初中数学思想方法篇——化归思想
化归思想在初中数学解题中的应用策略探究
化归思想在初中数学解题中的应用策略探究化归思想是数学中的一种重要思维方法和解题策略。
在初中数学解题中,通过化归思想可以将复杂的问题转化为简单的问题,从而更容易解决。
本文将通过探究在初中数学中化归思想的应用策略,进一步揭示其重要性和作用。
化归思想在初中数学中的应用主要可以体现在如下几个方面:1. 数字的化归:通过对数字的加减乘除操作,将一个数化为另一个数。
将一个数的个位数连加、连乘,或者用两个相邻的数相减,可以得到一个新的数,从而简化计算。
这种方法常常运用于整数、分数、百分数等数的转化和计算中。
2. 图形的化归:通过将一个复杂的图形化归为几个简单的图形,再分别计算这些简单图形的面积或周长等属性,最终得到原图形的属性。
将一个复杂的多边形分解为矩形、三角形等简单图形进行计算。
这种方法常常运用于几何图形的计算和证明中。
3. 方程的化归:通过对方程的变换和化简,将一个复杂的方程化为一个简单的方程或者一个等价的方程,从而更容易求解。
对二次方程进行配方法化简,将高次方程降阶为低次方程等。
这种方法常常运用于方程的解法和研究中。
化归思想的应用策略主要包括:1. 规律归纳:观察问题中的数字、图形等规律,寻找规律的特点并形成归纳总结。
通过归纳总结,可以将问题中的复杂情况转化为一个简单的规律,从而可以更快地解决问题。
2. 逆向思维:从问题的结果出发,逆向思考问题的起点,通过逆向思维将问题化简。
某个数的平方等于另一个数,可以通过逆向思维将两数之差或者两数之和添加进方程,从而将问题简化为求一个等式的解。
3. 类比求解:将一个与所给问题相似的问题进行求解,并运用类似的方法和策略,再将得到的结果应用到所给问题中。
通过类比求解,可以避免陷入紧张的思维状态,更容易找到解题的思路和方法。
化归思想在初中数学解题中具有重要的应用价值。
通过化归思想,可以将复杂的问题转化为简单的问题,从而更容易解决。
化归思想的应用策略包括规律归纳、逆向思维和类比求解等。
化归思想在初中数学教学中的应用
化归思想在初中数学教学中的应用化归思想是数学中一种非常重要的思想方法,它在初中数学教学中有着广泛的应用。
化归思想的核心是将复杂问题化简为简单问题,并通过解决简单问题来解决复杂问题。
化归思想在初中数学教学中的应用主要体现在以下几个方面。
一、化归思想在初中数学解题中的应用在初中数学解题中,我们经常会遇到一些复杂的问题,如方程、不等式、几何图形的证明等等。
而化归思想可以帮助我们将这些复杂的问题化简为简单问题,从而更容易得到解答。
1.方程的化归在解方程时,通过引入新的变量或进行恰当的变换,可以将复杂的方程化归为一次方程或二次方程,从而更容易求解。
例如,对于一个三次方程,我们可以通过令新的变量等于该方程的根,再进行适当的变换,将该三次方程化归为一个二次方程。
这样一来,我们只需要求解这个二次方程,就可以找到原方程的解。
2.几何证明的化归在几何证明中,有时我们遇到的问题相对复杂,而化归思想可以帮助我们将复杂的几何证明化归为简单的证明。
例如,在证明一点为某个角的平分线时,我们可以通过绘制一条垂直平分线,将原问题化归为证明两个直角三角形全等的问题。
这样一来,我们只需要证明这两个直角三角形全等即可得到结论。
3.不等式的化归在解不等式时,通过引入新的变量或进行恰当的变换,也可以将复杂的不等式化归为简单的不等式。
例如,对于一个含有绝对值的不等式,我们可以通过将绝对值拆分为两个情况,分别进行讨论,从而化归为不含绝对值的简单不等式。
这样一来,我们只需要分别求解这两个简单不等式,就可以得到原不等式的解集。
二、化归思想在初中数学教学中的教学模式化归思想在初中数学教学中还有一种重要的应用,即可以用来引导学生形成良好的解题习惯,提高学生解题能力。
1.引导学生合理化归问题在教学中,教师可以通过设计一些具体问题,引导学生尝试将复杂问题化归为简单问题。
例如,在教学解一次方程时,教师可以设计一些与现实生活有关的问题,让学生先找到问题中的未知数,并通过列方程解决问题。
化归思想方法在数学教学中的应用-2019年精选文档
化归思想方法在数学教学中的应用一、化归的基本内涵(一)化归思想方法概述所谓化归,就是在研究和解决有关数学问题时。
采用某种手段将问题转换。
进而达到解决问题的一种数学思想方法。
化归是一种分析问题、解决问题的基本思想方法。
在数学中通常的做法是:将一个非基本的问题通过分解、变形、代换或平移、旋转、伸缩等多种方式,化归成一个熟悉的基本问题,从而求出解答。
总之,化归的原则是以已知的、简单的、具体的、特殊的、基本的知识为基础,将未知的化为已知的;复杂的化为简单的;抽象的化为具体的;一般的化为特殊的;非基本的化为基本的,从而得出正确的解答。
