【课题】11从自然数到有理数

合集下载

浙教版七年级上数学第一章全套教案

浙教版七年级上数学第一章全套教案

教育精品资料浙教版七年级上第一章《从自然数到有理数》全章教案1.1从自然数到分数一、教学目标:1 .回顾小学中关于“数”的知识;2 .理解自然数、分数的产生和发展的实际背景和必然性;3 .体验自然数与分数的意义和在计数、测量、排序、编号等方面的应用。

二、教学重点和难点重点:认识数的发展过程,感受由于生活与生产实践的需要,数还需从自然数和分数作进一步的扩展。

难点:本节的“合作学习”中的第2题学生不易理解。

三、教学手段:现代课堂教学手段四、教学方法:启发式教学五、教学过程(一)自然数的由来和作用。

请阅读下面这段报道:世界上最长的跨海大桥——杭州湾跨海大桥于2003年6月8日奠基,计划在5年后建成通车,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,将是中国大陆的第一座跨海大桥。

你在这段报道中看到了哪些数?它们都属于哪一类数?在小学里我们已经学过自然数0,1,3,4,5…自然数是人类历史上最早出现的数。

自然数在计数和测量中有着广泛的应用,如5年后建成通车,日通车量为8万辆,全长36千米等。

人们还常常用自然数来给事物标号和排序,如城市的公共汽车路线,门牌号码,邮政编码,上述报道中的2003年,第一座跨海大桥等。

计数简单的理解,可以看成用来统计的结果的自然数。

而测量的结果的自然数是用工具测量。

让学生举出一些实际生活的例子,并说明这些自然数起的作用。

练习,并有学生回答,及时校对。

做一做:下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?(1)2002年全国共有高等学校2003所;(2)小明哥哥乘1425次列车从北京到天津;(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止,是世界第5高楼。

练一练:(二)讲解分数的由来及应用。

在小学里,我们还学习了分数和小数,它们是由于测量和分配等实际需要而产生的。

在解答下列问题时,你会选用哪一类数?为什么?(1)小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?分数可以看作两个整数相除,例如,«Skip Record If...»=3/5=0.6,«Skip Record If...»=0.3,1.31=«Skip Record If...»,0.0062=«Skip Record If...»=«Skip Record If...»。

从自然数到有理数(教案)浙教版数学七年级上册

从自然数到有理数(教案)浙教版数学七年级上册

从自然数到有理数(教案)课题 1.1从自然数到有理数(2)单元第1章从自然数到有理数学科数学年级七年级学习目标情感态度和价值观目标在与他人合作交流过程中,理解他人的思考方法和结论,针对他人所提的问题进行反思,初步形成评价与反思的意识.能力目标初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力.知识目标 1.利用并掌握有理数的概念,理解有理数的分类;2.掌握正负数表示相反意义的量.教学过程教学环节教师活动学生活动设计意图导入新课导入新课:一、创设情景,引出课题1.自然数可以用来计数、测量、标号或排序;分数和小数在实际生活中的应用.2.小学学过的数不够用了,数的范围需要扩展.思考:418+160-586=578-586=?问题1:你能用小学学过的数表示计算结果吗?为什么?20℃和-15℃这两个量分别表示什么?你能表示某一天的最高气温是零上5摄氏度,回顾上节课自然数的作用.观察温度计回答问题.通过正负数的学习,树立对立统一的辩证思想;让学生在自主探究体验数的扩展的必要性.最低气温是零下5摄氏度吗?请你说说生活中还有哪些具有相反意义的词语?讲授新课1、具有相反意义的量:(1)相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量:如前进8 m与后退5 m;例如:上升与下降就不是相反意义的量,缺少数量.(2)意义相反的量中的两个量必须是同类量,如节约汽油3吨与浪费1吨水就不是具有相反意义的量.针对练习:判断下列说法是否正确.(1)前进和后退是两个具有相反意义的量.(2)身高增加2 cm和体重减少2 kg.(3)收入50万元和亏损20万元是两个具有相反意义的量.(4)超过标准质量5 g和低于标准质量2 g.(5)上升了10分和下降了2名是两个具有相反意义的量.2、正数和负数:为了表示具有相反意义的量,我们把其中的一种意义的量规定为正,小学学过的数(零除外),了解具有相反意义的量.了解正、负数的概念.为建立负数的概念做好铺垫.了解正、负数的概念,能用正、负如123,25,等数叫做正数(positive number).正数前面可以放上“+”号(常省略不写).注意:零既不是正数,也不是负数.“-”不可以省略!针对练习:1、读出下列各数,说出它们各是哪类数?,-,+75,16,50,-25%,,-155,,213,12%,0.2、(1)向东走+58 m,-60 m,0 m表示的实际意义分别是什么呢?3、有理数的分类:我们把1,2,3,4,…称为正整数;-1,-2,-3,-4,…称为负整数;根据不同分类标准对正、负数进行分类.数表示具有相反意义的量.培养学生的分类、归纳能力.1 2,23,314,,…称为正分数;12-,23-,314-,,…称为负分数.正整数、零和负整数统称整数;正分数和负分数统称分数.整数和分数统称有理数.有理数还可以这样分类:合作探究:(1)零是______________________________;(2)零不是_________________________;非负数是_______________________,非正数是_______________________,非负整数是_______________________,非正整数是_______________________.针对练习:判断表中各数分别属于哪一类数,在相应的空格内打“√”.4、典例分析:例下列给出的各数,哪些是正数?哪些是通过合作探究完成填空.完成例题.深入理解有理数的概念.熟练掌握有理数的概念.负数?哪些是整数?哪些是分数?哪些是有理数?,22,176+,,0,35-,-9. 针对练习:把下列各数填入相应的括号内:5122.7150.1106134219.87690.997---+++, ,, , , ,, , , , 巩固提升1、填空:(2)如果向银行存入50元记为50元,那么-元表示______________________;(3)规定增加的百分比为正,增加25%记做_______,-12%表示___________;(4)规定温度零上为正,月球白天气温高达零上123℃ ,记为__________,夜晚气温低至零下233 ℃,记为________.阿波罗11号宇航员登上月球后不得不穿着御寒又防热的太空服.2.小聪、小明、小慧三位同学分别记录了一周中各天收支情况如下表(记收入为正,单位:元):独立完成巩固提升练习.掌握所学基础知识..3.把下列各数分别填在相应的集合里:-1,13,,0,,21,-2,,+6.(1)正数集合{ …}(2)负数集合{ …}(3)正整数集合{ …}(4)分数集合{ …}.拓展提升:针对练习:如图,每个椭圆表示一个数集,请在每个椭圆内填上6个数,其中三个写在重叠部分.小组合作完成拓展提升.通过完成拓展提升,提高应用数学知识解决问题的能力.课堂小结1、正数与负数都来自于实际生活;用正、负数可以表示实际问题中具有相反意义的量,例如…2、小学里学过的大于零的数都是正数;正数前面添放上“-”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3、有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.回顾本节课所学知识.理解正、负数的概念及有理数的分类.板书正数:负数:正整数、零和负整数统称整数;正分数和负分数统称分数.整数和分数统称有理数.。

