画轴对称图形
人教八年级数学上册《画轴对称图形》课件(17张)
第1课时 画轴对称图形
课• 件本说节明课内容属于“图形的变化”领域,
画轴对称图 形是继平移变换之后的又一种图形变换,
是利用轴 对称变换设计图案的基础.它是研究几
何问题、发 现几何结论的有效工具.
课件说明
▪ 学习目标: 1.理解图形轴对称变换的性质. 2.能按要求画出一个平面图形关于某直线对称的图 形.
(1)三角形关于直线l 的对称图
B
形是什么形状?
C
(2)三角形的轴对称图形可以由 A
l
哪几个点确定?
(3)如何作一个已知点关于直线
l 的对称点?
画l,画出与△ABC 关于直线l 对称的图形.
画法:(1)如图,过点A 画直
B
线l 的垂线,垂足为点O,在垂线上
由一个平面图形可以得到与它关于一条直线l 对称 的图形,这个图形与原图形的形状、大小完全相同;
新图形上的每一点都是原图形上的某一点关于直线 l 的对称点;
连接任意一对对应点的线段被对称轴垂直平分.
画轴对称图形
如果有一个图形和一条直线,如何作出这个图形关 于这条直线对称的图形呢?
画轴对称图形
例1 如图,已知△ABC 和直线l,画出与△ABC 关于直线l 对称的图形.
谢谢观赏
You made my day!
我们,还在路上……
B
C
A
O
l
A′
C′
B′
画轴对称图形
如何验证画出的图形与△ABC 关于直线l 对称?
B
C
A
O
l
A′
C′
B′
画轴对称图形
已知一个几何图形和一条直线,说一说画一个与该 图形关于这条直线对称的图形的一般方法.
第二课时:画轴对称图形
第二课时:画轴对称图形1. 什么是轴对称图形?在图形学中,轴对称图形是指能够通过一个轴线对称的图形。
轴对称图形的特点是,对于任何图形中的点P,其关于轴线的对称点P’都存在,并且P与P’之间的距离相等。
轴对称图形通常具有对称性和平衡感,是艺术、设计和几何学中常见的概念。
2. 如何画轴对称图形?步骤一:选择轴线轴对称图形的第一步是选择一个轴线。
轴线可以是任何直线,可以是水平线、垂直线或倾斜线。
选择轴线时要考虑图形的对称性和美观性。
步骤二:标记关键点在轴线的两侧,需要标记图形上的几个关键点。
这些关键点将在后续步骤中用作绘制对称图形的基准点。
步骤三:绘制对称图形的一侧根据标记的关键点,绘制对称图形的一侧。
这一侧的图形可以是任意形状和线条的组合,但要保证相对于轴线的对称性。
步骤四:复制并翻转图形使用工具或手工复制并翻转绘制的一侧图形。
复制后的图形应该与轴线对称。
可以通过翻转纸张、使用对称工具或使用计算机软件来完成这个步骤。
步骤五:连接对称点将复制并翻转的图形与原始图形的对称点连接起来,形成完整的轴对称图形。
连接过程可以使用直线、曲线或其他形状。
3. 练习案例:画一个轴对称图形下面将以一个简单的案例来演示如何画一个轴对称图形。
步骤一:选择轴线在纸上选择一条竖直的轴线,作为轴对称图形的轴线。
步骤二:标记关键点在轴线的两侧,标记两个关键点A和B。
这两个关键点将成为绘制对称图形的基准点。
步骤三:绘制对称图形的一侧从A点开始,绘制一条直线到B点。
线段可以是任意长度和形状。
步骤四:复制并翻转图形将绘制的线段复制一份,并翻转到轴线的另一侧。
确保翻转后的线段与原始线段相对称。
步骤五:连接对称点使用直线连接A点和翻转后的线段的起点,连接B点和翻转后的线段的终点。
这样就形成了一个完整的轴对称图形。
4. 小结在这节课中,我们学习了如何画一个轴对称图形。
轴对称图形具有对称性和平衡感,是艺术、设计和几何学中常见的概念。
画轴对称图形的步骤包括选择轴线、标记关键点、绘制对称图形的一侧、复制并翻转图形以及连接对称点。
人教版八年级上册课件:13.2 画轴对称图形 (共15张PPT)
B
C
•本节课你有。
l
l
A A'
A A'
C'
C
C'
B
B'
B
C B'
画轴对称图形归纳:
先找(特殊点 ), 然后作出其(对称点 ), 最后顺次连结( 对称点 )构成轴对称图形 .
