高中数学必修3课后习题答案解析
高中数学必修3第三章课后习题解答
新课程标准数学必修3第三章课后习题解答第三章概率3.1随机事件的概率练习(P113)1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次.练习(P121)1、0.72、0.6153、0.44、D5、B习题3.1 A组(P123)1、D.2、(1)0;(2)0.2;(3)1.3、(1)430.067645≈;(2)900.140645≈;(3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率练习(P140)1、(1)1;(2)38.2、如果射到靶子上任何一点是等可能的,那么大约有100个镖落在红色区域.说明:在实际投镖中,命中率可能不同,这里既有技术方面的因素,又是随机因素的影响,所以在投掷飞镖、射击或射箭比赛中不会以一枪或一箭定输赢,而是取多次成绩的总和,这就是为了减少随机因素的影响.习题3.3 A组(P142)1、(1)49;(2)13;(3)29;(4)23;(5)59.2、(1)126;(2)12;(3)326;(4)326;(5)12;(6)313.说明:(4)是指落在6,23,9三个相邻区域的情况,而不是编号为6,7,8,9,四个区域.3、(1)25; (2)115; (3)35. 说明:本题假设在任何时间到达路口是等可能的. 习题3.3 B 组(P142) 1、设甲到达的时间为x ,乙到达的时间为y ,则0,24x y <<. 若至少一般船在停靠泊位时必须等待,则06y x <-<或06x y <-<,必须等待的概率为:22189711241616-=-=.2、D .第三章 复习参考题A 组(P145)1、56,16,23. 2、(1)0.548; (2)0.186; (3)0.266.3、(1)38; (2)14.4、(1)813; (2)726; (3)665. 5、分别计算两球均为白球的概率、均为红球的概率、均为黑球的概率,然后相加,得1223311166666636⨯⨯⨯++=⨯⨯⨯. 6、56. 说明:利用对立事件计算会比较简单. 第三章 复习参考题B 组(P146)1、第一步,先计算出现正面次数与反面次数相等的概率46328=. 第二步,利用对称性,即出现正面的次数多于反面次数的概率与出现反面的次数多于正面次数的概率是相等的,所以出现正面的次数多于反面次数的概率为35(1)2816-÷=. 2、(1)是; (2)否; (3)否; (4)是.3、(1)45; (2)15; (3)25; (4)25. 说明:此题属于古典概型的一类“配对问题”,由于这里的数比较小,可以用列举法.4、参考教科书140页例4.。
人教版高中数学选择性必修第3册8-1-2样本相关系数课件
D.③④
• 【答案】B
• 【解析】样本相关系数r的绝对值越大,变量x,y的线性 相关程度越高.
易错警示 样本相关系数r概念理解不到位致误
•
以下是收集到的新房屋的销售价格y(万元)和房屋的大
小x(m2)的数据.
房屋大小/m2 115 110 80 135 105
销售价格/万元 24.8 21.6 18.4 29.2 22
65.6≈0.96,
由相关系数 r=0.96 可知,房屋大小与销售价格呈正相关,且相关性
高,拟合程度较高.
素养达成
• 1.判断变量之间的线性相关关系,一般用散点图,但在 作图中,由于存在误差,有时很难判断这些点是否分布在一 条直线的附近,从而就很难判断两个变量之间是否具有线性 相关关系,此时就必须利用线性相关系数来判断.
=
1
3 308 570×
65.6≈0.96,
• 由相关系数r=0.96可知,房屋大小与销售价格呈负相关, 且相关性不高,拟合程度不高.
• 易错防范:判断变量之间的线性相关关系,通常利用相 关系数r,当|r|越接近1,它们的散点图越接近一条直线,这 时用线性回归模型拟合这组数据的效果就越好.
• 正解:由题设数据,得
• (1)当r>0时,称成对样本数正据______相关;当r<0时,
称成对样本数据负相关;当r=0时不,两个变量线性______相
关.
[-1,1]
• (2)样本相关系数r的取值范围为__________.
• 当|r|越接近1时,成对样本数据的线性相关程度越强;
• 当|r|越接近0时,成对样本数据的线性相关程度越弱.
绝对值越接近于1,表明两个变量的线性相关程度性越强,r 的绝对值越接近于0,表明两个变量的线性相关程度越弱,故 D正确.
高中数学必修三习题带答案
第一章1. 家中配电盒至电视机的线路断了,检测故障的算法中,为了使检测的次数尽可能少,第一步检测的是 B(A)靠近电视的一小段,开始检查 (B)电路中点处检查 (C)靠近配电盒的一小段开始检查 (D)随机挑一段检查2. 早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法 C (A)S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 (B)S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 (C)S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播 (D)S1吃饭同时听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶 3. 给出以下四个问题:①输入一个数x ,输出它的相反数;②求面积为6的正方形的周长;③求三个数a ,b ,c ,中的最大数;④求函数⎩⎨⎧<+≥-=)0(2)0(1)(x x x x x f 的函数值;⑤求两个正整数a ,b 相除的商及余数.其中不需要用条件语句来描述其算法的有_____125_______. 4. 下面的问题中必须用条件分支结构才能实现的是__23__________.①求面积为1的正三角形的周长; ②求方程0ax b +=(,a b 为常数)的根; ③求两个实数,a b 中的最大者; ④求1+2+3+…+100的值 5. 840和1764的最大公约数是84.6. 用秦九韶算法计算多项式23456()1235879653f x x x x x x x =+-++++,在4x =-时的值时,3V 的值为 C(A)-845 (B)220 (C)-57 (D)34 9.___28_____.12.(08-广东-9)阅读下图的程序框图,若输入4m =,3n =,则输出a =12,i =3;13.按如图所示的框图运算:若输入x =8,则输出k =5;(基本算法语句)1.下列给出的赋值语句中正确的是 B(A)M =4 (B)M M -= (C)3==A B (D)0=+y x 2.下列给变量赋值的语句正确的是 D(A)3a =(B)1a a +=(C)3a b c ===(D)8a a =+ 3.下列赋值语句中错误的是 C(A)1N N =+ (B)*K K K = (C)()C A B D =+ (D)M=M/5第二章一、选择题:1.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( D ).A.简单随机抽样 B.系统抽样C.分层抽样 D.先从老年人中剔除一人,然后分层抽样2.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级2007名学生中抽取50名进行抽查,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下2000人再按系统抽样的方法进行,则每人入选的机会( C )A. 不全相等B. 均不相等C. 都相等D. 无法确定3.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为( A )k=5A.5,10,15,20B.2,6,10,14C.2,4,6,8D.5,8,11,144.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。
高中人教版数学必修3课本练习-习题参考答案
高中数学必修③课本练习,习题参考答案第一章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第一步:输入任意正实数r,第二步:计算第三步:输出圆的面积S2. 解;第一步:给定一个大于l的正整数;第二步:令;第三步:用除,得到余数;第四步:判断“”是否成立,若成立,则i是n的因数;否则,i不是n的因数;第五步:使的值增加l,仍用表示,即令;第六步,判断“”是否成立.若是,则结束算法;否则,返回第三步1.1.2程序框图与算法的基本逻辑(P19)1.解;算法步骤:第一步,给定精确地d,令i=1第二步,取出的到小数点后第i位的不足近似值,记为a;取出的到小数点后第i位的过剩近似值,记为b,第三步,计算第四步,若m<d,则执行第五步;否则,将i的值增加1,返回第二步.第五步,输出程序框图如下图所示:1.1算法与程序框图(P20)解; 题目:在国内寄平信(外埠),每封信的质量x (克)不超过60克时的邮费(单位:分)标准为,试写出计算邮费的算法并画出程序框图。
算法如下:第一步,输入质量数x 。
第二步,判断是否成立,若是,则输出y=120,否则执行第三步。
第三步,判断是否成立,若是,则输出y=240,否则,输出y=360,算法结束。
程序框图如下图所示:(注释:条件结构)2.解:算法如下:第一步,i=1,S=0.第二步,判断是否成立,若成立,则执行第三步,否则,执行第四步。
第三步,,i=i+1,返回第二步。
第四步,输出S.程序框图如下图所示:(注释:循环结构)3. 解:算法如下:第一步,输入人数x,设收取的卫生费为y元。
第二步,判断x>3是否成立,若不成立,y=5,输出y;否则,输出y.程序框图如下图所示:(注释:条件结构)1. 解:分析:我们设计对于一般的二元一次方程组(其中)的通用算法:第一步,,得(即) (3)第二步,解(3),得 (4)第三步,将(4)代入(1),得,因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可以输出x、y的值,用顺序结构即可。
高中数学必修三《事件与概率》课后练习(含答案)
事件与概率课后练习题一:袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是(球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球.摸出的三个球中至少有一个球是黑球B .摸出的三个球中至少有一个球是白球.摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球.摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球.摸出的三个球中至少有两个球是白球题二:下列事件中,必然事件是题二:下列事件中,必然事件是 ,不可能事件是,不可能事件是 ,随机事件是,随机事件是 .(1)某射击运动员射击1次,命中靶心;次,命中靶心;(2)从一只装着白球和黑球的袋中摸球,摸出红球;)从一只装着白球和黑球的袋中摸球,摸出红球;(3)13人中至少2个人的生日是同一个月;个人的生日是同一个月;(4)任意摸1张体育彩票会中奖;张体育彩票会中奖;(5)天上下雨,马路潮湿;)天上下雨,马路潮湿;(6)随意翻开一本有400页的书,正好翻到第100页;页;(7)你能长高到4m ;(8)抛掷1枚骰子得到的点数小于8.题三:一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是(的对立事件是( )A .命中环数为7、8、9、10环B .命中环数为1、2、3、4、5、6环C .命中环数至少为6环D .命中环数至多为6环题四:某人连续投篮投3次,那么下列各组事件中是互斥且不对立的事件的组数为(次,那么下列各组事件中是互斥且不对立的事件的组数为( ) (1)事件A :至少有一个命中,事件B :都命中;:都命中;(2)事件A :至少有一次命中,事件B :至多有一次命中;:至多有一次命中;(3)事件A :恰有一次命中,事件B :恰有2次命中;次命中;(4)事件A :至少有一次命中,事件B :都没命中.:都没命中.A .0 B .1 C .2 D .3 题五:为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科5位骨干医师中(含有甲)抽调3人组成,则甲一定抽调到防控小组的概率是人组成,则甲一定抽调到防控小组的概率是 .题六:小明将1枚质地均匀的硬币连续抛掷3次.次.(1)按3次抛掷结果出现的先后顺序,下列三种情况:次抛掷结果出现的先后顺序,下列三种情况:①正面朝上、正面朝上、正面朝上;①正面朝上、正面朝上、正面朝上;②正面朝上、反面朝上、反面朝上;②正面朝上、反面朝上、反面朝上;③正面朝上、反面朝上、正面朝上,③正面朝上、反面朝上、正面朝上,其中出现的概率(其中出现的概率( )A .①最小.①最小B .②最小.②最小C .③最小.③最小D .①②③均相同.①②③均相同(2)请用树状图说明:小明在3次抛掷中,硬币出现1次正面向上、2次反面向上的概率是多少多少题七:掷两个面上分别记有数字1至6的正方体玩具,设事件A 为“点数之和恰好为6”,则A 所有基本事件个数为(有基本事件个数为( )A .2个B .3个C .4个D .5个题八:从1,2,3,5中任取2个数字作为直线Ax +By =0中的A 、B .(1)求这个试验的基本事件总数;)求这个试验的基本事件总数;(2)写出“这条直线的斜率大于-1”这一事件所包含的基本事件.这一事件所包含的基本事件.题九:袋内装有红、白、黑球分别为3、2、1个,从中任取两个,则互斥而不对立的事件是( )A .至少一个白球;都是白球.至少一个白球;都是白球B .至少一个白球;至少一个黑球.至少一个白球;至少一个黑球C .至少一个白球;一个白球一个黑球.至少一个白球;一个白球一个黑球D .至少一个白球;红球、黑球各一个.至少一个白球;红球、黑球各一个题十:掷两颗相同的均匀骰子(各个面分别标有1,2,3,4,5,6),记录朝上一面的两个数,那么互斥而不对立的两个事件是(那么互斥而不对立的两个事件是( )A .“至少有一个奇数”与“都是奇数”B .“至少有一个奇数”与“至少有一个偶数”C .“至少有一个奇数”与“都是偶数”D .“恰好有一个奇数”与“恰好有两个奇数”题十一:下列说法中正确的是题十一:下列说法中正确的是 ..(1)事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大;中恰有一个发生的概率大; (2)事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小;中恰有一个发生的概率小;(3)互斥事件一定是对立事件,对立事件不一定是互斥事件;)互斥事件一定是对立事件,对立事件不一定是互斥事件;(4)互斥事件不一定是对立事件,对立事件一定是互斥事件.)互斥事件不一定是对立事件,对立事件一定是互斥事件.题十二:从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰好有1件次品和恰好有2件次品;件次品;(2)至少有1件次品和全是次品;件次品和全是次品;(3)至少有1件正品和至少有1件次品.件次品.题十三:经临床验证,一种新药对某种疾病的治愈率为49%,显效率28%,有效率12%,其余为无效.则某人患该病使用此药后无效的概率是余为无效.则某人患该病使用此药后无效的概率是 .题十四:我国西部一个地区的年降水量(题十四:我国西部一个地区的年降水量( 单位:mm )在下列区间内的概率如下表:)在下列区间内的概率如下表:年降水量水量[600,800) [800,1000) [1000,1200) [1200,1400) [1400,1600) 概率 0.12 0.26 0.38 0.16 0.08 (1)求年降水量在)求年降水量在事件与概率课后练习参考答案题一:题一: A .详解:必然事件就是一定发生的事件,随机事件是可能发生也可能不发生的事件.A 、是必然事件;B 、是随机事件,选项错误;C 、是随机事件,选项错误;、是随机事件,选项错误;D 、是随机事件,选项错误.故选A .题二:题二: (3)、(5)、(8);(2)、(7);(1)、(4)、(6). 详解:在一定条件下,可能发生也可能不发生的事件,称为随机事件.一定发生的事件称为必然事件;一定不发生的事件称为不可能事件.(1)某射击运动员射击1次,命中靶心;(随机事件)(随机事件)(2)从一只装着白球和黑球的袋中摸球,摸出红球;(不可能事件)(不可能事件)(3)13人中至少2个人的生日是同一个月;(必然事件)(必然事件)(4)任意摸1张体育彩票会中奖;(随机事件);(5)天上下雨,马路潮湿;(必然事件)(必然事件)(6)随意翻开一本有400页的书,正好翻到第100页;(随机事件);(7)你能长高到4m ;(不可能事件)(不可能事件)(8)抛掷1枚骰子得到的点数小于8.(必然事件).题三:题三: C .详解:根据对立事件的定义可得,一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是:“命中环数至少为6环”,故选C .题四:题四: B .详解:利用互斥事件、对立事件的定义,即可得到结论.互斥事件:事件A 与事件B 不可能同时发生,强调的是“不同时发生”.对立事件:事件A 、B 中必定而且只有一个发生。