从自然数到有理数教学说课

从自然数到有理数教学说课

精心整理1.1从自然数到分数【教学目标】✍知识目标:1.理解自然数、分数的产生和发展的实际背景。

2.通过身边的例子体验自然数与分数的意义和在计数、测量、标一、新课引入小学里,我们学习了自然数和分数,这节课我们就来回顾一下这部分的内容:从自然数到分数。

二、新课过程用多媒体展示杭州湾大桥效果图,并显示以下报道:世界上最长的跨海大桥——杭州湾大桥于2003年6月8日奠基,这座设计日通车量为8万辆,全长精心整理精心整理精心整理36千米的6车道公路斜拉桥,是中国大陆的第一座跨海大桥,计划在5年后建成通车。

师问:你在这段报道中看到了哪些数?它们都属于哪一类数?学生很快解决这两个问题之后,由上面这几个数,师生共同得出自然数的几个应用:得多少蛋糕?(18 )(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?(1.68米)精心整理精心整理由于分配和测量等实际需要而产生了分数(如第(1)题)和小数(如第(2)题),它们是表示量的两种不同方式,分数小数之间可以互相转化。

分数可以化为小数,因为分数可以看作两个整数相除 如35 =3÷5=0.6,13 =0.333…反过来小学里学过的小数都可以化为分数,如0.31=31100由上题可以看到许多实际问题可以通过自然数和分数的运算得到解决。

例2 (多媒体展示)详见书本合作学习第2题师:请同学们思考我们要解决的问题涉及哪几个量?他们之间有怎样的数量关系?生:有销售总额度,发行成本,社会福利资金,中奖者奖金精心整理精心整理他们之间的关系:销售总额度=发行成本+社会福利资金+中奖者奖金发行成本=15% × 销售总额度(1)中奖者奖金总额:4000-15%×4000-1400=2000(万元)(2)以小组为单位进行探究活动,而后由一学生回答给出解题思路思路 思路2000行。

也可以用2000×6%-1400×10%=120-140算式中被减数小于减数,能否用已学过的自然数和分数来表示结果?看来数还需作进一步的扩展,这就是我们下节课要讲的内容,在很多实际生活中,还存在着许多自然数、分数还不能满足人们生活和生产实际的需要的例子,请精心整理举个例子?(气温零上温度与零下温度的表示,飞机上升5米与下降5米的表示等)课内练习见书本1和2 (注第2题首先让学生了解一米有多长,再估计)四、探究学习1 .由于商场在搞活动,一件衣服的价格先上涨了10%,后又下降了10%,✍情感态度与价值观:通过提供适当的情景资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中,学会交流与合作,提高创新能力;通过分析问题,解决问题,使学生体验数的发展历程.【教学重点、难点】✍重点:会应用正负数表示生活中具有相反意义的量;有理数的分类。

从自然数到有理数

从自然数到有理数

1.1从自然数到有理数负数:我们把一种意义的量(如零上)规定为正,用学过的数(零除外)来表示,这样的数叫做正数,正数前面可以放上正号“+”来表示(常省略不写),;把另一种与之意义相反的量规定负,用学过的数(零除外)前面放上负号“-”来表示,这样的数叫做负数(负号不能省略)。

如:“+2”读做“正2”、“-3.3”读做“负3.3”等。

这样我们学过的数中又增加了新的数——负整数和负分数;相应地我们学过的自然数和分数分别称为正整数和正分数。

填空:1)规定盈利为正,某公司去年亏损了2.5万元,记做__________万元,今年盈利了3.2万元,记做__________万元;2)规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔__________米;吐鲁番盆地最低处低于海平面155米,记做海拔__________米;3)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。

汽车向北行驶75km ,记做________km (或_______km ),汽车向南行驶100km ,记做________km ;4)下降153-米记做153-米,则上升1102米记做__________米;5)如果向银行存入50元记为50元,那么-30.50元表示__________; 6)规定增加的百分比为正,增加25%记做__________,-12%表示__________. 利用第3)题说明在表示具有相反意义的量时,把哪一种意义的量规定为正,是相对的.例如我们可以把向南100米记做+100km ,那么向北记做-75km.但习惯上,人们常把上升、运进、零上、增加、收入等规定为正。

正整数、零和负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零自然数负整数有理数正分数分数负分数 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数 零是整数,零既不是正数,也不是负数.基础训练一、填空1、 如果零上28度记作280C ,那么零下5度记作2、 2、若上升10m 记作10m ,那么-3m 表示3、比海平面低20m 的地方,它的高度记作海拔 二、选择题4、在-3,-121,0,-73,2002各数中,是正数的有( ) A 、0个 B 、1个 C 、2个 D 、3个5、下列既不是正数又不是负数的是( ) A 、-1 B 、+3 C 、0.12 D 、06、飞机上升-30米,实际上就是( )A 、上升30米B 、下降30米C 、下降-30米D 、先上升30米,再下降30米。

基于hpm视角培养核心素养——“从自然数到有理数”的教学设计与评析

基于hpm视角培养核心素养——“从自然数到有理数”的教学设计与评析

主体的理念.
知识运用 请 学 生 们 列 举 出 正、负 数、自 然 数 和 分
数:
- 1、- 2、- 3、- 4 …称为负整数;