小结
从例题可知: 如果图形是由直线、线段或射线组成时,那
么在画它关于某一条直线的对称图形时,只要画 出图形中的特殊点(如线段的端点、角的顶点等) 的对称点,然后连结对称点,就可以画出关于这 条直线的对称图形.
L
A
·
例:你能画出. 三角形ABC关l 于直线L的对称图形吗?
A
A1
B
B1
画法:
C
C1
1、画出点A、点B和C点关于直线L的对称点A1 、 B1和C1. 2、连结A1 B1、 B1 C1 、A1 C1.
则 A1 B1 C1就是 AB C关于直线L的对称三角形.
图形变式:
已知△ABC,直线L,画出△ABC关于直线
哪个位置的球,小木棍,才能最快 路跑线到:目小明的—地—AD处—。—E——A
D
E
A
C
小明
• 如图,A为马厩,B为帐篷,牧马人某一天要从马 厩牵出马,先到草地边某一处牧马,再到河边给
马喝水,然后回到帐篷,请你帮助他确定这一天 的最短路线。
•如果我们把台球桌做成等边三角形 的形状,那么从AC中点D处发出的 球,能否依次经BC、AB两条边反射 回到D处?如果你认为不能,请说明 理由;如果你认为能,请作出球运 动的路线。 A
试问一题试::在如下图图,中实,线连所构结成对的称图点形的为线已段知与图形对,称直 线轴L有为何对关称系轴,? 请画出已知图形的轴对称图形.
《画轴对称图形》优秀课件
将复杂图形分解为若干个简单的 几何图形,如三角形、矩形、圆
等。
分别绘制这些简单图形,注意保 持它们的相对位置和比例关系。
利用对称轴的性质,只需绘制出 一半的图形,然后通过对称得到
另一半。
组合简单部分形成完整复杂图形
将绘制好的简单图形按照原图形的结构 组合在一起。
调整各个部分的位置和大小,确保它们 检查组合后的图形是否与原图形一致,
教师总结并给出改进建议
教师观察学生的绘制过程和作品,了解学生在绘制轴对 称图形时存在的问题;
同时,教师也要肯定学生的优点和进步,鼓励学生继续 努力;
针对学生的不足之处,给出具体的改进建议,例如加强 对称性的把握、提高绘制精度等;
通过教师的总结和建议,学生可以更加明确自己的不足 之处,为今后的学习指明方向。
拓展延伸:探索更多轴对称现象和应用领域
自然界中的轴对称现象
01
引导学生观察自然界中的轴对称现象,如蝴蝶的翅膀、花朵的
形状等,感受大自然的奇妙和美丽。
轴对称在建筑和艺术中的应用
02
介绍轴对称在建筑和艺术领域的应用,如古代建筑、剪纸艺术
等,让学生了解轴对称在文化传承和发展中的重要作用。
科技领域中的轴对称现象
03
引导学生了解科技领域中的轴对称现象,如机械零件的对称设
计、飞行器的对称结构等,感受科技与美学的结合。
鼓励学生将所学知识应用于实际生活中
创作轴对称图案
鼓励学生运用所学知识,创作具有轴对称特征的图案,培养审美能 力和创造力。
解决实际问题
引导学生运用轴对称的知识解决实际问题,如设计对称的家居摆设、 制作对称的贺卡等,提高实践能力和解决问题的能力。
能够无缝拼接在一起。
13.2《画轴对称图形》第1课时PPT课件人教版
如图,把下列图形补成关于直线 l 对称的轴对称图形.
的线段PQ,使PQ与AC关于某条直 思考2:已知线段AB和直线l,画出线段AB关于直线l的对称线段A′B′.
连接对应点的线段被对称轴垂直平分
线段AD被直线l垂直平分.
线对称,且P,Q为格点. △ABC与△DEF全等.
A
(2)过点B作直线l的垂线,垂足为P,
在垂线上截取PB′=PB,点B′就是点B关于
直线l的对称点.