(二)化归的核心思想和本质化归的核心思想和本质:对需要解决的问题进行适当的变形。
1. 对已知成分进行变形――条件变形2. 对未知成分进行变形――结论变形3. 对整个问题进行变形(三)化归的方法化归的主要特点是灵活性。
一个数学问题,我们可以视其为一个数学系统和数学结构,其各要素之间的相互依存和相互联系的形式是可变的,且其形变也并非唯一,而是多样的。
我们需要依靠问题所提供的信息,利用动态的思维去寻找有利于问题解决的途径并运用恰当的方法。
化归的方法主要包括:分割法、映射法、求变法。
二、数学教学中应用化归思想方法的必要性化归是一种重要的数学思想方法,从广义上来讲,数学题的求解都是应用已知条件,对问题进行一连串恰当的化归,进而达到解决问题的一个探索过程。
从宏观上看,化归的思想方法是数学问题解决中形成数学构想的方法论依据。
从微观上看,数学问题的解决过程就是不断地发现问题、分析问题,直至化归为一类已经能解决或比较容易解决的问题的过程。
在平时的数学教学中,教师如果经常地进行化归思想方法的教学,针对不同的问题,进行缜密的思考,及时总结各种“化归”方法。
学生的解题能力及灵活性就会逐步得到提高,这对培养学生的数学素养是十分重要的。
学生有了化归思想,就能从更深的层次揭示知识的内部联系,提高分析问题和解决问题的能力,这将有利于创新精神的培养。
浅谈初中数学的化归思想及其教学策略
二、 树立化归意识 。 提高转化能力是 实现化归思想方法教学的关键 数学是一个有机 整体 , 它的各部 分之 间相 互联 系、 互依 存、 互渗 相 相 透, 我们在研究数学问题的过程 中, 常需要 利用 这些联 系对问题进 行适 当
方程 的解 , 此为因式分解法。4 如果 以上三条思 路受阻 , 可把 方程整理 . 便
一
素 : 归 的 对 象 、 归的 目标 和 化 归 的 途 径 。 要 正 确 运 用 化 归思 想 , 要 认 化 化 就 上 来 看 , 归 的 方 向大 致 可 以 分 为 两种 。 化
一
清化归的对象 , 明确要化 归的 目标 , 选择 恰当 的化归途 径。从化 归的方 向 的化归方法把一般情况下的问题转化 为特殊 情况下的 问题来解决 , 这也 是
离不 开 化 归 。 化 归思 想 的 实 质 就 是 将 一 个 新 问 题 进 行 变形 , 其 转 化 为 另 明在 一 般 情 形 下 , 叠 四 边 形 O AF的 面 积 等 于 △O B 面 积 。 用 割 补 法 , 使 重 E A
一
个已经解决的问题 , 从而使原来的问题得到解决。化归思想包含 三个要 证 △O E' A - "△O F即 可 。 D 此题的解决都是 先解决特殊条件 、 特殊情况 下的问题 , 然后 , 通过恰 当 顺利解决某些问题的一种重要 的化 归方 向, 它在获得新知识解决新 问题 的 过 程 中 时常 发 挥 着 意 想 不 到 的 作用 。 那么 。 日常教学中如何 更好地渗透和落实化归思想 呢? 在
“ 问题 是数学的心 脏” 数学 问题的解决是数学教学 中的一个重要组成 其面积的大小。不妨将绕 。旋转 的正方形置 于特殊位 置, , 此时 . 易得重 叠 部分 , 化归是解决数学问题的最基本 的手段 之一 , 乎所有 问题的 解决都 部分 ( 几 △AO 的面积是正方形 A C B) B D面积四分之一的 , 余下 的问题就是证
中学数学中的化归思想
学法教法研究中学数学中的化归思想姚成宝(皖安庆市大观区皖河中学安徽安庆246009)【摘要】化归不仅是一种基本的思维策略,还是一种重要的解题思想,可以有效的运用在数学解题方法中。
数学教育应该培养学生的理性思维,运用数学思想方法来分析并解决问题。
化归思想就是在面对问题时,通过观察、分析、类比、联想等思想过程,将未知的难以解决的问题,化归成自己已知范围内容易解决或已经解决的问题。
而数学内部之间的知识点也存在着各种联系与转化,运用化归思想来解决数学中的问题也成为中学思想方法教学的热点之一。
【关键词】化归思想数学思想方法解题能力【中图分类号】G633.6【文献标识码】A 【文章编号】2095-3089(2016)20-0098-01一、化归思想的含义及作用“化归”是转化和归结的总称。
化归思想,又名转化思想。
是运用某种转化过程把一些待解决、或难以解决的问题划分到一类比较容易解决的问题中去。
就是把一些复杂的,未知的、难以理解的问题,通过仔细的观察,分析,把问题简单化,熟悉化、具体化。
使得问题等到解决。
化归方法包括简单化、熟悉化、具体化、正难则反等原则。
二、数学化归思想教学的优势想要学好数学,死记硬背是不行的。
学好数学的基础就是学会数学思想方法,在实施数学素质教育中,加强对学生的数学思想方法的教学是至关重要的。
学生不仅仅要学会课本上的知识,还要培养自己的解题能力,发展自己的思维。
