智能控制(第三版)chap7-刘金琨
《智能控制chap》课件
神经网络控制在模式识别、预测、优 化等领域有广泛应用,如语音识别、 图像处理、自动驾驶等。
专家控制
总结词
专家控制是一种基于专家知识和经验的智能控制方法,通 过将专家的经验和知识转化为控制规则来实现对系统的控 制。
总结词
专家控制在处理具有不确定性和复杂性的系统时表现出色 ,能够提供类似于人类专家的决策支持。
决策机构
01
决策机构是智能控制系统的重要组成部分,负责根据
传感器的信号和控制算法进行决策,输出控制信号。
02
决策机构的性能决定了整个智能控制系统的智能化程
度,因此对决策机构的设计要求非常高。
03
目前常用的决策机构有专家系统、模糊逻辑系统、神
经网络系统等。
03 智能控制的主要技术
模糊控制
总结词
模糊控制是一种基于模糊集合论和模糊逻辑的智 能控制方法,通过模拟人类思维中的模糊概念和 推理规则来实现对复杂系统的控制。
总结词
智能控制在交通领域的应用已经取得显著成果,主要用于智 能交通系统、自动驾驶和交通监控等方面。
详细描述
智能控制在交通领域的应用主要体现在交通信号控制、智能 车辆导航、自动驾驶、交通监控和应急管理等方面。通过智 能化技术,可以提高交通运行效率、减少拥堵和事故风险, 提升交通安全和舒适度。
医疗控制
智能控制chap
目录
CONTENTS
• 智能控制概述 • 智能控制系统的基本组成 • 智能控制的主要技术 • 智能控制在各领域的应用 • 智能控制的未来发展
01 智能控制概述
定义与特点
定义
智能控制是一门新兴的交叉学科,它 结合了人工智能、自动控制、运筹学 等多个领域的知识,旨在实现复杂系 统的智能化控制。
智能控制原理与应用第三版课后答案
智能控制原理与应用第三版课后答案数据库原理与应用教程第三版课后答案第 1 章数据库概述 2.与文件管理相比,数据库管理有哪些优点?答:将相互关联的数据集成在一起,具有较少的数据冗余,程序与数据相互独立,保证数据的安全可靠,最大限度地保证数据的正确性,数据可以共享并能保证数据的一致性。
3.比较文件管理和数据库管理数据的主要区别。
请问:数据库系统与文件系统较之实际上就是在应用程序和存储数据的数据库之间减少了一个系则复软件,即为数据库管理系统,使以前在应用程序中由开发人员同时实现的很多繁杂的操作方式和功能,都可以由这个系统软件顺利完成,这样应用程序不再须要关心数据的存储方式,而且数据的存储方式的变化也不再影响应用程序。
而在文件系统中,应用程序和数据的存有储是密切有关的,数据的存储方式的任何变化都会影响至应用程序,因此有利于应用领域程序的保护。
4.数据库管理方式中,应用程序是否需要关心数据的存储位置和结构?为什么?答:不需要。
因为在数据库系统中,数据的存储位置以及存储结构保存在数据库管理系统中,从数据到物理存储位置的转换是由数据库管理系统自动完成的。
6.在数据库系统中,应用程序可以不通过数据库管理系统而轻易出访数据库文件吗?请问:无法。
7.数据独立性指的是什么?它能带来哪些好处?答:数据独立性指的是数据的逻辑独立性和物理独立性。
逻辑独立性带来的好处是当表达现实世界信息的逻辑结构发生变化时,可以不影响应用程序;物理独立性增添的好处就是当数据的存储结构发生变化时,可以不影响数据的逻辑非政府结构,从而也不影响应用程序。
8.数据库系统由哪几部分组成,每一部分在数据库系统中的作用大致是什么?答:数据库系统由三个主要部分组成,即数据库、数据库管理系统和应用程序。
数据库是数据的汇集,它以一定的组织形式存于存储介质上;数据库管理系统就是管理数据库的系统软件,它可以同时实现数据库系统的各种功能;应用程序指以数据库数据为核心的应用程序。
智能控制-刘金琨编著PPT..
智能控制 自学习控制
自适应控制 鲁棒控制
随机控制 最优控制 确定性反馈控制
开环控制
控制科学的发展过程
从二十世纪 60 年代起,由于空
间技术、计算机技术及人工智能
技术的发展,控制界学者在研究
(2)人—机结合作为控制器的控制系统: 机器完成需要连续进行的并需快速计算的 常规控制任务,人则完成任务分配、决策、 监控等任务;
(3)无人参与的自主控制系统:为多层的 智能控制系统,需要完成问题求解和规划、 环境建模、传感器信息分析和低层的反馈 控制任务。如自主机器人。
1985年8月,IEEE在美国纽约召开了第
士电机致力于模糊逻辑元件的开发与研究, 制技术,1989年将模糊控制消费品推向高
潮,使日本成为模糊控制技术的主导国家。
模糊控制的发展可分为三个阶段:
(1)1965年-1974年为模糊控制发展的第一阶段, 即模糊数学发展和形成阶段;
(2)1974年-1979年为模糊控制发展的第二阶段, 产生了简单的模糊控制器;
(1)在机器人控制中的应用 智能机器人是目前机器人研究中的热门课 题。J.S.Albus于1975年提出小脑模型小脑模 型 关 节 控 制 器 ( Cerebellar Model Arculation Controller ,简称 CMAC ),它 是仿照小脑如何控制肢体运动的原理而建立 的神经网络模型,采用CMAC,可实现机器 人的关节控制,这是神经网络在机器人控制 的一个典型应用。
E.H.Mamdan于 20 世纪 80 年代初
首次将模糊控制应用于一台实际机
智能控制(第三版)chap7-刘金琨
x j
则
x 'j x j
x 'j (1 x 'j )
(1)前向传播:计算网络的输出。 隐层神经元的输入为所有输入的加权之和:
xj
w x
i
ij i
隐层神经元的输出采用S函数激发:
x 'j f (x j ) 1 1 e
x j
7.2.6 BP网络模式识别
由于神经网络具有自学习、自组织和并行处理 等特征,并具有很强的容错能力和联想能力,因此,
•
神经网络具有模式识别的能力。
•
在神经网络模式识别中,根据标准的输入输
出模式对,采用神经网络学习算法,以标准的模 式作为学习样本进行训练,通过学习调整神经网 络的连接权值。当训练满足要求后,得到的神经 网络权值构成了模式识别的知识库,利用神经网
含一个隐含层的BP网络结构如图7-5所示,
j k 图中 i 为输入层神经元,为隐层神经元,为
输出层神经元。
图7-5
BP神经网络结构
7.2.3 BP网络的逼近
BP网络逼近的结构如图 7-6 所示,图中 k 为网络
的迭代步骤,u(k)和y(k)为逼近器的输入。BP为网 络逼近器, y(k) 为被控对象实际输出, yn(k) 为 BP 的输出。将系统输出 y(k) 及输入 u(k) 的值作为逼近 器 BP 的输入,将系统输出与网络输出的误差作为
yn E ' w j 0 e(k ) e(k ) x j w j 0 w j 0