(3)连接A′B′,则线段A′B′即为所求.
P B′ O A′ l
例1:如图,已知△ABC和直线l,画出与△ABC关于直
线l对称的图形.
分析:△ABC可以由三个顶点的位
B
C
置确定,只要能分别画出这三个顶 A
作法:(1)过点A作直线l的垂
A
线,垂足为O; (2)在垂线上截取OA′=OA,点 A′就是点A关于直线l的对称点.
O
l
A′
思考2:已知线段AB和直线l,画出线段AB关于直线l的
对称线段A′B′.
B
作法:(1)过点A作直线l的垂线,垂足
为O,在垂线上截取OA′=OA,点A′就是
点A关于直线l的对称点.
点M关于直线l的对称点一定在△DEF内.
C
点M关于直线l的对称点一定在△DEF内.
(1)△ABC与△DEF全等吗?全等的两个图形一定可以通过轴对称变换得到吗?
知识点 画轴对称图形
分析:根据物体与其在水中的倒影关于水面成轴对称,作出倒影关于这条直线成轴对称的图形即可.
Q
(2020·吉林中考)如图是3×3的正方形网格,每个小
随堂练习
1.用纸片剪一个三角形,分别沿着它一边的中线、高、 角平分线对折,看看哪些部分能够重合,哪些部分不 能重合?
画轴对称图形优秀教案
画轴对称图形优秀教案一、教学内容本节课选自教材第十章“平面几何图形”中的第三节“轴对称图形”。
具体内容包括:轴对称图形的定义、性质、应用;如何在实际问题中寻找对称轴;以及如何画轴对称图形。
二、教学目标1. 理解并掌握轴对称图形的定义,能够识别常见的轴对称图形。
2. 学会利用轴对称图形的性质解决问题,能够画出给定图形的轴对称图形。
3. 培养学生的观察能力、动手能力和空间想象能力。
三、教学难点与重点教学难点:如何在实际问题中寻找对称轴,以及画轴对称图形的技巧。
教学重点:轴对称图形的定义、性质和应用。
四、教具与学具准备教具:黑板、粉笔、尺子、圆规、剪刀、透明胶带。
学具:练习本、铅笔、橡皮、尺子、圆规、剪刀、透明胶带。
五、教学过程1. 导入:展示一组生活中常见的轴对称图形,如剪纸、窗花等,引导学生观察并思考它们的特点。
2. 基本概念:介绍轴对称图形的定义,讲解对称轴、对称点的概念。
3. 例题讲解:讲解如何寻找给定图形的对称轴,以及如何画出轴对称图形。
4. 随堂练习:让学生在练习本上画出给定图形的轴对称图形,并进行展示、讨论。
5. 实践活动:分组进行剪纸活动,让学生动手制作轴对称图形,培养实际操作能力。
六、板书设计1. 轴对称图形2. 定义:轴对称图形的概念、对称轴、对称点。
3. 性质:轴对称图形的性质。
4. 例题:如何寻找对称轴,以及如何画轴对称图形。
5. 练习:随堂练习题目。
七、作业设计1. 作业题目:(2)在平面直角坐标系中,已知点A(x, y),求点A关于直线y=x的对称点B的坐标。
2. 答案:(1)对称轴分别为:垂直于x轴的直线、水平线、y=x。
(2)点B的坐标为(y, x)。
八、课后反思及拓展延伸1. 反思:本节课通过实际操作和练习,使学生掌握了轴对称图形的定义、性质和应用。
但在寻找对称轴方面,部分学生还存在困难,需要在今后的教学中加强指导。
2. 拓展延伸:引导学生思考轴对称在生活中的应用,如建筑、服装设计等。
人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0
画轴对称图形(第二课时)
轴对称图形具有旋转对称性,即绕对 称轴旋转180度后仍与原图形重合。
探索轴对称图形的特殊性质
轴对称图形具有唯一性,即每个 轴对称图形都只有一个对称轴。
轴对称图形具有稳定性,即轴对 称结构在力学、工程学等领域具
有较好的稳定性。
轴对称图形在几何学中具有广泛 的应用,如建筑设计、图案设计
等。
轴对称图形在几何学中的重要性
引入生活中的轴对称图形实例
总结词:直观感受
详细描述:展示生活中的轴对称图形实例,如建筑物、自然界中的对称现象等,让学生直观感受轴对称的美感,激发学习兴 趣。
02
