3)首先利用立方差公式可得a 32+a −32=(a 12+a −12)(a −1+a −1),然后结合(1)(2)的结果即可求得代数式的值.(1)将a 12+a −12=3两边平方,得a +a −1+2=9,所以a +a −1=7.(2)将a +a −1=7两边平方,得a 2+a −2+2=49,所以a 2+a 2=47.(3)∵a 12+a −12=3,a +a −1=7,a 2+a 2=47,∴a32+a−32=(a12)3+(a−12)3=(a12+a−12)(a−1+a−1)=3×(7−1)=18,∴a 32+a−32+2a2+a−2+3=18+247+3=25.。
高考数学 第二章 第八节指数函数 试题
同步检测训练一、选择题1.(2021·质检一)设f (x )=log 21x -1的反函数为f -1(x ),假设f -1(a )=3,那么a =( ) A .-1 B .1 C .2 D .-2答案:A解析:由题意,知点(3,a )在函数f (x )的图象上,所以a =log 213-1=-1.2.(2021·质检二)f (x )=a -22x +1是定义在R 上的奇函数,那么f -1(-79)的值是( )A .-3 B.79 C.13 D.97答案:A解析:∵f (x )为奇函数,∴f (0)=0,得a =1,设f -1(-79)=b ,那么f (b )=-79,即-79=1-22b+1,解得b =-3. 3.(2021·协作体联考)函数f (x )=log a (x 2+x -1)在区间[1,2]上的最大值比最小值大2,那么a 的值是( )A.55B. 5C.55或者 5 D .不能确定答案:C解析:当0<a <1时,f (x )在[1,2]上是减函数,依题意有f (1)-f (2)=2,即log a 1-log a 5=2,由此解得a =55;当a >1时,f (x )在[1,2]上是增函数,依题意有f (1)-f (2)=-2,即log a 1-log a 5=-2,由此解得a = 5.综上所述,选C.4.给出以下三个等式:f (xy )=f (x )+f (y ),f (x +y )=f (x )f (y ),f (x +y )=f (x )+f (y )1-f (x )f (y ),以下函数中不.满足其中任何一个等式的是( ) A .f (x )=3x B .f (x )=sin x C .f (x )=log 2x D .f (x )=tan x答案:B解析:对选项A ,满足f (x +y )=f (x )f (y ); 对选项C ,满足f (xy )=f (x )+f (y );对选项D ,满足f (x +y )=f (x )+f (y )1-f (x )f (y ),应选B.5.函数y =log 12(x 2-5x +6)的单调增区间为( )A .(52,+∞)B .(3,+∞)C .(-∞,52)D .(-∞,2)答案:D解析:由x 2-5x +6>0,得x >3或者xx >3时,y =x 2-5x +6为增函数;当x <2时,y =x 2-5x +6为减函数.又y =log 12x 为减函数,∴所求函数的单调增区间为(-∞,2).应选D.6.图中曲线C 1、C 2、C 3、C 4是函数y =log a x 的图象,那么曲线C 1、C 2、C 3、C 4对应的a 的值依次为( )A .3、2、13、12B .2、3、13、12C .2、3、12、13D .3、2、12、13答案:B解析:由对数函数底数与图象间的关系(在x 轴上方,底数从左到右依次递增),可知C 1、C 2、C 3、C 4对应的a 的值依次为2、3、13、12.应选B.7.设函数f (x )=⎩⎪⎨⎪⎧log 2(x -1),x ≥2,(12)x -1,x <2,假设f (x 0)>1,那么x 0的取值范围是( )A .(-∞,0)∪(2,+∞)B .(0,2)C .(-∞,-1)∪(3,+∞)D .(-1,3)答案:C解析:当x 0∈[2,+∞)时,由f (x 0)=log 2(x 0-1)>1,得x 0>3;当x 0∈(-∞,2)时,由f (x 0)=(12)x 0-1>1,得x 0x 0∈(-∞,-1)∪(3,+∞).应选C.8.(2021·调研)假设函数f (x )=log 2x 2+ax +1x 的定义域和值域均为[1,+∞),那么实数a的取值集合为( )A .{0}B .{a |0≤a ≤1}C .{a |a ≥0}D .{a |a ≥2} 答案:A解析:由题意得,log 2x 2+ax +1x ≥1在x ≥1时恒成立,即x 2+ax +1x ≥2在x ≥1时恒成立;而x 2+ax +1x ≥2即x +1x +a ≥2,函数g (x )=x +1x +a 在[1,+∞)上为增函数;∴g (x )≥g (1)=1+1+a ≥2恒成立,∴a ≥0.