k+1时刻网络的权值为:
wj 0 (k1) wj 0 (k) wj 2
隐层及输入层连接权值学习算法为:
滑模变结构控制理论及其算法研究与进展_刘金琨
第24卷第3期2007年6月控制理论与应用Control Theory&ApplicationsV ol.24No.3Jun.2007滑模变结构控制理论及其算法研究与进展刘金琨1,孙富春2(1.北京航空航天大学自动化与电气工程学院,北京100083;2.清华大学智能技术与系统国家重点实验室,北京100084)摘要:针对近年来滑模变结构控制的发展状况,将滑模变结构控制分为18个研究方向,即滑模控制的消除抖振问题、准滑动模态控制、基于趋近律的滑模控制、离散系统滑模控制、自适应滑模控制、非匹配不确定性系统滑模控制、时滞系统滑模控制、非线性系统滑模控制、Terminal滑模控制、全鲁棒滑模控制、滑模观测器、神经网络滑模控制、模糊滑模控制、动态滑模控制、积分滑模控制和随机系统的滑模控制等.对每个方向的研究状况进行了分析和说明.最后对滑模控制的未来发展作了几点展望.关键词:滑模控制;鲁棒控制;抖振中图分类号:TP273文献标识码:AResearch and development on theory and algorithms ofsliding mode controlLIU Jin-kun1,SUN Fu-chun2(1.School of Automation Science&Electrical Engineering,Beijing University of Aeronautics and Astronautics,Beijing100083,China;2.State Key Laboratory of Intelligent Technology and Systems,Tsinghua University,Beijing100084,China)Abstract:According to the development of sliding mode control(SMC)in recent years,the SMC domain is character-ized by eighteen directions.These directions are chattering free of SMC,quasi SMC,trending law SMC,discrete SMC, adaptive SMC,SMC for mismatched uncertain systems,SMC for nonlinear systems,time-delay SMC,terminal SMC, global robust SMC,sliding mode observer,neural SMC,fuzzy SMC,dynamic SMC,integral SMC and SMC for stochastic systems,etc.The evolution of each direction is introduced and analyzed.Finally,further research directions are discussed in detail.Key words:sliding mode control;robust control;chattering文章编号:1000−8152(2007)03−0407−121引言(Introduction)滑模变结构控制本质上是一类特殊的非线性控制,其非线性表现为控制的不连续性,这种控制策略与其它控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中根据系统当前的状态(如偏差及其各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动.由于滑动模态可以进行设计且与对象参数及扰动无关,这就使得变结构控制具有快速响应、对参数变化及扰动不灵敏、无需系统在线辩识,物理实现简单等优点.该方法的缺点在于当状态轨迹到达滑模面后,难于严格地沿着滑模面向着平衡点滑动,而是在滑模面两侧来回穿越,从而产生颤动.滑模变结构控制出现于20世纪50年代,经历了50余年的发展,已形成了一个相对独立的研究分支,成为自动控制系统的一种一般的设计方法.以滑模为基础的变结构控制系统理论经历了3个发展阶段.第1阶段为以误差及其导数为状态变量研究单输入单输出线性对象的变结构控制;20世纪60年代末开始了变结构控制理论研究的第2阶段,研究的对象扩大到多输入多输出系统和非线性系统;进入80年代以来,随着计算机、大功率电子切换器件、机器人及电机等技术的迅速发展,变结构控制的理论和应用研究开始进入了一个新的阶段,所研究的对象已涉及到离散系统、分布参数系统、滞后系统、非线性大系统及非完整力学系统等众多复杂系统,同时,自适应控制、神经网络、模糊控制及遗传算法等先进方法也被应用于滑模变结构控制系统的设计中.2滑模变结构控制理论研究进展(Develop-ment for SMC)2.1消除滑模变结构控制抖振的方法研究(Research on chattering elimination of SMC) 2.1.1滑模变结构控制的抖振问题(Problems ofSMC chattering)从理论角度,在一定意义上,由于滑动模态可以收稿日期:2005−10−19;收修改稿日期:2006−02−23.基金项目:国家自然科学基金资助项目(60474025,90405017).408控制理论与应用第24卷按需要设计,而且系统的滑模运动与控制对象的参数变化和系统的外干扰无关,因此滑模变结构控制系统的鲁棒性要比一般常规的连续系统强.然而,滑模变结构控制在本质上的不连续开关特性将会引起系统的抖振.对于一个理想的滑模变结构控制系统,假设“结构”切换的过程具有理想开关特性(即无时间和空间滞后),系统状态测量精确无误,控制量不受限制,则滑动模态总是降维的光滑运动而且渐近稳定于原点,不会出现抖振.但是对于一个现实的滑模变结构控制系统,这些假设是不可能完全成立的.特别是对于离散系统的滑模变结构控制系统,都将会在光滑的滑动模态上叠加一个锯齿形的轨迹.于是,在实际上,抖振是必定存在的,而且消除了抖振也就消除了变结构控制的抗摄动和抗扰动的能力,因此,消除抖振是不可能的,只能在一定程度上削弱它到一定的范围.抖振问题成为变结构控制在实际系统中应用的突出障碍.抖振产生的主要原因有:①时间滞后开关:在切换面附近,由于开关的时间滞后,控制作用对状态的准确变化被延迟一定的时间;又因为控制量的幅度是随着状态量的幅度逐渐减少的,所以表现为在光滑的滑动模台上叠加一个衰减的三角波.