1 、- 2
1 、- 1 3
2、 3
- 4. 5…称为负分数; 相应的 1、2、3、4 …称为正整数,12 、
1 3
、1
2 3
、4. 5…称为正分数.
然后引导学生做一做书本 1.
大数学教育工作者的重视. 文章就以浙教版初中数学七年级上册第一章“从自然数到有理数”的教学为例,阐
述教学设计与评析,探讨基于 HPM 视角培养学生数学核心素养的策略,以飨读者.
关键词: 教学设计; 评析; HPM 视角; 核心素养; 培养策略
中图分类号: G632
文献标识码: A
文章编号: 1008 - 0333( 2020) 05 - 0027 - 02
HPM 是一种将数学史融入课堂教学的实践方式. 在 初中数学教学中,基于 HPM 视角,借鉴数学历史开展教 学活动,能有效培养并提高学生的数学思维和数学意识, 从而提高他 们 的 数 学 核 心 素 养,为 他 们 未 来 的 发 展 奠 定 坚实的基础.
一、基于 HPM 视角的“从自然数到有理数” 的教学设计
数、负分数统称为分数; 整数和分数统称为有理数.
巩固作业 1. 搜集与本课有关的数学史知识,并感 受知识的发生和发展. 2. 完成课后习题的 1 到 5 题.
二、基于 HPM 视角的“从自然数到有理数” 的教学评析
在教学 中 利 用 数 学 史 知 识 创 设 情 境 ,帮 助 学 生 了 解 “正数”、“负数”的概念,然后以学生学习为主,让学生体 会到“数学源于生活,又应用于生活”. 这样一来,不仅渗 透了数学史的知识,丰富了学生的数学史料知识,还能增 强他们对于 数 学 的 好 奇 心 和 求 知 欲,从 而 激 发 他 们 学 习 的兴趣和欲望,此外,这样还能还有效培养学生的数学核 心素养,为他们未来的发展奠定了坚实的基础.

数的由来和发展――从自然数到有理数

数的由来和发展――从自然数到有理数

数的由来和发展——从自然数到有理数原始社会时,先人用小石子检查放牧回来的羊的只数;用结绳的方法统计猎物的个数;用在木头上刻道的方法记录打鱼的数目等等。

这些原始的计数方法表示:人类很早就产生了一一对应的思想,于是产生了像1、2、3、4、5这样的自然数。

在自然数的符号表示方面,古罗马的数字相当特别,此刻很多老式挂钟上还经常使用它们。

罗马数字的符号一共只有 7 个,分别是:I(代表 1)、 V(代表 5)、 X(代表 10)、 L(代表 50)、C 代表 100)、D(代表 500)、 M(代表 1,000)。

这 7 个符号地点上无论如何变化,它所代表的数字都是不变的。

如:1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。

如:III表示 3;XXX表示 30。

2.xx 左减:一个代表大数字的符号右侧附一个代表小数字的符号,就表示大数字加小数字,如 VI 表示 6,DC表示 600。

一个代表大数字的符号左侧附一个代表小数字的符号,就表示大数字减去小数字的数目,如 IV 表示 4,XL表示 40,VD 表示 495。

3.上加横线:在罗马数字上加一横线,表示这个数字的一倍。

与古罗马不一样,其余国家和地域的人民广泛认可十位进制的记数符号,即1、2、3、4、5、6、7、8、9,碰到零就用黑点?表示,比方 6708,就能够表示为 67?8。

以后这个表示零的?,渐渐变为了 0。

以后人们发现,不过能表示自然数是远远不可以的,比方说:假如分派猎获物时, 5 个人分 4 件东西,每一个人该得多少呢?于是分数就产生了。

自然数、分数和零,通称为算术数。

自然数也称为正整数。

跟着社会的发展,人们又发现好多半量拥有相反的意义,比方增添和减少、行进和退后、上涨和降落、向东和向西。

为了表示这样的量,又产生了负数。

正整数、负整数和零,统称为整数。

假如再加上正分数和负分数,就统称为有理数。

有了这些数字表示法,人们计算起来感觉方便多了。

《1.1从自然数到有理数》作业设计方案-初中数学浙教版12七年级上册

《1.1从自然数到有理数》作业设计方案-初中数学浙教版12七年级上册

《从自然数到有理数》作业设计方案(第一课时)一、作业目标通过本次作业,学生能够熟练掌握自然数与有理数的基本概念与运算,明确从自然数过渡到有理数的知识框架,提高数感及数的应用能力。

二、作业内容一、基本知识掌握(请同学们完成以下题目并写出详细步骤)1. 复习自然数的定义及性质,并举例说明自然数在日常生活中的应用。

2. 掌握有理数的定义及分类,包括正数、负数、整数和分数等。

3. 理解有理数的运算法则,如加法、减法、乘法、除法等。

二、运用拓展(请同学们解决以下实际问题)1. 利用所学知识解决实际生活中的数学问题,如物品的价格、天气温度等如何用有理数表示。

2. 通过绘制简单的数学模型,理解有理数在现实生活中的运用。

三、作业要求1. 每位同学需独立完成作业,并认真书写每一步解题过程。

2. 注重概念的理解与掌握,不能死记硬背。

3. 对于运用拓展部分,鼓励同学们积极思考,尝试多种解题方法。

4. 作业需在规定时间内完成,并按时提交。

四、作业评价1. 评价标准:基本知识掌握的准确性、解题过程的规范性、运用拓展的创造性。

2. 评价方式:教师批阅为主,同学互评为辅,重视学生的自评与反思。

3. 鼓励创新解题思路与方法,对优秀作业进行展示与表扬。

五、作业反馈1. 教师需对每位同学的作业进行认真批阅,及时反馈作业中存在的问题。

2. 对于普遍存在的问题,将在课堂上进行讲解与指导。

3. 鼓励同学们相互交流学习,共同进步。

4. 针对学生的个体差异,进行个性化的辅导与建议。

六、其他注意事项1. 作业的布置需适量,既要保证学生能够完成,又要达到巩固知识的目的。

2. 鼓励学生多思考、多提问,培养自主学习与探究的能力。

3. 家长需关注孩子的学习情况,积极配合教师的工作,共同促进孩子的成长。

作业设计方案(第二课时)一、作业目标本作业设计旨在巩固学生在《从自然数到有理数》这一课程中学习的数学知识,通过作业练习,加深对有理数概念的理解,掌握有理数的运算规则,并能够灵活运用所学知识解决实际问题。

