材料力学 动荷载和循环应力
材料力学13章 动荷载

3.选用弹性模量较低的材料 弹性模量较低的材料,可以增大静位移。但须注意强度问 题。
13-4 循环应力下构件的疲劳强度
1.特征: 1)强度降低:破坏时的名义应力值往 往低于材料在静载作用下的屈服应力; 2)多次循环:构件在交变应力作用下
发生破坏需要经历一定数量的应力 循环; 3)脆性断裂:构件在破坏前没有明显 的塑性变形预兆,即使韧性材料, 也将呈现“突然”的脆性断裂;
4)断口特征:金属材料的疲劳断裂断口上,有明显的光滑区 域与颗粒区域。
一、静荷载与动荷载 实验结果表明,材料在动载荷下的弹性性能基本上与静
载荷下的相同,因此,只要应力不超过比例极限,胡克定律 仍适用于动载荷下的应力、应变的计算、弹性模续也与静载 荷下的数值相同。 二、动载荷类型
根据构件的加速度的性质,动载荷问题可分为三类:
1.一般加速度运动(包括移动加速与转动加速)构件问题。此时不 会引起材料力学性能的改变,该类问题的处理方法是动静法。
水平冲击图示: 重物以一定的速度,沿水平方向冲击弹 性系统。当重物与弹性系统接触后,系统的最大水平位移 如下图所示。
冲击物: 动能改变:Ek=Qv2/2g
势能改变: Ep=0
被冲击物: 应变能改变:
V
1 2
Fd
d
能量方程 动荷因数
1 2
Q2
g
1 2
Qd d
Kd
d s
2
gs
第13章 动荷载
13.1 概述
工程材料力学性能每章重要知识点

第一章1.应力-应变曲线(拉伸力-伸长曲线)。
拉伸力在Fe以下阶段,为弹性变形阶段,到达Fa后,试样开始发生塑性变形,最初试样局部区域产生不均匀屈服塑形变形,曲线上出现平台或锯齿,直至C点结束。
继而进入均匀塑形变形阶段。
达到最大拉伸Fb时,试样在此产生不均匀塑形变形,在局部区域产生缩颈。
最终,在拉伸力Fk处,试样断裂。
2.弹性变形现象及指标弹性变形:是可逆性变形,是金属晶格中原子自平衡位置产生可逆位移的反映。
弹性变形指标:①弹性模量,是产生100%弹性变形所需应力。
②弹性比功(弹性比能、应变比能),表示金属吸收弹性变形功的能力。
③滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。
④循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力。
3.塑性变形现象及指标金属材料常见塑性变形方式主要为滑移和孪生。
滑移:金属材料在切应力作用下位错沿滑移面和滑移方向运动而进行切变得过程。
孪生:金属材料在切应力作用下沿特定晶面和特性晶向进行的塑性变形。
塑性变形特点:①各晶粒变形的不同时性和均匀性;②各晶粒变形的相互协调性。
塑性变形指标:⑴屈服强度,屈服强度及金属材料拉伸时,试样在外力不增加(保持恒定)仍能继续伸长时的应力。
屈服现象:金属材料开始产生宏观塑形变形的标志。
屈服现象相关因素:①材料变形前可动位错密度很小;②随塑性变形的发生,位错能快速增殖;③位错的运动速率与外加应力有强烈的依存关系。
屈服现象指标:规定非比例伸长应力;规定残余伸长应力;规定总伸长应力。
影响屈服强度因素:①内在因素:金属本性和晶格类型;晶粒的大小和亚结构;溶质元素;第二相。
②外在因素:温度、应变速率、应力状态。
⑵应变硬化:金属材料阻止继续塑形变形的能力,塑性变形是硬化的原因,硬化是结果。
⑶缩颈:韧性金属材料在拉伸试验时变形集中于局部区域的特殊现象,是应变硬化与截面减小共同作用的结果。
抗拉强度:韧性金属试样拉断过程中最大力所对应的应力。
材料力学 第十四章动荷载及交变应力