高中数学必修三课后习题答案
高中数学必修三课后习题答案第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 1、程序:2、程序:3、程序:练习(P29) 1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF INPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c)) PRINT “s=”;s END INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序: 习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等. 第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THEN PRINT “Please input again.”ELSE IF t>0 AND t<=180 THENy=0.2ELSEIF (t -180) MOD 60=0 THENy=0.2+0.1*(t-180)/60ELSEy=0.2+0.1*((t-180)\60+1)END IFEND IFPRINT “y=”;yEND IF END INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差. 2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号. (2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生. 3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本. 练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差. 2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值(1)散点图如下: y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(2)回归直线如下图所示:(3)加工零件的个数与所花费的时间呈正线性相关关系. 4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。
最新2019人教B版高中数学选择性必修第三册课后习题答案
4.解析 记该等差数列为{ a n } ꎬ则其通项
公式为 a n = 4n-1.
令 100 = 4n - 1ꎬ 得 n =
2
101
∉ N + ꎬ 故 100
4
1.解析 (1) a 10 = ( -1) 11 ×
(2) a 10 = 1+cos
cos
π
= 1.
2
10+1
11
=- .
2×10-1
19
8π+π
9π
= 1+cos
= 1+
2
2
(
)
1
1
2.解析 (1) a n = n ꎬa 10 =
.
1 024
2(2)Biblioteka a n = ( -1) n+1(2n-1) ꎬa 10 = -19.
5
8
33
(2) a 1 = 2ꎬa 2 = ꎬa 3 = ꎬa 4 = ꎬa 5 =
2
3
12
42 14
= .
15 5
前 3 项和 S 3 = a 1 +a 2 +a 3 =
S 5 = a 1 +a 2 +a 3 +a 4 +a 5 =
43
ꎬ前 5 项和
6
763
.
60
2.解析 不一定.也可能是常数列 a n = 0.
(2) a n = -3 n( 答案不唯一) .
5.1.2 数列中的递推
练习 A
1.解析 (1) a n+1 -a n = nꎬa 1 = 4ꎻa 7 = 25.
(2) a n+1 -a n = 2ꎬa 1 = 7ꎻa 7 = 19.
(3) a n+1 = 3a n ꎬa 1 = 2ꎻa 7 = 1 458.
数学必修三习题答案
数学必修三习题答案【篇一:高一数学必修3全册各章节课堂同步习题(详解答案)】概念班次姓名[自我认知]:1.下面的结论正确的是( ).a. 一个程序的算法步骤是可逆的b. 一个算法可以无止境地运算下去的 c. 完成一件事情的算法有且只有一种 d. 设计算法要本着简单方便的原则 2.下面对算法描述正确的一项是 ( ). a.算法只能用自然语言来描述 b.算法只能用图形方式来表示 c.同一问题可以有不同的算法d.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征( ) a.抽象性 b.精确性 c.有穷性 d.唯一性4.算法的有穷性是指( )a.算法必须包含输出b.算法中每个操作步骤都是可执行的c.算法的步骤必须有限d.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法() a.s1洗脸刷牙、s2刷水壶、s3烧水、s4泡面、s5吃饭、s6听广播 b.s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭、s5听广播 c. s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭同时听广播 d.s1吃饭同时听广播、s2泡面;s3烧水同时洗脸刷牙;s4刷水壶6.看下面的四段话,其中不是解决问题的算法是( )a.从济南到北京旅游,先坐火车,再坐飞机抵达b.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1c.方程x2?1?0有两个实根d.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是 ( ) a.①②③ b.②③①c.①③②d.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??0,则f?x?在区间?a,b?内( )a.至多有一个根 b.至少有一个根c.恰好有一个根 d.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取a=89 ,b=96 ,c=99;第二步:____①______;第三步:_____②_____;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+?+100的一个算法.可运用公式1+2+3+?+n= 第一步______①_______;第二步_______②________;第三步输出计算的结果.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法.n(n?1)直接计算. 21.1.2程序框图[自我认知]: 1.算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D.流程结构、循环结构、分支结构2.程序框图中表示判断框的是()A.矩形框B.菱形框 d.圆形框 d.椭圆形框3.如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为( )⑴333⑵3a.⑴n≥1000 ? ⑵n<1000 ?b. ⑴n≤1000 ?⑵n≥1000 ?c. ⑴n<1000 ? ⑵n≥1000 ?d. ⑴n<1000 ?⑵n<1000 ?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是 ( ) a.一个算法只能含有一种逻辑结构 b.一个算法最多可以包含两种逻辑结构 c.一个算法必须含有上述三种逻辑结构d.一个算法可以含有上述三种逻辑结构的任意组合 [课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是( ) a.求输出a,b,c三数的最大数 b.求输出a,b,c三数的最小数3333c.将a,b,c按从小到大排列d.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x的奇偶性:其中判断框内的条件是( )a.m?0?b.x?0 ?c.x?1 ?d.m?1?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) a.顺序结构 b.条件结构和循环结构 c.顺序结构和条件结构 d.没有任何结构?x2?1(x?0)8.已知函数f?x??? ,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?11.1.2程序框图(第二课时)[课后练习]:班次姓名1.如图⑴的算法的功能是____________________________.输出结果i=___,i+2=_____.2.如图⑵程序框图箭头a指向①处时,输出 s=__________. 箭头a指向②处时,输出 s=__________.3.如图⑷所示程序的输出结果为s=132, 则判断中应填a、i≥10?b、i≥11?c、i≤11? d、i≥12?4.如图(3)程序框图箭头b指向①处时,输出 s=__________. 箭头b指向②处时,输出 s=__________5、如图(5)是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
数学必修三习题答案
数学必修三习题答案【篇一:高一数学必修3全册各章节课堂同步习题(详解答案)】概念班次姓名[自我认知]:1.下面的结论正确的是( ).a. 一个程序的算法步骤是可逆的b. 一个算法可以无止境地运算下去的 c. 完成一件事情的算法有且只有一种 d. 设计算法要本着简单方便的原则 2.下面对算法描述正确的一项是 ( ). a.算法只能用自然语言来描述 b.算法只能用图形方式来表示 c.同一问题可以有不同的算法d.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征( ) a.抽象性 b.精确性 c.有穷性 d.唯一性4.算法的有穷性是指( )a.算法必须包含输出b.算法中每个操作步骤都是可执行的c.算法的步骤必须有限d.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法() a.s1洗脸刷牙、s2刷水壶、s3烧水、s4泡面、s5吃饭、s6听广播 b.s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭、s5听广播 c. s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭同时听广播 d.s1吃饭同时听广播、s2泡面;s3烧水同时洗脸刷牙;s4刷水壶6.看下面的四段话,其中不是解决问题的算法是( )a.从济南到北京旅游,先坐火车,再坐飞机抵达b.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1c.方程x2?1?0有两个实根d.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是 ( ) a.①②③ b.②③①c.①③②d.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??0,则f?x?在区间?a,b?内( )a.至多有一个根 b.至少有一个根c.恰好有一个根 d.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取a=89 ,b=96 ,c=99;第二步:____①______;第三步:_____②_____;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+?+100的一个算法.可运用公式1+2+3+?+n= 第一步______①_______;第二步_______②________;第三步输出计算的结果.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法.n(n?1)直接计算. 21.1.2程序框图[自我认知]: 1.算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D.流程结构、循环结构、分支结构2.程序框图中表示判断框的是()A.矩形框B.菱形框 d.圆形框 d.椭圆形框3.如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为( )⑴333⑵3a.⑴n≥1000 ? ⑵n<1000 ?b. ⑴n≤1000 ?⑵n≥1000 ?c. ⑴n<1000 ? ⑵n≥1000 ?d. ⑴n<1000 ?⑵n<1000 ?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是 ( ) a.一个算法只能含有一种逻辑结构 b.一个算法最多可以包含两种逻辑结构 c.一个算法必须含有上述三种逻辑结构d.一个算法可以含有上述三种逻辑结构的任意组合 [课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是( ) a.求输出a,b,c三数的最大数 b.求输出a,b,c三数的最小数3333c.将a,b,c按从小到大排列d.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x的奇偶性:其中判断框内的条件是( )a.m?0?b.x?0 ?c.x?1 ?d.m?1?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) a.顺序结构 b.条件结构和循环结构 c.顺序结构和条件结构 d.没有任何结构?x2?1(x?0)8.已知函数f?x??? ,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?11.1.2程序框图(第二课时)[课后练习]:班次姓名1.如图⑴的算法的功能是____________________________.输出结果i=___,i+2=_____.2.如图⑵程序框图箭头a指向①处时,输出 s=__________. 箭头a指向②处时,输出 s=__________.3.如图⑷所示程序的输出结果为s=132, 则判断中应填a、i≥10?b、i≥11?c、i≤11? d、i≥12?4.如图(3)程序框图箭头b指向①处时,输出 s=__________. 箭头b指向②处时,输出 s=__________5、如图(5)是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案