从自然数到有理数_教案

从自然数到有理数_教案

1.1 从自然数到分数【教学目标】知识目标:1.理解自然数、分数的产生和发展的实际背景。

2.通过身边的例子体验自然数与分数的意义和在计数、测量、标号和排序等方面的应用。

能力目标:会运用自然数、分数(小数)的计算解决简单的实际问题,并从实际中体验由于需要而再次将数进行扩充的必要性。

情感目标:1.通过同学之间的交流、讨论,以面对面互动的形式,完成合作交流,培养良好的与人合作的精神,感受集体的力量,体验成功的喜悦。

2.从具体的例子使学生感受数学来源于生活,生活离不开数学,从而增加学习数学的兴趣。

【教学重点、难点】重点:自然数和分数的意义及运用自然数、分数的计算解决简单的实际问题。

难点:用自然数、分数(小数)的计算解决简单的实际问题。

【教学过程】一、新课引入小学里,我们学习了自然数和分数,这节课我们就来回顾一下这部分的内容:从自然数到分数。

二、新课过程用多媒体展示杭州湾大桥效果图,并显示以下报道:世界上最长的跨海大桥——杭州湾大桥于2003年6月8日奠基,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,是中国大陆的第一座跨海大桥,计划在5年后建成通车。

师问:你在这段报道中看到了哪些数?它们都属于哪一类数?学生很快解决这两个问题之后,由上面这几个数,师生共同得出自然数的几个应用:⑴属于计数如8万辆、5年后、6车道 ⑵表示测量结果如全长36千米 ⑶表示标号和排序如2003年6月8日、第一座等显示以下练习让学生口答下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?(1)2002年全国共有高等学校2003所。

(标号和排序 计数)(2)小明哥哥乘1425次列车从北京到天津,然后乘15路公交车到了小明家。

(标号和排序 标号和排序)(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止是世界上第5高楼。

(测量结果,计数,标号和排序,标号和排序)做完练习之后师:随着生活和生产的需要,自然数已经不能满足实际需要了。

从自然数到有理数(解析版)--暑假自学课

从自然数到有理数(解析版)--暑假自学课

第01讲 从自然数到有理数1.掌握正数和负数的定义和实际应用;2.掌握有理数的概念,认识带“非”字的有理数;3、认识0的实际含义;知识点一、自然数的概念自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