2.5m
FNd
2.5m
σ d m ax
M d m ax = = 13 5.4 M P a < [σ ] Wz
梁的强度足够. 梁的强度足够.
二,构件作匀速转动时的应力
轮缘
ω
D
δ
轮幅
y
ω
qd d
D
O
O
m m FNd
O n n FNd x
an=ω2D/2
FNd Aρω 2 D 2 = 4
D Aρω 2 D qd = 1. A.ρω 2 = 2 2 FNd ρω 2 D 2 σd = = = ρ v 2 ≤ [σ ] A 4
di = kd sti Fd = kd P
σ d = kdσ st
动荷因数kd中的st计算:是将冲击物的重量P 动荷因数 中的 计算:是将冲击物的重量 作为静荷载沿冲击方向作用在被冲击构件的冲 击点,引起该点沿冲击方向的位移. 击点,引起该点沿冲击方向的位移.
P
st
l
EA
P h P l
Pd
Δd
如:轮船靠泊时的冲击力 起吊重物时的惯性力
t
构件由动荷载引起的应力和变形称为动应力和动变形. 构件由动荷载引起的应力和变形称为动应力和动变形. 构件在动荷载作用下,同样有强度,刚度和稳定性问题. 构件在动荷载作用下,同样有强度,刚度和稳定性问题. 构件内的应力随时间作交替变化,则称为交变应力. 构件内的应力随时间作交替变化,则称为交变应力.
动荷载作用下构件的材料仍服从虎克定律. 动荷载作用下构件的材料仍服从虎克定律. 构件的材料仍服从虎克定律
§14-2 构件作匀加速直线运动 14和匀速转动时的应力
构件作匀加速直线运动时,内部各质点具有相同的 构件作匀加速直线运动时, 加速度;构件作匀速转动时, 加速度;构件作匀速转动时,内部各质点均具有向 心加速度. 心加速度.
动荷载交变应力

(7)
由此解得d 的两个根,并取其中大于st 的一个,得
Δd (1
1
2h Δst
) Δst
(8)
A
CP
B
(c)
Δst
于是得动荷因数 Kd 为
Kd 1
1 2h Δst
(9)
Δd Kd Δst
(10)
若梁的两端支承在两个刚度相同的弹簧上,则梁在冲
击点沿冲击方向的静位移为
Δst
Pl 3 48 EI
P 2k
例题: 匀加速起吊一根杆件(图a),杆的长度为l,
横截面面积为A,材料的密度为,加速度为a。试求距
杆下端为 x 的横截面上的动应力d 。
解:取距下端为x的一段杆为
FRd
x
分离体,作用于这段杆上的重力
沿杆轴均匀分布,其集度为Ag
,惯性力也沿杆轴均匀分布,其
l x
a
FNd
m
m
m
m
q Ag Aa
集度为Aa ,指向与a 指向相
3. 疲劳破坏是突然发生的,构件破坏前无明显的塑性 变形,不易为人们察觉。
因此,处于交变应力下的构件应进行疲劳强度校核。
§12.2 构件有加速度时动应力计算
计算采用动静法
在构件运动的某一时刻,将分布惯性力加在 构件上,使原来作用在构件上的外力和惯性力 假想地组成平衡力系,然后按静荷作用下的问 题来处理。
则冲击物减少的势能为
Ep P(h Δd )
(b)
而冲击物的初速与终速均为零,故
Ek 0
(c)
杆内应变能
Vεd
EA 2l
Δd2
(d)
将(b)(c)(d)代入(a)得
P(h
第05章 金属的疲劳1

(1)基本特征: 呈现贝壳花样或海滩花样,它是以疲
劳源区为中心,与裂纹扩展方向相垂直的 呈半圆形或扇形的弧形线,又称疲劳弧线。
疲劳弧线是裂纹扩展过程中,其顶端 的应力大小或状态发生变化时,在断裂面 上留下的塑性变形的痕迹。
47
(2)贝纹花样的形成: 是由载荷变动引起的,因为机器运转时
不可避免地常有启动、停歇、偶然过载等, 均可留下塑性变形的痕迹——贝纹线(疲 劳弧线)。
r=-1称为对称循环应力;
r=0(或r=-∽)这种非对称循环又称为 脉动循环。这种载荷是一种最危险的载荷。
r偏离-1越远,应力对称性越差,疲劳 极限越高。
29
(2)循环应力的种类
(交变当)r应=-力1,;即σmin=-σmax时,称为对称循环
当r=0,即σmin=0时,称为脉动循环应力。
2
1、金属疲劳破坏的形成过程 在正常使用机械时,重复的推、拉、扭
或其他的外力情况都会造成机械部件中金 属的疲劳。
这是因为机械受压时,金属中原子的排 列会大大改变,从而使金属原子间的化学 键断裂,导致金属裂开。
3
构件承受交变应力的大小超过一定限 度,并经历了多次的循环重复后,在构件 内部应力最大处或材质薄弱处将产生细微 裂纹(称为疲劳源),这种裂纹随着应力 交变次数增加而不断向四周扩展。
53
(5)不同情况下贝纹线的形状
① 当轴类机件拉压疲劳时, 轴向应力包括拉-拉或拉-压疲劳。它的疲劳
源一般也在表面形成,只有内部有缺陷时才在缺 陷处形成。
54
若表面无应力集中(无缺口),则裂纹因截 面上应力均等而沿截面等速扩展,贝纹线呈一簇 平行的圆弧线;
55
若机件表面存在应力集中(环形缺口), 则因截面表层的应力比中间的高,裂纹沿表层 的扩展快于中间区;高应力时,瞬断区面积相 对较大,疲劳裂纹扩展区面积小,裂纹沿两边 及中间扩展差别不大。
材料力学课件第九章动荷载交变应力

