(完整word版)高考极坐标与参数方程大题题型汇总(附详细答案)

合集下载

极坐标与参数方程高考题含答案)

极坐标与参数方程高考题含答案)

极坐标与参数方程高考题1.在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 解:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ,|MN|=1ρ-2ρ,因为2C 的半径为1,则2C MN 的面积o 11sin 452⨯=12.2.已知曲线194:22=+y x C ,直线⎩⎨⎧-=+=t y t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值. 解:(1)曲线C 的参数方程为(θ为参数).直线l 的普通方程为2x+y-6=0. (2)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为|4cos θ+3sin θ-6|, 则|PA|==|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA|取得最大值,.当sin(θ+α)=1时,|PA|取得最小值,3.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ02πθ⎡⎤∈⎢⎥⎣⎦,,(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x-1)2+y 2=1(0≤y ≤1).可得C 的参数方程为: x 1cos sin y θθ=+⎧⎨=⎩(0≤θ≤π).(2)设D(1+cos θ,sin θ).由(1)知C 是以G(1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan θ=,θ=3π.故D 的直角坐标为32(. 4.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l:2x+y-2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:(1)设(x 1,y 1)为圆上的点,经变换为C 上点(x,y),由22x y +=1得x 2+22y ⎪⎭⎫ ⎝⎛=1,即曲线C 的方程为4x 2+2y =4.故C 的参数方程为⎩⎨⎧==θθsin 2cos x y (θ为参数).(2)由解得或不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为12(,1),所求直线斜率为k=12,于是所求直线方程为y-1=12(x-12),化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=θθsin 4cos 23--. 5.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=1,M 、N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2,当θ=0时,ρ=2,所以M (2,0).当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)M 点的直角坐标为(2,0).N 点的直角坐标为(0,233).所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33,则P 点的极坐标为⎝⎛⎭⎪⎫233,π6,所以直线OP 的极坐标方程为θ=π6,ρ∈(-∞,+∞).6.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin (θ-π4)=22,(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为x 2+y 2=x +y ,即x2+y 2-x -y =0.直线l :ρsin(θ-π4)=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1.故直线l 与圆O 公共点的一个极坐标为(1,π2).7.在平面直角坐标系xOy 中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程.解:由题设知,椭圆的长半轴长a =5,短半轴长b =3,从而c =a 2-b 2=4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程:x -2y +2=0.故所求直线的斜率为12,因此其方程为y =12(x -4),即x -2y -4=0.8.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)ρ=25sin θ,得x 2+y 2-25y =0,即x 2+(y -5)2=5.(4分) (2)将l 的参数方程代入圆C 的直角坐标方程,得(3-22t )2+(22t )2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得|PA |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.9.在直角坐标版权法xOy 吕,直线l的参数方程为132(x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C的极坐标方程为ρθ=.(I)写出C 的直角坐标方程;(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标. 解:(I)由ρθ=,得2sin ρθ=,从而有22x y +=,所以(223x y +-=(II)设132P t ⎛⎫+ ⎪⎝⎭,又C,则PC ==, 故当0t =时,PC 取得最小值,此时P 点的坐标为(3,0).。

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总(附详细答案)本文介绍了高考极坐标与参数方程大题题型,并给出了三个例子进行解答。

例1:在直角坐标系xoy中,圆C的参数方程为(x-1)^2+y^2=1,求圆C的极坐标方程。

解析:将x和y用极坐标表示,得到ρ=2cosθ。

例2:已知直线l的参数方程为x=-4t+a,y=3t-1,在直角坐标系xoy中,以O点为极轴建立极坐标系,设圆M的方程为ρ^2-6ρsinθ=-8.求圆M的直角坐标方程和实数a的值。

解析:将ρ和θ用x和y表示,得到x+(y-3)=1,然后将直线l的参数方程化为普通方程,得到3x+4y-3a+4=0.根据圆心到直线的距离和直线截圆所得弦长的关系,解得a=12或a=22/3.例3:已知曲线C的参数方程为x=2+5cosα,y=1+5sinα,以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。

求曲线C的极坐标方程和直线l被曲线C截得的弦长。

解析:将x和y用极坐标表示,得到ρ=5.将直线l的极坐标方程化为普通方程,得到ρ(sinθ+cosθ)=1.由于曲线C是一个圆,因此直线l与曲线C的交点分别为A(7π/4.3+2√2)和B(3π/4.3-2√2),弦AB的长度为4√2.1) 曲线C的参数方程为:x=9\cos^3\theta,\ y=3\sin^3\theta$,直线$l$的直角坐标方程为$x+y-1=0$。

2) 设$P(9\cos^3\alpha,3\sin^3\alpha)$,则$P$到直线$l$的距离为$d=\frac{|9\cos^3\alpha+3\sin^3\alpha-1|}{\sqrt{2}}$。

为求$d$的最大值,我们可以将$d$表示为$10\cos(\alpha+\theta)+\frac{1}{\sqrt{2}}$的形式,其中$\theta$为一个与$\alpha$无关的常数,且$\tan\theta=\frac{1}{3}$。

极坐标与参数方程题型大全及答案

极坐标与参数方程题型大全及答案

参 数 方 程 集 中 训 练 题型 大 全一、回归教材数学选修4-4 坐标系与参数方程[基础训练A 组]一、选择题1.若直线的参数方程为12()23x t t y t=+⎧⎨=-⎩为参数,则直线的斜率为( )A .23 B .23- C .32 D .32- 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A .1(,2B .31(,)42- C . D .3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y =5.点M 的直角坐标是(-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线34()45x t t y t=+⎧⎨=-⎩为参数的斜率为______________________。

2.参数方程()2()t t t t x e e t y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。

3.已知直线113:()24x t l t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A , 则AB =_______________.4.直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。

高三数学《极坐标与参数方程》专题测试题含答案

高三数学《极坐标与参数方程》专题测试题含答案

高三数学极坐标与参数方程专题测试题含答案(120分钟 每小题10分,共15小题,总分150分)1.【2017课标1,理22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数).(1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.2. 【2017课标II ,理22】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=。