而化归思想教学可以帮助学生更加快速的接受新知识,更有利于学生理解并掌握知识,提高学生的解题能力。
化归思想贯穿整个中学教材始终,可以帮助学生形成完整的知识结构,促进学生的认知能力。
化归思想引领着众多思想方法,它是中学教学的最基本思想。
运用化归方法学生可以将学到的知识进行总结,提炼,然后灵活地运用起来。
化归思想有三大特征:(1)多向性:为了解决问题,可以从多方面变更问题进行化归。
如变更问题的外部形势、变更问题的内部结构、变更问题的结论等;(2)重复性:有时为了解决问题一次化归可能还是不能很好地解决,这时我们可以对问题进行多次化归,使问题逐渐规范到我们所熟悉的知识中;(3)层次性:化归既能实现学科宏观上的转化,又能运作各种技术活方法,从微观上解决很多细小具体的问题。
化归思想在初中数学教学中的运用
探索篇•方法展示化归就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件等将问题通过变换使之转化,进而达到解决问题的一种思想。
化归思想是中学数学最基本的思想方法,也是最重要的思想方法之一,在数学解题中几乎无处不在,它不仅是一种重要的解题思想,也是一种最基本的思维策略,更是一种有效的数学思维方式。
应用化归思想解题时的原则是化难为易、化生为熟、化繁为简、化未知为已知,本文就谈谈化归的几种常用方法在数学解题中的运用。
一、数与形的转化通过挖掘已知条件的内涵,发现式子的几何意义,利用几何图形的直观性化繁为简,从而解决问题。
乘法公式中的平方差公式(a+b )(a-b )=a 2-b 2的几何意义表述就是一个很好的例证,利用几何图形的面积完美地验证了公式的正确性。
例1.如下图,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a 跃b ),再重新拼图,两图中的阴影部分面积分别为a 2-b 2和(a+b )(a-b ),则可得到公式(a+b )(a-b )=a 2-b 2。
a+ba-bbba-ba类似的,完全平方公式(a+b )2=a 2+2ab +b 2也可用数与形的转化来验证。
数与形是数学研究的两大基本对象,由于坐标系的建立,使数与形互相联系,互相渗透,因此,函数问题中此种方法更常见,用函数图象来刻画函数解析式就是很好的例证。
二、函数与方程或不等式的转化函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,是用运动变化的观点分析和研究具体问题中的数量关系。
方程和不等式则是两个不同的概念,但它们之间有着密切的联系。
方程f (x )=0的解就是函数y =f (x )的图象与x 轴交点的横坐标,不等式f (x )>0的解集就是函数图象位于x 轴上方时自变量的取值范围。
要确定函数变化过程中的某些量,经常要转化为求出这些量满足的方程或不等式的解或解集,函数是变量的动态研究,而方程不等式是动中求静,研究运动中的变量关系。
数学思想方法化归思想
化归思想
(3)简单化原则 即把复杂的问题转 化为简单的问题。对解决问题者而言, 复杂的问题未必都不会解决,但解决 的过程可能比较复杂。因此,把复杂 的问题转化为简单的问题,寻求一些 技巧和捷径,也不失为一种上策。
化归思想
(4)直观化原则 即把抽象的问题 转化为具体的问题。数学的特点之一 便是它具有抽象性。有些抽象的问题, 直接分析解决难度较大,需要把它转 化为具体的问题,或者借助直观手段, 比较容易分析解决。因而,直观化是 中小学生经常应用的方法,也是重要 的原则之一。
化归思想在小学数学中应用
空 正方体的体积:转化为长方体求体 间 体积公式 积 图 圆柱的体积:转化为长方体求体积 形 圆锥的体积:转化为圆柱求体积 统 统计图和 运用不同的统计图表述各种数据 计 统计表 与 可能性 运用不同的方式表示可能性的大小 概 率
化归思想
解决问题中的化归思想 (1)化抽象问题为直观问题。 从数的认识到计算,直观操作帮 助理解算理算法;解决问题中画线段 图表等帮助理解数量关系,进行推理; 用图表进行推理; 函数图像直观地表示变量间的关系; 统计图表直观地表示数据。
化归思想
例:把256拆分成两个自然数的和,怎 么样拆分才能使拆分的两个自然数乘积 最大?257呢?
分析:通过对10以内的自然数拆分可知, 偶数拆分为两个相等的自然数时,积最大, 由此可以类比出周长相同的正方形面积 比长方形面积大.在周长相等的长方形中, 长和宽的差距越小,面积越大.
化归思想
(3)化一般问题为特殊问题。 例:某旅行团队翻越一座山。上午9时 上山,每小时行 3千米,到达山顶时, 休息1小时。下山时,每小时行4千米, 下午4时到达山底。全程共行了20千米。 上山和下山的路程各是多少千米?