探索轴对称图形的性质
轴对称图形的基本性质
轴对称图形是关于一条直线对称的图 形,即图形关于直线折叠后两部分完 全重合。
轴对称图形具有平移不变性,即沿对 称轴平移任意距离后仍与原图形重合。
05
总结与反思
总结本课时的学习内容
掌握了轴对称图形的 定义和性质。
理解了轴对称图形在 几何学中的重要性和 应用。
学习了如何识别和绘 制轴对称图形。
分析学习过程中的不足与问题
在识别复杂图形时,容易忽略图形的对称性质。 对于非规则的轴对称图形,绘制时存在困难。
对于轴对称图形的性质和应用,理解不够深入。
画出对称点的连线
使用直线或曲线将对称点 连接起来,形成图形的边 缘或轮廓。这些连线应与 对称轴平行或垂直。
调整对称点的分布
根据设计需求,可以适当 调整对称点的分布,以获 得所需的图形形状和比例。
连接对称点
连接相邻的对称点
按照图形的形状和设计意图,使用直线或曲线将相邻的对称点连 接起来。这些连线应保持平行或垂直于对称轴。
制定下一步的学习计划
13.2 画轴对称图形(附答案)
13.2画轴对称图形第1课时画轴对称图形1.如图,有一个英语单词,四个字母都关于直线l对称,请在下图中补全字母,并写出这个单词所指的物品是.2.把图中的某两个小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.3.如图所示,在网格纸上,分别画出所给图形关于直线l对称的图形.4.如图,画出△ABC关于直线l对称的图形.5.如图,在4×4的正方形网格中,任意选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形,符合要求的画法有种.6.如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.7.如图,在10×10的正方形的网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(3,-2)关于y轴的对称点在( )A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,点B的坐标是(4,-1),点A与点B关于x轴对称,则点A的坐标是( )A.(4,1) B.(-1,4)C.(-4,-1) D.(-1,-4)3.在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B的坐标为( ) A.(-2,3) B.(-2,-3)C.(2,-3) D.(-3,-2) 4.点E(a,-5)与点F(-2,b)关于y轴对称,则a=,b=.5.点M(-2,1)关于x轴对称的点N的坐标是,直线MN与x轴的位置关系是.6.分别写出下列各点关于x轴和y轴对称的点的坐标:(2,3),(-2,4),(-3,-3),(2,0),(0,-3).7.已知点A(a+2b,1),B(-2,2a-b).(1)若点A,B关于x轴对称,求a,b的值;(2)若点A,B关于y轴对称,求a+b的值.8.如图,△ABO关于x轴对称,点A的坐标为(1,-2),则点B的坐标为( ) A.(-1,2) B.(-1,-2)C.(1,2) D.(-2,1)第8题图第9题图9.已知正方形ABCD在坐标轴上的位置如图所示,x轴、y轴分别是正方形的两条对称轴,若A(2,2),则点B的坐标为,点C的坐标为,点D的坐标为.10.如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.11.点P(1,2)关于直线y=1对称的点的坐标是;关于直线x=2对称的点的坐标是.12.在平面直角坐标系中,将点A(-1,-2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( )A.(-3,-2) B.(2,2)C.(-2,2) D.(2,-2)13.