(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值。

3.【2017课标3,理22】在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 0l ρθθ+=,M 为l 3与C 的交点,求M 的极径.4.【2015高考陕西,理23】在直角坐标系x y O 中,直线l的参数方程为1322x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,C的极坐标方程为ρθ=.(I )写出C 的直角坐标方程;(II )P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.5.【2015高考新课标2,理23】在直角坐标系xoy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线3:C ρθ=.(Ⅰ).求2C 与1C 交点的直角坐标;(Ⅱ).若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB 的最大值.6. 【2014全国2,理20】在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.7. 【2014课标Ⅰ,理23】已知曲线221:149x y C +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数).(I )写出曲线C 的参数方程,直线l 的普通方程;(II )过曲线C 上任意一点P 作与l 夹角为30︒的直线,交l 于点A ,PA 的最大值与最小值.8.【2015高考新课标1,理23】在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN 的面积.9.【2016高考新课标3理数】在直角坐标系xOy 中,曲线1C 的参数方程为()sin x y ααα⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=(I )写出1C 的普通方程和2C 的直角坐标方程;(II )设点P 在1C 上,点Q 在2C 上,求PQ 的最小值及此时P 的直角坐标.10.【2016高考新课标1卷】在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .11.【2016高考新课标2理数】在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=. (Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||10AB =,求l 的斜率.12.【2018年全国卷Ⅲ理】在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围; (2)求中点的轨迹的参数方程.13.【2018年理数全国卷II】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.14.【贵州省凯里市2018届四模】在直角坐标系中,曲线的参数方程为(为参数,),以原点为极点,以轴非负半轴为极轴,建立极坐标系.(1)写出曲线的极坐标方程;(2)设直线(为任意锐角)、分别与曲线交于两点,试求面积的最小值.15.【辽宁省葫芦岛市2018年二模】直角坐标系中,直线的参数方程为 (为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.(1)求圆的直角坐标方程;(2)设圆与直线交于点,若点的坐标为,求的最小值.参考答案1.解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩.从而C 与l 的交点坐标为(3,0),2124(,)2525-.…………5分 (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为d =当4a ≥-时,d=8a =; 当4a <-时,d=16a =-. 综上,8a =或16a =-.…………10分【考点】极坐标与参数方程仍然考查直角坐标方程与极坐标方程的互化,参数方程与普通方程的互化,直线与曲线的位置关系.【名师点睛】化参数方程为普通方程主要是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决.2.解析:(1)设P 的极坐标为()(),>0ρθρ,M 的极坐标为()()11,>0ρθρ,由题设知cos 14=,=ρρθOP OM =。

极坐标与参数方程高考题含答案

极坐标与参数方程高考题含答案

极坐标与参数方程高考题含答案Newly compiled on November 23, 2020极坐标与参数方程高考题1.在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积.解:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=,2ρ,|MN|=1ρ-2ρ,因为2C 的半径为1,则2C MN 的面积o 11sin 452⨯=12. 2.已知曲线194:22=+y x C ,直线⎩⎨⎧-=+=t y t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.解:(1)曲线C 的参数方程为(θ为参数).直线l 的普通方程为2x+y-6=0. (2)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为|4cos θ+3sin θ-6|, 则|PA|==|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA|取得最大值,.当sin(θ+α)=1时,|PA|取得最小值,.3.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ02πθ⎡⎤∈⎢⎥⎣⎦,,(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线x+2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x-1)2+y 2=1(0≤y ≤1).可得C 的参数方程为: x 1cos sin y θθ=+⎧⎨=⎩ (0≤θ≤π).(2)设D(1+cos θ,sin θ).由(1)知C 是以G(1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan θ=θ=3π.故D 的直角坐标为32(. 4.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l:2x+y-2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:(1)设(x 1,y 1)为圆上的点,经变换为C 上点(x,y),由22x y +=1得x 2+22y ⎪⎭⎫⎝⎛=1,即曲线C 的方程为4x 2+2y =4.故C 的参数方程为⎩⎨⎧==θθsin 2cos x y (θ为参数).(2)由解得或不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为12(,1),所求直线斜率为k=12,于是所求直线方程为y-1=12(x-12),化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=θθsin 4cos 23--.5.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系.曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M 、N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2,当θ=0时,ρ=2,所以M (2,0).当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)M 点的直角坐标为(2,0).N 点的直角坐标为(0,233).所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33,则P 点的极坐标为⎝⎛⎭⎪⎫233,π6,所以直线OP 的极坐标方程为θ=π6,ρ∈(-∞,+∞).6.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin (θ-π4)=22,(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为x 2+y 2=x +y ,即x 2+y 2-x -y =0.直线l :ρsin(θ-π4)=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1.故直线l 与圆O 公共点的一个极坐标为(1,π2).7.在平面直角坐标系xOy 中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t(t 为参数)平行的直线的普通方程.解:由题设知,椭圆的长半轴长a =5,短半轴长b =3,从而c =a 2-b 2=4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程:x -2y +2=0. 故所求直线的斜率为12,因此其方程为y =12(x -4),即x -2y -4=0.8.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |.解:(1)ρ=25sin θ,得x 2+y 2-25y =0,即x 2+(y -5)2=5.(4分)(2)将l 的参数方程代入圆C 的直角坐标方程,得(3-22t )2+(22t )2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得|PA |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.9.在直角坐标版权法xOy 吕,直线l的参数方程为132(x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C的极坐标方程为ρθ=.(I)写出C 的直角坐标方程;(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标.解:(I)由ρθ=,得2sin ρθ=,从而有22x y +=,所以(223x y +-=(II)设132P t ⎛⎫+ ⎪⎝⎭,又C,则PC == 故当0t =时,PC 取得最小值,此时P 点的坐标为(3,0).。

极坐标与参数方程 题型总结归纳 附答案

极坐标与参数方程   题型总结归纳 附答案

《极坐标与参数方程》高考高频题型除了简单的极坐标与直角坐标的转化、参数方程与普通方程的转化外,还涉及(一)有关圆的题型题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较相离,无交点;:r d > 个交点;相切,1:r d = 个交点;相交,2:r d <用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200BA C By Ax d +++=,算出d ,在与半径比较。

题型二:圆上的点到直线的最值问题(不求该点坐标,如果求该点坐标请参照距离最值求法)思路:第一步:利用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200BA C By Ax d +++=第二步:判断直线与圆的位置关系第三步:相离:代入公式:r d d +=max ,r d d -=min 相切、相交:r d d +=max min 0d =题型三:直线与圆的弦长问题弦长公式222d r l -=,d 是圆心到直线的距离延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题 (弦长:直线与曲线相交两点,这两点之间的距离就是弦长) 弦长公式21t t l -=,解法参考“直线参数方程的几何意义”(二)距离的最值: ---用“参数法”1.曲线上的点到直线距离的最值问题2.点与点的最值问题“参数法”:设点---套公式--三角辅助角①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ①套公式:利用点到线的距离公式①辅助角:利用三角函数辅助角公式进行化一例如:【2016高考新课标3理数】在直角坐标系中,曲线的参数方程为,以坐标原点为极点,以轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为(I )写出的普通方程和的直角坐标方程;(II )设点在上,点在上,求的最小值及此时的直角坐标的直角坐标方程为.这里没有加减移项省去,直接化同,那系数除到左边(①)由题意,可设点的直角坐标为 因为是直线,所以的最小值即为到的距离的最小值,xOy 1C ()sin x y ααα⎧=⎪⎨=⎪⎩为参数x 2C sin()4ρθπ+=1C 2C P 1C Q 2C PQ P 2C 40x y +-=P ,sin )αα2C ||PQ P 2C ()d α.(欧萌说:利用点到直接的距离列式子,然后就是三角函数的辅助公式进行化一)当时)(13sin =+πα即当时,,此时的直角坐标为.(三)直线参数方程的几何意义1.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|P A |·|PB |=|t 1·t 2|(5)⎪⎩⎪⎨⎧>+<-+=-=+=+0,0,4)(212121212212121t t t t t t t t t t t t t t PB PA 当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-; 2.解题思路第一步:曲线化成普通方程,直线化成参数方程()sin()2|3d παα==+-2()6k k Z παπ=+∈()d αP 31(,)22第二步:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第三步:韦达定理:a ct t a b t t =-=+2121,第四步:选择公式代入计算。