②空间滞后开关:开关滞后相当于在状态空间中存在一个状态量变化的“死区”.因此,其结果是在光滑的滑模面上叠加了一个等幅波形.③系统惯性的影响:由于任何物理系统的能量不可能是无限大,因而系统的控制力不能无限大,这就使系统的加速度有限;另外,系统惯性总是存在的,所以使得控制切换伴有滞后,这种滞后与时间滞后效果相同.④离散系统本身造成的抖振:离散系统的滑动模态是一种“准滑动模态”,它的切换动作不是正好发生在切换面上,而是发生在以原点为顶点的一个锥形体的表面上.因此有衰减的抖振,而且锥形体越大,则抖振幅度越大.该锥形体的大小与采样周期有关.总之,抖振产生的原因在于:当系统的轨迹到达切换面时,其速度是有限大,惯性使运动点穿越切换面,从而最终形成抖振,叠加在理想的滑动模态上.对于实际的计算机采样系统而言,计算机的高速逻辑转换以及高精度的数值运算使得切换开关本身的时间及空间滞后影响几乎不存在,因此,开关的切换动作所造成控制的不连续性是抖振发生的本质原因.在实际系统中,由于时间滞后开关、空间滞后开关、系统惯性、系统延迟及测量误差等因素,使变结构控制在滑动模态下伴随着高频振动,抖振不仅影响控制的精确性、增加能量消耗,而且系统中的高频未建模动态很容易被激发起来,破坏系统的性能,甚至使系统产生振荡或失稳,损坏控制器部件.因此,关于控制信号抖振消除的研究成为变结构控制研究的首要工作.2.1.2消除滑模变结构控制抖振的几种方法(Several methods for eliminating chatteringin SMC)国内外针对滑模控制抗抖振问题的研究很多,许多学者都从不同的角度提出了解决方法.目前这些方法主要有:1)滤波方法.通过采用滤波器,对控制信号进行平滑滤波,是消除抖振的有效方法.文[1]为了消除离散滑模控制的抖振,设计了两种滤波器:前滤波器和后滤波器,其中前滤波器用于控制信号的平滑及缩小饱和函数的边界层厚度,后滤波器用于消除对象输出的噪声干扰.文[2]在边界层内,对切换函数采用了低通滤波器,得到平滑的信号,并采用了内模原理,设计了一种新型的带有积分和变边界层厚度的饱和函数,有效地降低了抖振.文[3]利用机器人的物理特性,通过在控制器输出端加入低通滤波器,设计了虚拟滑模控制器,实现了机器人全鲁棒变结构控制,并保证了系统的稳定,有效地消除了抖振.文[4]设计了带有滤波器的变结构控制器,有效地消除了控制信号的抖振,得到了抑制高频噪声的非线性控制器,实现了存在非建模动态的电液伺服马达的定位控制.文[5]为了克服未建模动态特性造成的滑动模态抖振,设计了一种新型滑模控制器,该控制器输出通过一个二阶滤波器,实现控制器输出信号的平滑,其中辅助滑动模面的系数通过滑模观测器得到.文[6]提出了一种新型控制律,即,该控制律由3部分构成,即等效控制、切换控制和连续控制,在控制律中采用了两个低通滤波器,其中通过一个低通滤波器得到切换项的增益,通过另一个低通滤波器得到等效控制项,并进行了收敛性和稳定性分析,有效地抑制了抖振,实现了多关节机器手的高性能控制.2)消除干扰和不确定性的方法.在常规滑模控制中,往往需要很大的切换增益来消除外加干扰及不确定项,因此,外界干扰及不确定项是滑模控制中抖振的主要来源.利用观测器来消除外界干扰及不确定性成为解决抖振问题研究的重点.文[7]为了将常规滑模控制方法应用于带有较强强外加干扰的伺服系统中,设计了一种新型干第3期刘金琨等:滑模变结构控制理论及其算法研究与进展409扰观测器,通过对外加干扰的前馈补偿,大大地降低了滑模控制器中切换项的增益,有效地消除了抖振.文[8]在滑模控制中设计了一种基于二元控制理论的干扰观测器,将观测到的干扰进行前馈补偿,减小了抖振.文[9]提出了一种基于误差预测的滑模控制方法,在该方法中设计了一种观测器和滤波器,通过观测器消除了未建模动态的影响,采用均值滤波器实现了控制输入信号的平滑,有效地消除了未建模动态造成的抖振.文[10]设计了一种离散的滑模观测器,实现了对控制输入端干扰的观测,从而实现对干扰的有效补偿,相对地减小了切换增益.3)遗传算法优化方法.遗传算法是建立在自然选择和自然遗传学机理基础上的迭代自适应概率性搜索算法,在解决非线性问题时表现出很好的鲁棒性、全局最优性、可并行性和高效率,具有很高的优化性能.文[11]针对非线性系统设计了一种软切换模糊滑模控制器,采用遗传算法对该控制器增益参数及模糊规则进行离线优化,有效地减小了控制增益,从而消除了抖振.针对不确定性伺服系统设计了一种积分自适应滑模控制器,通过该控制器中的自适应增益项来消除不确定性及外加干扰,如果增益项为常数,则会造成抖振,为此,文[12]设计了一种实时遗传算法,实现了滑模变结构控制器中自适应增益项的在线自适应优化,有效地减小了抖振.文[13]采用遗传算法进行切换函数的优化,将抖振的大小作为优化适应度函数的重要指标,构造一个抖振最小的切换函数.4)降低切换增益方法.由于抖振主要是由于控制器的不连续切换项造成,因此,减小切换项的增益,便可有效地消除抖振.文[14]根据滑模控制的Lypunov稳定性要求,设计了时变的切换增益,减小了抖振.文[15]对切换项进行了变换,通过设计一个自适应积分项来代替切换项,实现了切换项增益的自适应调整,有效地减小了切换项的增益.文[16]针对一类带有未建模动态系统的控制问题,提出了一种鲁棒低增益变结构模型参考自适应控制新方法,使系统在含未建模动态时所有辅助误差均可在有限时间内收敛为零,并保证在所有情况下均为低增益控制.文[17]提出了采用模糊神经网络的切换增益自适应调节算法,当跟踪误差接近于零时,切换增益接近于零,大大降低了抖振.5)扇形区域法.文[18]针对不确定非线性系统,设计了包含两个滑动模面的滑动扇区,构造连续切换控制器使得在开关面上控制信号是连续的.文[19]采用滑动扇区法,在扇区之内采用连续的等效控制,在扇区之外采用趋近律控制,很大程度地消除了控制的抖振.6)其他方法.文[20]针对滑模变结构控制中引起抖振的动态特性,将抖振看成叠加在理想滑模上的有限频率的振荡,提出了滑动切换面的优化设计方法,即通过切换面的设计,使滑动模态的频率响应具有某种希望的形状,实现频率整形.该频率整形能够抑制滑动模态中引起抖振的频率分量,使切换面为具有某种“滤波器”特性的动态切换面.文[21]设计了一种能量函数,该能量函数包括控制精度和控制信号的大小,采用LMI(linear matrix inequality)方法设计滑动模面,使能量函数达到最小,实现了滑动模面的优化,提高了控制精度,消除了抖振.2.2准滑动模态滑模控制(Quasi-sliding modecontrol)80年代在滑动模态控制的设计中引入了“准滑动模态”和“边界层”的概念[22],实现准滑动模态控制,采用饱和函数代替切换函数,即在边界层以外采用正常的滑模控制,在边界层内为连续状态的反馈控制,有效地避免或削弱了抖振,为变结构控制的工程应用开辟了道路.