自然数由0开始,一个接一个,组成一个无穷的集体。

自然数有有序性,无限性。

分为偶数和奇数,合数和质数等知识点二、正数与负数1)正数:像3,1.8%,3.5这样大于0的数叫做正数.正数都大于0.2)负数:像3−, 2.7−这样在正数前加上符号“−”(负)号的数叫做负数.负数都小于0. 3)符号:一个数前面的“+”,“−”号叫做它的符号.正数前面的“+”号可以省略,注意3与3+表示是同一个正数.负数前面的“−” 号不可以省略. 注:不能简单的根据符号来判断正负,而需要根据正负数的定义判别.,0,00,0a a a a < −=> =正数负数知识点三、用正数和负数表示具有相反意义的量:如果正数表示某种意义,那么负数表示它的相反意义,反之亦然.比如:用正数表示向南,那么向北3km −可以用负数表示为3km −.“相反意义的量”包括两个方面的含意:一是相反意义;二是要有量.知识点四、.“0”的特殊性1)0既不是正数,也不是负数;2)0是正数与负数的分界;3)0是自然数;4)0的意义:0有时表示没有,比如文具盒中有0支铅笔,表示没有铅笔;0有时是一个数,比如0℃是一个确定的温度;0有时也作为基准,比如海拔高度为0m 表示的是海平面的平均高度.知识点五、有理数的概念与分类1)整数:正整数、0、负整数统称为整数.所有的正整数组成正整数集合,所有的负整数组成负整数集合.2)分数:正分数、负分数统称为分数.有限小数和无限循环小数可以化为分数,所以我们也把它们看成分数.3)有理数:整数和分数统称为有理数.4)有理数的分类:(1)()正整数自然数整数零有理数按定义分类负整数正分数分数负分数 (2)()(,)正整数正有理数正分数有理数按符号分类零零既不是正数也不是负数负整数负有理数负分数 注意:1)会对整数和分数进行简单分类;2)整数与分数都是有理数的范畴,有限小数、无限循环小数是有理数;5)常用数学概念的含义1)正整数:既是正数,又是整数;2)负整数:既是负数,又是整数3)正分数:既是整数,又是分数;4)负分数:既是负数,又是分数5)非正数:负数和0;6)非负数:正数和07)非正整数:负整数和0;8)非负整数:正整数和0考点一:正负数的意义例【变式训练】考点二:正负数的实际应用例2.(2023·云南昆明·统考一模)中国是最早采用正负数表示相反意义的量,并使用负数进行运算的国家.当前,手机移动支付已经成为新型的消费方式,节日当天妈妈收到微信红包80元记作80+元,则妈妈微信转账支付67元可以表示为( )A .80+元B .80−元C .67+元D .67−元 【答案】D【分析】根据正数和负数表示相反意义的量,可得答案.【详解】解:如果微信红包80元记作80+元,那么微信转账支付67元记为67−元.故选:D .【点睛】本题考查了正数和负数,理解相反意义的量是解题关键.【变式训练】1.(2022秋·福建漳州·七年级统考期末)“英寸”是电视机常用尺寸,如图,“1时”即“1英寸”约为中学生大拇指第一节的长,则7英寸长相当于( )A .一支粉笔的长度B .课桌的长度C .教室门的宽度D .数学课本的宽度【答案】D 【分析】1英寸约为大拇指第一节的长大约有3~4厘米,7英寸长是它的7倍.【详解】解:根据题意可得1英寸约为大拇指第一节的长,大约有3~4厘米,所以7英寸长相当于数学课本的宽度.故选:D .【点睛】本题考查了数学常识,基本的计算能力和估算的能力,属于基础题,解答时可联系生活实际去解.2.(2022秋·七年级单元测试)一袋食品的包装袋上标有300g 5g ±的字样,它的含义是______.【答案】这袋食品的质量与标准质量300g 相比,超重不超过5g ,不足也不超过5g【分析】利用生活中的数学知识,利用±表示比标准质量可能多也可能少解决本题即可.【详解】解:5±表示比300g 超重不超过5g ,不足也不超过5g .故答案为:这袋食品的质量与标准质量300g 相比,超重不超过5g ,不足也不超过5g .【点睛】本题考查了有理数中正负数的实际应用,把正数和负数与日常生活相联系是解答本题的关键. 3.(2022秋·安徽蚌埠·七年级校考阶段练习)下表是某班5名同学某次数学测试成绩,根据信息回答问题:姓名王芳 刘兵 张沂 李聪 江文 成绩89 84 与全班平均分之差+2 0 6− 2−(1)把表格补充完整;(2)若不低于平均分的成绩是合格,求5名同学的合格率?【答案】(1)86,78,82,+5(2)60%【分析】根据有理数加减法在实际问题中的应用,可知高于基准为正,低于基准为负,有张沂可知,平均分为84 分,由此即可求出其他同学的成绩,由合格人数除以总人数乘以百分比即可求出答案.【详解】(1)解:由表格中张沂的信息可得出,平均分为84分,∴刘兵成绩:84286+=(分),李聪成绩:84678−=(分),江文成绩:84282−=(分),王芳成绩:89845−=+,故答案是:86,78,82,+5;(2)解:平均分为84 分,合格有刘兵,张沂,王芳,∴合格率是:(35)100%60%÷×=, 故答案是:60%.【点睛】本题主要考查有理数的加减法的应用,以及合格率的计算,解题的关键的找出“基准”,且“高于基准为正,低于基准为负”.考点三:认识0的实际意义 例【变式训练】1.(2022秋·河北保定·七年级统考期中)下面关于0的说法,正确的是( )A .0既不是正数也不是负数B .0既不是整数也不是分数C.0不是有理数D.0的倒数是0【答案】A【分析】依据倒数,有理数相关概念以及有理数分类判断即可.【详解】A.0既不是正数,也不是负数,故此选项正确,符合题意;B.0是整数,不是分数,故此选项错误,不符合题意;C.0是有理数,故此选项错误,不符合题意;D.0不存在倒数,故此选项错误,不符合题意.故选A.【点睛】本题考查了有理数,0是重要的数字,掌握有理数的相关概念和分类是解题的关键.2.(2022秋·全国·七年级专题练习)下列关于零的说法中,正确的是________①零是正数②零是负数③零既不是正数,也不是负数④零仅表示没有【答案】③【分析】根据零既不是正数也不是负数以及不同情形下零表示的意义不同进行逐一判断即可.【详解】解:①零不是正数,说法错误;②零不是负数,说法错误;③零既不是正数,也不是负数,说法正确;④零不仅仅表示没有,不同情形下,零表示的意义不同,说法错误;故答案为:③.【点睛】本题主要考查了有理数的分类,熟知零表示的意义是解题的关键.3.(2022秋·全国·七年级专题练习)“不是正数的数一定是负数,不是负教的数一定是正数”的说法对吗?为什么?【答案】不对,因为0既不是正数也不是负数.【分析】举反例进行说明即可.【详解】不对.因为0既不是正数也不是负数.【点睛】本题主要考查了0的意义,掌握“0既不是正数也不是负数”是解题的关键.考点四:有理数的概念与分类例4.(2022秋·云南昆明·七年级校考期中)下列说法中正确的是()A.0既不是整数也不是分数B.绝对值等于本身的数是0和1C.一个数的绝对值一定是正数D.整数和分数统称有理数【答案】D【分析】根据有理数、绝对值等相关概念进行判断.【详解】A选项:0是整数,故A选项错误;B选项:非负数的绝对值等于本身,故B选项错误;C选项:一个数的绝对值是正数或0(即非负数),故C选项错误;D选项:整数和分数统称为有理数,故D选项正确.故选:D【点睛】本题考查有理数、绝对值等相关概念,正确理解有理数、绝对值等概念是解题的关键.【变式训练】考点五:带“非”字的有理数例错误的说法为()A.①②③④⑤B.①②③④C.②③④⑤D.①②④⑤【答案】B【变式训练】−.故答案为:5【点睛】本题考查用正负数表示两种具有相反意义的量,熟练掌握用正负数表示两种具有相反意义的量是解答本题的关键.相反意义的量:按照指定方向的标准来划分,规定指定方向为正方向的数用正数表示,则向指定方向的相反的方向变化用负数表示,正与负是相对的.8.(2020·湖北宜昌·中考真题)向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少1.5kg”换一种说法可以叙述为“体重增加_______kg”.【答案】-1.5【分析】根据负数在生活中的应用来表示.【详解】减少1.5kg可以表示为增加﹣1.5kg,故答案为:﹣1.5.【点睛】本题考查负数在生活中的应用,关键在于理解题意.9.(2020·福建·统考中考真题)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为+米,根据题意,“海斗基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100一号”下潜至最大深度10907米处,该处的高度可记为_________米.−【答案】10907【分析】海平面以上的高度用正数表示,海平面以下的高度用负数表示.据此可求得答案.+米,【详解】解:∵高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100∴“海斗一号”下潜至最大深度10907米处,可记为-10907,故答案为:-10907.【点睛】本题考查了正数,负数的意义及其应用,解题的关键是掌握正数、负数的意义.1.(2023·吉林·统考一模)中国是最早采用正负数表示相反意义的量并进行负数运算的国家. 若气温上升7℃,记作:7+℃,那么气温下降10℃可记作()A.7℃B.10℃C.D.7−℃这一年上述四国中服务出口增长的国家是()A.美国B.德国C.英国D.中国【答案】D【分析】根据正负数的意义,进行判断即可.【详解】解:由表格可知,美国,德国,英国的增长率为负数,服务出口降低,中国的增长率为正数,服务出口增长;故选D.【点睛】本题考查正负数的意义.熟练掌握正负数的意义,是解题的关键.6.(2023秋·河北邯郸·七年级统考期末)北京与柏林的时差为7小时,例如,北京时间14:00,同一时刻的柏林时间是7:00.小丽和小红分别在北京和柏林,她们相约在各自当地时间8:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A.9:30 B.11:30 C.13:30 D.15:30【答案】D【分析】根据柏林时间比北京时间早7小时解答即可.【详解】解:由题意得,柏林时间比北京时间早7小时,当柏林时间为8:00,则北京时间为15:00;当北京时间为17:00,则柏林时间为10:00;所以这个时间可以是北京时间的15:00到17:00之间,故选:D.【点睛】本题考查了正数和负数,解此题的关键是根据题意写出算式,即把实际问题转化成数学问题.7.(2023秋·山东日照·七年级日照市新营中学校考阶段练习)如图所示的是图纸上一个零件的标注,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.29.8mm B.30.03mm C.30.02mm D.29.98mm【答案】A【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【详解】解:∵30+0.03=30.03,30-0.02=29.98,∴零件的直径的合格范围是:29.98mm≤零件的直径≤30.03mm.∵29.8mm不在该范围之内,∴不合格的是A.故选:A.【点睛】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.8.(2023秋·河南郑州·七年级校考阶段练习)小强在笔记上整理了以下结论,其中错误的是()A.有理数可分为正数、零、负数三类B.一个有理数不是整数就是分数C.正有理数分为正整数和正分数D.负整数、负分数统称为负有理数【答案】A【分析】根据有理数的分类逐一分析即可.【详解】解:A.有理数可分为正有理数、零和负有理数,故该项结论错误;B.整数和分数统称为有理数,所以一个有理数不是整数就是分数,故该项结论正确;C.正有理数分为正整数和正分数,故该项结论正确;【答案】6【分析】直接根据正负数的意义计算即可.【详解】∵当天最高气温∴这一天我市的温差是故答案为:6.【答案】4天后,甲水库水位上升12cm ,乙水库水位下降20cm【分析】根据甲、乙水库水位每天的升高和下降的量,即可计算总的变化量【详解】∵甲水库的水位每天升高3cm ,∴4天后,甲水库水位总的变化量是:()3412cm ×=∵乙水库的水位每天下降5cm ,∴4天后,乙水库水位总的变化量是:()5420cm −×=−答:4天后,甲水库水位上升12cm ,乙水库水位下降20cm【点睛】本题考查了正负数的实际应用,读懂题意是解决问题的关键17.(2023春·上海·六年级专题练习)某班级抽查了10名同学的期末成绩,以80分为基准,超出的分数记为正数,不足的分数记为负数,记录的结果如下(单位:分):+8、﹣3、+12、﹣7、﹣10、﹣3、﹣8、+1、5、+10.这10名同学中,(1)最高分是多少?(2)最低分是多少?(3)10名同学的平均成绩是多少?【答案】(1)92分(2)70分(3)80.5分【分析】(1)根据正负数的意义,可得答案;(2)根据正负数的意义,可得答案;(3)根据平均数的意义,可得答案.【详解】(1)最高分是801292+=分; (2)最低分是801070−=分; (3)10名同学的平均成绩是()8083127103815101080.5+−+−−−−+++÷=分. 【点睛】本题考查了正数和负数,利用正负数的意义超出的分数记为正数,不足的分数记为负数是解题关键.18.(2023秋·山东滨州·七年级统考期末)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g) 5 2 0 1 3 6袋数 1 4 3 4 5 3这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质量为500克,则抽样检测的总质量是多少?【答案】这批样品的平均质量比标准质量多,多1.2克,抽样检测的总质量是10024克.【分析】根据表格中的数据计算与标准质量的差值的总数,再除以20,如果是正数,即多,如果是负数,即少;根据标准质量结合前边的结论进行计算抽样检测的总质量.【详解】与标准质量的差值的和为-5×1+(-2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(500+1.2)×20=10024(克).【点睛】本题考查了正数和负数,掌握有理数的加法是解题关键.。