(完整word版)高中数学极坐标与参数方程大题(详解)

(完整word版)高中数学极坐标与参数方程大题(详解)

参数方程极坐标系解答题1.已知曲线C:+=1,直线 l:(t为参数)(Ⅰ)写出曲线 C 的参数方程,直线l 的一般方程.(Ⅱ)过曲线 C 上随意一点P 作与 l 夹角为 30°的直线,交l 于点 A ,求 |PA|的最大值与最小值.考点:参数方程化成一般方程;直线与圆锥曲线的关系.专题:坐标系和参数方程.剖析:(Ⅰ )联想三角函数的平方关系可取x=2cos θ、y=3sin θ得曲线 C 的参数方程,直接消掉参数t 得直线 l 的一般方程;(Ⅱ )设曲线C 上随意一点P( 2cosθ, 3sinθ).由点到直线的距离公式获得P 到直线 l 的距离,除以sin30°进一步获得 |PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线 C:+=1 ,可令 x=2cos θ、 y=3sin θ,故曲线 C 的参数方程为,(θ为参数).对于直线l:,由① 得: t=x ﹣ 2,代入②并整理得: 2x+y ﹣ 6=0;(Ⅱ )设曲线C 上随意一点P( 2cosθ, 3sinθ).P 到直线 l 的距离为.则,此中α为锐角.当 sin(θ+α)=﹣ 1 时, |PA|获得最大值,最大值为.当 sin(θ+α)=1 时, |PA|获得最小值,最小值为.评论:本题考察一般方程与参数方程的互化,训练了点到直线的距离公式,表现了数学转变思想方法,是中档题.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为:,曲线 C 的参数方程为:(α为参数).(I)写出直线 l 的直角坐标方程;(Ⅱ)求曲线 C 上的点到直线 l 的距离的最大值.考点:参数方程化成一般方程.专题:坐标系和参数方程.剖析:(1)第一,将直线的极坐标方程中消去参数,化为直角坐标方程即可;(2)第一,化简曲线 C 的参数方程,而后,依据直线与圆的地点关系进行转变求解.解答:解:( 1)∵直线 l 的极坐标方程为:,∴ρ(sinθ﹣cosθ) =,∴,∴ x ﹣ y+1=0 .(2)依据曲线 C 的参数方程为:( α为参数).得( x ﹣ 2) 2+y 2=4 ,它表示一个以( 2, 0)为圆心,以 2 为半径的圆,圆心到直线的距离为: d= ,∴曲线 C 上的点到直线l 的距离的最大值= .评论: 本题要点考察了直线的极坐标方程、曲线的参数方程、及其之间的互化等知识,属于中档题.3.已知曲线 C 1:( t 为参数),C 2:( θ为参数).( 1)化 C 1,C 2 的方程为一般方程,并说明它们分别表示什么曲线;( 2)若 C 1 上的点 P 对应的参数为 t=, Q 为 C 2 上的动点,求 P Q 中点 M 到直线 C 3: ( t 为参数)距离的最小值.考点 : 圆的参数方程;点到直线的距离公式;直线的参数方程. 专题 : 计算题;压轴题;转变思想.剖析: (1)分别消去两曲线参数方程中的参数获得两曲线的一般方程,即可获得曲线C 1 表示一个圆;曲线C 2表示 一个椭圆;(2)把 t 的值代入曲线 C 1 的参数方程得点 P 的坐标,而后把直线的参数方程化为一般方程,依据曲线 C 2 的参数方程设出 Q 的坐标, 利用中点坐标公式表示出M 的坐标, 利用点到直线的距离公式表示出M 到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可获得距离的最小值. 解答:(t 为参数)化为一般方程得: (x+4 ) 2+( y ﹣ 3) 2=1,解:( 1)把曲线 C 1:所以此曲线表示的曲线为圆心(﹣4, 3),半径 1 的圆;把 C 2:( θ为参数) 化为一般方程得: + =1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在 x 轴上,长半轴为 8,短半轴为 3 的椭圆;(2)把 t=代入到曲线 C 1 的参数方程得: P (﹣ 4, 4),把直线 C 3:(t 为参数)化为一般方程得: x ﹣ 2y ﹣ 7=0,设 Q 的坐标为 Q ( 8cos θ, 3sin θ),故 M (﹣ 2+4cos θ, 2+ sin θ)所以 M 到直线的距离d= =,(此中 sin α= , cos α= )进而当 cos θ= , sin θ=﹣时, d 获得最小值.评论:本题考察学生理解并运用直线和圆的参数方程解决数学识题,灵巧运用点到直线的距离公式及中点坐标公式化简求值,是一道综合题.4.在直角坐标系xOy 中,以 O 为极点, x 轴正半轴为极轴成立直角坐标系,圆 C 的极坐标方程为,直线 l 的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆 C上不一样于 A , B 的随意一点.(Ⅰ )求圆心的极坐标;(Ⅱ)求△ PAB 面积的最大值.考点:参数方程化成一般方程;简单曲线的极坐标方程.专题:坐标系和参数方程.剖析:(Ⅰ )由圆 C 的极坐标方程为2,把,化为ρ=代入即可得出.(II )把直线的参数方程化为一般方程,利用点到直线的距离公式可得圆心到直线的距离d,再利用弦长公式可得 |AB|=2,利用三角形的面积计算公式即可得出.解答:C 的极坐标方程为2,解:(Ⅰ )由圆,化为ρ=把代入可得:圆 C 的一般方程为x 2+y2﹣ 2x+2y=0 ,即( x﹣ 1)2+( y+1 )2=2.∴圆心坐标为( 1,﹣ 1),∴圆心极坐标为;(Ⅱ )由直线l 的参数方程(t为参数),把t=x代入y=﹣1+2t 可得直线l 的一般方程:,∴圆心到直线l 的距离,∴|AB|=2==,点 P 直线 AB 距离的最大值为,.评论:本题考察了把直线的参数方程化为一般方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考察了推理能力与计算能力,属于中档题.5.在平面直角坐标系xoy 中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴成立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.考点:椭圆的参数方程;椭圆的应用.专题:计算题;压轴题.剖析:由题意椭圆的参数方程为为参数),直线的极坐标方程为.将椭圆和直线先化为一般方程坐标,而后再计算椭圆上点到直线距离的最大值和最小值.解答:解:将化为一般方程为( 4 分)点到直线的距离( 6 分)所以椭圆上点到直线距离的最大值为,最小值为.( 10 分)评论:本题考察参数方程、极坐标方程与一般方程的差别和联系,二者要会相互转变,依据实质状况选择不一样的方程进行求解,这也是每年高考必考的热门问题.6.在直角坐标系xoy 中,直线 I 的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴成立极坐标系,曲线 C 的极坐标方程为ρ=cos(θ+).(1)求直线 I 被曲线 C 所截得的弦长;(2)若 M ( x, y)是曲线 C 上的动点,求 x+y 的最大值.考点:参数方程化成一般方程.专题:计算题;直线与圆;坐标系和参数方程.剖析:(1)将曲线 C 化为一般方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长知足的勾股定理,即可求弦长.(2)运用圆的参数方程,设出M ,再由两角和的正弦公式化简,运用正弦函数的值域即可获得最大值.