交变应力的基本计算方法
平均应力和应力幅
交变应力由大小不断变化的瞬时应力 组成,平均应力是交变应力的时间平 均值,应力幅是交变应力的最大值和 最小值之差。
交变应力的分类
交变应力的疲劳强度
交变应力作用下,材料会发生疲劳断 裂,疲劳强度是衡量材料抵抗疲劳断 裂能力的指标。
详细描述
风荷载和地震荷载是常见的外部动荷载,它们的作用会导致桥梁、大坝、高层建筑等结构的振动,从 而产生交变应力。此外,车辆的行驶也会对桥梁等结构产生动荷载和交变应力。这些动荷载和交变应 力的影响需要考虑在结构设计阶段,以确保结构的强度和稳定性。
航空航天工程中的动荷载与交变应力问题
要点一
总结词
要点二
详细描述
航空航天工程中,由于飞行器的高速运动和复杂环境,会 产生严重的动荷载和交变应力问题。
飞行器在高速飞行过程中,由于气动力的作用会产生动荷 载,同时由于飞行姿态的变化、发动机工作等也会产生交 变应力。此外,在火箭发射过程中,由于推进剂燃烧产生 的振动和冲击,也会对箭体产生动荷载和交变应力。这些 动荷载和交变应力的影响需要考虑在飞行器的设计阶段, 以确保飞行器的安全性和可靠性。
动荷载与交变应力的产生原因
01
02
03
自然现象
如地震、风载等自然现象 产生的动荷载和交变应力 。
机械振动
机械设备运转、车辆行驶 等产生的振动和冲击。
人为因素
如建筑物的施工、设备的 安装和运行等也会产生动 荷载和交变应力。
02
动荷载与交变应力的影响
对材料性能的影响
短期效应
动荷载和交变应力会导致材料在短期内出现弹性变形和塑性变形,影响材料的 刚度和强度。
材料力学应力计算公式

材料力学应力计算公式材料力学应力计算公式主要指按照材料力学原理,预测某一种材料在不同使用情况下所受外力大小和分布状况的公式。
材料力学应力计算通过力学模型和数学方程来预测材料的力学特性,并用数字分析方法根据其力学参数(包括强度、塑性、稳定性和弹性)计算出其受力情况,从而预测出其力学特征。
1、应力计算的基本公式:应力计算的基本公式为:σ=F/A,其中F表示施加在材料上的外力,A表示给定断面上的面积。
2、应变计算的基本公式:应变计算的基本公式为:ε=A/L,其中L表示应力施加前材料的长度,A表示安装施加应力后材料的变形量。
3、体积膨胀热应力计算公式:体积膨胀热应力计算公式为:Δσ=α○ΔT,其中α为材料的热膨胀系数,ΔT表示热膨胀温度差,Δσ表示由热膨胀而引起的材料的应力变化值。
4、拉伸应力计算公式:拉伸应力计算公式为:σ=≈F/Ao,其中F表示施加在材料上的拉伸外力,Ao表示给定断面的面积。
5、压缩应力计算公式:压缩应力计算公式为:σ=-P/A,其中P表示压力,A表示施加压力前的断面积,σ表示施加压力后材料受到的应力。
6、剪切应力计算公式:剪切应力计算公式为:τ=M/I,其中M表示抵抗剪切外力的力矩,I表示断面的惯性矩,τ表示文断面的剪切应力。
7、循环应力计算公式:循环应力计算公式为:σ=±σao/2N,其中N表示经过N次循环后材料仍旧恢复原来状况,σao表示每次循环受到的应力,σ表示经过N次循环后材料受到的应力。
8、疲劳应力计算公式:疲劳应力计算公式为:σf=σa/(2Nf)^m,其中Nf表示发生应力极限疲劳破坏之前经过的循环次数,m为材料的疲劳断裂指数,σf表示发生疲劳破碎的最大应力,σa 表示材料受到的应力。
总之,材料力学应力计算公式是用数学模型和数值分析方法,结合材料的力学参数和外力的情况,对材料在某种外力作用情况下的应力分布情况进行预测,从而得出其力学特性和结构性能,进而决定材料安全性能和可靠性。
第十一、十二章 动荷载和循环应力