描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。
高中数学选择性必修三 6 2 3 排列组合的综合运用(精练)(含答案)
6.2.3 排列组合的综合运用(精练)【题组一全排列】1.(2020·中山大学附属中学高二期中)一个市禁毒宣传讲座要到4个学校开讲,一个学校讲一次,不同的次序种数为( )A.4 B.44C.24 D.48【答案】C【解析】一个市禁毒宣传讲座要到4个学校开讲,一个学校讲一次,不同的次序种数为44=432124A⨯⨯⨯=. 故选:C2.(2020·全国高二单元测试)3名学生报名参加篮球、足球、排球、计算机课外兴趣小组,每人选报一门,则不同的报名方案有________种.【答案】64【解析】由题意参加篮球、足球、排球、计算机课外兴趣小组,每个学生有4种选择,则3名同学共有34=64种报名方案.故答案为:64.3.(2020·上海高二专题练习)若把英文单词“hello”的字母的顺序写错了,则可能出现的错误共有_________种.【答案】59【解析】由题意知本题是一个排列组合及简单的计数问题五个字母进行全排列共有55120A=种结果,字母中包含2个l,∴五个字母进行全排列的结果要除以2,共有60种结果,在这60种结果里有一个是正确的,∴可能出现的错误的种数是60159-=,故答案为:59.4.(2021·浙江衢州市)将9个相同的球放到3个不同的盒子中,每个盒子至少放一个球,且每个盒子中球的个数互不相同,则不同的分配方法共有________种.【答案】18【解析】将9个相同的球分成个数不同的3份,有(1,2,6),(1,3,5),(2,3,4)三种情况,再将这3份个数不同的球放到3个不同的盒子中,有336A=种情况,所以不同的分配方法共有1863=⨯种.故答案为:185.(2020·天津河西区·高二期中)学校要安排一场文艺晚会的11个节目的演出顺序,除第1个节目和最后1个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,则不同的排法有_____种.(用数字作答)【答案】288【解析】4个音乐节目要求排在第2,5,7,10的位置,有44A=24种排法;3个舞蹈节目要求排在第3,6,9的位置,有336A=种排法;2个曲艺节目要求排在第4,8的位置,有222A=种排法.故共有24×6×2=288种排法.故答案为:288.6.(2020·河南)2020年新型冠状病毒肆虐全球,目前我国疫情已经得到缓解,为了彰显我中华民族的大爱精神,我国决定派遣具有丰富抗击疫情经验的四支不同的医疗队A、B、C、D,前往四个国家E、F、G、H进行抗疫技术指导,每支医疗队到一个国家,那么总共有______(请用数字作答)种的不同的派遣方法.如果已知A医疗队被派遣到H国家,那么此时B医疗队被派遣到E国的概率是______.【答案】241 3【解析】由题意可知,每支医疗队到一个国家的派遣方法数为4424A=,由于A医疗队被派遣到H国家,则B医疗队可派遣到其它3个国家,因此,B医疗队被派遣到E国的概率是13.故答案为:24;13.【题组二相邻问题】1.(2020·沙坪坝区·重庆八中)小涛、小江、小玉与本校的另外2名同学一同参加《中国诗词大会》的决赛,5人坐成一排,若小涛与小江、小玉都相邻,则不同坐法的总数为()A.6 B.12 C.18 D.24【答案】B【解析】解:将小涛与小江、小玉捆绑在一起,与其他两个人全排列,其中小涛位于小江、小玉之间,按照分步乘法计算原理可得323212A A⋅=故选:B2.(2020·宁夏吴忠市·吴忠中学高二期末)将A,B,C,D,E,F这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A,B,C三个字母连在一起,且B在A与C之间的概率为()A.112B.15C.115D.215【答案】C【解析】由捆绑法可得所求概率为242466A A 1A 15P ==.故答案为C 3.(2020·陕西彬州市·高二月考)5个男生,2个女生排成一排,若女生不能排在两端,但又必须相邻,则不同的排法种数为 A .480B .720C .960D .1440【答案】C【解析】两个女生必须相邻,捆绑222A =,女生不能排两端,则从5个男生中任选两人排两端,2520A =,剩余3个男生与捆绑在一起的2个女生看成4个元素,排在其余位置,4424A =,所以不同的排法种数为:22425422024960A A A ⋅⋅=⨯⨯=.4.(2020·广东广州市)2020年初,全国各大医院抽调精兵强将前往武汉参加新型冠状病毒肺炎阻击战,各地医护人员分别乘坐6架我国自主生产的“运20”大型运输机,编号为1,2,3,4,5,6号,要求到达武汉天河飞机场时,每五分钟降落一架,其中1号与6号相邻降落,则不同的安排方法有( ) A .60 B .120 C .144 D .240【答案】D【解析】由题意,因为1号与6号相邻降落,可1号与6号排列后看作一个,同其它飞机进行全排, 将则不同的安排方法有2525240A A =种.故选:D.5.(2020·莒县教育局教学研究室高二期中)3名男生、3名女生排成一排,男生必须相邻,女生也必须相邻的排法种数为( ) A .2 B .9C .72D .36【答案】C【解析】根据题意男生一起有336A =排法,女生一起有336A =排法,一共有3333272A A =种排法,故选:C ..6.(2020·江苏宿迁市·宿迁中学高二期中)三位女歌手和她们各自的指导老师合影,要求每位歌手与她们的老师站一起,这六人排成一排,则不同的排法数为( ) A .24 B .48C .60D .96【答案】B【解析】先将三位女歌手和她们各自的指导老师捆绑在一起,记为三个不同元素进行全排,再将各自女歌手和她的指导老师进行全排,则不同的排法数3222322248N A A A A ==,故选:B.【题组三 不相邻问题】1.(2020·全国)六个人排队,甲乙不能排一起,丙必须排在前两位的概率为( ) A .760B .16C .1360D .14【答案】C【解析】丙排第一,除甲乙外还有3人,共33A 种排法,此时共有4个空,插入甲乙可得24A ,此时共有3234=612=72A A ⋅⨯种可能;丙排第二,甲或乙排在第一位,此时有1424C A 排法,甲和乙不排在第一位, 则剩下3人有1人排在第一位,则有122323C A A 种排法, 此时故共有1412224323+=84C A C A A 种排法. 故概率6672841360P A +==. 故选:C.2.(2020·全国)将编号为1、2、3、4、5的5个小球全部放入A 、B 、C 三个盒子内,若每个盒子不空,且放在同一个盒子内的小球编号不相连,则不同的方法总数有( ) A .42 B .36 C .48 D .60【答案】A【解析】将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组. ①当三个盒子中的小球个数分别为1、1、3时,由于放在同一个盒子里的小球编号互不相连, 故3个小球的编号只能是1、3、5的在一个盒子里,故只有一种分组方法,再分配到三个盒子,此时共有336A =种分配方法;②当三个盒子中的小球个数分别为1、2、2时,由于放在同一个盒子里的小球编号互不相连,此时放2个小球的盒子中小球的编号分别为()1,3、()2,4或()1,3、()2,5或()1,4、()2,5或()1,4、()3,5或()1,5、()2,4或()2,4、()3,5,共6种,再分配到三个盒子中,此时,共有33636A =种.综上所述,不同的放法种数为64362+=种.故选:A.3.(2020·全国)某节目组决定把《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另外确定的两首诗词排在后六场做节目开场诗词,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有()A.72种B.48种C.36种D.24种【答案】C【解析】首先可将《将进酒》与《望岳》捆绑在一起和另外确定的两首诗词进行全排列,共有336A=种排法,再将《山居秋暝》与《送杜少府之任蜀州》插排在3个空里(最后一个空不排),共有236A=种排法,则后六场开场诗词的排法有6636⨯=种,故选:C.4.(2020·防城港市防城中学高二期中)5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为()A.72B.48C.24D.60【答案】C【解析】先将丙与丁捆绑,形成一个“大元素”与戊进行排列,然后再将甲、乙插空,由分步乘法计数原理可知,不同的排法种数为22222324A A A=种.故选:C.5..(2020·北京丰台区·高二期末)某活动中需要甲、乙、丙、丁4名同学排成一排.若甲、乙两名同学不相邻,则不同的排法种数为_________.(用数字作答)【答案】12【解析】先求出甲、乙、丙、丁4名同学排成一排的全排列:4424A=;再求出甲、乙两名同学相邻的排列:2 412A=然后,4244241212A A-=-=故答案为:126.(2020·上海)2位女生3位男生排成一排,则2位女生不相邻的排法共有______种. 【答案】72【解析】根据题意,分2步进行分析:①、将3位男生排成一排,有336A=种情况,②、3名男生排好后有4个空位可选,在4个空位中,任选2个,安排两名女生,有2412A=种情况,则2位女生不相邻的排法有61272⨯=种;故答案为:727.(2020·安徽省太和第一中学高二月考(理))将A,B,C,D,E五个字母排成一排,若A与B相邻,且A 与C 不相邻,则不同的排法共有__种. 【答案】36【解析】依题意,可分三步,先排D ,E ,有22A 种方法,产生3个空位,将,A B 捆绑有22A 种方法,将,A B 捆绑看作一个元素,插入三个空位之一,有13A 种方法,这时AB 、D 、E 产生四个空位,最后将C 插入与A 不相邻的三个空位之一,有13A 种方法,根据分步乘法计数原理得:共有2211223336A A A A ⨯⨯⨯=种,故答案为:36.8.(2020·博兴县第三中学高二月考)某班上午有五节课,分别安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,则不同排课法的种数是___________ 【答案】24【解析】根据题意,分3步进行分析:①要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序,有222A =种情况, ②将这个整体与英语全排列,有222A =种顺序,排好后,有3个空位, ③数学与物理不相邻,有3个空位可选,有236A =种情况,则不同排课法的种数是22624⨯⨯=种;故答案为:24. 【题组四 分组分配】1.(2020·全国)将6本不同的书分给甲、乙、丙3名学生,其中一人得1本,一人得2本,一人得3本,则有________种不同的分法. 【答案】360【解析】先把书分成三组,把这三组分给甲、乙、丙3名学生.先选1本,有16C 种选法;再从余下的5本中选2本,有25C 种选法;最后余下3本全选,有33C 种选法.故共有12365360C C C ⋅⋅=种选法.由于甲、乙、丙是不同的3人,还应考虑再分配,故共有3360360A =种分配方法.故答案为: 360.2.(2020·全国)将6本不同的书分给甲、乙、丙、丁4个人,每人至少1本的不同分法共有________种.(用数字作答) 【答案】1560【解析】把6本不同的书分成4组,每组至少1本的分法有2种.①有1组3本,其余3组每组1本,不同的分法共有31163213320lC C C C A = (种);②有2组每组2本,其余2组每组1本,不同的分法共有22116421222245C C C C A A ⋅= (种). 所以不同的分组方法共有20+45=65(种).然后把分好的4组书分给4个人,所以不同的分法共有44651560A ⨯= (种).故答案为:1560.3(2020·福建省泰宁第一中学高二月考)五一劳动节期间,5名游客到三个不同景点游览,每个景点至少有一人,至多两人,则不同的游览方法共有___________种.(用数字填写答案) 【答案】90【解析】把5人按人数2,2,1分成三组,然后再安排到三个景点浏览,总方法为2235332290C C A A ⨯=. 故答案为:90.4.(2020·全国)把5张不同的电影票分给4个人,每人至少一张,则不同的分法种数为________. 【答案】240.【解析】将这5张不同的电影票分成四组,每组至少一张,共有2111532133C C C C A 种分组办法,再分给4人的不同分法有211145321433240C C C C A A ⋅=种.故答案为:240. 5.(2020·全国)从6个人中选4个人值班,第一天1个人,第二天1个人,第三天2个人,共有多少种排法_________. 【答案】180【解析】112654C C C 180=.故答案为:180.6.(2020·重庆北碚区·西南大学附中高二期中)某学校安排5名高三教师去3个学校进行交流学习,且每位教师只去一个学校,要求每个学校至少有一名教师进行交流学习,则不同的安排方式共有______种. 【答案】150【解析】分2步分析:先将5名高三教师分成3组,由两种分组方法,若分成3、1、1的三组,有3510C =种分组方法, 若分成1、2、2的三组,有1225422215C C C A =种分组方法,则一共有101525+=种分组方法;再将分好的三组全排列,对应三个学校,有336A =种情况,则有256150⨯=种不同的安排方式; 故答案为:150.7.(2020·全国)2020年是全面建成小康社会目标实现之年,是脱贫攻坚收官之年根据中央对“精准扶贫”的要求,某市决定派5名党员和3名医护人员到三个不同的扶贫村进行调研,要求每个扶贫村至少派党员和医护人员各1名,则所有不同的分派方案种数为________________.(用数字作答). 【答案】900【解析】由题意分两步完成:第一步:将5名党员分派到三个不同的扶贫村,第二步,将3名医护人员分派到三个不同的扶贫村.第一步:因为党员有5人,先分成3个组进行分派,分组情况有两种,第一种按人数是1,1,3分组有1135432210C C C A ⋅⋅=种不同情况,第二种按人数是2,2,1分组有2215312215C C C A ⋅⋅=种不同情况,再将分好的组分派到不同的扶贫村共有33(1015)150A +⨯=种不同分派方式;第二步:将3名医护人员分派到3个不同的扶贫村,共有336A =种不同情况.