化归思想
化归思想1. 化归思想的概念。
人们在面对数学问题,如果直接应用已有知识不能或不易解决该问题时,往往将需要解决的问题不断转化形式,把它归结为能够解决或比较容易解决的问题,最终使原问题得到解决,把这种思想方法称为化归(转化)思想。
从小学到中学,数学知识呈现一个由易到难、从简到繁的过程;然而,人们在学习数学、理解和掌握数学的过程中,却经常通过把陌生的知识转化为熟悉的知识、把繁难的知识转化为简单的知识,从而逐步学会解决各种复杂的数学问题。
因此,化归既是一般化的数学思想方法,具有普遍的意义;同时,化归思想也是攻克各种复杂问题的法宝之一,具有重要的意义和作用。
2. 化归所遵循的原则。
化归思想的实质就是在已有的简单的、具体的、基本的知识的基础上,把未知化为已知、把复杂化为简单、把一般化为特殊、把抽象化为具体、把非常规化为常规,从而解决各种问题。
因此,应用化归思想时要遵循以下几个基本原则:(1)数学化原则,即把生活中的问题转化为数学问题,建立数学模型,从而应用数学知识找到解决问题的方法。
数学来源于生活,应用于生活。
学习数学的目的之一就是要利用数学知识解决生活中的各种问题,课程标准特别强调的目标之一就是培养实践能力。
因此,数学化原则是一般化的普遍的原则之一。
(2)熟悉化原则,即把陌生的问题转化为熟悉的问题。
人们学习数学的过程,就是一个不断面对新知识的过程;解决疑难问题的过程,也是一个面对陌生问题的过程。
从某种程度上说,这种转化过程对学生来说既是一个探索的过程,又是一个创新的过程;与课程标准提倡培养学生的探索能力和创新精神是一致的。
因此,学会把陌生的问题转化为熟悉的问题,是一个比较重要的原则。
(3)简单化原则,即把复杂的问题转化为简单的问题。
对解决问题者而言,复杂的问题未必都不会解决,但解决的过程可能比较复杂。
因此,把复杂的问题转化为简单的问题,寻求一些技巧和捷径,也不失为一种上策。
(4)直观化原则,即把抽象的问题转化为具体的问题。
化归思想在初中数学教学中的应用
化归思想在初中数学教学中的应用作者:朱丽冰来源:《师道(教研)》2024年第07期化归思想是一种基于深入分析的思维方法,它鼓励学生运用已学知识和实践经验,通过旧知识、旧经验的转化来解决新问题。
具体而言,化归思想涉及将未知问题转化为已知问题、将复杂问题简化为容易问题、将烦琐问题转化为简单问题,以及将抽象的数学概念转化为具体的数学形式或实际问题转化为数字问题等。
这种解题思想在初中数学的教学中得到广泛应用,无论是新授课的设问、新知识的推理,还是探究活动学习,化归思想都旨在帮助学生更好地理解和构建数学知识体系。
通过培养学生的化归思维,我们能够有效地提升他们的数学能力和解题技巧。
一、化归思想对学生成长的价值化归思想方法有利于培养学生的创新意识。
化归思想是初中数学中最基本的一种思想方法,它能有效发掘数学知识的内部联系和实现知识的转化方法,在迁移转化过程中达到问题的解决或形成解决同类问题的规范流程。
化归思想有利于学生完善数学认知结构和提高迁移能力。
化归思想也是数学知识结构中的核心素养之一。
学生的数学认知结构是从所学的数学知识结构转化而来。
无论在学习或者解决问题中,凡是已具有的认知结构运用到解决或者接受新的知识的思考方式就有迁移。
化归思想有利于发展学生的思维能力。
在初中数学教学中,化归思想是一项举足轻重的核心素养。
这一思维方法不仅在培养学生的逻辑思维方面扮演着重要角色,还在提高学生对数学学科的兴趣方面起到了至关重要的作用。
二、化归思想方法在初中数学教学中的作用1.化归思想有利于新知识的学习任何的新知识的学习都是在原有的知识基础上进行的。
对于初中数学中,任何新的知识点都是取决于认知和新知识点的联系,更取决于新旧知识点之间特质。
然而化归思想方法就是这种联系或特征的桥梁,它既能优化新旧知识的组织,也能新旧知识的融合,利于学生深入理解、掌握知识、发展能力。
因为初中数学知识间联系密切,各知识点相互影响、渗透,并且数学知识也可与其他知识交叉结合,形成综合问题。
化归思想在初中数学教学中的应用探微
化归思想在初中数学教学中的应用探微化归思想是数学中的一种重要思维方式,通过将复杂的问题化简为简单的问题来解决数学难题。
在初中数学教学中,化归思想的应用可以帮助学生更好地理解和掌握数学知识,提高他们的数学解决问题的能力。
本文将从何为化归思想、化归思想在初中数学中的应用以及如何促进化归思想在初中数学教学中的探微进行深入探讨。
一、何为化归思想化归,是指将一个较为复杂、抽象的问题通过一定的变换、转化,使其变为可以用已知定理、方法直接解决的简单问题。
化归在数学中常常被使用到,它是解决数学难题的一种有效思维方式,也是数学思维的一个重要来源。
在日常生活和学习中,我们经常会遇到一些复杂的问题,这时我们可以采用化归思想,将复杂的问题转化为我们熟悉的知识和方法。
在数学中,解方程的过程就是将未知数归结到一边,常数项归结到另一边的过程,这就是化归的一个典型例子。
化归思想贯穿于整个数学教学的各个领域,在初中数学教学中尤其重要。
通过化归思想,学生可以更好地理解和掌握数学知识,提高他们的数学解决问题的能力,培养他们的逻辑思维和分析问题的能力。
1.解方程在初中数学中,解一元一次方程是一个重要的内容。
通过化归思想,我们可以将方程的常数项归结到等号的另一边,将未知数归结到等号的一边,从而求得方程的解。
对于方程2x+3=7,我们可以通过将3化归到等号的右边,得到2x=7-3,再归结未知数x到等号的左边,得到x=4/2=2,从而求得方程的解为x=2。
2.类比推理化归思想在类比推理中也有重要的应用。
通过化归思想,我们可以将一个未知问题归结到一个类似的已知问题上,从而得到未知问题的解。