此后,有许多学者对于切换函数和边界层的设计进行了研究.①连续函数近似法.文[23]采用Sigmoid连续函数来代替切换函数.文[24]针对直流电机伺服系统的未建模动态进行了分析和描述,设计了基于插补平滑算法的滑模控制器,实现了非连续切换控制的连续化,有效地消除了未建模动态对直流电机伺服系统造成的抖振.②边界层的设计.边界层厚度越小,控制效果越好,但同时又会使控制增益变大,抖振增强;反之,边界层厚度越大,抖振越小,但又会使控制增益变小,控制效果差.为了获得最佳抗抖振效果,边界层厚度应自适应调整.文[25]提出了一种高增益滑模控制器,设控制信号输入为u,切换函数为s(t),将|˙u|作为衡量抖振的指标,按降低控制抖振来设计模糊规则,将|s|和|˙u|作为模糊规则的输入,模糊推理的输出为边界层厚度的变化,实现了边界层厚度的模糊自适应调整.文[26]针对不确定性线性系统,同时考虑了控制信号的降抖振与跟踪精度的要求,提出了一种基于系统状态范数的边界层厚度在线调整算法.文[27]提出了一种新型的动态滑模控制,采用饱和函数方法,通过设计一种新型非线性切换函数,消除了滑模到达阶段的抖振,实现了全局鲁棒滑模控制,有效地解决了一类非线性机械系统的控制抖振问题.文[28]为了减小边界层厚度,在边界层内采用了积分控制,既获得了稳态误差,又避免了抖振.边界层的方法仅能保410控制理论与应用第24卷证系统状态收敛到以滑动面为中心的边界层内,只能通过较窄的边界层来任意地接近滑模,但不能使状态收敛到滑模.2.3基于趋近律的滑模控制(Sliding mode controlbased on trending law)高为炳利用趋近律的概念,提出了一种变结构控制系统的抖振消除方法[29].以指数趋近律˙s=−ε·sgn s−k·s为例,通过调整趋近律的参数κ和ε,既可以保证滑动模态到达过程的动态品质,又可以减弱控制信号的高频抖振,但较大的ε值会导致抖振.文[30]分析了指数趋近律应用于离散系统时趋近系数造成抖振的原因,并对趋近系数与抖振的关系进行了定量的分析,提出了趋近系数ε的自适应调整算法.文[31]提出了将离散趋近律与等效控制相结合的控制策略,离散趋近律仅在趋近阶段起作用,当系统状态到达准滑模模态阶段,采用了抗干扰的离散等效控制,既保证了趋近模态具有良好品质,又降低了准滑动模态带,消除了抖振.文[32]将模糊控制应用于指数趋近律中,通过分析切换函数与指数趋近律中系数的模糊关系,利用模糊规则调节指数趋近律的系数,其中切换函数的绝对值|s|作为模糊规则的输入,指数趋近律的系数κ和ε作为模糊规则的输出,使滑动模态的品质得到了进一步的改善,消除了系统的高频抖振.2.4离散系统滑模变结构控制(Sliding mode con-trol for discrete system)连续时间系统和离散时间系统的控制有很大差别.自80年代初至今,由于计算机技术的飞速发展,实际控制中使用的都是离散系统,因此,对离散系统的变结构控制研究尤为重要.对离散系统变结构控制的研究是从80年代末开始的,例如,Sarpturk等于1987年提出了一种新型离散滑模到达条件,在此基础上又提出了离散控制信号必须是有界的理论[33],Furuta于1990年提出了基于等效控制的离散滑模变结构控制[34],高为炳于1995年提出了基于趋近律的离散滑模变结构控制[35].他们各自提出的离散滑模变结构滑模存在条件及其控制方法已被广泛应用.然而,传统设计方法存在两方面不足:一是由于趋近律自身参数及切换开关的影响,即使对名义系统,系统状态轨迹也只能稳定于原点邻域的某个抖振;二是由于根据不确定性上下界进行控制器设计,可能会造成大的反馈增益,使控制抖振加剧.近年来国内外学者一方面对离散系统滑模变结构控制的研究不断深入.文[36]提出了基于PR型的离散系统滑模面设计方法,其中P和R分别为与系统状态有关的正定对称阵和半正定对称阵,在此基础上设计了稳定的离散滑模控制器,通过适当地设计P和R,保证了控制器具有良好的性能.文[37]针对离散系统提出了一种新型滑模存在条件,进一步拓展了离散滑模控制的设计,在此基础上设计了一种新型滑模控制律.针对离散系统中滑模控制的不变性和鲁棒性难以有效保证,文[38]提出了3种解决方法,在第1种方法中,采用了干扰补偿器和解耦器消除干扰,在第2种方法中,采用回归切换函数方法来消除干扰,在第3种方法中,采用回归切换函数和解耦器相结合的方法来消除干扰,上述3种方法已成功地应用于数控中.文[39]针对数字滑模控制的鲁棒性进行了系统的研究,提出了高增益数字滑模控制器.文[40]针对带有干扰和未知参数的多输入多输出离散系统的滑模控制进行了研究,并采用自适应律实现了未知项的估计.2.5自适应滑模变结构控制(Adaptive slidingmode control)自适应滑模变结构控制是滑模变结构控制与自适应控制的有机结合,是一种解决参数不确定或时变参数系统控制问题的一种新型控制策略.文[41]针对线性化系统将自适应Backsteping与滑模变结构控制设计方法结合在一起,实现了自适应滑模变结构控制,文[42]针对一类最小相位的可线性化的非线性系统,设计了一种动态自适应变结构控制器,实现了带有不确定性和未知外干扰的非线性系统鲁棒控制.在一般的滑模变结构控制中,为了保证系统能够达到切换面,在设计控制律时通常要求系统不确定性范围的界已知,这个要求在实际工程中往往很难达到,针对具有未知参数变化和干扰变化的不确定性系统的变结构控制,文[43]设计了一种新型的带有积分的滑动模面,并采用一种自适应滑模控制方法,控制器的设计无需不确定性及外加干扰的上下界,实现了一类不确定伺服系统的自适应变结构控制.针对自适应滑模控制中参数估计值无限增大的缺点,文[44]提出了一种新的参数自适应估计方法,保证了变结构控制增益的合理性.近年来,变结构模型参考自适应控制理论取得了一系列重要进展,由于该方法具有良好的过渡过程性能和鲁棒性,在工程上得到了很好的应用.文[45]设计了一种新型动态滑动模面,滑动模面参数通过采用自适应算法估计得到,从而实现了非线性系统的模型参考自适应滑模控制.文[46]针对一类不确定性气压式伺服系统,提出了模型参考自适应滑模控制方法,并在此基础上提出了克服控制抖振的有效方法.第3期刘金琨等:滑模变结构控制理论及其算法研究与进展4112.6非匹配不确定性系统的滑模变结构控制(Sliding mode control for systems with mis-matched uncertainties)由于大多数系统不满足变结构控制的匹配条件,因此,存在非匹配不确定性系统的变结构控制是一个研究重点.