所以所有的不同分派方案有1506900⨯=种. 故答案为:900. 【题组五 几何问题】1.(2021·全国)直线x m =,y x =将圆面224x y +≤分成若干块,现有5种颜色给这若干块涂色,且任意两块不同色,则所有可能的涂色种数是( ) A .20 B .60 C .120 D .240【答案】D【解析】当2m ≤-或2m ≥时,圆面224x y +≤被分成2块, 此时不同的涂色方法有5420⨯=种,当2m -<≤2m ≤<时,圆面224x y +≤被分成3块, 此时不同的涂色方法有54360⨯⨯=种,当m <时,圆面224x y +≤被分成4块,此时不同的涂色方法有5432120⨯⨯⨯=种, 所有可能的涂色种数是240. 故选:D2.(2021·安徽省)224x y +≤表示的平面区域内,以横坐标与纵坐标均为整数的点为顶点,可以构成的三角形个数为( ) A .286 B .281 C .256 D .176【答案】C【解析】由题意可得224x y +≤表示的平面区域内的整点共有13个,其中三点共线的情况有10种,五点共线的情况有2种,所以从13个点中可以构成三角形的个数为33313351022861020256C C C --=--=个.故选C .3.(2020·全国高二单元测试)以一个正方体的顶点为顶点的四面体的个数为( ) A .70 B .64 C .58 D .52【答案】C【解析】正方体的8个顶点中任取4个共有C 84=70个,不能组成四面体的4个顶点有:已有的6个面,对角面:有6个,共12个, ∴以一个正方体的顶点为顶点的四面体共有:70−12=58个.故答案为C. 【题组六 方程不等式问题】1.(2021·太原市)不定方程12x y z ++=的非负整数解的个数为( ) A .55 B .60 C .91 D .540【答案】C【解析】不定方程12x y z ++=的非负整数解的个数⇔将12个相同小球放入三个盒子,允许有空盒的放法种数.现在在每个盒子里各加一个相同的小球,问题等价于将15个相同小球放入三个盒子,没有空盒的放法种数,则只需在15个小球中形成的空位(不包含两端)中插入两块板即可,因此,不定方程12x y z ++=的非负整数解的个数为21491C =.故选:C.2.(2021·湖北)若方程12348x x x x +++=,其中22x =,则方程的正整数解的个数为 A .10 B .15C .20D .30【答案】A【解析】方程12348x x x x +++=,其中22x =,则1346x x x ++=将其转化为有6个完全相同的小球,排成一列,利用挡板法将其分成3组, 第一组小球数目为1x 第二组小球数目为3x 第三组小球数目为4x共有2510C =种方法故方程的正整数解的个数为10 故选A【题组七 数字问题】1.已知集合{}A a b c d =,,,,从集合A 中任取2个元素组成集合B ,则集合B 中含有元素b 的概率为( ) A .16B .13C .12D .1【答案】C【解析】A 中任取2个元素组成集合B ,则B 的情况有{}{}{}{}{}{}123456,,,,,,,,,,,B a b B a c B a d B b c B b d B c d ======,共6个,其中符合情况的集合为145,,B B B 共3个,故集合B 中含有元素b 的概率为3162P ==故选:C 2.如果一个四位数的各位数字互不相同,且各位数字之和等于10,则称此四位数为“完美四位数(如1036),则由数字0,1,2,3,4,5,6,7构成的“完美四位数”中,奇数的个数为( ) A .12 B .44 C .58 D .76【答案】B【解析】分类讨论:尾数为1:则前三位的数字可能为027,036,045,共1222312C A ⋅⋅=,还可能为234,有336A =种;尾数为3:则前三位的数字可能为016,025,共122228C A ⋅⋅=,还可能为124,有336A =种;尾数为5:则前三位的数字可能为014,023,045,共122228C A ⋅⋅=;尾数为7:则前三位的数字可能为012,共12224C A ⋅=.综上所述,共有126868444+++++=种.故选:B3.从数字0,1,2,3,4,5,6中任取3个,这3个数的乘积为偶数时的不同取法共有______种(用数字作答).【答案】34【解析】从数字0,1,2,3,4,5,6中任取3个,共有3735C =,乘积为奇数只有1,3,5一种情况故这3个数的乘积为偶数时的不同取法共有34种.故答案为:34【点睛】本题考查了组合的应用,利用排除法可以快速得到答案,是解题的关键.4.已知{}1,2,3,4,5,,,M m M n M m n =∈∈≠,则方程221x y m n+=表示焦点在x 轴上的椭圆的概率是_______ . 【答案】12【解析】因为{}1,2,3,4,5,,,M m M n M m n =∈∈≠,所以(),m n 的可能情况有:2520P =种, 又因为方程221x y m n+=表示焦点在x 轴上的椭圆,所以m n >,所以满足要求的有:2510C =种, 所以概率为:101202P ==.故答案为:12. 5.(2021·宁波市)有写好数字2,2,3,3,5,5,7,7的8张卡片,任取4张,则可以组成不同的四位数的个数为_________.【答案】204【解析】由题意得取出的4张卡片上的数字含有相同数字对的个数可能为0,1,2.当含有0对相同数字时,组成的不同的四位数的个数为4424A =个;当含有1对相同数字时,组成的不同的四位数的个数为221434144C C A =个;当含有2对相同数字时,组成的不同的四位数的个数为224436C C =个.综上,可以组成不同的四位数的个数为2414436204++=个.故答案为:204.6.(2020·江西省信丰中学)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.【答案】1 6【解析】十个数中任取七个不同的数共有C种情况,七个数的中位数为6,那么6只有处在中间位置,有C种情况,于是所求概率P==.。
2020_2021学年高中数学模块复习课第三章第3课时概率习题含解析新人教A版必修320201230
第3课时概率课后篇巩固提升基础巩固1.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是()A.恰有1名男生与恰有2名女生B.至少有1名男生与全是男生C.至少有1名男生与至少有1名女生1名男生与全是女生中的两个事件互斥且不对立符合要求;B中的两个事件之间是包含关系,不符合要求;C 中的两个事件都包含了一名男生一名女生这个事件,故不互斥;D中的两个事件是对立的,不符合要求.故选A.2.《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面、一枚反面的概率为()A.18B.14C.38D.12:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反,共8种,其中出现两正一反的共有3种,故所求概率为38.故选C.3.把一枚质地均匀的骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为()A.16B.14C.13D.12(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),共18个.而“在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点”包含的基本事件有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9个.∴在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为918=12.故选D.4.如图,在正方形围栏内均匀撒米粒,一只小鸡在其中随意啄食,此刻小鸡正在正方形的内切圆中的概率是()A.14B.π4C.13D.π3A表示小鸡正在正方形的内切圆中,则事件A的几何区域为内切圆的面积S=πR2(2R 为正方形的边长),全体基本事件的几何区域为正方形的面积,由几何概型的概率公式可得P(A)=πR2(2R)2=π4,即小鸡正在正方形的内切圆中的概率为π4.5.记一个两位数的个位数字与十位数字的和为A.若A是不超过5的奇数,则从这些两位数中任取一个,其个位数为1的概率为.5的两位数有:10,12,14,21,23,30,32,41,50,共9个,其中个位是1的有21,41,共2个,因此所求的概率为29.6.如图,在直角坐标系内,射线OT落在30°角的终边上,任作一条射线OA,则射线OA落在∠yOT 内的概率为.,因为射线OA在坐标系内是等可能分布的,所以OA落在∠yOT内的概率为60360=16.7.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木、木克土、土克水、水克火、火克金.”从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率,有(金,木)、(金,水)、(金,火)、(金,土)、(木,水)、(木,火)、(木,土)、(水,火)、(水,土)、(火,土),共10种等可能发生的结果.其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为12.8.某集团公司为了加强企业管理,树立企业形象,考虑在公司内部对迟到现象进行处罚.现在员工中随机抽取200人进行调查,当不处罚时,有80人会迟到,得到如下数据:表中数据所得频率视为概率.(1)当处罚金额定为100元时,员工迟到的概率比不进行处罚时降低多少?(2)将选取的200人中会迟到的员工分为A,B两类:A类员工在罚金不超过100元时就会改正行为;B类是其他员工.现对A类和B类员工按分层抽样的方法抽取4人依次进行深度问卷调查,则前两位均为B类员工的概率是多少?设“当处罚金额定为100元时,迟到的员工改正行为”为事件A,则P(A)=80-40200=15,故当处罚金额定为100元时,员工迟到的概率比不进行处罚时降低15.(2)由题可知,A类员工和B类员工各有40人,故分别从A类员工和B类员工中抽出2人.设从A类员工中抽出的2人分别为A1,A2,从B类员工中抽出的2人分别为B1,B2.设“对A类与B类员工按分层抽样的方法抽取4人依次进行深度问卷调查”为事件M,则事件M中首先抽出A1的事件有(A1,A2,B1,B2),(A1,A2,B2,B1),(A1,B1,A2,B2),(A1,B1,B2,A2),(A1,B2,A2,B1),(A1,B2,B1,A2),共6种,同理首先抽出A2,B1,B2的事件也各有6种.故事件M共有4×6=24(种).设“抽取4人中前两位均为B类员工”为事件N,则事件N有(B1,B2,A1,A2),(B1,B2,A2,A1),(B2,B1,A1,A2),(B2,B1,A2,A1),共4种.所以P(N)=424=16,故抽取的4人中前两位均为B类员工的概率是16.9.空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2017年8月18日某省x个监测点数据统计如下:(1)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;(2)在空气污染指数分别为50~100和150~200的监测点中,用分层抽样的方法抽取5个监测点,从中任意选取2个监测点,事件A“两个都为良”发生的概率是多少?∵0.003×50=15x ,∴x=100. ∵15+40+y+10=100,∴y=35.40100×50=0.008,35100×50=0.007,10100×50=0.002.频率分布直方图如图所示.(2)在空气污染指数为50~100和150~200的监测点中分别抽取4个和1个监测点,设空气污染指数为50~100的4个监测点分别记为a,b,c,d;空气污染指数为150~200的1个监测点记为E,从中任取2个的基本事件分别为(a,b),(a,c),(a,d),(a,E),(b,c),(b,d),(b,E),(c,d),(c,E),(d,E)共10种,其中事件A “两个都为良”包含的基本事件为(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共6种,所以事件A “两个都为良”发生的概率是P (A )=610=35. 能力提升1.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.910B.45C.12D.25,得从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲或乙被录用”的所有不同的可能结果有9种,所求概率为910.2.从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( )A.13B.512C.12D.7122名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动,共有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(B 1,B 2),(A 2,A 1),(B 1,A 1),(B 2,A 1),(B 1,A 2),(B 2,A 2),(B 2,B 1)12种情况,而星期六安排一名男生、星期日安排一名女生共有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2)4种情况,则发生的概率为412=13,故选A .3.甲乙两个竞赛队都参加了6场比赛,比赛得分情况的茎叶图如图所示(单位:分),其中乙队的一个得分数字被污损,那么估计乙队的平均得分大于甲队的平均得分的概率为( )A.15B.310C.25D.12。
人教版高中数学必修课后习题答案详解