对于一道数学问题,我们可以通过将其化简为一个我们已经熟悉的问题,然后利用已有的解题方法来解决未知问题。
3.统一方法在初中数学教学中,有很多统一的方法可以通过化归思想来解决。
解不等式、解三角形等问题,都可以通过将问题化归为已知定理和方法上来解决。
4.分步解决问题1.培养学生的抽象思维能力化归思想是一种抽象思维的产物,因此在初中数学教学中,要培养学生的抽象思维能力。
化归思想在初中数学解题中的应用
化归思想化归思想,又称转换思想或转化思想,是一种把待解决或未解决的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。
化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。
数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。
⒈悉化原则;⒉简单化原则;⒊具体化原则;⒋极端化原则;⒌和谐化原则。
1)化未知问题为已知问题该法采取的措施是不对问题直接攻击,而是对问题进行变形、转化。
直至把它化归为某个(些)已经解决的问题或容易解决的问题。
例.如图,梯形ABCD中,A D∥BC,AB=CD,对角线AC、BD相交于O点,且AC⊥BD,AD=3,BC=5,求AC的长。
分析:此题是根据梯形对角线互相垂直的特点,通过平移对角线将等腰梯形转化为直角三角形和平行四边形,使问题得以解决。
解:过D作D E∥AC交BC的延长线于点E,则得AD=CE,AC=DE,所以BE=BC+CE=8。
∵AC⊥BD ∴BD⊥DE又∵AB=CD ∴AC=BD∴BD=DE在Rt △BDE 中,222BE DE BD =+∴BD=BE 22=24 即AC=24 2)化新问题为旧问题将陌生的问题转化为熟悉的问题,运用自己熟悉的知识、经验和问题来解决。
例:教材中解二元一次方程是通过降次化归成一元一次方程;解二元一次方程组或三元一次方程组是通过消元化归成一元一次方程或二元一次方程组;解分式方程是化归成整式方程;异分母分数的加减法,通过通分转化成同分母分数的加减法;多边形的内角和问题转化为三角形的内角和来解决;梯形的中位线问题转化为三角形的中位线来解决。
这些问题都是通过化新问题为旧问题,从而使问题得以解决。
3)化复杂问题为简单问题有些数学问题结构复杂,若用常规手法过程繁琐,对这个问题,可以从其结构入手,将结构进行转化,另辟解题途径。
初中数学浅谈数学中的化归思想知识精讲
浅谈数学中的化归思想吕兆雷 张丽宏在数学的学习过程中,会接触到很多数学思想,抓住数学思想方法,善于运用数学思想方法,是提高和解决数学问题的根本所在,本文着重介绍一下化归思想.所谓化归思想,就是转化和归结,把将待解决的陌生问题通过转化,归结一个比较熟悉的问题来解决,或将一个复杂的问题转化为一个或几个简单问题来解决,简单地说,就是将一个待解决的问题甲通过某种转化,归结为一个已解决或比较容易解决的问题乙,然后通过乙问题的答案返回去求得甲问题的答案,例如,我们在解决方程的问题时,经常会把“多元”变成“一元”;把“高次”变成“低次”;把分式方程变成整式方程;把无理方程变成有理方程,这些都体现了化归思想,下面举几个例子,让同学们进一步理解一个化归思想.例1 如图1,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BC=3,AC=4,则tan ∠BCD 的值.解:因为CD ⊥AB ,所以∠BDC=90°,所以∠BCD+∠B=90°.又因为∠ACB=90°,所以∠B+∠A=90°,所以∠A=∠BCD .因为在Rt △ABC 中,BC=3,AC=4, 所以43AC BC A tan ==, 所以tan ∠BCD=43. 思路点拨:本题中,在Rt △ABC 中,tan ∠BCD 不能直接求出来,通过转化求它等角∠A 的正切值,这样问题就简单多了。
例2 已知方程组⎩⎨⎧-=-=+3a y 2x 3y x 的解为正数,则a 的取值范围. 解:解方程组⎩⎨⎧-=-=+3a y 2x 3y x , 得 ⎪⎪⎩⎪⎪⎨⎧-=+=.3a 6y ,3a 3x又因为它的解为正数, 所以⎪⎪⎩⎪⎪⎨⎧>->+⎩⎨⎧>>.03a 6,03a 3,0y ,0x 得 解得.6a 3<<-思路点拨:先解关于x ,y 的方程,再把用k 表示x ,y 代数式代入不等式组⎩⎨⎧>>0y 0x 中,解关于k 的不等式组,本题把方程组问题转化为不等式问题,从而使问题得以解决.例3 正方形的边长为a ,以各边为直径在正方形内画半圆,求所围成的图形(阴影部分)的面积.解:阴影部分面积=.a )12(2])2a (a [a 2222-π=⨯π-- 思路点拨:把不规则图形的面积转化为我们学习过(正方形和圆)的面积来解决.其中22)2a (a π-代表的是两个空隙的面积. 通过这几个例子,同学们已经基本了解了化归思想,化归思想也是中考考查的一个重要知识点,老师在平时的数学教学中,要注重对学生进行化归思想的培养,可提高学生思维水平,能够更深刻地理解数学,灵活地运用数学,从而培养学生的创新能力.。
数学化归思想的例子
数学化归思想的例子
化归转化是数学解题的一种极其重要的数学思想,贯穿了数学解题与数学研究的始终。
初中数学里,运用化归转化的数学思想处理问题的例子比比皆是。
例如,通过去分母把分式方程转化为整式方程求解,通过将把一元二次方程转化为一元一次方程求解,通过消元把三元一次方程组或二元一次方程组转化为一元方程求解,通过换元把复杂的问题转化为简单的问题求解……显然,“转化”揭示了解题的本质。
一、化归转化思想的概念