11-1:图示吊索起吊重物。
已知钢索[]=400MPa σ,求所需钢索的横截面积。
2=1.8m/s=50kN解:(1)求动荷系数k d1.811 1.1849.8d a k g =+=+= (2)由拉压强度计算所需钢索的横截面积A[]364225010=k k 1.18440010 1.4810m 148mm d d st d P A A Aσσσ-⨯=≤→⨯≤⨯→≥⨯=11-3 一重物Q=4kN 自高度h=4cm 高处自由下落,冲击梁AB 的B 端。
已知E=10GPa 。
试求梁内的最大动应力。
解:(1)求重物放置在B 端引起的静位移st ∆。
查表或采用能量法求解()3335394100.2= 1.33310m 30.120.23101012st ZQl EI -⨯⨯∆==⨯⨯⨯⨯⨯(2)求动荷系数k d1178.48d k =+=+= (2)由冲击动应力324100.2=78.4878.4878.48M 0.120.26d d st z Ql k Pa Pa W σσ⨯⨯=⨯=⨯=⨯11-4 图示工字钢梁右端置于弹簧上,弹簧常数c=0.8kN/mm,梁的E=200GPa,[]=160MPaσ,重物Q自由下落,求许可下落高度h。
z4433=113010mm=14110mmzzW⨯⨯解:(1)求C截面的静挠度st∆333394-1233-4-3-451021510 =+4822c48200101130101040.810/103.68710+1.56251019.31210mstQl QEI-⨯⨯⨯∆⋅=+⨯⨯⨯⨯⨯⨯⨯=⨯⨯=⨯()()(2)求动荷系数d11k=+=+(3)求危险点在静力荷载时的应力339(510)244Pa=17.73MPa1411010z zQlMW Wσ-⨯⨯===⨯⨯max,j(4)由强度条件求冲击时的许可高度[]17.73160=(10.0612m=612mmd dhkσσσ==⨯≤→+≤max,max,j.11-8 重物Q自H高处自由下落到曲拐上,试按第三强度理论写出危险点的相当应力。
材料力学第九章动荷载和交变应力_new

运动的物体称为冲击物。 静止的物体称为被冲击物。
工程中大都采用简化计算方法,它以如下假设为前提:
假设1:冲击物为刚体,不变形(不吸收能量),从开始 冲击到冲击产生最大位移时,冲击物与被冲击构件一起 运动,而不发生回弹; 假设2:冲击时,不考虑被冲击构件的质量,被冲击构 件的材料仍处在弹性范围内,服从胡克定律; 假设3:冲击过程中没有其它形式的能量转换,机械 能守恒定律仍成立。
第九章 动荷载和交变应力
§9-1 概 述
动荷载(dynamic load)是指随时间显著变化的荷载,或 是作加速运动或高速转动构件的惯性力。
例如:冲击荷载、惯性力等 构件由动荷载所引起的应力和变形分别称为动应力和动变形。
若构件内的应力随时间周期性变化,称为交变应力 (alternating stress)。
强度条件: dmax kd stmax [ ]
例 已知W1=20 kN,W2=40 kN ,a =2.5 m/s2 。梁由2 根22b的工字钢组成,钢索d =20 mm,梁与钢索材料相同, [σ]=160 MPa ,试校核钢索与梁的强度(不计钢索与梁 的自重)。
W1 解:1.钢索的强度校核。
kd 1 a g 1 2.5 9.8 1.26
st FNst / A W2 / A 127.3MPa d kd st 160.4MPa 1.05[ ]
∴ 钢索满足强度要求。
2.5m
FNd W2
W2 g
a
2.5m a
W2
2.梁的强度校核
W1
kd 1 a g 1 2.5 9.8 1.26
量W当作静荷载作用于被冲击构件上冲击点处,在构件冲 击点处沿冲击方向所产生的与静荷载类型相对应的静变形。
材料力学第五版课件 主编 刘鸿文 第六章 动荷载·交变应力