在平面直角坐标系中,已知点A(-2,4)关于x轴对称的点为B,点B关于y轴对称的点为C,则点C的坐标是( )A.(2,-4) B.(-4, 2)C.(2,4) D.(-2,4)14.在平面直角坐标系内,点A(x-6,2y+1)与点B(2x,y-1)关于y轴对称,则x+y的值为( )A.0 B.-1C.2 D.-315.点P(3a+6,3-a)关于x轴的对称点在第四象限内,则a的取值范围为.16.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC 关于x轴对称的△A2B2C2的各点坐标.17.在如图所示的平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(-3,-1).(1)将△ABC沿y轴正方向平移3个单位长度得到△A1B1C1,画出△A1B1C1,并写出点B1的坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.18.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3),直线m为横坐标都为2的点组成的一条直线.(1)作出△ABC关于直线m对称的△A1B1C1;(2)直接写出A1,B1,C1的坐标;(3)求出△A1B1C1的面积.参考答案:13.2画轴对称图形第1课时画轴对称图形1.书.2.解:如图.3.解:如图.4.解:如图所示.5.2.6.解:(1)如图所示,△A1B1C1即为所求.(2)由图可得,AA1=10.7.解:(1)如图所示.(2)S 四边形BB 1C 1C =12×(2+4)×4=12.第2课时 用坐标表示轴对称1.C 2.A 3.A4. 2, -5.5. (-2,-1), 垂直.6. 解:各点关于x 轴的对称的点的坐标分别是(2,-3),(-2,-4),(-3,3),(2,0),(0,3);关于y 轴的对称的点的坐标分别是(-2,3),(2,4),(3,-3),(-2,0),(0,-3). 7.解:(1)由题意,得⎩⎪⎨⎪⎧a +2b =-2,2a -b =-1.解得⎩⎨⎧a =-45,b =-35.(2)由题意,得⎩⎪⎨⎪⎧a +2b =2,2a -b =1.解得⎩⎨⎧a =45,b =35.∴a +b =75.8.C9.(2,-2),(-2,-2),(-2,2).10.解:(1)AB=5,AB边上的高是3,则S△ABC=12×5×3=152.(2)如图.11.(1,0);(3,2).12.B13.A14.A15.-2<a<3.16.解:△ABC的各顶点的坐标分别为:A(-3,2),B(-4,-3),C(-1,-1),△A1B1C1如图所示.△A2B2C2的各点坐标分别为:A2(-3,-2),B2(-4,3),C2(-1,1).17.解:(1)如图所示,△A1B1C1即为所求,点B1的坐标为(-2,-1).(2)如图所示,△A2B2C2即为所求,点C2的坐标为(1,1).18.解:(1)如图所示.(2)A1(5,5),B1(5,0),C1(8,3).(3)△A1B1C1的面积为7.5.。
画轴对称图形PPT教学课件
褶皱
地质构造
褶皱是地下岩层受到水平挤压力 发生弯曲变形,但岩层还是连在
一起的
断层
判断 方法
从形 态上
从岩 层的 新老 关系 上
背斜 岩层一般向上拱起
中心部分岩层较老, 两翼岩层较新
向斜
岩层一般向 下弯曲
中心部分岩 层较新,两 翼岩层部分
较老
岩层受力破裂并 沿断裂面有明显
的相对位移
图示
未侵 蚀地 貌
并沿
发生明显的位移。
• (2)断层的位移类型
• ①水平方向:会错断原有的各种地貌,或 在断层附近派生出若干地貌。
压力
• 3.中央火喷山出口
• (1)成因:岩浆火在山巨口大的
作用下,
沿着地壳的
或管道喷出。
• (2)组在成断:层包构造括地带,由于岩石和破坏火,山易锥受风两化部侵分蚀,。
常发育成沟谷、河流,如渭河。