由g (x )在[1,+∞)上为增函数,可知f (x )在[1,+∞)也为增函数,∴f (1)=1,∴a =0,选A.二、填空题9.(2021·一诊测)设函数f (x )=e 2(x-1),y =f -1(x )为y =f (x )的反函数,假设函数g (x )=⎩⎪⎨⎪⎧x +2(x ≤0)f -1(x )(x >0),那么g [g (-1)]=________. 答案:1解析:依题意得g (-1)=-1+2=1,g [g (-1)]=g (1)=f -1(1).设f -1(1)=t ,那么有f (t )=1,即e 2(t -1)=1,t =1,所以g [g (-1)]=1.10.(2021·外国语)函数f (x )=2x -1的反函数为f -1(x ),g (x )=log 4(3x +1),假设f-1(x )≤g (x ),那么x 的取值范围是________.答案:[0,1]解析:由y =2x -1得y ∈(-1,+∞),∵y +1=2x ,∴x =log 2(y +1),∴f -1(x )=log 2(x +1)(x ∈(-1,+∞)).∵f -1(x )≤g (x ),∴log 2(x +1)≤log 23x +1,∴0<x +1≤3x +1,解得0≤x ≤1.11.(2021·)函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,假设点A 在直线mx +ny +1=0上,其中mn >0,那么1m +2n的最小值为__________.答案:8解析:∵y =log a (x +3)-1,恒过点(-2,-1),∴A (-2,-1),又A 在直线上, ∴-2m -nm +n =1. 又mn >0,∴m >0,n >0. 而1m +2n =2m +n m +4m +2n n =2+n m +2+4mn ≥4+24=8.当n =12,m =14取“=〞,∴1m +2n 的最小值为8.故填8. 三、解答题12.定义在R 上的奇函数f (x )有最小正周期为2,且x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在[-1,1]上的解析式; (2)判断f (x )在(0,1)上的单调性;(3)当λ为何值时,方程f (x )=λ在x ∈[-1,1]上有实数解. 解:(1)∵f (x )是x ∈R 上的奇函数, ∴f (0)=0.又∵2为最小正周期,∴f (1)=f (1-2)=f (-1)=-f (1)=0. 设x ∈(-1,0),那么-x ∈(0,1), f (-x )=2-x4-x +1=2x4x +1=-f (x ),∴f (x )=-2x4x +1,∴f (x )=⎩⎪⎨⎪⎧-2x4x +1,x ∈(-1,0),0,x ∈{-1,0,1},2x 4x+1,x ∈(0,1).(2)设0<x 1<x 2<1, f (x 1)-f (x 2)=(2x 1-2x 2)+(2x 1+2x 2-2x 2+2x 1)(4x 1+1)(4x 2+1)=(2x 1-2x 2)(1-2x 1+x 2)(4x 1+1)(4x 2+1)>0,∴f (x )在(0,1)上为减函数. (3)∵f (x )在(0,1)上为减函数, ∴2141+1<f (x )<2040+1, 即f (x )∈(25,12).同理,x 在(-1,0)上时,f (x )∈(-12,-25).又f (-1)=f (0)=f (1)=0,∴当λ∈(-12,-25)∪(25,12)或者λ=0时,f (x )=λ在[-1,1]内有实数解.13.(2021·质检)函数f (x )=log 22-x x -1的定义域为集合A ,关于x 的不等式22ax <(12)a +2x (a ∈R )的解集为B ,求使A ∪B =B 的实数a 的取值范围.解:∵A ∪B =B ,∴A ⊂B . 由2-x x -1>0⇒A ={x |1<x <2}; 由22ax <(12)a +2x ⇒2ax <-a -2x ,即2(a +1)x <-a ,①假设a +1<0即a <-1,那么x >-a2(a +1).∵A ⊂B ,∴-a 2(a +1)≤1⇒a ≤-23.∴a <-1.②假设a +1=0即a =-1,那么x ∈R ,满足A ⊂B , ∴a =-1合适;③假设a +1>0,即a >-1,那么x <-a2(a +1),∵A ⊂B ,∴-a 2(a +1)≥2⇒a ≤-45⇒-1<a ≤-45.综上,a ∈(-∞,-45].14.函数f (x )=lg kx -1x -1(k ∈R 且k >0).(1)求函数f (x )的定义域;(2)假设函数f (x )在[10,+∞)上单调递增,求k 的取值范围. 解:(1)由kx -1x -1>0及k >0得:x -1kx -1>0.