解答:解:( 1)直线 I 的参数方程为(t为参数),消去t,可得, 3x+4y+1=0 ;因为ρ= cos(θ+ ) = (),2 2 2﹣x+y=0 ,其圆心为(,﹣),半径为 r= ,即有ρ=ρcosθ﹣ρsinθ,则有 x +y圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M (,),则 x+y=因为θ∈R,则x+y 的最大值为=sin (1.),评论:本题考察参数方程化为标准方程,极坐标方程化为直角坐标方程,考察参数的几何意义及运用,考察学生的计算能力,属于中档题.7.选修 4﹣ 4:参数方程选讲已知平面直角坐标系xOy ,以 O 为极点, x 轴的非负半轴为极轴成立极坐标系,P 点的极坐标为,曲线 C 的极坐标方程为.(Ⅰ)写出点 P 的直角坐标及曲线 C 的一般方程;(Ⅱ)若 Q 为 C 上的动点,求PQ 中点 M 到直线 l:(t为参数)距离的最小值.考参数方程化成一般方程;简单曲线的极坐标方程.点:专坐标系和参数方程.题:分( 1)利用 x= ρcosθ, y= ρsinθ即可得出;析:( 2)利用中点坐标公式、点到直线的距离公式及三角函数的单一性即可得出,解解( 1)∵ P 点的极坐标为,答:∴=3,= .∴点 P 的直角坐标2 2 2把ρ=x +y, y= ρsinθ代入可得,即∴曲线 C 的直角坐标方程为.( 2)曲线 C 的参数方程为(θ为参数),直线 l 的一般方程为 x﹣ 2y﹣ 7=0设,则线段 PQ 的中点.那么点 M 到直线 l 的距离. ,∴点 M 到直线 l 的最小距离为.点本题考察了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的评:单一性等基础知识与基本技术方法,考察了计算能力,属于中档题.8.在直角坐标系xOy 中,圆 C 的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴成立极坐标系.(Ⅰ)求圆 C 的极坐标方程;(Ⅱ)直线 l 的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O, P,与直线l 的交点为Q,求线段 PQ 的长.考点:简单曲线的极坐标方程;直线与圆的地点关系.专题:直线与圆.剖析:(I)圆 C 的参数方程(φ为参数).消去参数可得:( x﹣ 1)2+y2=1.把 x= ρcosθ, y= ρsinθ代入化简即可获得此圆的极坐标方程.(II )由直线 l 的极坐标方程是ρ( sinθ+ )=3 ,射线 OM :θ= .可得一般方程:直线 l ,射线 OM .分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解答:解:( I)圆 C 的参数方程(φ为参数).消去参数可得:( x﹣1)2+y2=1.把 x= ρcosθ,y= ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II )如下图,由直线l 的极坐标方程是ρ( sinθ+ ) =3 ,射线OM :θ= .可得一般方程:直线l ,射线OM .联立,解得,即Q.联立,解得或.∴P.∴|PQ|= =2.评论:本题考察了极坐标化为一般方程、曲线交点与方程联立获得的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题.9.在直角坐标系 xoy 中,曲线 C1的参数方程为(α为参数),以原点 O 为极点, x 轴正半轴为极轴,建立极坐标系,曲线 C2的极坐标方程为ρsin(θ+ ) =4 .( 1)求曲线 C1的一般方程与曲线 C2 的直角坐标方程;( 2)设 P 为曲线 C1上的动点,求点 P 到 C2上点的距离的最小值,并求此时点P 的坐标.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.剖析:(1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式x=ρcosθ、 y=ρsinθ,把极坐标方程化为直角坐标方程.(2)求得椭圆上的点到直线x+y﹣8=0的距离为,可得 d 的最小值,以及此时的α的值,进而求得点P的坐标.解答:解:( 1)由曲线 C1:,可得,两式两边平方相加得:,即曲线 C1 的一般方程为:.由曲线 C2 :得:,即ρsinθ+ρcosθ=8,所以 x+y ﹣ 8=0,即曲线 C2 的直角坐标方程为:x+y ﹣ 8=0 .(2)由( 1)知椭圆 C1与直线 C2无公共点,椭圆上的点到直线 x+y ﹣ 8=0 的距离为,∴当时, d 的最小值为,此时点P 的坐标为.评论:本题主要考察把参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,正弦函数的值域,属于基础题.10.已知直线l 的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心 C 的直角坐标;(Ⅱ)由直线l 上的点向圆 C 引切线,求切线长的最小值.考点:简单曲线的极坐标方程.专题:计算题.剖析:(I)先利用三角函数的和角公式睁开圆 C 的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用2 2 2C 的直角坐标.ρcosθ=x ,ρsinθ=y ,ρ=x +y ,进行代换即得圆 C 的直角坐标方程,进而获得圆心(II )欲求切线长的最小值,转变为求直线l 上的点到圆心的距离的最小值,故先在直角坐标系中算出直线l 上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.解答:解:( I)∵,∴,∴圆 C 的直角坐标方程为,即,∴圆心直角坐标为.( 5 分)(II )∵ 直线 l 的一般方程为,圆心 C 到直线 l 距离是,∴直线 l 上的点向圆 C 引的切线长的最小值是( 10 分)评论:本题考察点的极坐标和直角坐标的互化,能在极坐标系顶用极坐标刻画点的地点,领会在极坐标系和平面直角坐标系中刻画点的地点的差别,能进行极坐标和直角坐标的互化.11.在直角坐标系 xOy 中,以 O 为极点, x 轴正半轴为极轴成立坐标系,直线l 的参数方程为,( t 为参数),曲线 C 1 的方程为 ρ( ρ﹣ 4sin θ) =12 ,定点 A ( 6, 0),点 P 是曲线 C 1 上的动点, Q 为 AP 的中点.( 1)求点 Q 的轨迹 C 2 的直角坐标方程;( 2)直线 l 与直线 C 2 交于 A ,B 两点,若 |AB| ≥2 ,务实数 a 的取值范围.考点 : 简单曲线的极坐标方程;参数方程化成一般方程. 专题 : 坐标系和参数方程.剖析: (1)第一,将曲线 C 1 化为直角坐标方程,而后,依据中点坐标公式,成立关系,进而确立点Q 的轨迹 C 2 的直角坐标方程;(2)第一,将直线方程化为一般方程,而后,依据距离关系,确立取值范围.解答: 解:( 1)依据题意,得22﹣ 4y=12 ,曲线 C 1 的直角坐标方程为: x +y 设点 P ( x ′, y ′), Q ( x , y ),依据中点坐标公式,得,代入 x 2+y 2﹣ 4y=12 ,得点 Q 的轨迹 C 2 的直角坐标方程为: ( x ﹣3) 2+( y ﹣ 1) 2=4,( 2)直线 l 的一般方程为: y=ax ,依据题意,得,解得实数 a 的取值范围为: [0, ] .评论: 本题要点考察了圆的极坐标方程、 直线的参数方程, 直线与圆的地点关系等知识, 考察比较综合, 属于中档题,解题要点是正确运用直线和圆的特定方程求解.12.在直角坐标系 xoy中以O 为极点,x轴正半轴为极轴成立坐标系.圆 C 1,直线C 2 的极坐标方程分别为ρ=4sin θ,ρcos() =2.( Ⅰ )求C 1 与 C 2 交点的极坐标;( Ⅱ )设 P 为 C 1 的圆心, Q 为 C 1 与 C 2 交点连线的中点, 已知直线 PQ 的参数方程为( t ∈R 为参数),求 a ,b 的值.