第二章 平面向量2.1平面向量的实际背景及基本概念 练习(P77)1、略.2、AB u u u r ,BA u u u r. 这两个向量的长度相等,但它们不等.3、2AB =u u u r , 2.5CD =u u u r ,3EF =u u u r,GH =u u u r4、(1)它们的终点相同; (2)它们的终点不同. 习题 A 组(P77) 1、(2). 3、与DE u u u r 相等的向量有:,AF FC u u u r u u u r ;与EF u u u r相等的向量有:,BD DA u u u r u u u r ; 与FD u u u r相等的向量有:,CE EB u u u r u u u r .4、与a r 相等的向量有:,,CO QP SR u u u r u u u r u u r ;与b r 相等的向量有:,PM DO u u u u r u u u r ; 与c r 相等的向量有:,,DC RQ ST u u u r u u u r uu u r5、AD =u u u r6、(1)×; (2)√; (3)√; (4)×.习题 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM u u u u r同向的共有6对,与AM u u u u r 反向的也有6对;与AD u u u r 同向的共有3对,与AD u u u r反向的也有6的向量共有4对;模为2的向量有2对 2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA u u u r; (2)CB u u u r . 4、(1)c r ; (2)f u r ; (3)f u r ; (4)g u r.练习(P87)1、图略.2、DB u u u r ,CA u u u r ,AC u u u r ,AD u u u r ,BA u u u r. 3、图略. 练习(P90) 1、图略.2、57AC AB =u u u r u u u r ,27BC AB =-u u u r u u u r .说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC uuu r 与AB u u u r反向.3、(1)2b a =r r ; (2)74b a =-r r ; (3)12b a =-r r; (4)89b a =r r .4、(1)共线; (2)共线.5、(1)32a b -r r ; (2)111123a b -+r r; (3)2ya r . 6、图略.习题 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km ;(3)向东北走km ;(4)向西南走;(5)向西北走;(6)向东南走km. 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km.3、解:如右图所示:AB u u u r 表示船速,AD u u u r表示河水的流速,以AB 、AD 为邻边作□ABCD ,则 AC u u u r表示船实际航行的速度.在Rt △ABC 中,8AB =u u u r ,2AD =u u u r,所以AC ===u u u r 因为tan 4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°.4、(1)0r ; (2)AB u u u r ; (3)BA u u u r; (4)0r ; (5)0r ; (6)CB u u u r ; (7)0r . 5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥r r 时,a b a b +=-r r r r9、(1)22a b --r r ; (2)102210a b c -+r r r ; (3)132a b +r r; (4)2()x y b -r .10、14a b e +=r r u r ,124a b e e -=-+r r u r u u r ,1232310a b e e -=-+r r u r u u r .11、如图所示,OC a =-u u u r r ,OD b =-u u u r r,DC b a =-u u u r r r ,BC a b =--u u u r r r .12、14AE b =u u u r r ,BC b a =-u u u r r r ,1()4DE b a =-u u u r r r,34DB a =u u u r r ,34EC b =u u u r r ,1()8DN b a =-u u u r r r ,11()48AN AM a b ==+u u u r u u u u r r r .13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =,即12EF AC =u u u r u u u r ;同理,12HG AC =u u u r u u u r,所以EF HG =u u u r u u u r .习题 B组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b r r不共线时它们不相等.3、证明:因为MN AN AM =-u u u u r u u u r u u u u r ,而13AN AC =u u u r u u u r ,13AM AB =u u u u r u u u r,所以1111()3333MN AC AB AC AB BC =-=-=u u u u r u u u r u u u r u u u r u u u r u u u r.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =u u u r u u u r,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.证明:∵AB DC =u u u r u u u r,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =u u u r u u u r∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形.(第11题)(第12题)EHGFC AB乙(第1题)(第4题(2))BCD(第4题(3))DCB证明:因为OA OB BA -=u u u r u u u r u u u r ,OD OC CD -=u u u r u u u r u u u r而OA OC OB OD +=+u u u r u u u r u u u r u u u r所以OA OB OD OC -=-u u u r u u u r u u u r u u u r 所以BA CD =u u u r u u u r,即∥.因此,四边形ABCD 为平行四边形.2.3平面向量的基本定理及坐标表示 练习(P100)1、(1)(3,6)a b +=r r ,(7,2)a b -=-r r ; (2)(1,11)a b +=r r ,(7,5)a b -=-r r;(3)(0,0)a b +=r r ,(4,6)a b -=r r ; (4)(3,4)a b +=r r ,(3,4)a b -=-r r. 2、24(6,8)a b -+=--r r ,43(12,5)a b +=r r.3、(1)(3,4)AB =u u u r ,(3,4)BA =--u u u r ; (2)(9,1)AB =-u u u r ,(9,1)BA =-u u u r; (3)(0,2)AB =u u u r ,(0,2)BA =-u u u r ; (4)(5,0)AB =u u u r ,(5,0)BA =-u u u r4、AB ∥CD . 证明:(1,1)AB =-u u u r ,(1,1)CD =-u u u r,所以AB CD =u u u r u u u r .所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =u u u r u u u r ,得32AP PB =-u u u r u u ur(,)(2,3)(2,3)AP x y x y =-=--u u u r ,(4,3)(,)(4,3)PB x y x y =--=---u u u r∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题.2、123(8,0)F F F ++=u u r u u r u u r3、解法一:(1,2)OA =--u u u r ,(53,6(1))(2,7)BC =---=u u u r而AD BC =u u u r u u u r ,(1,5)OD OA AD OA BC =+=+=u u u r u u u r u u u r u u u r u u u r. 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++u u u r,由AD BC =u u u r u u u r 可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =u u u r ,(2,4)AB =-u u u r.1(1,2)2AC AB ==-u u u r u u u r ,2(4,8)AD AB ==-u u u r u u u r ,1(1,2)2AE AB =-=-u u u r u u ur .(0,3)OC OA AC =+=u u u r u u u r u u u r,所以,点C 的坐标为(0,3);(3,9)OD OA AD =+=-u u u r u u u r u u u r,所以,点D 的坐标为(3,9)-; (2,1)OE OA AE =+=-u u u r u u u r u u u r,所以,点E 的坐标为(2,1)-. 5、由向量,a b r r 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-.6、(4,4)AB =u u u r ,(8,8)CD =--u u u r ,2CD AB =-u u u r u u u r ,所以AB u u u r 与CD uuur 共线.7、2(2,4)OA OA '==u u u r u u u r,所以点A '的坐标为(2,4); 3(3,9)OB OB '==-u u u r u u u r ,所以点B '的坐标为(3,9)-; 故 (3,9)(2,4)(5,5)A B ''=--=-u u u u r习题 B 组(P101)1、(1,2)OA =u u u r ,(3,3)AB =u u u r.当1t =时,(4,5)OP OA AB OB =+==u u u r u u u r u u u r u u u r,所以(4,5)P ;当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=u u u r u u u r u u u r ,所以57(,)22P ;当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--u u u r u u u r u u u r,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=u u u r u u u r u u u r,所以(7,8)P .2、(1)因为(4,6)AB =--u u u r ,(1,1.5)AC =u u u r,所以4AB AC =-u u u r u u u r ,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-u u u r ,(6,8)PR =-u u u r ,所以4PR PQ =u u u r u u u r,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--u u u r ,(1,0.5)EG =--u u u r,所以8EF EG =u u u r u u u r ,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=u r u u r r ,得2121e e λλ=-u r uu r .所以12,e e u r u u r 是共线向量,与已知12,e e u r u u r是平面内的一组基底矛盾,因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)OP =u u u r (2)对于任意向量12OP xe ye =+u u u r u r u u r,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积 练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=u r r u r r u r r .2、当0a b ⋅<r r 时,ABC ∆为钝角三角形;当0a b ⋅=r r时,ABC ∆为直角三角形.3、投影分别为0,-图略练习(P107)1、5a ==r ,b ==r ,35427a b ⋅=-⨯+⨯=-r r .2、8a b ⋅=r r ,()()7a b a b +-=-r r r r ,()0a b c ⋅+=r r r ,2()49a b +=r r .3、1a b ⋅=r r ,a =r b =r88θ≈︒.习题 A 组(P108)1、a b ⋅=-r r222()225a b a a b b +=+⋅+=-r r r r r r a b +=r r 2、BC uuu r 与CA u u u r 的夹角为120°,20BC CA ⋅=-u u u r u u u r.3、a b +==r r a b -==r r4、证法一:设a r 与b r的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λr 与b r ,a r 与b λr的夹角都为θ,所以 ()cos cos a b a b a b λλθλθ⋅==r r r r r r ()cos a b a b λλθ⋅=r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;(3)当0λ<时,a λr 与b r ,a r 与b λr的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r; 综上所述,等式成立.证法二:设11(,)a x y =r ,22(,)b x y =r,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--u u u r ,(3,4)(5,2)(2,2)BC =-=-u u u r∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=u u u r ,(1,6)(2,3)(1,3)AC =-----=-u u u r∴2117(3)0AB AC ⋅=⨯+⨯-=u u u r u u u r∴AB AC ⊥u u u r u u u r,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-u u u r ,(10,7)(5,2)(5,5)BC =-=u u u r∴35350BA BC ⋅=-⨯+⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=r r r r r r r r ,于是可得6a b ⋅=-r r ,1cos 2a b a bθ⋅==-r r r r ,所以120θ=︒.8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-u u u r ,(8,4)(5,2)(3,6)BC =--=u u u r, ∴AB DC =u u u r u u u r ,43(2)60AB BC ⋅=⨯+-⨯=u u u r u u u r∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =r,则2292x y yx ⎧+=⎪⎨=⎪⎩,解得55x y ⎧=⎪⎪⎨⎪=⎪⎩,或55x y ⎧=-⎪⎪⎨⎪=-⎪⎩.于是a =r或(a =r . 11、解:设与a r 垂直的单位向量(,)e x y =r,则221420x y x y ⎧+=⎨+=⎩,解得55x y ⎧=⎪⎪⎨⎪=-⎪⎩或55x y ⎧=-⎪⎪⎨⎪=⎪⎩.于是e =r或(e =r . 习题 B 组(P108) 1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥-r r r r r r r r r r r r r r证法二:设11(,)a x y =r ,22(,)b x y =r ,33(,)c x y =r.