侵蚀 后地 貌
构 造 地 貌
常形成山岭
背斜顶部受张力, 常被侵蚀成谷地
常形成谷 地或盆地
大断层, 常形成裂 谷或陡崖
向斜槽部 ,如东非 岩性坚硬 大裂谷。 不易被侵 断层一侧 蚀,常形 上升的岩 成山岭 块,常成
为块状山
或高地,
如华山、
庐山、泰
山,另一
侧相对下
降的岩块
,常形成
•
地质构造的判读
• (1)区分背斜和向斜构造时,不应单纯从形
•
影 响
山区交通建 设的一般原 则
原因
实例
①山岳 地区修 建交通 运输干 线的成 方 首选公路运 本高、
西藏先 有新藏 、青藏 、滇藏
影 山区交通建设的一 响 般原则
原因
《画轴对称图形》
可以研究轴对称图形的历史和文化背景,以 及它们在不同文化和艺术形式中的表现。
感谢您的观看
THANKS
在解析几何中,许多函数图像,如直线、抛物线、椭圆等,都是轴对 称的。这意味着它们可以沿着一条垂直于坐标轴的直线折叠,使得两 侧完全重合。
自然界中的轴对称图形实例
蝴蝶
许多蝴蝶的翅膀都是轴对称的,这使得它们在飞行时更加灵活和 平衡。
花朵
许多花朵都是轴对称的,这使得它们在自然界中更加引人注目。 例如,向日葵、百合、菊花等都是轴对称的花朵。
在建筑设计中的应用
建筑结构
建筑设计中利用轴对称结 构可以提高建筑的稳定性 ,如桥梁、高层建筑等。
建筑外观
利用轴对称可以使建筑外 观更加美观,如上海外滩 的建筑群,每一栋建筑都 采用了轴对称的设计。
室内设计
室内设计中也常常利用轴 对称来布局和设计,如客 厅、卧室等,使空间更加 合理、舒适。
在商标设计中的应用
动物身体
许多动物的的身体也是轴对称的,例如鱼、蛇、鸟等。这使得它们 在游动或行走时更加平衡和协调。
05总结与展望源自总结轴对称图形的定义
轴对称图形是一个可以在平面内沿一条直线折叠,使得两 侧部分完全重合的图形。这条直线称为对称轴。
轴对称图形的分类
轴对称图形可以分为两类,一类是关于一条直线对称,另 一类是关于两个点对称。
进一步探索轴对称图形 的性质
可以进一步探索轴对称图形的其他性质和特 点,以及在不同领域中的应用。
扩展轴对称图形的分类
可以研究更多种类的轴对称图形,如多面体 、旋转对称图形等。
应用轴对称图形于实际 问题
探索轴对称图形的历史 和文化背景
可以研究如何将轴对称图形应用于实际问题 中,如建筑设计、机械设计等。
画轴对称图形(第2课时)课件
横坐标相等,纵坐标互为相反数. (简称:横同纵反)
练一练
1.点P(–5, 6)与点Q关于x轴对称,则点Q的坐标为__(–__5_,__–_6_)_. 2.点M(a, –5)与点N(–2, b)关于x轴对称,则a=__–_2__, b =__5___.
探究新知
13.2 画轴对称图形/
问题3:如图,在平面直角坐标系中你能画出点A关于y轴的对称点吗?
巩固练习 解:如图所示:
13.2 画轴对称图形/
y
A (0,4)
B (2,4)
C' (3,1)
O
C (3,–1) x
A' (0,–4)
B' (2,–4)
探究新知
13.2 画轴对称图形/
素养考点 2 利用轴对称在平面直角坐标系内求字母的值
例2 已知点A(2a–b,5+a),B(2b–1,–a+b).
归纳总结
关于y轴对称的点的坐标的特点是:
横坐标互为相反数,纵坐标相等. (简称:横反纵同)
练一练
1.点P(–5, 6)与点Q关于y轴对称,则点Q的坐标为___(_5_,__6_)__. 2.点M(a, –5)与点N(–2, b)关于y轴对称,则a=__2___, b =__–_5__.
探究新知
13.2 画轴对称图形/
解决此类题可根 据关于x轴、y轴对 称的点的特征列方 程(组)求解.
巩固练习
13.2 画轴对称图形/
已知点A(2a+3b,–2)和点B(8,3a+2b)关于x轴对称,
则a+b= 2 .
若M(a,–
1 2
)与N(4,b)关于y轴对称,则a,b的值分别
为
–4,
1 2
,MN= 8 .