考点 : 点的极坐标和直角坐标的互化;直线与圆的地点关系;参数方程化成一般方程. 专题 : 压轴题;直线与圆.剖析: (I )先将圆 C 1,直线 C 2 化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(II )由( I )得, P 与 Q 点的坐标分别为( 0, 2),(1, 3),进而直线 PQ 的直角坐标方程为 x ﹣y+2=0 ,由参数方程可得 y= x ﹣+1,进而结构对于 a , b 的方程组,解得 a , b 的值.解答: 解:( I )圆 C 1,直线 C 2 的直角坐标方程分别为x 2+( y ﹣2) 2=4, x+y ﹣ 4=0 ,解得 或 ,∴C 与 C 交点的极坐标为( 4, ).( 2,).12(II )由( I )得, P 与 Q 点的坐标分别为( 0, 2),(1, 3), 故直线 PQ 的直角坐标方程为 x ﹣ y+2=0 ,由参数方程可得 y= x ﹣ +1,∴,解得 a=﹣ 1,b=2 .评论: 本题主要考察把极坐标方程化为直角坐标方程、把参数方程化为一般方程的方法,方程思想的应用,属于基础题.13.在直角坐标系 xOy 中, l 是过定点 P ( 4, 2)且倾斜角为 α的直线;在极坐标系(以坐标原点 O 为极点,以 x 轴非负半轴为极轴,取同样单位长度)中,曲线 C 的极坐标方程为 ρ=4cos θ( Ⅰ )写出直线 l 的参数方程,并将曲线C 的方程化为直角坐标方程;( Ⅱ )若曲线 C 与直线订交于不一样的两点 M 、 N ,求 |PM|+|PN|的取值范围.解答:解:( I )直线 l 的参数方程为( t 为参数).2曲线 C 的极坐标方程 ρ=4cos θ可化为 ρ=4 ρcos θ.把 x= ρcos θ,y= ρsin θ代入曲线 C 的极坐标方程可得 x 2+y 2=4x ,即( x ﹣ 2) 2+y 2=4.(II )把直线 l 的参数方程为 ( t 为参数)代入圆的方程可得: t 2+4( sin α+cos α) t+4=0 . ∵曲线 C 与直线订交于不一样的两点 M 、 N ,∴△ =16 ( sin α+cos α)2﹣ 16> 0, ∴sin αcos α>0,又 α∈[0,π),∴.又 t 1+t 2=﹣ 4( sin α+cos α), t 1t 2=4.∴|PM|+|PN|=|t 1|+|t 2|=|t 1+t 2|=4|sin α+cos α|=,∵ , ∴,∴.∴|PM|+|PN| 的取值范围是.评论:本题考察了直线的参数方程、圆的极坐标方程、直线与圆订交弦长问题,属于中档题.14.在直角坐标系xOy 中,直线l 的参数方程为(t为参数),以原点为极点,x 轴正半轴为极轴成立极坐标系,⊙C 的极坐标方程为ρ=2 sinθ.(Ⅰ)写出⊙ C 的直角坐标方程;(Ⅱ)P 为直线 l 上一动点,当P 到圆心 C 的距离最小时,求P 的直角坐标.考点:点的极坐标和直角坐标的互化.专题:坐标系和参数方程.剖析:2,把代入即可得出;.(I)由⊙ C 的极坐标方程为ρ=2 sinθ.化为ρ=2(II )设 P ,又 C .利用两点之间的距离公式可得|PC|= ,再利用二次函数的性质即可得出.解答:解:( I)由⊙ C 的极坐标方程为ρ=2 sin θ.2 2 2,∴ρ=2 ,化为 x +y =配方为=3.(II )设 P ,又 C .∴|PC|= = ≥2 ,所以当 t=0 时, |PC|获得最小值 2 .此时 P( 3,0).评论:本题考察了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考察了推理能力与计算能力,属于中档题.15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2订交于A,B两点.(Ⅰ)把曲线 C1, C2的极坐标方程转变为直角坐标方程;(Ⅱ)求弦 AB 的长度.考点:简单曲线的极坐标方程.专题:计算题.剖析:(Ⅰ )利用直角坐标与极坐标间的关系,即利用C1的直角坐标方程.(Ⅱ )利用直角坐标方程的形式,先求出圆心(长度.解答:解:(Ⅰ)曲线 C2 :( p∈R)表示直线 y=x,2ρcosθ曲线 C1:ρ=6cosθ,即ρ=62 2 2 2所以 x +y =6x 即( x﹣3) +y =92 2 2C2及曲线ρcosθ=x ,ρsinθ=y ,ρ=x +y ,进行代换即得曲线3,0)到直线的距离,最后联合点到直线的距离公式弦AB 的(Ⅱ )∵圆心( 3, 0)到直线的距离,r=3 所以弦长 AB==.∴弦 AB 的长度.评论:本小题主要考察圆和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.16.在直角坐标系xOy 中,以 O 为极点, x 轴正半轴为极轴成立坐标系,直线l 的极坐标方程为ρsin(θ+)=,圆 C 的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心 C 的极坐标;(Ⅱ)当 r 为什么值时,圆 C 上的点到直线l 的最大距离为3.考点:简单曲线的极坐标方程;直线与圆的地点关系.专题:计算题.剖析:(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l 的一般方程;利用同角三角函数的基本关系,消去θ可得曲线 C 的一般方程,得出圆心的直角坐标后再化面极坐标即可.(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P 到直线 l 的距离的最大值,最后列出对于 r 的方程即可求出r 值.解答:解:( 1)由ρsin(θ+ ) = ,得ρ( cosθ+sin θ) =1,∴直线 l: x+y ﹣ 1=0 .由得 C:圆心(﹣,﹣).∴圆心 C 的极坐标( 1,).(2)在圆 C:的圆心到直线l 的距离为:∵圆 C 上的点到直线l 的最大距离为3,∴.r=2﹣∴当 r=2 ﹣时,圆C上的点到直线l 的最大距离为3.评论:本小题主要考察坐标系与参数方程的有关知识,详细波及到极坐标方程、参数方程与一般方程的互化,点到直线距离公式、三角变换等内容.17.选修 4﹣ 4:坐标系与参数方程在直角坐标 xOy 中,圆 C 1: x 2+y 2=4,圆 C 2:(x ﹣ 2) 2+y 2=4.( Ⅰ )在以 O 为极点, x 轴正半轴为极轴的极坐标系中,分别写出圆 C 1, C 2 的极坐标方程,并求出圆 C 1, C 2的交点坐标(用极坐标表示) ; ( Ⅱ )求圆 C 1 与 C 2 的公共弦的参数方程.考点 : 简单曲线的极坐标方程;直线的参数方程. 专题 : 计算题;压轴题.剖析:(I )利用,以及 x 2 2 2C 1, C 2 的极坐标方程,求出圆 C 1, C 2 的交点极坐标,+y =ρ,直接写出圆 而后求出直角坐标(用坐标表示) ;(II )解法一:求出两个圆的直角坐标,直接写出圆 C 1 与 C 2 的公共弦的参数方程.解法二利用直角坐标与极坐标的关系求出,而后求出圆 C 1 与 C 2 的公共弦的参数方程.解答:解:( I )由 222, x +y =ρ,可知圆 ,的极坐标方程为 ρ=2,圆 ,即的极坐标方程为 ρ=4cos θ,解得: ρ=2,,故圆 C 1, C 2 的交点坐标( 2,),( 2, ).(II )解法一:由得圆 C 1, C 2 的交点的直角坐标( 1,),(1,).故圆 C 1, C 2 的公共弦的参数方程为(或圆 C 1, C 2 的公共弦的参数方程为)(解法二)将 x=1 代入得 ρcos θ=1进而于是圆 C 1, C 2 的公共弦的参数方程为 .评论: 本题考察简单曲线的极坐标方程,直线的参数方程的求法,极坐标与直角坐标的互化,考察计算能力.。