先证()a b a c a b c ⋅=⋅⇒⊥-r r r r r r r1212a b x x y y ⋅=+r r ,1313a c x x y y ⋅=+r r由a b a c ⋅=⋅r r r r得12121313x x y y x x y y +=+,即123123()()0x x x y y y -+-= 而2323(,)b c x x y y -=--r r,所以()0a b c ⋅-=r r r再证()a b c a b a c ⊥-⇒⋅=⋅r r r r r r r由()0a b c ⋅-=r r r得 123123()()0x x x y y y -+-=,即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅r r r r2、cos cos cos sin sin OA OBAOB OA OB αβαβ⋅∠==+u u u r u u u r u u u r u u u r .3、证明:构造向量(,)u a b =r ,(,)v c d =r.cos ,u v u v u v ⋅=<>r r r r r r,所以,ac bd u v +<>r r∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++r r4、AB AC ⋅u u u r u u u r的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =u u u u r u u u r又cos AB AC AB AC BAC ⋅=∠u u u r u u u r u u u r u u u r,而AM BAC AC∠=u u u u r u u u r所以212AB AC AB AM AB ⋅==u u u r u u u r u u u r u u u u r u u u r5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=u u u r u u u r u u u r证明:∵AB CB CA =-u u u r u u u r u u u r∴2222()2AB CB CA CB CA CB CA =-=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r .由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅=u u u r u u u r∴222CA CB AB +=u u u r u u u r u u u r(2)菱形ABCD 中,求证:AC BD ⊥ 证明:∵AC AB AD =+u u u r u u u r u u u r ,,DB AB AD =-u u u r u u u r u u u r∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -=u u u r u u u r∴0AC DB ⋅=u u u r u u u r,所以AC BD ⊥(第4题)(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=u u u r u u u r∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∴22()()AB AD AB AD +=-u u u r u u u r u u u r u u u r ,所以22AC BD =u u u r u u u r ,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可. 2.5平面向量应用举例 习题 A 组(P113)1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--u u u r,(,)(1,0)(1,0)AP x y x =-=-u u u r由2RA AP =u u u r u u u r 得11(1,)2(1,)x y x y --=-,即11232x x y y =-+⎧⎨=-⎩代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =. 2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =.(2)因为1()2AE a b =+u u u r r r所以23AO AE =u u u r u u u r ,因此,,A O E 三点共线,而且2AO OE = 同理可知:2,2BO CO OF OD ==,所以2AO BO COOE OF OD===3、解:(1)(2,7)B A v v v =-=-r u u r u u r;(2)v r 在A v u u r方向上的投影为135A Av v v ⋅=r u u ru u r .4、解:设1F u u r ,2F u u r 的合力为F u r ,F u r 与1F uu r 的夹角为θ,则31F =+u r ,30θ=︒; 331F =+u u r ,3F u u r 与1F u u r的夹角为150°.习题 B 组(P113)1、解:设0v u u r 在水平方向的速度大小为x v u u r ,竖直方向的速度的大小为y v u u r,则0cos x v v θ=u u r u u r ,0sin y v v θ=u u r u u r.ODFEABC(第2题)(第4题)设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩u u r u u r为重力加速度 所以,最大高度为220sin 2v gθu u r ,最大投掷距离为20sin 2v gθu u r .2、解:设1v u r与2v u u r 的夹角为θ,合速度为v r,2v u u r与v r的夹角为α,行驶距离为d .则1sin 10sin sin v v vθθα==u rrr ,0.5sin 20sin v d αθ==r . ∴120sin d v θ=r . 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短. 3、(1)(0,1)-解:设(,)P x y ,则(1,2)AP x y =--u u u r . (2,22)AB =-u u u r.将AB u u u r 绕点A 沿顺时针方向旋转4π到AP u u u r ,相当于沿逆时针方向旋转74π到AP u u u r ,于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=--u u u r所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==-(2)32y x=-解:设曲线C 上任一点P 的坐标为(,)x y ,OP u u u r绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()2()x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=-第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-u u u r r r ,1()2AD a b =+u u u r r r4、略解:2133DE BA MA MB a b ==-=-+u u u r u u u r u u u r u u u r r r2233AD a b =+u u u r r r ,1133BC a b =+u u u r r r1133EF a b =--u u u r r r,1233FA DC a b ==-u u u r u u u r r r1233CD a b =-+u u u r r r ,2133AB a b =-u u ur r r5、(1)(8,8)AB =-u u u r ,82AB =u u u r;(2)(2,16)OC =-u u u r ,(8,8)OD =-u u u r ; (3)33OA OB ⋅=u u u r u u u r.6、AB u u u r 与CD u u ur 共线.证明:因为(1,1)AB =-u u u r ,(1,1)CD =-u u u r ,所以AB CD =u u u r u u u r . 所以AB u u u r 与CD u u ur 共线.7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C ===11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=r u r u r r u r u r ,所以(2)n m m -⊥r u r u r . 12、1λ=-. 13、13a b +=r r ,1a b -=r r . 14、519cos ,cos 820θβ==第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-r r r r r r.222()2a b a b a b a b +=+=++⋅r r r r r r r r ,222()2a b a b a b a b -=-=+-⋅r r r r r r r r .因为a b ⊥r r ,所以0a b ⋅=r r ,于是22a b a b a b +=+=-r rr r r r .再证a b a b a b +=-⇒⊥r r r r r r.由于222a b a a b b +=+⋅+r rr r r r ,222a b a a b b -=-⋅+r r r r r r由a b a b +=-r r r r可得0a b ⋅=r r ,于是a b ⊥r r所以a b a b a b +=-⇔⊥r r r r r r. 【几何意义是矩形的两条对角线相等】 3、证明:先证a b c d =⇒⊥r r r u r(第6题)又a b =r r,所以0c d ⋅=r u r ,所以c d ⊥r u r再证c d a b ⊥⇒=r u r r r.由c d ⊥r u r 得0c d ⋅=r u r,即22()()0a b a b a b +⋅-=-=r r r r r r所以a b =r r【几何意义为菱形的对角线互相垂直,如图所示】4、12AD AB BC CD a b =++=+u u u r u u u r u u u r u u u r r r ,1142AE a b =+u u u r r r而34EF a =u u u r r,14EM a =u u u u r r ,所以1111(4242AM AE EM a b a =+=++=u u u u r u u u r u u u u r r r r 5、证明:如图所示,12OD OP OP =+u u u r u u u r u u u u r ,由于1230OP OP OP ++=u u u r u u u u r u u u r r,所以3OP OD =-u u u r u u u r ,1OD =u u u r所以11OD OP PD ==u u u r u u u r u u u r 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,22MN AB b ==-u u u u r u u u r r 7、(18=沿与水流方向成60°的方向前进; (2)实际前进速度大小为 沿与水流方向成90︒+. 8、解:因为OA OB OB OC ⋅=⋅u u u r u u u r u u u r u u u r ,所以()0OB OA OC ⋅-=u u u r u u u r u u u r ,所以0OB CA ⋅=u u u r u u u r 同理,0OA BC ⋅=u u u r u u u r ,0OC AB ⋅=u u u r u u u r,所以点O 是ABC ∆的垂心.9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=;P 2(第5题)(4)d =第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式 练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=.cos(2)cos2cos sin2sin 1cos 0sin cos παπαπαααα-=+=⨯+⨯=.2、解:由3cos ,(,)52πααπ=-∈,得4sin 5α==;所以34cos()cos cos sin sin ()444252510πππααα-=+=-+=.3、解:由15sin 17θ=,θ是第二象限角,得8cos 17θ===-;所以81158cos()cos cos sin sin 33317217234πππθθθ-+-=+=-⨯+⨯=.4、解:由23sin ,(,)32πααπ=-∈,得cos α===又由33cos ,(,2)42πββπ=∈,得sin β===.所以32cos()cos cos sin sin ((()43βαβαβα-=+=⨯+⨯-=.练习(P131)1、(1 (2 (3 (4)2-2、解:由3cos ,(,)52πθθπ=-∈,得4sin 5θ===;所以413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=3、解:由12sin 13θ=-,θ是第三象限角,得5cos 13θ=-;所以5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=.4、解:tan tan314tan()241311tan tan 4παπαπα+++===--⨯-⋅. 5、(1)1; (2)12; (3)1; (4);(5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-;(6)原式=sin 20cos70cos20sin70(sin 20cos70cos20sin70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+;(2)原式=12(cos )2(sin cos cos sin )2sin()22666x x x x x πππ+=+=+;(3)原式=)2(sin cos cos sin )2sin()444x x x x x πππ=-=-;(4)原式=12(cos )cos sin sin )cos()2333x x x x x πππ=-=+.7、解:由已知得3sin()cos cos()sin 5αβααβα---=,即3sin[()]5αβα--=,3sin()5β-=所以3sin 5β=-. 又β是第三象限角,于是4cos 5β===-.因此55534sin()sin cos cos sin ()()()()444525210πππβββ+=+=--+--=. 