文[47]利用参数自适应控制方法,构造了一个变参数的切换函数,对具有非匹配不确定性的系统进行了变结构控制设计.采用基于线性矩阵不等式LMI的方法,为非匹配不确定性系统的变结构控制提供了新的思路,Choi针对不匹配不确定性系统,专门研究了利用LMI方法进行变结构控制设计的问题[48∼50].Backstepping设计方法通过引入中间控制器,使控制器的设计系统化、程序化,它对于非匹配不确定性系统及非最小相位系统的变结构控制是一种十分有效的方法.采用Backstepping设计方法,文[51]实现了对于一类具有非匹配不确定性的非线性系统的变结构控制.将Backstepping设计方法、滑模控制及自适应方法相结合,文[52]实现了一类具有非匹配不确定性的非线性系统的自适应滑模控制.2.7针对时滞系统的滑模变结构控制(Slidingmode control for time-delay system)由于实际系统普遍存在状态时滞、控制变量时滞,因此,研究具有状态或控制时滞系统的变结构控制,对进一步促进变结构控制理论的应用具有重要意义.文[53]对于具有输入时滞的不确定性系统,通过状态变换的方法,实现了滑模变结构控制器的设计.文[54]研究了带有关联时滞项的大系统的分散模型跟踪变结构控制问题,其中被控对象的时滞关联项必须满足通常的匹配条件.文[55]采用趋近律的方法设计了一种新型控制器,采用了基于LMI的方法进行了稳定性分析和切换函数的设计,所设计的控制器保证了对非匹配不确定性和匹配的外加干扰具有较强的鲁棒性,解决了非匹配参数不确定性时滞系统的变结构控制问题.文[56]针对带有输出延迟非线性系统的滑模控制器的设计进行了探讨,在该方法中,将延迟用一阶Pade近似的方法来代替,并将非最小相位系统转化为稳定系统,在存在未建模动态和延迟不确定性条件下,控制器获得了很好的鲁棒性能.国内在时滞系统的滑模变结构控制方面也取得了许多成果,针对时滞系统的变结构控制器设计问题和时滞变结构控制系统的理论问题进行了多年的研究,取得了许多成果[57∼59].2.8非线性系统的滑模变结构控制(Sliding modecontrol for nonlinear system)非线性系统的滑模变结构控制一直是人们关注的热点.文[60]研究了具有正则形式的非线性系统的变结构控制问题,为非线性系统变结构控制理论的发展奠定了基础.目前,非最小相位非线性系统、输入受约束非线性系统、输入和状态受约束非线性系统等复杂问题的变结构控制是该领域研究的热点.文[61]将Anti-windup方法与滑模控制方法相结合,设计了输入饱和的Anti-windup算法,实现当输出为饱和时的高精度变结构控制,文[62]利用滑模变结构控制方法实现了一类非最小相位非线性系统的鲁棒控制,文[63]利用输入输出反馈线性化、相对度、匹配条件等非线性系统的概念,采用输出反馈变结构控制方法实现了一类受约束非线性系统的鲁棒输出跟踪反馈控制.文[64]利用Backstepping方法,实现了非线性不确定性系统的变结构控制.2.9Terminal滑模变结构控制(Terminal slidingmode control)在普通的滑模控制中,通常选择一个线性的滑动超平面,使系统到达滑动模态后,跟踪误差渐进地收敛为零,并且渐进收敛的速度可以通过选择滑模面参数矩阵任意调节.尽管如此,无论如何状态跟踪误差都不会在有限时间内收敛为零.近年来,为了获得更好的性能,一些学者提出了一种Terminal(终端)滑模控制策略[65∼67],该策略在滑动超平面的设计中引入了非线性函数,使得在滑模面上跟踪误差能够在有限时间内收敛到零.Ter-minal滑模控制是通过设计一种动态非线性滑模面方程实现的,即在保证滑模控制稳定性的基础上,使系统状态在指定的有限时间内达到对期望状态的完全跟踪.例如,文[68]将动态非线性滑模面方程设计为s=x2+βx q/p1,其中p>q,p和q为正的奇数,β>0.但该控制方法由于非线性函数的引入使得控制器在实际工程中实现困难,而且如果参数选取不当,还会出现奇异问题.文[69]探讨了非奇异Termianl滑模控制器的设计问题,并针对N自由度刚性机器人的控制进行了验证.文[70]采用模糊规则设计了Terminal滑模控制器的切换项,并通过自适应算法对切换项增益进行自适应模糊调节,实现了非匹配不确定性时变系统的Terminal滑模控制,同时降低了抖阵.文[71]中只对一个二阶系统给出了相应的Terminal滑模面,滑模面的导数是不连续的,不适用于高阶系统.文[72]设计了一种适用于高阶非线性系统的Terminal滑模面,克服了文[71]中的滑模面导数不连续的缺点,并消除了滑模控制的到达阶段,确保了系统的全局鲁棒性和稳定性,进一步地,庄开宇等[73]又针对系统参数摄动和外界扰动等不确定性因素上界的未知性,实现了MIMO系统的自适应Terminal控制器设计,所设计的滑模面方程既保。
智能控制第1讲 智能控制概论
Data, Information, Knowledge, IntelligenceIntelligence Knowledge Information Data房间温度高 解决温度 高的办法温度高原因通风量不足增大通风量房间温度 32℃理想温度 23℃Data, Information, Knowledge, IntelligenceIntelligence KnowledgeInformation Data传统控制面临的挑战 实际系统由于存在复杂性、非线性、时变 性、不确定性和不完全性等,一般无法获得精 确的数学模型。
应用传统控制理论进行控制必须提出并遵循 一些比较苛刻的线性化假设,而这些假设在应 用中往往与实际情况不相吻合。
传统控制面临的挑战 传统控制方法在解决大范围变工况、异常 工况等问题方面往往不尽人意。
环境和被控对象的未知和不确定性,导致无 法建立模型。
9 传统控制往往不能满足某些系统的性能要 求。
控制科学发展过程进展方向最优控制 确定性反馈控制 开环控制 智能控制 自学习控制自组织控制 自适应控制 鲁棒控制 随机控制对象的复杂性智能控制的发展¾ 1985 年 8月,IEEE在纽约召开第一届智能控制学术 研讨会,主题:智能控制原理和智能控制系统。
会议 决定在 IEEE CSS 下设 IEEE 智能控制专业委员会。
这 标志着智能控制这一新兴学科研究领域的正式诞生。
¾ 1987 年 1 月 , 美 国 费 城 , 第 一 次 智 能 控 制 国 际 会 议,IEEE CSS与CS两学会主办; ¾ 1987 年以来,一些国际学术组织,如 IEEE 、 IFAC 等定期或不定期举办各类有关智能控制的国际学术会 议或研讨会,一定程度上反映了智能控制发展的好势 头。