浙教版数学七年级上册第一章《从自然数到有理数》复习教学设计

浙教版数学七年级上册第一章《从自然数到有理数》复习教学设计

浙教版数学七年级上册第一章《从自然数到有理数》复习教学设计一. 教材分析《从自然数到有理数》是浙教版数学七年级上册第一章的内容,主要包括有理数的概念、分类、运算以及应用。

本章内容是学生初步接触数学符号和运算规则的阶段,对于培养学生对数学的兴趣和基本运算能力具有重要意义。

二. 学情分析七年级的学生刚刚从小学升入初中,对于数学的概念和运算规则有一定的了解,但还需要进一步的巩固和提高。

他们在学习过程中需要直观、生动的实例来帮助理解抽象的概念,同时也需要通过大量的练习来熟练掌握运算规则。

三. 教学目标1.理解有理数的概念,掌握有理数的分类。

2.掌握有理数的运算规则,包括加、减、乘、除、乘方等。

3.能够运用有理数解决实际问题,提高学生的应用能力。

四. 教学重难点1.有理数的概念和分类。

2.有理数的运算规则。

3.有理数在实际问题中的应用。

五. 教学方法1.采用直观、生动的实例讲解有理数的概念和分类,帮助学生理解抽象的概念。

2.通过大量的练习,让学生熟练掌握有理数的运算规则。

3.结合实际问题,让学生运用有理数解决问题,提高学生的应用能力。

六. 教学准备1.准备相关的基础知识PPT,用于导入和呈现。

2.准备相关练习题,用于操练和巩固。

3.准备实际问题,用于拓展和应用。

七. 教学过程1.导入(5分钟)通过复习自然数的概念,引导学生思考自然数的局限性,从而引出有理数的概念。

利用PPT展示有理数的概念,让学生初步了解有理数。

2.呈现(10分钟)利用PPT呈现有理数的分类,包括整数、分数、正数、负数等。

通过实例讲解,让学生理解有理数的分类,并能够正确判断一个数属于哪种分类。

3.操练(10分钟)让学生进行有理数的加减乘除乘方等运算练习,通过练习让学生熟练掌握有理数的运算规则。

4.巩固(10分钟)利用PPT展示一些实际问题,让学生运用有理数解决问题。

通过解决实际问题,让学生巩固有理数的概念和运算规则。

5.拓展(10分钟)让学生思考有理数在实际生活中的应用,例如购物、计算费用等。

初中数学知识点精讲精析 从自然数到有理数

初中数学知识点精讲精析 从自然数到有理数

1.1 从自然数到有理数学习目标1. 理解自然数、分数的产生和发展的实际背景。

2. 会判断一个给定的数是正数还是负数,会应用正、负数表示生活中具有相反意义的量,会将有理数正确分类。

知识详解1.自然数(1)0是最小的自然数,它表示没有。

(2)表示不同作用的数有不同的性质,表示计数和测量的数可以进行数的运算,而表示标号或排序的数有时有指代作用,即对事物起区别作用,一般不能进行计算,这也是区别数的表示作用的重要性。

(3)因为分数与有限小数和无限循环小数可以互化,小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看做分数。