①当0<k <1时,得x <1或者x >1k ;②当k =1时,得x -1x -1>0,∴x ∈R 且x ≠1③当k >1时,得x <1k或者x >1,即x ∈⎝⎛⎭⎫-∞,1k ∪(1,+∞); 综上,所求函数的定义域:当0<k <1时为(-∞,1)∪⎝⎛⎭⎫1k ,+∞;当k >1时为⎝⎛⎭⎫-∞,1k ∪(1,+∞);当k =1时为{x |x ∈R 且x ≠1}.(2)由f (x )在[10,+∞)上是增函数,∴10k -110-1>0得k >110.又f (x )=lg kx -1x -1=lg ⎝ ⎛⎭⎪⎫k +k -1x -1,对任意的x 1、x 2,当10≤x 1<x 2时,有f (x 1)<f (x 2),即lg ⎝ ⎛⎭⎪⎫k +k -1x 1-1<lg ⎝ ⎛⎭⎪⎫k +k -1x 2-1,得:k -1x 1-1<k -1x 2-1⇔(k -1)⎝ ⎛⎭⎪⎫1x 1-1-1x 2-1<0,又∵1x 1-1>1x 2-1,∴k -1<0,∴k <1.综上可知k 的取值范围是⎝⎛⎭⎫110,1.15.(2021·)函数f 1(x )=3|x -p 1|,f 2(x )=2·3|x -p 2|(x ∈R ,p 1,p 2为常数),函数f (x )定义为:对每个给定的实数x ,f (x )=⎩⎪⎨⎪⎧f 1(x ),f 1(x )≤f 2(x ),f 2(x ),f 1(x )>f 2(x ).(1)求f (x )=f 1(x )对所有实数x 成立的充分必要条件(用p 1,p 2表示);(2)设a ,b 是两个实数,满足a <b ,且p 1,p 2∈(a ,b ).假设f (a )=f (b ),求证:函数f (x )在区间[a ,b ]上的单调增区间的长度之和为b -a2(闭区间[m ,n ]的长度定义为n -m ).解:(1)由f (x )的定义可知, f (x )=f 1(x )(对所有实数x )等价于f 1(x )≤f 2(x )(对所有实数x ), 这又等价于3|x -p 1|≤2·3|x -p 2|,即3|x -p 1|-|x -p 2|≤2对所有实数x 均成立.(*)易知函数|x -p 1|-|x -p 2|(x ∈R )的最大值为|p 2-p 1|,故(*)等价于3|p 2-p 1|≤2,即|p 2-p 1|≤log 32,这就是所求的充分必要条件.(2)分两种情形讨论.(ⅰ)当|p 1-p 2|≤log 32时,由(1)知f (x )=f 1(x )(对所有实数x ∈[a ,b ]),那么由f (a )=f (b )及a <p 1<b 易知p 1=a +b 2.再由f 1(x )=⎩⎪⎨⎪⎧3p 1-x ,x <p 1,3x -p 1,x ≥p 1的单调性可知,f (x )在区间[a ,b ]上的单调增区间的长度为b -a +b 2=b -a2.如以下图.(ⅱ)当|p 1-p 2|>log 32时, 不妨设p 1<p 2,那么p 2-p 1>log 32. 于是,当x ≤p 1时, 有f 1(x )=3p 1-x <3p 2-x <f 2(x ),从而f (x )=f 1(x ).当x ≥p 2时,f 1(x )=3x -p 1=3p 2-p 1·3x -p 2>3log 32·3x -p 2=f 2(x ),从而f (x )=f 2(x ). 当p 1<x <p 2时,f 1(x )=3x -p 1及f 2(x )=2·3p 2-x .由方程3x 0-p 1=2·3p 2-x 0,解得f 1(x )与f2(x )图象交点的横坐标为显然p 1<x 0=P 2-12[(p 2-p 1)-log 32]<p 2,这说明x 0在p 1与p 2之间.由①易知f (x )=⎩⎪⎨⎪⎧f 1(x ),p 1≤x ≤x 0,f 2(x ),x 0<x ≤p 2.综上可知,在区间[a ,b ]上,f (x )=⎩⎪⎨⎪⎧f 1(x ),a ≤x ≤x 0,f 2(x ),x 0<x ≤b .如以下图所示.创作人:荧多莘日期:二O二二年1月17日创作人:荧多莘日期:二O二二年1月17日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数试题
————————————————————————————————作者:————————————————————————————————日期:
指数与指数函数练习题
姓名 学号
(一)指数
1、化简[3
2
)5(-]4
3的结果为 ( )
A .5
B .5
C .-5
D .-5
2、将322-化为分数指数幂的形式为 ( ) A .212- B .3
12- C .2
12-
- D .6
52-
3.333
4)2
1
()21()
2()2(---+-+----的值 ( )
A 4
3
7
B 8
C -24
D -8 4、化简3
232
3ab a b b
⋅(a, b 为正数)的结果是_________.