在解答某一个难以入手或希望寻求简捷解法的数学题时,我们的思维就不应停留在原题上,而将原题转化为另一个比较熟悉、比较简易的问题,通过对新问题的解决,达到解决原问题的目的,这就是解答数学题的化归转化思想。
化归转化的实质是把新知识转化为旧知识,把未知转化为已知,把复杂问题转化为简单问题。
当我们遇到一个较难解决的问题时,不是直接解原题目,而是将题进行转化,转化为一个已经解决的或比较容易解决的数学题,从而使原题得到解决。
二、解题策略
应用转化思想要注意以下几点:①转化后的问题要比原问题更容易、更简单;②转化后的问题应该是己知数学的问题,这样才有利于应用已有的知识与经验解决问题;③转化是有条件的,如解方程时要防止转化后出现增根或失根等。
在平时的学习中,要善于观察,挖掘数学问题的内在联系,要注意知识间的联系与演变,不断开拓思路,不断收集,积累联想,转换的实例,把新知识与认识结构中已有的知识建立起实质性的联系。
只有这样才能合理,快速,准确地进行转化“巧妙”才能显得自然。
化归思想
化归思想化归思想是初中数学中常见的一种思想方法。
“化归”是转化和归结的简称。
我们在处理和解决数学问题时,总的指导思想是把问题转化为能够解决的问题,这就是化归思想。
正如古之“围魏救赵”是战史上“避实就虚”的典型战例,军事上的这种策略思想迁移到数学解题方面,可以这样理解它:“实”是指繁、难、隐蔽、曲折,“虚”是指简、易、明显、径直。
在解题中表现为:化难为易,避繁从简,转暗为明,化生为熟。
具体的说,即把生疏的问题转化为熟悉的问题,把抽象的问题转化为具体的问题,把复杂的问题转化为简单的问题,把一般的问题转化为特殊的问题,把高次的问题转化为低次的问题,把未知转化为已知,把一个综合的问题转化为几个基本的问题等等。
化归思想无处不在,它是分析问题解决问题的有效途径。
在初中数学学习中运用这种化归的思维方法解决问题的例子非常多。
例如,在代数方程求解时大多采用“化归”的思路,它是解决方程(组)问题的最基本的思想。
即将复杂的方程(组)通过各种途径转化为简单的方程(组),最后归结为一元一次方程或一元二次方程。
这种化归过程可以概括为“高次方程低次化,无理方程有理化,分式方程整式化,多元方程组一元化”。
这里化归的主要途径是降次和消元。
虽然各类方程(组)具体的解法不尽相同,然而万变不离其宗,化归是方程求解的金钥匙。
平面几何的学习中亦是如此。
例如,研究四边形、多边形问题时通过分割图形,把四边形、多边形知识转化为三角形知识来研究;解斜三角形的问题,通过作三角形一边上的高,转化为解直角三角形问题;我们熟悉的梯形问题,常通过作腰的平行线或作两条高等常用辅助线,把梯形问题转化为平行四边形与三角形问题。
又如,圆中有关弦心距、半径、弦长的计算亦能通过连结半径或作弦心距把问题转化为直角三角形的求解。
还有,解正多边形的问题,通过添半径和边心距,转化为解直角三角形问题等等。
化归思想贯穿整个初中数学,在学习的过程中要有意识的体会这种科学的思维方法,有利于我们在解决问题的过程中思维通畅、方法得当,从而达到事半功倍的效果。
化归思想在初中数学教学中的应用
化归思想在初中数学教学中的应用一、化归思想的基本概念和意义化归思想是数学中的一种重要思维方法,指将一个复杂的或难以解决的数学问题转化为一个相对简单或容易解决的问题,从而便于分析和解决。
它是数学思维的重要组成部分,也是初中数学教学中需要强调和培养的思维方式之一。
化归思想的应用能够培养学生的逻辑思维和创新能力,并且有助于学生对数学概念和定理的理解和运用。
通过化归思想,学生能够将抽象的数学内容和实际问题联系起来,提升他们对数学的兴趣和学习动力。
二、化归思想在初中数学教学中的具体应用1.在解决实际问题时的应用化归思想可以帮助学生将实际问题抽象成数学问题,并通过逻辑推理和数学方法解决。
例如,教师可以引导学生通过对实际问题的分析和归纳,将其化归为代数方程、几何问题等数学问题。
通过这种方式,学生不仅能够将所学的数学知识应用于实践,还能培养他们的问题解决能力。
2.在证明数学定理和公式时的应用化归思想在数学证明中起到重要的作用。
通过将复杂的证明问题化归为易于证明的小问题,可以简化证明过程,使证明更加直观和清晰。
例如,在证明数学定理中,有时可以使用反证法将条件的否定情况进行化归,从而得到结论的正确性。
3.在解答选择题和填空题时的应用在考试中,学生常常会遇到选择题和填空题。
化归思想可以帮助学生缩小问题的范围,提高解题效率。
例如,在解答选择题时,学生可以通过化归思想将问题化简为两个或多个互斥的选项,从而更准确地选择答案。
在填空题中,化归思想可以帮助学生将复杂的问题转化为简单的问题,使得答案更易找到。
4.在解决解析几何问题时的应用解析几何是初中数学中的重要内容,其中涉及到诸多复杂的几何问题。
化归思想可以帮助学生将解析几何问题化归为简单和易于解决的代数问题。
例如,在解决直线和二次曲线的交点问题时,可以通过将直线方程和曲线方程带入,化简为二次方程,并求解得到交点坐标。
三、化归思想在初中数学教学中的具体实施方法1.培养学生的归纳和演绎能力在初中数学教学中,培养学生的归纳和演绎能力是非常重要的。
浅谈化归思想在数学教学中的应用
浅谈化归思想在数学教学中的应用在研究和解决数学问题时,借助已知条件将问题转变进而达到解决问题的一种思想——化归思想。
化归思想在中学数学中的应用极其广泛,因此是一种最基本的思维策略。
作为一种有效的数学思维模式,其原则是化难为易,化生为熟,化繁为简,化未知为已知,化综合为基本,这也是人们认识问题的基本规律。
标签:化归思想;数学教学;化归原则;化归方法;教学策略如果说知识是“鱼”,那思想方法便是“渔”,“授之以鱼,不如授之以渔”,这句名言体现了思想方法在学习中的重要性,学生毕业走出校门,不管他们是从事科学工作者,技术人员,还是教育工作者,唯有深深地铭刻于脑中的数学思维方法随时随地的发生作用,而受益终生。