(完整版)极坐标与参数方程高考习题练习含答案

(完整版)极坐标与参数方程高考习题练习含答案

欢迎阅读极坐标系与参数方程高考题练习2014年一.选择题1. (2014北京)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( B ).A.C 2.ρ4=A.ρ=C.ρ= 0sin cos 2ρθθθ∴=≤≤ ⎪+⎝⎭ 所以选A 。

二.填空题1. (2014湖北)(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______. 2. (2014湖南)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,(α为参数)交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.3 (2014重庆)已知直线l 的参数方程为⎩⎨⎧+=+=t y t x 32(t 为参数),以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. .【答案】5 【解析】4 (2014上海)已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是 。

【答案】 31【解析】.C (2014陕西)(坐标系与参数方程选做题)在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是C5 (2014天津)在以O 为极点的极坐标系中,圆θρ4sin =和直线a =θρsin 相交于,A B 两点.若ΔAOB 是等边三角形,则a 的值为___________. 解:3 圆的方程为2224x y ,直线为y a .因为AOB 是等边三角形,所以其中一个交点坐标为,代入圆的方程可得3a .6. (2014广东)(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__三.解答题1. (2014新课标I)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数).(Ⅰ).直线ld =则||PA =当(sin θ当(sin θ2. (20142cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.3. (2014辽宁)(本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.【答案】 (1) π∈[0,θθsin 2,θcos ,==y x (2) 03θsin ρ4-cos θ 2ρ=+ 【解析】(1)(2)4(2014 (I (II 解:圆C (2)故圆(2013)A . C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和(2013天津数学(理))已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭,则|CP | =1(2013上海卷(理))在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为_____152+_____ 解析:2(2013北京卷(理))在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于____1_____. 3重庆数学(理))在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为cos 4ρθ=的直线与曲线23x ty t⎧=⎪⎨=⎪⎩(为参数)相交于,A B 两点,则______AB = 【答案】1642013广东(理))(坐标系与参数方程选讲选做题)已知曲线C 的参数方程为2cos 2sin x ty t ⎧=⎪⎨=⎪⎩(为参数),C 在点()1,1处的切线为 , 以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则切线的极坐标方程为 .【答案】x+y=2 ;sin 24πρθ⎛⎫+= ⎪⎝⎭5(2013陕西(理))C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为______ .【答案】R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 26(2013江西(理))(坐标系与参数方程选做题)设曲线C 的参数方程为2x ty t=⎧⎨=⎩(为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________【答案】2cos sin 0ρθθ-=7(2013湖南卷(理))在平面直角坐标系xoy中,若,3cos, :(t)C:2sin x t xly t a yϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a的值为________.【答案】38(2013湖北(理))在直角坐标系xOy中,椭圆C的参数方程为cossinx ay bθθ=⎧⎨=⎩()0a bϕ>>为参数,.)中,(2013α与β=(Ⅰ(Ⅱ9(20132C(I)12(II)设P为1C的圆心,Q为1C与2C交点连线的中点.已知直线PQ的参数方程为()3312x t at Rby t⎧=+⎪∈⎨=+⎪⎩为参数,求,a b的值【答案】10(2013福建(理))坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π,直线的极坐标方程为cos(4a πρθ-=,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.【答案】解:(Ⅰ)由点)4A π在直线cos(4a πρθ-=上,可得a =(Ⅱ)11(2013程为.【答案】0 ①12(2013新课标1(理))选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos 55sin x ty t =+⎧⎨=+⎩(为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=. (Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【答案】将45cos 55sin x ty t =+⎧⎨=+⎩消去参数,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=; (Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为(2,4π),(2,)2π. 【2012新课标文23】已知曲线C 1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正三角形ABC 的顶点都在C 2上,且A 、B 、C 以逆时针次序排列,点A 的极坐标为(2,) (Ⅰ)求点A 、B 、C 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA|2+|PB|2+|PC|2的取值范围. 解析:【2012辽宁文23】在直角坐标xOy 中,圆221:4C x y +=,圆222:(2)4C x y -+=。

高考极坐标与参数方程习题大全

高考极坐标与参数方程习题大全

一、选择题(每小题5分,共25分)1、已知点M 的极坐标为⎪⎭⎫⎝⎛35π,,下列所给出的四个坐标中能表示点M 的坐标是( )。

A. 53,-⎛⎝ ⎫πB. 543,π⎛⎝ ⎫⎭⎪C. 523,-⎛⎝ ⎫⎭⎪πD. ⎪⎭⎫ ⎝⎛-355π, 2、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3、在参数方程⎩⎨⎧+=+=θθsin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、t 2,则线段BC 的中点M 对应的参数值是( )4、曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、双曲线的一支 C 、圆 D 、射线 5、实数x 、y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值为( )A 、27 B 、4 C 、29D 、5二、填空题(每小题5分,共30分)1、点()22-,的极坐标为 。