5、3
21
41()6437
---+-=__________.
6、)3
1
()3)((65
613
1212132b a b a b a ÷-=__________。
(二)指数函数
一.选择题: 1. 函数x y 24-=
的定义域为 ( )
A ),2(+∞
B (]2,∞-
C (]2,0
D [)+∞,1 2. 下列函数中,在),(+∞-∞上单调递增的是 ( )
A ||x y =
B 2y x =
C 3x y =
D x
y 5.0= 3.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)。
经过3个小时,这种细菌由1个可繁殖成( )
511.A 个 512.B 个 1023.C 个 1024.D 个
4.在统一平面直角坐标系中,函数ax x f =)(与x
a x g =)(的图像可能是 ( ) ( )
5.设d c b a ,,,都是不等于1的正数,x
x
x
x
d y c y b y a y ====,,,在同一坐标系中的图像如图所示,则
d c b a ,,,的大小顺序是 ( )
d c b a A <<<. c d b a B <<<.
c d a b C <<<. d c a b D <<<.
6.函数0.(12
>+=-a a
y x 且)1≠a 的图像必经过点 ( )
)1,0.(A )1,1.(B )0,2.(C )2,2.(D
7 .若01<<-x ,那么下列各不等式成立的是 ( )
x x x A 2.022.<<- x x x B -<<22.02. x x x C 222.0.<<- x x x D 2.022.<<-
8. 函数x
a x f )1()(2
-=在R 上是减函数,则a 的取值范围是 ( )
1.>a A
2.<a B 2.<a C 21.<<a D
9.某厂1998年的产值为a 万元,预计产值每年以n %递增,则该厂到2010年的产值(单位:万元)是
( )
n a A +1(.%13) n a B +1(.%12) n a C +1(.%11) n D -1(9
10
.
%12)
x y o 1A
x y o 1B
x
y o
1
C
x
y
o
1
D
x a y =x
b y =x
c y =x
d y =x y
o
二.填空题:
1、已知)(x f 是指数函数,且25
5
)23(=
-f ,则=)3(f 2、 已知指数函数图像经过点P(1,3)-,则(2)f =
3、 比较大小12
2
- 1
3
2-
, 0.32()3 0.22
()3
, 0.31.8 1
4、 31
1
2
13,32,2-⎪⎭
⎫
⎝⎛的大小顺序有小到大依次为_________ 。
5、 设10<<a ,使不等式5
31
22
2+-+->x x
x x a a 成立的x 的集合是
6、 函数1
2
x y -=的定义域为
7、 函数82x y =-的定义域为
8、若函数1
41
)(++
=x
a x f 是奇函数,则a =_________ 三、解答题:
1、函数0()(>=a a x f x
且)1≠a 在区间]2,1[上的最大值比最小值大2
a
,求a 的值。
2、求函数
225
1
3
x x
y
++
⎛⎫
= ⎪
⎝⎭
的最大值。
3、已知函数
21 ()
21
x
x
f x
-
=
+
,
(1)判断函数的奇偶性; (2)证明()
f x是R上的增函数。
对数与对数函数练习题
姓名 学号
(一)对数运算
1、计算
5log 125 = 3
1
log 27 = lg 0.001 = 4log 8 = 21
log 16
= ln e =
5log 35= 3log 23-= 32log (42)⨯=
1
lg lg 0.066
+= 22l g 6l g 12o o -=
29l g 3l g 8o o g =
237lo g 49lo g 16lo g 27g g =
44912
log 3log 2log 32⋅-=
2lg 2lg 2lg 5+lg 5+g =
2、把2
log a
x y
z 表示成log a x ,log a y ,log a z 的形式。
3、已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56.
4、求出x 的值:
(1)log 163x = (2)23log 1log 66-=x。