练习(P135)1、解:因为812παπ<<,所以382αππ<<又由4cos 85α=-,得3sin 85α==-,3sin385tan 484cos 85ααα-===- 所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-=2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--=3、解:由sin2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得sin α===,所以sintan (2)cos ααα==-=. 4、解:由1tan 23α=,得22tan 11tan 3αα=-. 所以2tan 6tan 10αα+-=,所以tan 3α=-5、(1)11sin15cos15sin3024︒︒=︒=; (2)22cos sin cos 8842πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=cos452︒=. 习题 A 组(P137)1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-;(2)333sin()sin cos cos sin 1cos 0sin cos 222πππαααααα-=-=-⨯-⨯=-;(3)cos()cos cos sin sin 1cos 0sin cos παπαπαααα-=+=-⨯+⨯=-; (4)sin()sin cos cos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得4sin 5α==,所以431cos()cos cos sin sin 666552πππααα-=+=+⨯=.3、解:由2sin ,(,)32πααπ=∈,得cos α==又由33cos ,(,)42πββπ=-∈,得sin β==,所以32cos()cos cos sin sin ()(43αβαβαβ-=+=-+⨯=4、解:由1cos 7α=,α是锐角,得sin α=== 因为,αβ是锐角,所以(0,)αβπ+∈,又因为11cos()14αβ+=-,所以sin()αβ+==所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++ 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得4cos(30)5α︒+===-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒ 6、(1) (2) (3)2-7、解:由2sin ,(,)32πααπ=∈,得cos α==又由3cos 4β=-,β是第三象限角,得sin β===.所以cos()cos cos sin sin αβαβαβ+=-8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角 ∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+A B π+>,不合题意,舍去∴124cos ,sin 135A B ==∴cos cos()(cos cos sin sin )C A B A B A B =-+=--9、解:由3sin ,(,)52πθθπ=∈,得4cos 5θ===-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯.31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ====∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒ 13、(1))6x π+; (23sin()3x π-; (3)2sin()26x π+; (47sin()12x π-;(5)2; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9) (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得cos 0.6α=∴sin22sin cos 20.80.60.96ααα==⨯⨯= 15、解:由cos 270ϕϕ=︒<<︒,得sin ϕ==∴sin 22sin cos 2((3ϕϕϕ==⨯⨯=16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin 22sin cos 21313169A B B B B =︒-===⨯⨯=(第12题)17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以sin α==∴1sin 22sin cos 2(3ααα==⨯⨯=∴78cos(2)cos2cos sin 2sin (444929218πππααα-+=-=---⨯=19、(1)1sin2α+; (2)cos2θ; (3)1sin 44x ; (4)tan2θ.习题 B 组(P138) 1、略.2、解:∵tan ,tan A B 是x 的方程2(1)10x p x +++=,即210x px p +++=的两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(cos()1)sin ()(cos cos )(sin sin )αβαβαβαβ+-++=-++即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换 练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12; (2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题 A 组( P143)1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ;(5)略; (6)提示:用22cos θ代替1cos2θ+;(7)提示:用22sin θ代替1cos2θ-,用22cos θ代替1cos2θ+; (8)略.2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……②(1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ= 注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===---- ∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题 B 组(P143) 1、略.2、由于762790+⨯=,所以sin76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得cos7︒= 3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()2αβ+=又tantan 22αβ=tantan 2tan()21tantan 2αβαβαβ++=-,所以tantan tan()(1tan tan )3222αααβββ+=+-= 由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+.在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=11sin sin cos22M M OM MOM αβαβ+-=∠=. 于是有 1(cos cos )cos cos222αβαβαβ+-+=, 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,662232222()sin cos (sin cos )3sin cos (sin cos )f ααααααααα=+=+-+231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5; (2))y x ϕ=+,其中cos ϕϕ==所以,y ;(第4题)第三章 复习参考题A 组(P146)1、1665. 提示:()βαβα=+- 2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+--3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2 (3)2; (4) 提示:利用(1)的恒等式.5、(1)原式4sin(3010)4sin 20︒-︒==︒;(2)原式=sin10sin10sin 40(sin 40cos10cos10︒︒︒︒=︒⋅︒︒=2sin 40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=tan 70cos101)tan 70cos10︒︒=︒=sin702sin10sin 20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒;(4)原式=sin50(1sin50︒⋅= 6、(1)95; (2)2425;(3). 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-;(4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==. 8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边(第12(2)题)(4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A -+--+=++-++2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边 9、(1)1sin 21cos2sin 2cos222)24y x x x x x π=+++=++=++递减区间为5[,],88k k k Z ππππ++∈(222,最小值为2210、2222()(cos sin )(cos sin )2sin cos cos2sin 22)4f x x x x x x x x x x π=+--=-=+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin 22)14f x x x x x x x π=+=-+=-+(1)最小正周期是π21;(2)()f x 在[,]22ππ-上的图象如右图:12、()3sin cos 2sin()6f x x x a x a π++=++.(1)由21a +=得1a =-;(2)2{22,}3x k x k k Z πππ+∈≤≤.13、如图,设ABD α∠=,则CAE α∠=,2sin h AB α=,1cos hAC α=所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<<当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=, αh 1h 2l 2l 1BDE AC(第13题)13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-,sin(2)sin 2cos cos2sin 444πππααα-=-=. 解法二:由1sin cos 5αα-= 得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=.又由1sin cos 5αα-=,得sin()410πα-=.因为[0,]απ∈,所以3[,]444πππα-∈-.而当[,0]44ππα-∈-时,sin()04πα-≤;当3[,]444πππα-∈时,sin()4πα->. 所以(0,)44ππα-∈,即(,)42ππα∈ 所以2(,)2παπ∈,7cos225α=-.sin(2)450πα-=2、把1cos cos 2αβ+=两边分别平方得221cos cos 2cos cos 4αβαβ++=把1sin sin 3αβ+=两边分别平方得221sin sin 2sin sin 9αβαβ++=把所得两式相加,得1322(cos cos sin sin )36αβαβ++=,即1322cos()36αβ+-=,所以59cos()72αβ-=-3、由sin()sin 3παα++=可得3sin 2αα=4sin()65πα+=-. 又02πα-<<,所以366πππα-<+<,于是3cos()65πα+=.所以cos cos[()]66ππαα=+-=4、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos x x x x x x x x x x x x x x+++==---由177124x ππ<<得5234x πππ<+<,又3cos()45x π+=, 所以4sin()45x π+=-,4tan()43x π+=-所以cos cos[()]cos()cos sin()sin 444444x x x x ππππππ=+-=+++=,sin 10x =-,7sin 22sin cos 25x x x ==, 所以2sin 22sin 281tan 75x x x +=--,5、把已知代入222sin cos (sin cos )2sin cos 1θθθθθθ+=+-=,得22(2sin )2sin 1αβ-=. 变形得2(1cos2)(1cos2)1αβ---=,2cos2cos2αβ=,224cos 24cos 2αβ= 本题从对比已知条件和所证等式开始,可发现应消去已知条件中含θ的三角函数. 考虑sin cos θθ+,sin cos θθ这两者又有什么关系?及得上解法. 5、6两题上述解法称为消去法6、()21cos22sin(2)16f x x x m x m π=+++=+++.由 [0,]2x π∈ 得72[,]666x πππ+∈,于是有216m ++=. 解得3m =.()2sin(2)4()6f x x x R π=++∈的最小值为242-+=,此时x 的取值集合由322()62x k k Z πππ+=+∈,求得为2()3x k k Z ππ=+∈7、设AP x =,AQ y =,BCP α∠=,DCQ β∠=,则tan 1x α=-,tan 1y β=- 于是2()tan()()x y x y xyαβ-++=+-又APQ ∆的周长为2,即2x y +=,变形可得2()2xy x y =+- 于是2()tan()1()[2()2]x y x y x y αβ-++==+-+-.又02παβ<+<,所以4παβ+=,()24PCQ ππαβ∠=-+=.8、(1)由221sin cos 5sin cos 1ββββ⎧+=⎪⎨⎪+=⎩,可得225sin 5sin 120ββ--=解得4sin 5β=或3sin 5β=-(由(0,)βπ∈,舍去)所以13cos sin 55ββ=-=-,于是4tan 3β=-(2)根据所给条件,可求得仅由sin ,cos ,tan βββ表示的三角函数式的值,例如,sin()3πβ+,cos22β+,sin cos 2tan βββ-,sin cos 3sin 2cos ββββ-+,等等.。
高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案
⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N
.
常用的简单随机抽样方法有抽签法和随机数表法.