智能控制的发展¾ 1991年7月,中国人工智能学会成立。
¾ 1993年7月,成都,中国人工智能学会智能机器人专 业委员会成立大会暨首届学术会议。
智能控制-刘金琨编著PPT第6章
术实现;
(5)能进行学习,以适应环境的变化。
6.6 神经网络控制的研究领域
1 基于神经网络的系统辨识 ① 将神经网络作为被辨识系统的模型,可在已知
常规模型结构的情况下,估计模型的参数。
② 利用神经网络的线性、非线性特性,可建立线
性、非线性系统的静态、动态、逆动态及预测
模型,实现非线性系统的建模和辨识。
人恼的生理学和心理学着手,通过人工
模拟人脑的工作机理来实现机器的部分
智能行为。
人工神经网络(简称神经网络, Neural Network )是模拟人脑思维方 式的数学模型。 神经网络是在现代生物学研究人脑组 织成果的基础上提出的,用来模拟人类大 脑神经网络的结构和行为。神经网络反映 了人脑功能的基本特征,如并行信息处理 、学习、联想、模式分类、记忆等。
1982 年 , 物 理 学 家 Hoppield 提 出 了 Hoppield 神经网络模型,该模型通过引入 能量函数,实现了问题优化求解, 1984 年 他用此模型成功地解决了旅行商路径优化 问题(TSP)。 在1986年,在Rumelhart和McCelland等出 版《Parallel Distributed Processing》一书 ,提出了一种著名的多层神经网络模型, 即BP网络。该网络是迄今为止应用最普遍 的神经网络。
6.4.2 Delta(δ )学习规则
假设误差准则函数为:
1 E 2
p 1
P
(d p y p ) 2
E
p 1
P
p
其中, d p 代表期望的输出(教师信号);y p 为 网络的实际输出, y p f (W Xp ) ;W 为网络所有权 值组成的向量:
W w0, w1, , wn T
[智能控制[刘金琨 (10)[98页]
遗传算法可应用于目标函数无法求导数或导数不 存在的函数的优化问题,以及组合优化问题等。
(4)遗传算法使用概率搜索技术。遗传算法的选择、 交叉、变异等运算都是以一种概率的方式来进行的, 因而遗传算法的搜索过程具有很好的灵活性。随着进 化过程的进行,遗传算法新的群体会更多地产生出许 多新的优良的个体。
(2)交叉(Crossover Operator)
复制操作能从旧种群中选择出优秀者,但不能创造 新的染色体。而交叉模拟了生物进化过程中的繁殖现 象,通过两个染色体的交换组合,来产生新的优良品 种。
交叉的过程为:在匹配池中任选两个染色体,随机 选择一点或多点交换点位置;交换双亲染色体交换点 右边的部分,即可得到两个新的染色体数字串。
遗传算法从由很多个体组成的一个初始群体开始最 优解的搜索过程,而不是从一个单一的个体开始搜索, 这是遗传算法所特有的一种隐含并行性,因此遗传算 法的搜索效率较高。
(3)遗传算法直接以目标函数作为搜索信息。传统的 优化算法不仅需要利用目标函数值,而且需要目标函 数的导数值等辅助信息才能确定搜索方向。而遗传算 法仅使用由目标函数值变换来的适应度函数值,就可 以确定进一步的搜索方向和搜索范围,无需目标函数 的导数值等其他一些辅助信息。
10.1 遗传算法的基本原理
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
10.2 遗传算法的特点
(1)遗传算法是对参数的编码进行操作,而非对参数 本身,这就是使得我们在优化计算过程中可以借鉴生 物学中染色体和基因等概念,模仿自然界中生物的遗 传和进化等机理;
4 自适应模糊控制-智能控制——理论基础、算法设计与应用-刘金琨-清华大学出版社
关系。自适应律的任务是为 f 、g 确定一个调节机理,
使得跟踪误差
e
和参数误差 f
f
、
g
g
达到最小。
定义Lyapunov函数
V
1 eT Pe 2
1
2 1
f
f
T
f
f
1
2 2
g
g
T
g
g
(4.27)
式 中 1 , 2 是 正 常 数 ,P 为 一 个 正 定 矩 阵 且 满 足
* f
arg
min sup f f
fˆ
x | f
xR n
f x
(4.22)
* g
arg
min sup gˆ g g
x |g
xR n
g x
其中 f 和 g分别为 f 和 g 的 集合。
(4.23)
定义最小逼近误差为
fˆ
x
|
* f
f
x
gˆ
x
|
* g
gxu
U
1
,
1
2
,
2
R2
上的一个函数,其解析式形式未知。假设对任意一
个 x U ,都能得到 g(x) ,则可设计一个逼近的模糊系统。 模糊系统的设计步骤为:
步骤1:在 i , i 上定义Ni i 1, 2 个标准的、一致
的和完备的模糊集 A1, i
A2 , , i
A 。 Ni i
步骤2:组建 M N1 N2 条模糊集IF-THEN规则:
令:
0 1 0 0 0 0
0
0
1 00
0
,
Λ
0
0
0 00
《智能控制》_刘金琨_第4章
• R1: IF E is NB and EC is NB then U is PB • R2: IF E is NB and EC is NS then U is PM • 通常把if…部分称为“前提部,而then…部分称 为 “ 结论部 ” ,其基本结构可归纳为 If A and B then C, 其中 A 为论域 U 上的一个模糊子集, B 是论域 V 上 的一个模糊子集。根据人工控制经验,可离线组织 其控制决策表R, R是笛卡儿乘积集上的一个模糊子 集,则某一时刻其控制量由下式给出:
4.1.3、模糊控制系统的工作原理
以水位的模糊控制为例,如图 4-4 所示。设有一个 水箱,通过调节阀可向内注水和向外抽水。设计一个模 糊控制器,通过调节阀门将水位稳定在固定点附近。按 照日常的操作经验,可以得到基本的控制规则: “若水位高于O点,则向外排水,差值越大,排水越快” ; “若水位低于O点,则向内注水,差值越大,注水越快” 。 根据上述经验,按下列步骤设计模糊控制器:
•
推理结果的获得,表示模糊控制的规则推理功 能已经完成。但是,至此所获得的结果仍是一个模 糊矢量,不能直接用来作为控制量,还必须作一次 转换,求得清晰的控制量输出,即为解模糊。通常 把输出端具有转换功能作用的部分称为解模糊接口。
•
综上所述,模糊控制器实际上就是依靠微机 (或单片机)来构成的。它的绝大部分功能都是由 计算机程序来完成的。随着专用模糊芯片的研究和 开发,也可以由硬件逐步取代各组成单元的软件功 能。
0 0 0 0 0 0 PSe PSu 0 0 0 0 0 0 0.5 1.0 0.5 0 0 1.0 0 0 . 5 0 0 0