解:1)求最大静应力和静变形
Q
( ) s st max
=
QL Wz
QL3 D st = 3EI
l
2)计算动荷系数
Kd =
v2 gD st
3)计算最大正应力
(s d )max
=
Kd (s st )max
=
Kd
QL Wz
内容小结
动响应=Kd × 静响应
1、构件有加速度时动应力计算
(1)直线运动构件的动应力
Kd = 1+
1+ 2h D st
= 1+ 1+ 2h ×EA
Ql
l
3)计算冲击应力
sd
=
kds st =
Q+ A
(Q )2 Q Q
h
【例6-4】圆截面直杆长度为6m,截面直径d=300mm,杆件材
料的杨氏模量E=10GPa,重物重5kN,从h=1m处自由落下。
1、求最大应力。 2、在木柱上端垫20mm厚的橡皮,杨氏模量E=8MPa。最大正 应力为多少?
1998年6月3日,德国艾舍德高速列车脱轨事故中的车轮轮缘疲劳断口
三.什么是疲劳?
只有承受交变应力作用的条件下,疲劳才发生;
三.什么是疲劳?
疲劳破坏起源于高应力或高应变的局部;
a. 静载下的破坏,取决于结构整体;
b. 疲劳破坏由应力或应变较高的局部开始,形成损伤 累积,导致破坏发生;
Q
h
解:
1、
D st =
Ql = EA
5创103 6? 103 10创103 1 创3.14 3002
=
4.25? 10- 2(mm)
4
2h
材料力学 动荷载和循环应力共54页文档

35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
材料力学 动荷载和循环应力
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
材料力学性能复习重点

期末复习资料一 名词解释1. 弹性比功:又称弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。
金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3. 循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力。
也叫金属的内耗。
4. 包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象。
5. 应力状态软性系数:金属所受的最大切应力τmax 与最大正应力σmax 的比值大小。
即:()32131max max 5.02σσσσσστα+--== 6. 缺口效应:绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。
缺口第一效应:引起应力集中,改变了缺口前方的应力状态,使缺口试样所受的应力由原来的单向应力状态改变为两向或三向应力状态。
缺口第二效应:缺口使塑性材料强度增高,塑性降低。
7. 缺口敏感度:缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即:8. 缺口试样静拉伸试验:轴向拉伸、偏斜拉伸两种。
9. 布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。
10. 洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度11. 维氏硬度——以两相对面夹角为136°的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。
材料力学名词解释

材料力学名词解释塑性材料:拉伸断裂前,即发生强性变形也发生不可逆塑性变形。
脆性材料:拉伸断裂前,不产生塑性变形,只发生弹性变形。
滞弹性:滞弹性就是在外加载荷作用下,应变落后于应力的现象.内耗:是指材料在弹性范围内由于其内部各种微观因素的原因致使机械性能逐渐转化为材料内能的现象。
循环韧性:表示材料吸收不可逆变形功的能力,故又称消振性.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余应力降低的现象。
颈缩:是韧性金属材料在拉伸试验时变形集中于局部区域的特殊现象,它是应变硬化与截面减小共同作用的结果。
6 应力集中系数和缺口敏感度?答:应力集中系数Kt定义为缺口静截面上的最大应力σmax与平均应力σ之比。
Kt表示缺口引起的应力集中程度,与材料性质无关,只决定于缺口几何形状.缺口敏感度:金属材料的缺口敏感性指标用缺口试样的抗拉强度σbn与等截面尺寸光滑试样的抗拉强度σb的比值来表示,称为缺口敏感度,记为NSR. 金属硬度:指金属表面上的不大体积内抵抗变形或破裂的能力.冲击载荷:指加载速度很快而作用时间很短的突发性载荷.加载速度快,作用时间短的载荷。
冷脆:指材料因温度的降低导致冲击韧性急剧下降并引起脆性破坏的现象。
冲击韧性:是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。
低应力脆断:在应力水平低于材料屈服极限的情况下所发生的突然断裂现象疲劳:金属机件或构件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象疲劳曲线:是疲劳应力与疲劳寿命的关系曲线,疲劳极限:是经无限次应力循环也不发生疲劳断裂,故将对应的应力称为疲劳极限.过载损伤:对于一定的金属材料,引起过载损伤需一定的加载应力与一定的应力循环周次相配合,即在一次过载应力下,只有过载运转超过一周次后才会引起过载损伤。
过载持久值:材料在高于疲劳强度的一定应力下工作,发生疲劳断裂的应力循环周次称为材料的过载持久值,也称为有限疲劳寿命。
材料力学2--动荷载、交变应力