2、若A 33,π⎛⎝ ⎫⎭⎪,B ⎪⎭⎫ ⎝⎛-64π,,则|AB|=___________,S AOB ∆=___________。

(其中O 是极点)3、极点到直线()cos sin ρθθ+=________ _____。

4、极坐标方程2sin 2cos 0ρθθ-⋅=表示的曲线是_______ _____。

5、圆锥曲线()为参数θθθ⎩⎨⎧==sec 3tan 2y x 的准线方程是 。

6、直线l 过点()5,10M ,倾斜角是3π,且与直线032=--y x 交于M ,则0MM 的长为 。

三、解答题(第1题14分,第2题16分,第3题15分;共45分)1、求圆心为C 36,π⎛⎝ ⎫⎭⎪,半径为3的圆的极坐标方程。

2、已知直线l 经过点P(1,1),倾斜角6πα=,(1)写出直线l 的参数方程。

高考数学极坐标与参数方程题型归纳

高考数学极坐标与参数方程题型归纳
(2)若点P是曲线C2上任意一点,P点的直角坐标为(x,y),求x+y的最大值和最小值.
(3)P为曲线C2上任意一点,求点P到直线l的距离的最值及此时P的直角坐标.
7.在坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,以x轴的正半轴为极轴,,建立极坐标系,曲线C2的极坐标方程为ρsin =2 .
极坐标系与参数方程
题型一与圆有关的问题
1.已知曲线C1的参数方程为 ( 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为 .(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)。
2.在直角坐标系xOy中,以坐标原点为极点,x轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈ .(1)求C的参数方程.(2)设点D在C上,C在D处的切线与直线l:y= x+2垂直,根据(1)中你得到的参数方程,确定D的坐标.
题型二 根据椭圆参数方程求最值
6.曲线C1的参数方程为 (θ为参数),将曲线C1上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的 倍,得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-2sinθ)=6.
(1)求曲线C2和直线l的普通方程.
9.以平面直角坐标系的原点 为极点, 轴的正半轴为极轴建立极坐标系,已知点 的直角坐标为 ,若直线l的极坐标方程为 ,曲线 的参数方程是 ,( 为参数).
(1)求直线l的直角坐标方程和曲线 的普通方程;
(2)设直线l与曲线 交于 两点,求 .
10.在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线 的极坐标方程为 ,曲线 的极坐标方程为 .

极坐标与参数方程经典题型(附含详细解答)

极坐标与参数方程经典题型(附含详细解答)

专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。

高考数学23题(极坐标与参数方程)大训练(含答案)

高考数学23题(极坐标与参数方程)大训练(含答案)

高考23题(极坐标与参数方程)大训练1.(1)在极坐标系中,O 为极点,已知圆C 的圆心为⎝⎛⎭⎫2,π3,半径r =1,P 在圆C 上运动,求圆C 的极坐标方程;(2).设直线l 经过点)3,2(πP ,倾斜角6πα=,写出直线l 的极坐标方程.2.(2009·高考辽宁卷)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系.曲线C 的极坐标方程为ρcos(θ-π3)=1,M 、N 分别为C 与x 轴、y 轴的交点.(1)写出C 的直角坐标方程,并求出M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.3.已知曲线C 的极坐标方程是=ρ2sin θ ,设直线l 的参数方程是32,545x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)将曲线C 的极坐标方程转化为直角坐标方程; (2)设直线l 与x 轴的交点是,M N 是曲线C 上一动点,求MN 的最大值.4.已知曲线1C 的参数方程为210cos ,10sin x y θθ⎧=-+⎪⎨=⎪⎩ (θ为参数),曲线2C 的极坐标方程为θθρsin 6cos 2+=. (1)将曲线1C 的参数方程化为普通方程,将曲线2C 的极坐标方程化为直角坐标方程. (2)曲线1C ,2C 是否相交?若相交,请求出公共弦的长;若不相交,请说明理由.5.(2015·高考全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.6.(本题满分12分)已知圆的极坐标方程为ρ2-42ρcos ⎝⎛⎭⎫θ-π4+6=0.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值.7.(2014·高考课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.8.(2013·高考课标全国卷)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).9.(2015·高考陕西卷)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ. (1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.10.(2013·福建高考理科·T21)在直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎪⎭⎫⎝⎛4,2π,直线l 的极坐标方程为a =-)4cos(πθρ,且点A 在直线l 上。

高考极坐标与参数方程大题题型汇总

高考极坐标与参数方程大题题型汇总

高考极坐标与参数方程大题题型汇总本文是一篇数学题型汇总,主要涉及极坐标和参数方程。

第一题给出了一个圆的参数方程,要求求出其极坐标方程,并求出与一条直线的交点的线段长度。

第二题给出了一条直线的参数方程和一个圆的极坐标方程,要求求出该直线和圆的交点,并求出弦长。

第三题给出了一个曲线的参数方程和一条直线的极坐标方程,要求求出直线和曲线的交点,并求出弦长。

具体来说,第一题中,圆C的普通方程是$(x-1)^2+y^2=1$,转化为极坐标方程为$\rho=2\cos\theta$。

设点P的极坐标为$(\rho_1,\theta_1)$,则解得$\theta_1=\pi/3$,设点Q的极坐标为$(\rho_2,\theta_2)$,则解得$\theta_2=\pi/3$,$\rho_2=3$。

因此,线段PQ的长度为2.第二题中,圆M的直角坐标方程为$x+(y-3)=1$,直线$l$的普通方程为$3x+4y-3a+4=0$,将其转化为极坐标方程为$\rho(\sin\theta+\cos\theta)=1$。

设直线$l$和圆$M$的交点分别为$P$和$Q$,则由题意可知线段PQ的长度为3.因此,代入弦长公式,解得$a=12\pm\sqrt{22}$。

第三题中,曲线C的极坐标方程为$\rho=5$,直线$l$的普通方程为$x+y=\frac{1}{\sqrt{2}}$,将其转化为极坐标方程为$\rho(\sin\theta+\cos\theta)=1/\sqrt{2}$。

设直线$l$和曲线$C$的交点分别为$P$和$Q$,则由题意可知线段PQ的长度为$\sqrt{50}$。

1) 曲线C的参数方程为:x=9\cos^3\theta。

y=3\sin^3\theta$,直线$l$的直角坐标方程为:$x+y-1=0$。

2) 设$P(9\cos^3\alpha。

3\sin^3\alpha)$,则$P$到直线$l$的距离$d$为:d=\frac{|9\cos^3\alpha+3\sin^3\alpha-1|}{\sqrt{2}}$$为求$d$的最大值,对$d$求导得:frac{d}{d\alpha}d=-\frac{27\cos^2\alpha\sin\alpha+9\sin^2\alpha\cos\alpha}{2\sqrt{2} }$$令其等于0,解得$\tan\alpha=\frac{1}{3}$。

(完整word版)极坐标与参数方程(近年高考题和各种类型总结)

(完整word版)极坐标与参数方程(近年高考题和各种类型总结)