所以数学思想方法相对于数学知识而言,对我们的影响更大。
初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。
一、化归的涵义“化归”是转化和归结的简称,化就是变化原问题,转化原问题,变化原问题;归说的是变化、转化,变换原问题是有目的、有方向的。
把待解决的问题,通过某种转化过程归结到已解决或较容易解决的问题,最终求得解答的数学思想。
所以,作为一名教育工作者,在平时教学过程中要把这种思想渗透进去,让学生体会其中的精髓。
二、化归方法的基本原则数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。
为了更好地把握化归方向,我们必须遵循一些化归的基本原则,化归思想的基本原则主要有熟悉化原则,简单化原则,直观化原则,和谐化原则。
1.熟悉化原则将陌生的问题转化为熟悉的问题,将新知识转化为旧知识,以便于我们运用熟悉的经验来解决。
在初中阶段的数学知识几乎都是将新问题转化为旧知识而得到的。
如:二元一次方程组转化为一元一次方程;一元二次方程化为一元一次方程;函数问题化为方程问题;方程问题转化为函数图像等等。
化归思想方法在初中数学教学中的应用
化归思想方法在初中数学教学中的应用化归思想方法是数学课程中解题的一种重要的方法,它属于数学思想的一种。
数学思想是数学课程的灵魂,支撑了整个数学课程体系。
中学数学教学和学习并不是教师机械式的讲解和知识的传授,也不是学生死记硬背就可以领悟和掌握的。
传统的数学教学通常是以教师讲解为主,学生则是被动地听授,教师始终把控着课堂,这种教学方式不利于调动学生们学习的积极性和主动性,严重会影响到教学的质量和效果。
当前许多数学教材并不能够将所有的知识都完整地表达出来,化归思想只是一带而过,这就需要教师将隐含在其中的化归思想明晰地向学生们展示出来,这样更有利于学生对其加深理解和掌握。
一、化归思想方法在中学数学教学中应用需要注意的几点事项数学是一门发散性思维比较强的学科,课堂教学活动中单纯一味地知识灌输是不可能取得很好的教学效果的。
化归思想是解决数学问题最常用的数学思想,其在中学数学教学中应用需要注意几点事项。
1.复杂问题简单化数学问题是由规律可循的,都是有相关的数学原理、概念、公式等组合而成的。
对这些问题的解答需要综合分析其组合原理和构成,就需要将其负责的问题和原理进行分解,使其分解成不同的部分,这就是化归思想需要遵循的简单化原则。
除此之外,采用化归思想也可以从相关知识点和原理出发,将原理通过分解为不同知识点的方式,进而展现出屋面熟悉的画面。
2.复杂问题明了化复杂的数学问题经常使我们产生误解,对其感觉陌生,不知道从哪里入手。
但是我们需要明白不管多么复杂的数学问题都是有简单的概念、原理等所构成,要想真正能够解决这些问题,就需要采用化归的方法将其转化为我们比较熟悉的内容。
复杂的数学问题归化并不是盲目的,一定要遵循明晰化的原则,只有这样才能够用正常的数学思想和规律来解决相关的问题。
3.复杂问题具体化运用归化方法另一个需要注意的事项就是将负责的问题具体化,也就是说复杂问题乍一看是比较陌生的,但是要通过归化的方式将其转化为具体的问题,通常需从抽象转为具体,就是当分析、解决问题的时候,需注重把抽象的问题转向具体化,这样更加容易掌握问题中数量之间的关系,需尽量将抽象关系以及抽象化的语言表达采用具体算式或图形进行表现,这样更利于理解和分析,进而寻找到解题思路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新梦想教育中高考名校冲刺教育中心 【老师寄语:每天进步一点点,做最好的自己】
解题思想之化归思想
一、注解:
“化归”就是转化和归结的简称。
所谓化归就是将所要解决的问题转化归结为另一个比较容易解决的问题或已经解决的问题。
具体说就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“复杂问题”转化为“简单问题”。
如将分式方程转化为整式方程,将高次方程转化为低次方程,将二元转化为一元,将四边形转化为三角形,将非对称图形转化为对称图形…..
实现转化的方法通常有:换元法,待定系数法,配方法,整体代入法以及化动为静,由具体到抽象等方法。
二、实例运用:
1.在实数中的运用
【例1】今年2月份某市一天的最高气温11℃,最低气温-6℃,那么这一天的最高气温比最低气温高( )
A -17℃
B 17℃
C 5℃
D 11℃
【例2】 计算:()()02324732+-++
2. 在代数式的化简求值中的运用
【例3】计算:
111x x x ++-
【例4】已知31x =-,求代数式
11x x x x -⎛⎫+- ⎪⎝
⎭的值。
3.在方程(组)中的运用
【例5】用配方法解方程:x 2-4x+1=0
【例6】解方程组:728x y x y +=⎧⎨-=⎩
【例7】用换元法解方程:226212x x x x +-
=+
4.在确定函数解析式中的运用
【例8】某闭合电路中,电源电压为定值,电流I(A)与电阻R(Ω)成反比例关系,如
图为电流与电阻之间的函数图象,则电阻R 与电流I 的函数解析式为:( )
A. 2I R =
B. 3I R =
C. 6I R =
D. 6I R
=-
【例9】某商场的营业员小李销售某种商品,他的月收入与他的该月销售量成一次函
数关系,如图所示,根据图象提供的信息解答下列问题:
(1)求小李个人月收入y (元)与月销售量x (件)(x ≥0)之间的函数关系式。
(2)已知小李4月份的销售量为250件,求小李4月份的收入是多少元?