(4)百分数是分母为100的分数,它是分数的特殊形式。

(5)数的运算:①数的加、减、乘、除运算顺序:先乘除,后加减,有括号先做括号内的②加法、乘法的运算律:交换律、结合律、乘法分配律。

③同级运算从左至右依次计算,不同级先乘除后加减,括号内优先。

2.有理数(1)像4,3,12,350等比0大的数叫做正数。

像-5,-3,12,-350等在正数前面加上‘‘—’’号的数叫做负数,负数比0小。

零既不是正数也不是负数。

(2)相反意义的量:用正数、负数表示相反意义的量时,哪种意义为正,是可以任意选择的,但习惯上把‘‘前进、上升、收入’’等规定为正,而把‘‘后退、下降、支出’’等规定为负。

(3)正整数、0、负整数都是有理数,正分数和负分数都是有理数。

有理数定义:整数与分数统称为有理数。

注意:①分类时,一定药注意零所属的数集。

②有理数的分类标准不一样,结果也相应地发生变化。

③因为有限小数和无限循环小数都可以化为分数,所以都属于分数,即属于有理数。

④习惯上将正有理数和零称为非负有理数;将负有理数和零称为非正有理数;将正整数和零有称为非负整数;将负整数和零有称为非正整数。

【典型例题】例1:下列各数中,哪些数是正数?哪些数是负数?+12,0.15,-52,-2.05,0,-7,3.14.【答案】正数有:+12,0.15,3.14;负数有:-52,-2.05,-7.【解析】用正数、负数的定义进行区分。

《1.1从自然数到有理数》作业设计方案-初中数学浙教版12七年级上册

《1.1从自然数到有理数》作业设计方案-初中数学浙教版12七年级上册

《从自然数到有理数》作业设计方案(第一课时)一、作业目标本作业设计的目标是让学生掌握自然数、整数及有理数的基本概念与特点,并能通过实践运用和解析实例加深对数的理解和数的性质之间的关联,提高对有理数体系的基础认知水平。

二、作业内容(一)数的认知及定义:1. 自然数的基本定义与常见用法;2. 正整数、负整数及零的属性与表示;3. 有理数的定义,包括整数和分数。

(二)数的性质与分类:1. 数的分类(如正数、负数、零等);2. 数的性质(如奇偶性、绝对值等);3. 数的比较(大小关系)。

(三)数的运算:1. 整数的加法、减法、乘法及除法;2. 有理数的混合运算,包括加法、减法、乘法和除法;3. 运算规则的灵活运用。

(四)实际问题应用:1. 寻找生活中的有理数实例,并解释其意义;2. 结合日常购物经历,进行价格计算与有理数运算;3. 完成与课程相关的数学小故事或应用题。

三、作业要求1. 学生需对所列出的自然数、整数和有理数概念有清晰的认识,并能举例说明其含义。

2. 学生对数的性质进行梳理,并能准确描述不同数类的特点及运算规则。

3. 完成一组数的运算题目,要求过程完整,答案准确。

4. 在实际生活中寻找并记录有理数的应用实例,包括问题背景、运用到的知识点及解答过程。

5. 学生可自主编写数学小故事或应用题,主题应围绕“数的认知与运用”。

6. 所有作业内容需按时提交,字迹清晰,答题完整。

四、作业评价教师将根据学生作业的准确性、逻辑性及创新性进行评价。

对准确掌握概念、理解透彻的学生给予肯定评价;对有独到见解和解题思路的学生给予表扬和鼓励;对理解不够深入或存在错误的学生,教师需及时指出问题所在并给予指导。

五、作业反馈教师将针对学生作业中出现的普遍问题进行集体讲解和指导,对个别学生的问题则进行单独辅导。

同时,教师会结合学生作业的完成情况,调整后续的教学策略和方法,确保所有学生都能有效掌握课程知识。

此外,教师还将及时收集学生的反馈意见,为改进教学方法和提升教学质量提供依据。

1.1 从自然数到有理数 第3课时 有理数 教案-2024-2025学年浙教版七年级数学上册

1.1 从自然数到有理数 第3课时 有理数 教案-2024-2025学年浙教版七年级数学上册

1.1.3 有理数教学设计课题 1.1.3 有理数单元第一单元学科数学年级七年级(上)教材分析在之前的学习中,我们依次学习了正整数、零、自然数、正分数(小学里学过的有限小数和无限循环小数都可以化为分数)、负整数、负分数、有理数。

本节课我们将通过一些例题进一步理解各种数之间的关系,认识有理数及其分类。

核心素养能力培养1.经历思考,推理的过程,完成习题,发现各种数之间的关系,培养学生的逻辑思维能力;2.通过分类学会各种数之间的关系,培养抽象能力。

教学目标1.通过实例,认识整数和分数。

2.认识整数和分数的分类,进而认识有理数及其分类3.通过分类学会各种数之间的关系.教学重点认识有理数及其分类,会判断一个数是哪种类型的数.教学难点能用分类学会各种数之间的关系教学过程教学环节教师活动学生活动设计意图复习回顾下列说法正确的个数是( )①加正号的数是正数,加负号的数是负数;②任意一个正数,前面加上“-”号,就是一个负数;③0是最小的正数;④大于0的数是正数;A. 0B. 1C. 2D. 3①不正确。

加正号的数不一定是正数,例如+(-3)仍然是负数,同理加负号的数也不一定是负数。

②正确。

任意一个正数前面加上“-”号确实会变成负数。

③不正确。

0既不是正数也不是负数,它是一个特殊的数。

④正确。

大于零的数确实是正数。

学生主动举手回答问题。

回顾旧知,考验学生对上节课知识的掌握程度,引出今天的内容。

综上所述,正确的说法有两个,因此正确答案是选项C 。

根据之前的学习,我们了解了整数,分数和正负数,据此,我们把1,2,3,4,…,称为正整数;-1,-2,-3,-4,…,称为负整数;12,23,134,4.5,…,称为正分数;-12,-23,-134,-4.5,…,称为负分数。