0 0 0 0 0 0 0
智能控制(第三版)chap8-刘金琨
8.1.3 仿真实例
使用模糊RBF网络逼近对象:
y (k ) u (k ) 3 y (k 1) 1 y (k 1) 2
其中采样时间为1ms。
模糊RBF网络逼近程序见chap8_1.m。
i 1 i 1 m m
i i 1
m
2
x j c
i
i 2 j
1 bi j
2
yd yn
y i i i y i
i 1 i 1
m
m
m i i 1
i j i j
其中
m i i y E E y n i 1 y y d n i i m p j y n p j i i 1 p y d y n
i j
i
i 1
m
i
y i i p j
其中α 、β 为学习速率。
8.2.3 仿真实例
使用混合型pi-sigma神经网络逼近对象:
y (k 1) y (k ) u (k ) 1 y (k 1) 2
3
混合型pi-sigma神经网络逼近程序见chap8_2.m
8.3
小脑模型神经网络
8.3. 1 CMAC概述
小脑模型神经网络( CMAC-Cerebellar Model
1 2 E ek 2
网络的学习算法如下:
输出层的权值通过如下方式来调整:
E E e y m wk ek f 3 w e y m w
智能控制(第三版)chap2-刘金琨
法推得的状态估计等; 对静态工作点的寻优、对现有控制规律是否需要
改进的判断等。目标既可以是预定的,也可以是
目标──系统的性能指标。例如对稳定性的要求,
根据外部命令或内部运行状况在线地动态建立的。
专家控制的规则库一般采用产生式规则表示: IF 控制局势(事实和数据) THEN 操作结论 由多条产生式规则构成规则库。
5 分类 按专家控制在控制系统中的作用和功能,可将 专家控制器分为以下两种类型:
(1) 直接型专家控制器
直接专家控制器用于取代常规控制器,直接控制
生产过程或被控对象。具有模拟(或延伸,扩展)操
作工人智能的功能。该控制器的任务和功能相对比较
简单,但是需要在线、实时控制。因此,其知识表达 和知识库也较简单,通常由几十条产生式规则构成, 以便于增删和修改。 直接型专家控制器的示意图见图中的虚线所示。
和方法开始被引入控制系统的研究和工程应用中。
专家系统能处理定性的、启发式或不确定的知
识信息,经过各种推理来达到系统的任务目标。专
家系统为解决传统控制理论的局限性提供了重要的
启示,二者的结合导致了专家控制这一方法。
2.1 专家系统
2.1.1 专家系统概述
1.定义 专家系统是一类包含知识和推理的智能计算机 程序,其内部包含某领域专家水平的知识和经验,
搜索、广度优先搜索、启发式优先搜索等。
(3)人─机接口的设计
① 设计“用户─专家系统接口”:用于咨询理解和结
论解释;
② 设计“专家─专家系统接口”:用于知识库扩充及
系统维护。
第二节 专家控制
一、概述 瑞典学者 K.J.Astrom 在 1983 年首先把人工智能 中的专家系统引入智能控制领域,于 1986 年提出 “专家控制”的概念,构成一种智能控制方法。
智能控制(第2版)[刘金琨]chap3.答案
zmf(x[a, ,b])
有关隶属函数的MATLAB设计,见著作:
楼顺天,胡昌华,张伟,基于MATLAB的系统分 析与设计-模糊系统,西安:西安电子科技高校出 版社,2001
例3.6 隶属函数的设计:针对上述描述的6种隶属 函数进行设计。M为隶属函数的类型,其中M=1 为高斯型隶属函数,M=2为广义钟形隶属函数, M=3 为 S 形 隶 属 函 数 , M=4 为 梯 形 隶 属 函 数 , M=5为三角形隶属函数,M=6为Z形隶属函数。 如图所示。
(5)三角形隶属函数
三角形曲线的形态由三个参数a,b,c
确定:
0
x
a
f
(x, a, b, c)
b
c
a x
c b
0
xa a xb
b xc xc
其中参数a和c确定三角形的“脚”,而参数b 确定三角形的“峰”。 Matlab表示为
trimf(x[a,b, ,c])
(6)Z形隶属函数 这是基于样条函数的曲线,因其呈现Z形态而
当γ=0时, c(x)A (x)B (x ,)相当于A∩B时的算子。
当γ=1, c ( x ) A ( x ) B ( x ) A ( x ) B ( x ),相当于
A∪B时的代数和算子。
平衡算子目前已经应用于德国Inform公司研制 的著名模糊限制软件Fuzzy-Tech中。
第三节 隶属函数
4.吸取律 A∪(A∩B)=A A∩(A∪B)=A 5.安排律 A∪(B∩C)=(A∪B)∩(A∪C) A∩(B∪C)=(A∩B) ∪(A∩C) 6.复原律
AA
7.对偶律
ABAB
ABAB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含一个隐含层的BP网络结构如图7-5所示,
j k 图中 i 为输入层神经元,为隐层神经元,为
输出层神经元。
图7-5
BP神经网络结构
7.2.3 BP网络的逼近
BP网络逼近的结构如图 7-6 所示,图中 k 为网络
的迭代步骤,u(k)和y(k)为逼近器的输入。BP为网 络逼近器, y(k) 为被控对象实际输出, yn(k) 为 BP 的输出。将系统输出 y(k) 及输入 u(k) 的值作为逼近 器 BP 的输入,将系统输出与网络输出的误差作为
其中 为动量因子。
0,1
7.2.7 仿真实例:
取标准样本为3输入2输出样本,如表7-1所示。 表7-1 训练样本
输 入 1 0 0 0 1 0 0 0 1
输 出 1 0 0 0 0.5 1
BP 网 络 模 式 识 别 程 序 包 括 网 络 训 练 程 序
chap7_2a.m和网络测试程序chap7_2b.m。
如果考虑上次权值对本次权值变化的影响,需要 加入动量因子 ,此时的权值为:
w jl k 1 w jl k w jl w jl k w jl k 1
wij (k1) wij (k) wij (wij (k) wij (k1))
图7-4 Sigmoid函数
7.2 BP神经网络
1986年,Rumelhart等提出了误差反向传播神经网
络,简称BP网络(Back Propagation),该网络是
一种单向传播的多层前向网络。 误差反向传播的BP算法简称BP算法,其基本思 想是梯度下降法。它采用梯度搜索技术,以期使网络 的实际输出值与期望输出值的误差均方值为最小。
图7-13 RBF网络结构
x x1 在RBF神经网络中,
x2
xn
T
为网络输入,
h j为隐含层第
j个神经元的输出,即
2
x c j hj exp 2b 2 j
j j1 jn