2020_2021学年高中数学第七章三角函数测评课后习题含解析新人教B版必修第三册202012312
第七章测评(时间:120分钟 满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知角α的终边与单位圆交于点-√32,-12,则sin α的值为( )A.-√32B .-12C .√32D .12,知sin α=y=-12. 2.(2020山东济南高一检测)下列各角中,与角π6终边相同的角是( ) A.-13π6B.-11π6C.11π6 D.19π6解析与角π6终边相同的角的集合为αα=π6+2k π,k ∈Z ,取k=-1,可得α=-11π6.所以与角π6终边相同的角是-11π6.3.(2020福建莆田高一检测)某广告公司制作一块形状为扇环形的广告牌(如图),测得该扇环AB⏜的长为6米,CD ⏜的长为2米,AD 与BC 的长均为2米.若每平方米的制作费用为200元,则此广告牌的制作费用是( )A.800元B.1 600元C.2 400元D.3 200元θ,小扇形的半径为r ,则大扇形的半径为r+2,则{rθ=2,(r +2)θ=6,解得{r =1,θ=2.所以扇环的面积S=12×32×2-12×12×2=8(平方米).所以此广告牌的制作费用是8×200=1600(元).4.要得到函数y=sin 2x+π3的图像,只需将函数y=sin 2x 的图像( )A .向左平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向右平移π6个单位 解析∵y=sin 2x+π3=sin [2(x +π6)],∴只需将函数y=sin2x 的图像向左平移π6个单位即可得到函数y=sin 2x+π3的图像.5.(2020山东潍坊高一检测)已知a=sin 50°,b=cos(-20°),c=tan 60°,则( ) A.c>b>a B.c>a>b C.b>a>c D.b>c>ac=tan60°=√3>1,b=cos(-20°)=cos20°=sin70°,因为0<sin50°<sin70°<1,所以a<b<c.6.若函数f (x )=sin 2x+2cos x 在区间[-2π3,θ]上的最大值为1,则θ的值是( )A .0B .π3C .π2 D .-π2f (x )=sin 2x+2cos x=1-cos 2x+2cos x 取到最大值1,可知cos x=0,结合三角函数的图像易知θ=-π2,故选D .7.已知函数y=A sin(ωx+φ)+B 的一部分图像如图所示,若A>0,ω>0,|φ|<π2,则( )A .A=4B .ω=1C .φ=π6D .B=4{A +B =4,A -B =0,求得A=2,B=2, 函数的周期为5π12−π6×4=π,即π=2πω,ω=2,当x=π6时函数取最大值,即sin 2×π6+φ=1,2×π6+φ=2k π+π2(k ∈Z ). ∵|φ|<π2,∴φ=π6.故选C .8.(2020广州高一检测)已知函数f (x )=√3sin(ωx+φ)ω>0,-π2<φ<π2,A13,0为其图像的对称中心,B ,C是该图像上相邻的最高点和最低点.若BC=4,则f (x )的单调递增区间是( ) A.2k-23,2k+43,k ∈ZB.2k π-23π,2k π+43π,k ∈ZC.4k-23,4k+43,k ∈ZD.4k π-23π,4k π+43π,k ∈Z解析函数f (x )=√3sin(ωx+φ)ω>0,-π2<φ<π2,已知B ,C 是该图像上相邻的最高点和最低点,又BC=4,所以(2√3)2+T 22=42,即12+π2ω2=16,得ω=π2.A13,0为f (x )图像的对称中心,所以π2·13+φ=k π,k ∈Z ,可得φ=-π6,所以f (x )=√3sin π2x-π6.令2k π-π2≤π2x-π6≤2k π+π2,求得4k-23≤x ≤4k+43,故f (x )的单调递增区间为4k-23,4k+43,k ∈Z .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对得3分,有选错的得0分. 9.若sin α=45,且α为锐角,则下列选项中正确的有 ( )A.tan α=43B.cos α=35C.sin α+cos α=85D.sin α-cos α=-15sin α=45,且α为锐角,所以cos α=√1-sin 2α=√1-(45) 2=35,故B 正确;tan α=sinαcosα=4535=43,故A正确;sin α+cos α=45+35=75≠85,故C 错误;sin α-cos α=45−35=15≠-15,故D 错误.10.同时满足下列三个条件的函数为( )①在0,π2上单调递增;②为R 上的奇函数;③最小正周期为T ≥π. A.y=tan x B .y=|cos x| C .y=tan 2xD .y=sin 12x解析A 中y=tan x ,在0,π2上单调递增,且为奇函数,又是以π为最小正周期的函数,三个条件均满足;B 中y=|cos x|为偶函数,在0,π2上单调递减,最小正周期为π,不满足条件②; C 中y=tan2x ,以π2为最小正周期,不满足条件③;D 中y=sin x2,在0,π2上单调递增,且为奇函数,最小正周期为4π,满足三个条件.故选AD .11.已知函数y=sin 2x-π6,则以下说法正确的是 ( )A .周期为π4B .非奇非偶函数C .函数图像的一条对称轴为直线x=π3 D .函数在2π3,5π6上单调递减T=π2; 因为f (-x )=sin -2x-π6=sin 2x+π6,所以该函数是非奇非偶函数;函数y=sin 2x-π6在2π3,5π6上单调递减,但y=sin 2x-π6在2π3,5π6上单调递增,令x=π3,则y=sin 2×π3−π6=1,x=π3为函数图像的对称轴,因此BC 正确.12.将函数f (x )的图像向右平移π6个单位,再将所得函数图像上的所有点的横坐标变为原来的23,得到函数g (x )=A sin(ωx+φ)A>0,ω>0,|φ|<π2的图像.已知函数g (x )的部分图像如图所示,则函数f (x )( )A .最小正周期为π,最大值为2B .最小正周期为π,图像关于点π6,0中心对称C .最小正周期为π,图像关于直线x=π6对称 D .最小正周期为π,在区间[π6,π3]上单调递减 解析由题图可知,A=2,T=42π9−π18=2π3,ω=2πT =3. 又由g2π9=2可得φ=-π6+2k π,k ∈Z ,∵|φ|<π2, ∴φ=-π6.∴g (x )=2sin 3x-π6, 则f (x )=2sin 2x+π6.∴f (x )的最小正周期为π,最大值为2,选项A 正确;对于B,令2x+π6=k π(k ∈Z ),则x=kπ2−π12,可知函数f (x )图像的对称中心为kπ2−π12,0(k ∈Z ),B 错误;对于C,令2x+π6=k π+π2(k ∈Z ),所以x=kπ2+π6(k ∈Z ),函数图像的对称轴方程为x=kπ2+π6(k ∈Z ),C 正确;又当x ∈[π6,π3]时,2x+π6∈[π2,5π6],所以f (x )在[π6,π3]上是减函数,D 正确.故选ACD.三、填空题:本题共4小题,每小题5分,共20分.13.函数y=b+a sin x (a<0)的最大值为-1,最小值为-5,则y=tan[(3a+b )x ]的最小正周期为 .y=b+a sin x (a<0)的最大值为-1,最小值为-5,所以{-a +b =-1,a +b =-5,解得{b =-3,a =-2,所以y=tan(-9x )=-tan9x 的最小正周期为π9.14.(2020浙江温州高一检测)已知角α的终边过点P (1,-2),则tan α= ,sin (π-α)+cos (-α)2cos(π2-α)-sin(π2+α)= .α的终边过点P (1,-2),所以tan α=-21=-2,可得sin (π-α)+cos (-α)2cos(π2-α)-sin(π2+α)=sinα+cosα2sinα-cosα=tanα+12tanα-1=-2+12×(-2)-1=15.2 1515.已知函数f (x )=cos(ωx+φ)(ω>0,|φ|<π2)的图像中两个相邻的最高点和最低点分别为π12,1,7π12,-1,则函数f (x )的单调递增区间为 .解析因为图像中两个相邻的最高点和最低点分别为π12,1,7π12,-1,所以T2=7π12−π12=π2,即T=π,则2πω=π,即ω=2.由五点法作图得2×π12+φ=k π,又|φ|<π2,得φ=-π6,所以f (x )=cos 2x-π6,由2k π-π≤2x-π6≤2k π,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z ,即函数f (x )的单调递增区间为[kπ-5π12,kπ+π12],k ∈Z .-5π12,kπ+π12],k ∈Z16.《九章算术》是我国古代的数学著作,书中给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对应的弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径为3米的弧田,如图2所示,按照上述经验公式可得弧田面积大约是 平方米.(结果保留整数)解析由题意可得∠AOB=2π3,OA=3,在Rt △AOD 中,可得∠AOD=π3,∠DAO=π6,OD=12AO=32,可得矢=3-32=32,由AD=AO sin π3=3×√32=3√32,可得弦=2AD=3√3,所以弧田面积=12(弦×矢+矢2)=123√3×32+322=9+18√38(平方米)≈5(平方米).四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知扇形AOB 的周长是80 cm . (1)若其面积为300 cm 2,求扇形圆心角的弧度数; (2)求扇形AOB 面积的最大值及此时圆心角的弧度数.r ,弧长为l.(1)由{l +2r =80,12lr =300,解得{l =60,r =10或{l =20,r =30.所以∠AOB=lr =6或23. (2)因为l+2r=80,所以l=80-2r , 所以S=12lr=12(80-2r )·r=40r-r 2=-r 2+40r=-(r-20)2+400, 所以当r=20时,S max =400, 此时l=80-2r=40, 所以∠AOB=lr =4020=2.18.(12分)(2020河南郑州高一检测)如图,以Ox 为始边作角α与β(0<β<α<π),它们的终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为-35,45.(1)求3cosα+5sinαsinα-cosα的值;(2)若OP ⊥OQ ,求3sin β-4cos β的值.由题得cos α=-35,sin α=45, 所以3cosα+5sinαsinα-cosα=117.(2)由题得α-β=π2, 所以α=π2+β,所以cos α=-sin β,sin α=cos β, 所以sin β=35,cos β=45,所以3sin β-4cos β=95−165=-75.19.(12分)(2020湖南娄底高一检测)已知f (θ)=sin(θ+52π)cos(32π-θ)cos (θ+3π)cos(-π2-θ)sin(-32π-θ).(1)化简f (θ); (2)若sin θ=35,且θ∈π2,π,求f (θ)的值.f (θ) =sin(θ+52π)cos(32π-θ)cos (θ+3π)cos(-π2-θ)sin(-32π-θ)=cosθ(-sinθ)(-cosθ)(-sinθ)cosθ=-cos θ.(2)由sin θ=35,且θ∈π2,π.得cos θ=-√1-sin 2θ=-√1-(35) 2=-45, 所以f (θ)=-cos θ=45.20.(12分)已知函数f (x )=sin 2x+π4+1.(1)用“五点法”作出f (x )在x ∈[-π8,7π8]上的简图;(2)写出f (x )的对称中心以及单调递增区间; (3)求f (x )的最大值以及取得最大值时x 的集合.∵-π8≤x ≤7π8, ∴0≤2x+π4≤2π.列表如下:画出图像如下图所示:(2)由2x+π4=k π,k ∈Z , 得x=kπ2−π8,k ∈Z ,可知函数图像的对称中心为kπ2−π8,1,k ∈Z .由2k π-π2≤2x+π4≤2k π+π2,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z , 故函数的单调递增区间为[kπ-3π8,kπ+π8],k ∈Z .(3)当2x+π4=2k π+π2,k ∈Z ,即x=k π+π8,k ∈Z 时,函数f (x )取得最大值,且最大值为2. 故函数f (x )的最大值为2, 此时x=k π+π8,k ∈Z .21.(12分)如图,某动物种群数量1月1日低至700,7月1日高至900,其总量在此两值之间依正弦型曲线变化.(1)求出种群数量y 关于时间t 的函数表达式(t 以年初以来的月为计量单位); (2)估计当年3月1日动物种群数量.设种群数量y 关于t 的解析式为 y=A sin(ωt+φ)+b A>0,ω>0,|φ|≤π2,则{-A +b =700,A +b =900,解得A=100,b=800. ∵周期T=2×(6-0)=12,∴ω=2πT =π6, ∴y=100sinπ6t+φ+800.又当t=6时,y=900, ∴900=100sin π6×6+φ+800,∴sin(π+φ)=1, ∴sin φ=-1, 又|φ|≤π2,∴取φ=-π2, ∴y=100sinπ6t-π2+800.(2)当t=2时,y=100sin π6×2-π2+800=750,即当年3月1日动物种群数量约是750.22.(12分)(2020山东菏泽高一检测)已知函数f (x )=A sin(ωx+φ)A>0,ω>0,|φ|<π2的周期为π,且图像上的一个最低点为M 2π3,-2.(1)求f (x )的解析式; (2)若函数g (x )=f (x )+1在π2,b 上至少含20个零点时,求b 的最小值.由题意可知,T=2πω=π,ω=2, 又f (x )最小值为-2,则A=2. 因为sin 2·2π3+φ=-1,所以φ=π6+2k π,k ∈Z , 因为|φ|<π2,所以φ=π6.所以函数f (x )=2sin 2x+π6.(2)f (x )=2sin 2x+π6.列表:函数g (x )=f (x )+1在π2,b 上至少含20个零点时,等价于f (x )的图像与直线y=-1在π2,b 上至少含20个交点,所以b 的最小值为5π6+9×π=59π6.。