新知探究1.教师出示问题:判断表中各数分别属于哪一类数,在相应的空格内画“√”。

解【强调】:正整数、零和负整数统称整数,正分数、负分数统称分数。

整数和分数统称有理数。

浙教版(2024)数学七年级上册《从自然数到有理数》教案及反思

浙教版(2024)数学七年级上册《从自然数到有理数》教案及反思

浙教版(2024)数学七年级上册《从自然数到有理数》教案及反思一、教学目标:【知识与技能目标】:1.理解自然数、分数的产生和发展过程。

2.会用正数、负数表示具有相反意义的量。

3.掌握有理数的概念,能对有理数进行分类。

【过程与方法目标】:1.通过对生活中实例的分析,体会从实际问题中抽象出数学概念的过程。

2.在有理数分类的过程中,培养学生的归纳、概括能力。

【情感价值观目标】:1.感受数学与生活的紧密联系,提高学习数学的兴趣。

2.体会数学的简洁美和逻辑性,培养严谨的治学态度。

二、学情分析:七年级学生思维活跃,好奇心强,但抽象思维能力相对较弱,需要通过具体实例来引导理解抽象概念。

学生在日常生活中可能已经接触过一些具有相反意义的量,如气温的零上和零下等,但对于用正数、负数准确表示还需要进一步学习。

三、教学分析:《从自然数到有理数》是浙教版数学七年级上册的内容。

主要旨在从自然数的复习引入,逐步拓展到分数、负数,使学生对有理数的概念有一个完整的认识,教材通过大量的生活实例,让学生体会数学来源于生活又服务于生活。

四、教学重难点:【教学重点】:1.理解正数、负数的意义,会用正数、负数表示具有相反意义的量。

2.掌握有理数的概念及分类。

【教学难点】:1.对负数概念的理解。

2.有理数分类的准确性。

五、教学方法和策略:【教学方法】:1.讲授法:对于自然数、分数、小数和有理数的概念进行详细讲解,确保学生准确理解每个概念的定义和特点。

2.举例法:通过大量的生活实例帮助学生理解抽象的数学概念。

3.情境创设法:创设生动有趣的情境,让学生在计算商品价格折扣、总价等过程中体会有理数的实际应用,激发学生的学习兴趣。

4.实践法:让学生动手操作,通过图形表示分数,培养学生的合作能力和思维能力。

5.提问法:在教学过程中,适时提出问题,引导学生思考。

6.归纳法:在教学的各个阶段,引导学生对所学内容进行归纳总结,培养学生的归纳总结能力,帮助他们建立系统的知识框架。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】1.1从自然数到有理数
【课时序】第一课时
【课型】新授课
【双向细目表】
【教学目标】:
知识目标:了解自然数和有理数是由于人们生活和生产实践的需要而产生的
技能目标:自然数和有理数的应用
情感目标:了解中国古代在数的发展方面的贡献
【教学重难点】
教学重点:本节教学的重点是认识数的发展过程,感受由于生活与生产实践的需要,数还要作进一步的扩展
教学难点:建立正负数的概念对学生来说是数学抽象思维的一次重大飞跃,是本节的难点。

【教学方法】三学循环。

【学习方法】小组合作
【教学准备】课件。

【教学过程】
【思维导图】
【教学反思】学后反思
有理数的分类(除下面的分类外你还有其它的分类方法吗?)
有理数⎪⎪⎪⎪⎪⎩
⎪⎪⎪

⎪⎨
⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧分数零整数
【课题】1.2数轴
【课时序】第一课时
【课型】新授课。

【双向细目表】——本节课学生达到的知识能力水平等级,如:
【教学目标】
知识与技能目标:1.通过温度计的类比认识数轴,会用数轴上的点表示有理数
2.借助数轴理解相反数的概念,知道互为相反数的一对数在数轴上的位置关系
3.会求一个有理数的相反数。

过程与方法目标:经历从现实问题中建立数学模型,从数形两个侧面理解与解决问题,使学生认识用形来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念。

情感与态度目标:从学生熟悉的现实情境中学习数轴,体会数学知识与现实世界的联系;体会数学充满探索性。

【教学重难点】
教学重点:能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。

教学难点:了解数形结合与转化的思想。

【教学方法】三学循环、图解法等
【学习方法】小组合作、实验探究、讨论,归纳小结等
【教学准备】课件PPt
【教学过程】
【思维导图】
【教学反思】
【课题】1.3绝对值
【课时序】第一课时
【课型】新授课。

【双向细目表】——本节课学生达到的知识能力水平等级,如:
【教学目标】
知识与技能目标:借助数轴,理解绝对值的概念及绝对值的几何意义,会求一个数的绝对值及求绝对值等于某一正数的有理数,了解绝对值的简单应用。

过程与方法目标:通过从数形的两侧面,理解绝对值的意义,初步了解数形结合的思想方法。

情感与态度目标:通过观察、思考、比较、归纳等数学活动,让学生体验数学活动是充满探索性的。

【教学重难点】
教学重点:正确理解绝对值的含义,进行简单的绝对值计算。

教学难点:正确理解绝对值的含义。

【教学方法】知道探究式自学、图解法等
【学习方法】小组合作、实验探究、讨论,归纳小结等
【教学准备】ppt课件等。

【教学过程】
【思维导图】
【教学反思】
【课题】1.4有理数的比较大小
【课时序】第一课时
【课型】新授课。

【双向细目表】
【教学目标】
知识目标:掌握利用数轴和绝对值来比较有理数的大小的方法,初步学会数形结合的思想方法。

过程目标:经历从现实问题中来探索有理数的大小比较,从数形两个侧面理解与解决问题,使学生体会到数形结合数学思想方法的美。

情感目标:从学生熟悉的现实环境中学习有理数的大小比较,体会数学知识与现实世界的联系;通过自主探索、归纳来发现知识,使学生体验成功的乐趣。

【教学重难点】
教学重点:利用数轴和绝对值来比较有理数的大小。

教学难点:比较两个负有理数的大小。

【教学方法】自主探究,实验法、图解法等
【学习方法】小组合作、实验探究、讨论,归纳小结等
【教学准备】ppt课件等。

【教学过程】
【思维导图】
越右越大
越左越小
【教学反思】
【课题】第1章复习课
【课时序】第一课时
【课型】复习课。

【双向细目表】——本节课学生达到的知识能力水平等级,如:
【教学目标】
学习目标
1.回顾一下本章的主要内容,想一想自然数有什么作用.
2.想一想有理数包括哪些数?有理数是如何分类的?
3.你是怎样理解相反数和绝对值的?怎样求一个数的相反数和绝对值?
4. 想一想比较有理数的大小有哪些方法?
【教学方法】三学循环教学法、思维导图等
【学习方法】小组合作、实探究、讨论,归纳小结等
【教学准备】课件等。

【教学过程】
【思维导图】
【教学反思】。

相关文档
最新文档