画轴对称图形教案
画轴对称图形教案认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。
经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。
一起看看画轴对称图形教案!欢迎查阅! 画轴对称图形教案1教学目标:1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。
2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。
3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。
教学重点:认识对称现象和轴对称图形的特点。
教学难点:掌握识别轴对称图形的方法。
教具准备:多媒体课件、实物图片等。
教学过程:一、谈话引入,激发兴趣1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。
2、从蝴蝶形状的风筝引出“对称”二、合作探究,学习新知(一)观察图形,认识对称1、观察几幅对称图形,引导学生感悟对称。
2、说一说生活中的对称现象(二)动手操作,认识轴对称图形1、猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。
2、动手操作,剪出轴对称图形(1)师示范剪一件上衣的过程:折一折、画一画、剪一剪。
(2)生动手剪出自己喜欢的轴对称图形。
(3)交流展示学生的作品3、认识对称轴(1)看一看,摸一摸,说一说(2)画一画:师示范画出对称轴,然后学生自己画,再交流。
4、初步理解轴对称图形(1)说一说轴对称图形的特点,初步理解轴对称图形。
(2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。
(3)举一举身边的轴对称图形的例子。
三、巩固练习,拓展延伸1、判一判:哪些是轴对称图形。
2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。
3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。
四、课堂总结通过这节课的学习,你有什么收获五、欣赏轴对称图形的美丽画轴对称图形教案2教学目标:1、知识与技能:通过观察和操作活动,初步认识轴对称图形。
《画轴对称图形》课件
副标题:探 索对称之美, 发现数学奥
秘
背景图片: 选择与对称 图形相关的 图片,如蝴 蝶、雪花等
色彩搭配: 选择与背景 图片相协调 的色彩,如 蓝色、绿色
等
字体选择: 选择清晰易 读的字体, 如微软雅黑、
宋体等
布局设计: 将标题、副 标题、图片 和字体合理 布局,确保 封面美观大
方
引言:介绍画轴对称 图形的概念和重要性
添加色彩。
选择“格式”选项卡, 点击“边框”按钮, 选择“无填充”或 “实线”等边框样式, 为轴对称图形添加边
框。
选择“格式”选项卡, 点击“文本框”按钮, 在轴对称图形中添加 文本,如“轴对称图
形”等。
保存PPT,完成轴对称 图形绘制步骤演示。
使用对象:教师、学生、培训师等需要制作PPT课件的人群
动画顺序:设置动画出现的顺序,确保逻辑清晰
动画持续时间:调整动画持续时间,使其与内容相匹配
动画效果:选择合适的动画效果,如淡入淡出、缩放、旋 转等
动画触发器:设置动画触发器,如点击、鼠标移入等
确定主色调:根据主题选择一种或 两种主色调,如蓝色、绿色等。
辅助色搭配:选择与主色调协调的 辅助色,如浅色、深色等。
自我评估:通过自我反思和总结,了解自己的学习成果和存在的问题
同伴互评:通过与同伴的交流和讨论,互相学习,互相评价 教师评价:通过教师的指导和评价,了解自己的学习成果和存在的问 题 测试评估:通过测试和考试,了解自己的学习成果和存在的问题
学习建议:建议 先了解画轴对称 图形的基本概念 和性质,再学习 如何制作PPT课 件。
等基本形状。
在幻灯片中绘制一个基 本形状,作为轴对称图
形的基础。
选择“格式”选项卡, 点击“对齐”按钮, 选择“水平居中”或 “垂直居中”等对齐 方式,使形状位于幻
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第()课时
教学环节
(标时间)
教师活动学生活动
一、情境导入
二、新课探究
如图,如果以天安门为原点,分别以长安街和中轴线为x轴和y 轴建立平面直角坐标系,对应于东直门的坐标,你能找到西直门的位置,说出西直门的坐标吗?
探究并归纳已知点关于坐标轴对称的点的坐标变化
规律
对于平面直角坐标系中任意一点,你能找出其关于x 轴或y 轴对称的点的坐标吗?它们之间有什么规律?
在平面直角坐标系中,画出下列已知点及其关于x 轴对称的
点,把它们的坐标填入表格中.
观察下图中关于x 轴对称的每对对称点的坐标有怎样的变化规律?
关于x 轴对称的每对对称
点的横坐标相等,纵坐标互
为相反数.
观察关于y 轴对称的每对
对称点的坐标有怎样的变
化规律?
关于y 轴对称的每对对称点的横坐标互为相反数,纵坐标相等.
教学环节
(标时间)
教师活动学生活动
三、例题讲解
四、课堂练习
五、能力提升请你再找几个点,分别画出它们的对称点,检验一下你发现的规律.
点(x,y)关于x 轴对称的点的坐标为(___,____);
点(x,y)关于y 轴对称的点的坐标为(___,____).
例如图,四边形ABCD 的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD 关于x 轴和y 轴对称的图形.
归纳画一个图形关于x 轴或y 轴对称的图形的方法和步骤. 先求出已知图形中一些特殊点(多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.
步骤简述为:
(1)求特殊点的坐标;(2)描点;(3)连线.
PPT
PPT。