c , c 式中, c , 矢量值。 高斯基函数的宽度矢量为
(7.20) 为第j 个隐层神经元的中心点
BP网络的训练过程如下:正向传播是输入信
号从输入层经隐层传向输出层,若输出层得到
了期望的输出,则学习算法结束;否则,转至
反向传播 以第p个样本为例,用于训练的BP网络结 构如图7-11所示。
图7-11
BP神经网络结构
网络的学习算法如下: (1)前向传播:计算网络的输出。 隐层神经元的输入为所有输入的加权之和:
7.3
RBF神经网络
径向基函数(RBF-Radial Basis Function)神经网络是 由J.Moody和C.Darken在80年代末提出的一种神经网络 , 它是具有单隐层的三层前馈网络。由于它模拟了人脑
中局部调整、相互覆盖接收域(或称感受野 -Receptive
Field )的神经网络结构,因此, RBF 网络是一种局部 逼近网络,已证明它能任意精度逼近任意连续函数。
7.2.1 BP网络特点 (1)是一种多层网络,包括输入层、隐含层和输出层
;
(2)层与层之间采用全互连方式,同一层神经元之间 不连接; (3)权值通过δ 学习算法进行调节; (4)神经元激发函数为S函数;
(5)学习算法由正向传播和反向传播组成;
(6)层与层的连接是单向的,信息的传播是双向的。
7.2.2 BP网络结构
络并行推理算法对所需要的输入模式进行识别。
•
当待识别的输入模式与训练样本中的某个输入 模式相同时,神经网络识别的结果就是与训练样本中 相对应的输出模式。当待识别的输入模式与训练样本 中所有输入模式都不完全相同时,则可得到与其相近 样本相对应的输出模式。当待识别的输入模式与训练 样本中所有输入模式相差较远时,就不能得到正确的 识别结果,此时可将这一模式作为新的样本进行训练, 使神经网络获取新的知识,并存储到网络的权值矩阵 中,从而增强网络的识别能力。
其中取
x1 u(k)
7.2.4 BP网络的优缺点
BP网络的优点为: (1)只要有足够多的隐层和隐层节点,BP网络可以 逼近任意的非线性映射关系; (2)BP网络的学习算法属于全局逼近算法,具有较 强的泛化能力。 (3)BP网络输入输出之间的关联信息分布地存储在 网络的连接权中,个别神经元的损坏只对输入输 出关系有较小的影响,因而 BP 网络具有较好的容 错性。
7.2.6 BP网络模式识别
由于神经网络具有自学习、自组织和并行处理 等特征,并具有很强的容错能力和联想能力,因此,
•
神经网络具有模式识别的能力。
•
在神经网络模式识别中,根据标准的输入输
出模式对,采用神经网络学习算法,以标准的模 式作为学习样本进行训练,通过学习调整神经网 络的连接权值。当训练满足要求后,得到的神经 网络权值构成了模式识别的知识库,利用神经网
x j wij xi
i
隐层神经元的输出 x 'j 采用S函数激发 x j:
x f (x j )
' j
1 1 e
x j
则
' x j
x j
' ' x j (1 x j )
输出层神经元的输出:
xl w jl x
j
' j
网络第 l 个输出与相应理想输出 xl0的误差为:
的状态只影响下一层神经元的状态。如果在输出 层不能得到期望的输出,则转至反向传播,将误 差信号(理想输出与实际输出之差)按联接通路 反向计算,由梯度下降法调整各层神经元的权值,
使误差信号减小。
(1)前向传播:计算网络的输出。 隐层神经元的输入为所有输入的加权之和:
xj
w x
i
ij i
隐层神经元的输出采用S函数激发:
•
由于 BP 网络具有很好的逼近特性和泛化能力, 可用于神经网络控制器的设计。但由于 BP 网络 收敛速度慢,难以适应实时控制的要求。
7.2.5 BP网络逼近仿真实例
使用BP网络逼近对象:
y (k 1) y (k ) u (k ) 1 y (k 1) 2
3
BP网络逼近程序见chap7_1.m
x 'j f (x j ) 1 1 e
x j
则
x 'j x j
x 'j (1 x 'j )
(1)前向传播:计算网络的输出。 隐层神经元的输入为所有输入的加权之和:
xj
w x
i
ij i
隐层神经元的输出采用S函数激发:
x 'j f (x j ) 1 1 e
x j
yn E ' w j 0 e(k ) e(k ) x j w j 0 w j 0
k+1时刻网络的权值为:
wj 0 (k1) wj 0 (k) wj 2
隐层及输入层连接权值学习算法为:
yn E wij e(k ) wij wij
其中, 为动量因子。
0,1
Jacobian 阵(即为对象的输出对控制输入的灵敏度信息
)可由神经网络辨识得到,其算法为:
y k yn k yn k x'j x j ' ' w x 1 x j0 j j w 1j ' u k u k x j x j x1 j
其中
' ' x x x yn yn j j j ' wj 0 xi w j 0 x 'j (1 x 'j ) xi wij x j x j wij x j
k+1时刻网络的权值为:
wij (k 1) wij (k ) wij
第7章 典型神经网络
7.1 单神经元网络
2 神经元模型
图7-1中 u i为神经元的内部状态, i 为阈值,x j 为 wij 为表示从单元 u j到单元 u i 的 输入信号,j 1, , n ,
连接权系数,si 为外部输入信号。 图7-1神经元模型可描述为:
Neti wij x j si i
BP网络的主要缺点为:
(1)待寻优的参数多,收敛速度慢;
(2)目标函数存在多个极值点,按梯度下降法进行
学习,很容易陷入局部极小值;
(3)难以确定隐层及隐层节点的数目。目前,如何
根据特定的问题来确定具体的网络结构尚无很好
的方法,仍需根据经验来试凑。
•
由于 BP 网络具有很好的逼近非线性映射的能
力,该网络在模式识别、图像处理、系统辨识、 函数拟合、优化计算、最优预测和自适应控制等 领域有着较为广泛的应用。
el xl0 xl
第p个样本的误差性能指标函数为:
1 N 2 E p el 2 l 1
其中N为网络输出层的个数。
( 2)反向传播:采用梯度下降法,调整各层间的权
值。权值的学习算法如下: 输出层及隐层的连接权值
w jl
学习算法为:
xl w jl el el x 'j w jl w jl
E p
w jl (k 1) w jl (k ) w jl
隐层及输入层连接权值 wij 学习算法为:
xl wij el wij wij l 1
N
E p
wij (k 1) wij (k ) wij
其中
' ' x x x xl xl j j j ' wil xi w jl x 'j (1 x 'j ) xi wij x j x j wij x j
图7-2 阈值型函数