【例10】已知二次函数y=ax 2+bx+c 过点O (0,0),A (1,3),B (-2,43)和C (-1,m )四个点。
(1)确定这个二次函数的解析式;
(2)判断△OAC 的形状。
5.在三角形中的运用
【例11】如图,已知AB∥DE,∠ABC=80°,∠CDE=140°则∠BCD= 。
【例12】如图,△ABC中,BC=4,AC=23,∠ACB=60°,P为BC上一点,过P作PD∥AB交AC于D,连接AP,问P在何处时,△APD面积最大?
6.在四边形中的运用
【例13】在平行四边形ABCD中,∠ABC=60°,AC平分∠BAD,AC=7,AD=6,S△ADC=15
3
2
,求BC
和AB的长。
【例14】在四边形ABCD中,∠A=120°,∠ABC=90°,BD=7,cos∠DBC=33
14
,求AB。
【例15】如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为。
三、随堂练习
2、二元二次方程组⎩
⎨⎧=+=+326422y x y x 的解是 。
3、已知:如图,扇形AOB 中,∠AOB=45°,AD=4cm ,弧CD=3πcm ,则图
中阴影部分的面积是 。
(结果保留π)
4、在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数
是 。
5、已知:如图,直角梯形ABCD 中,AD ∥BC ,BC=CD=4,∠BCD=60°求梯形的中位线长。
6、解方程组⎩⎨⎧==+12
1112711xy y x 时,若设a x =1,b y =1,则方程组变为 ;若把x 1、y
1看作某关于z 的一元二次方程的两根,则方程组变为 。
7、如图:公路MN 和公路PQ 在点P 处交汇,且∠QPN=30o ,在点A 处有一所中学,AP=160米,假设拖拉机行驶时,周围100米以内会受到噪声的影响,那么拖拉机在公路NN 上沿PN 方向行驶时,学校是否会受到影响? 请说明理由;如果受影响,已知拖拉机的速度为18千米/时,那么学校受影响的时间为多少秒?
四、课后练习
选择题:
1、如果a 与-2互为倒数,那么a 是( )
A -2
B 12-
C 12
D 2 2、今年2月3日,我市最低气温-6℃,最高气温7℃,那么这一天最低温度比最高温度低( )
A 7℃
B 13℃
C 1℃
D -13℃
3、计算(-3a 3)2÷a 2的结果为( )
A 9a 4
B -9a 4
C 6a 4
D 9a 3
4、用换元法解分式方程222(1)671x x x x ++=+时,如果设y=21x x
+,那么将原方程化为( ) A 2y 2-7y+6=0 B 2y 2+7y+6-0 C y 2-7y+6=0 D y 2+7y+6=0
5、已知关于x 的一元二次方程x 2-2x+a=0有实数根,则a 的取值范围是( )
A a ≤1
B a <1
C a ≤-1
D a ≥1
6、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )
(如图),把余下的部分拼成一个矩形。
根据这两个图形中阴影部
分的面积相同,可以验证( )
A (a+b)2=a 2+2ab+b 2
B (a-b)2=a 2-2ab+b 2
C a 2-b 2=(a+b)(a-b)
D (a+2b)(a-b)=a 2+ab-2ab
7、平面直角坐标系中的点P (2-m ,12
m )关于x 轴的对称点在第四象限,则m 的取值范围在数轴上表示为( ) 8、已知点A(-2,y 1),B (-1,y 2),C (3,y 3)都在反比例函数4y x =
的图象上,则( ) A y 1<y 2<y 3 B y 3<y 2<y 1 C y 3<y 1<y 2 D y 2<y 1<y 3
9、在△ABC 中,∠C=90°,sinA 35
=,则cosA=( ) A 45 B 35 C 34 D 43
填空题:
1、若23a =,则2223712
a a a a ---+的值等于 。
2、解方程(x 2-5)2-x 2+3=0时,令x 2-5=y ,则原方程变为 。
3、一根蜡烛在凸透镜下成实像,物距u ,像距v 和透镜的焦距f 满足关系式111u v f
+=,若f=6cm ,v=8cm ,则物距u= 。
4、请给出一元二次方程x2-8x+ =0的一个常数项,使这个方程有两个不相等的实数根。
5、图象经过点(-1,2)的反比例函数的表达式为 。
6、若y 关于x 的函数y=(a-2)x 2-(2a-1)x+a 的图象与坐标轴有两个焦点,则a 的可取的值为 。
7、将一个平角n 等分,每份是15°,那么n= 。
8、如图是一口直径AB=4m ,深BC=2m 的圆柱形养蛙池,小青蛙们晚上经常
坐在池底中心O 观赏月亮,则它们看见月亮的最大视角∠COD= (不
考虑青蛙的身高)
解答题:
1、 计算:(1)2
1
293()12323-÷+-⨯+ (2)222223(35)a b a b a b ab a b ÷+--
2、 有一道题“先化简,再求值”:其中,小玲做题22241()244
x x x x x -+÷+--时把“3x =-”错抄成了3x =,但她的计算结果也是正确的,请解释为什么?
3、 为了确保我市“国家级卫生先进城市”的称号,市里对主要街道的排污水沟进行改造,其中光明施工
队承包了一段96米长的排污水沟,开工后每天比原计划多挖2米,结果提前4天完成任务,问原计划每天挖多少米?
4、如图,梯形ABCD 中,AD ∥BC ,AB=CD ,对角线AC ,BD 相交于点O ,
且AC ⊥BD ,AD=3,BC=5,求AC 的长。