极坐标与参数方程(近年高考题和各种类型总结)一、最近8年极坐标与参数方程题型归纳(2018)【点差法】在直角坐标系xOy 中,曲线C的参数方程为2cos 4sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos 2sin x t y t αα=+⎧⎨=+⎩(t 为参数) (1)求C 和l 的直角坐标方程(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率(2017)【极坐标求轨迹问题】在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为4cos =θρ.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足16=⋅OP OM ,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为)3,2(π,点B 在曲线2C 上,求OAB ∆面积的最大值.(2016)【极坐标方程求长度】在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交于A ,B 两点,10AB =,求l 的斜率.(2015)【极坐标方程求长度】在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ==(I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.(2014)【根据极角范围求轨迹】在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.(2013)【轨迹问题】已知动点P ,Q 都在曲线C :2cos ,2sin x t y t =⎧⎨=⎩(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.(2012)【参数坐标求最值、范围】已知曲线1C 的参数方程是)(3s i n y 2c o s x 为参数ϕϕϕ⎩⎨⎧==,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π(1)求点,,,A B C D 的直角坐标;(2)设P 为1C 上任意一点,求2222PA PB PC PD +++的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考极坐标与参数方程大题题型汇总1.在直角坐标系xoy 中,圆C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)圆C 的普通方程是22(1)1x y -+=,又cos ,sin x y ρθρθ==; 所以圆C 的极坐标方程是2cos ρθ=. ---5分(2)设11(,)ρθ为点P 的极坐标,则有设22(,)ρθ为点Q 的极坐标,则有由于12θθ=,所以,所以线段PQ 的长为2.2.已知直线l 的参数方程为431x t ay t =-+⎧⎨=-⎩(t 为参数),在直角坐标系xOy 中,以O 点为极点,x 轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M 的方程为26sin 8ρρθ-=-.(1)求圆M 的直角坐标方程;(2)若直线l 截圆Ma 的值.解:(1)∵2222268(36si )n 81x y y x y ρρθ+--=-⇒=-⇒+-=, ∴圆M 的直角坐标方程为22(3)1x y +-=;(5分)(2)把直线l的参数方程431x t ay t=-+⎧⎨=-⎩(t为参数)化为普通方程得:34340x y a+-+=,∵直线l截圆M所得弦长为,且圆M的圆心(0,3)M到直线l的距离|163|19522ad a-===⇒=或376a=,∴376a=或92a=.(10分)3.已知曲线C的参数方程为⎪⎩⎪⎨⎧+=+=ααsin51cos52yx(α为参数),以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。

(1)求曲线c的极坐标方程(2)若直线l的极坐标方程为ρ(sinθ+cosθ)=1,求直线l被曲线c截得的弦长。

解:(1)∵曲线c的参数方程为⎪⎩⎪⎨⎧+=+=ααsin51cos52yx(α为参数)∴曲线c的普通方程为(x-2)2+(y-1)2=5将⎩⎨⎧==θρθρsincosyx代入并化简得:ρ=4cosθ+2sinθ即曲线c的极坐标方程为ρ=4cosθ+2sinθ(2)∵l的直角坐标方程为x+y-1=0∴圆心c到直线l的距离为d=22=2∴弦长为225-=234.已知曲线C:2219xy+=,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为sin()4πρθ-=(1)写出曲线C的参数方程,直线l的直角坐标方程;(2)设P是曲线C上任一点,求P到直线l的距离的最大值.解:(1)曲线C 的参数方程为3cos sin x y αα=⎧⎨=⎩(α为参数),直线l 的直角坐标方程为20x y -+= (2)设(3cos ,sin )P αα,P 到直线l的距离d =ϕ为锐角,且1tan 3ϕ=)当cos()1αϕ+=时,P 到直线l的距离的最大值max d =5.设经过点(1,0)P -的直线l 交曲线C:2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数)于A 、B 两点.(1)写出曲线C 的普通方程;(2)当直线l 的倾斜角60α=时,求||||PA PB +与||||PA PB ⋅的值.解:(1)C :22143x y +=.(2)设l:112x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数)联立得:254120t t --=1216||||||5PA PB t t +=-==,1212||||||5PA PB t t ⋅==6.以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点M 的极坐标为(3,)2π,若直线l 过点P ,且倾斜角为6π,圆C 以M 为圆心,3为半径.(1)求直线l 的参数方程和圆C 的极坐标方程;(2)设直线l 与圆C 相交于,A B 两点,求PA PB⋅.解:(1)直线l的参数方程为1,12,2x y t ⎧=+⎪⎪⎨⎪=+⎪⎩为参数)t (,(答案不唯一,可酌情给分)圆的极坐标方程为θρsin 6=. (2)把1,12,2x y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入22(3)9x y +-=,得21)70t t +--=,127t t ∴=-,设点,A B 对应的参数分别为12,t t , 则12,PA t PB t ==,∴7.PA PB ⋅=7.在平面直角坐标系xOy 中,直线l的参数方程是2x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O为极点,以x 轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为)4ρθπ=+.(1)将圆C 的极坐标方程化为直角坐标方程;(2)若直线l 与圆C 交于A ,B 两点,点P 的坐标为(2,0),试求11PA PB+的值.解:(1)由)4ρθπ=+,展开化为2(cos sin )4(cos sin )2ρρθρθρθρθ=-=-,将代入,得22440x y x y +-+-, 所以,圆C 的直角坐标方程是22440x y x y +-+-. cos sin x y ρθρθ=⎧⎨=⎩(2)把直线l的参数方程2x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)代入圆的方程并整理,可得:240t +-=. 设A ,B 两点对应的参数分别为12,t t ,则121240t t t t +=-⋅=-<,所以12t t -==∴121212111142t t PA PB t t t t -+=+===⋅.8.已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,曲线13cos :2sin x C y αα=⎧⎨=⎩(α为参数).(1)求曲线1C 的标准方程;(2)若点M 在曲线1C 上运动,试求出M 到曲线C 的距离的最小值.解:(1)曲线1C 的标准方程是:22194x y +=(2)曲线C 的标准方程是:2100x y +-= 设点(3cos ,2sin )M αα,由点到直线的距离公式得:)10d αϕ==--其中34cos ,sin 55ϕϕ==0αϕ∴-=时,mind =98(,)55M9.在平面直角坐标系xOy 中,直线l的参数方程为1222x t y ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),直线l 与曲线C :22(2)1y x --=交于A ,B 两点. (1)求AB的长;(2)在以O 为极点,x 轴的正半轴为极轴建立的极坐标系中,设点P的极坐标为34π⎛⎫ ⎪⎝⎭,求点P 到线段AB 中点M 的距离.解:(1)直线l的参数方程为1222x t y ⎧=-+⎪⎪⎨⎪=+⎪⎩,,(t 为参数),代入曲线C 的方程得24100t t +-=.设点A ,B 对应的参数分别为12t t ,,则124t t +=-,1210t t =-,所以12||||AB t t =-=(2)由极坐标与直角坐标互化公式得点P 的直角坐标为(22)-,, 所以点P 在直线l 上,中点M 对应参数为1222t t +=-,由参数t 的几何意义,所以点P 到线段AB 中点M 的距离||2PM =.10.已知直线l 经过点(1,1)P ,倾斜角6πα=,(1)写出直线l 的参数方程。

(2)设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积。

解:(1)直线的参数方程为1cos 61sin 6x t y t ππ⎧=+⎪⎪⎨⎪=+⎪⎩,即12112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(2)把直线12112x y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入422=+y x 得2221(1)(1)4,1)202t t t ++=+-= 122t t =-,则点P 到,A B 两点的距离之积为211.从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使|OM |·|OP |=12.(1)求点P 的轨迹方程;(2)设R 为l 上的任意一点,试求|RP |的最小值.解:(1)设动点P 的坐标为(ρ,θ),M 的坐标为(ρ0,θ),则ρρ0=12.∵ρ0cos θ=4,∴ρ=3cos θ即为所求的轨迹方程.(2)由(1)知P 的轨迹是以(32,0)为圆心,半径为32的圆,易得|RP |的最小值为1.12.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin(θ-π4)=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的极坐标.解: (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为x 2+y 2=x +y ,即x 2+y 2-x -y =0.直线l :ρsin(θ-π4)=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1.故直线l 与圆O 公共点的极坐标为(1,π2).。

相关文档
最新文档