惯性力:
FNd man 2 Rm 2 LG / g
②强度条件
O
L
FNd / A
2GL A ( g )
FNd
12.3 构件受冲击时动应力计算
计算采用能量守恒定律 冲击物在冲击过程中减少的动能 Ek 和势能Ep 等于被冲击构件所增加的应变能 Vd ,即
2 d
解出 d 的两个根,取其中大于 st 的那个根,即得
2h Δd Δst (1 1 ) Δst
2h 引用记号 K d (1 1 ) Δst
则
Δd Kd Δst
将上式两边乘以 E/l 后得
d Kd st
(1)
注意:当 h0 时,相当于P 骤加在杆件上,这时
对于铝合金等有色金属,其S-N曲线没有明显的
水平部分,一般规定 N0 5 106 ~ 107 时对应的 max 称
N 为条件疲劳极限,用 表示。 1
0
对低碳钢,其 其弯曲疲劳极限 拉压疲劳极限
b 400 ~ 500MPa
( -1 ) b 170 ~ 220MPa ( -1 ) t 120 ~ 160MPa
r < 0 :拉压循环 ; r > 0 :拉拉循环 或压压循环。
(2)应力幅 (3)平均应力 m
max min
1 m ( max min ) 2
一个非对称循环应力可以看作是在一个平均应力 m 上叠加一个应力幅为 的对称循环应力组合构成。
疲劳极限 将若干根尺寸、材质相同的标准试样,在疲劳试验 机上依次进行r = -1的常幅疲劳试验。各试样加载应 力幅 均不同,因此疲劳破坏所经历的应力循环次 数N各不相同。 以 为纵坐标,以N为横坐标(通常为对数坐标), 便可绘出该材料的应力—寿命曲线即S-N曲线如图(以 40Cr钢为例) 注:由于在r =-1时, max = /2,故 S-N曲线纵坐标 也可以采用 max 。
材料力学构件受力变形及其应力

e bc段—屈服阶段
屈服点 s
cd段—强化阶段
抗拉强度 b
de段—缩颈断裂阶
段
E 弹性阶段 比例极限σp
ta nE
oa段是直线,应力与应变在此段成正比关系,材料符合虎克定律
直线oa的斜率
就是材料的弹性模量,直线部分最高点所对
应的应力值记作σp,称为材料的比例极限。曲线超过a点,图上
曲线超过b点后,出现了一段锯齿形曲线, 这—阶段应力没有增加,而应变依然在增加, 材料好像失去了抵抗变形的能力,把这种应 力不增加而应变显著增加的现象称作屈服, bc段称为屈服阶段。屈服阶段曲线最低点所
对应的应力 称为屈服点(或屈服极限)。在
屈服阶段卸载,将出现不s 能消失的塑性变形。
工程上一般不允许构件发生塑性变形,并把 塑性变形作为塑性材料破坏的标志,所以屈 服点
4.局部变形阶段
曲线到达d点前,试件的变形是均匀发生的,曲线到达d点,在பைடு நூலகம்件比较薄弱的某一局部(材 质不均匀或有缺陷处),变形显著增加,有效横截面急剧减小,出现了缩颈现象,试件很快 被拉断,所以de段称为缩颈断裂阶段。
5.延伸率和断面收缩率
试件拉断后,弹性变形消失,但塑性变形仍保
留下来。工程上用试件拉断后遗留下来的变形
的增加,可先后发生弹性变形、塑性变形、直至断裂。
根据拉伸过程中试件承受的应力和产生的应变之间
的关系,可以绘制出该低碳钢的
曲线。
应力——应变曲线图
02
σ=
F
L
A
L
低碳钢的 曲线分析:
d
c
b e p
ab
s
O
试件在拉伸过程中经历 了四个阶段,有两个重 要的强度指标。
材料力学-动荷载和交变应力

应变能
Ve
=
1 2
Fd d
Fd
=
EA l
d
应变能
Ve
=
1 2
Fd d
令 C= EA l
被冲击构件的 刚度系数
Fd = C d
W
vh
d
EA l
将 W 以静荷载的方式作用于冲击点处
被冲击构件沿冲击方向的静变形为 st
W = C st
C
=
W st
Fd =
W st
d
能量守恒方程
d2 - 2 st d - 2 st h = 0
对疲劳破坏的解释与构件的疲劳破坏断口是吻合的
光滑区 —— 裂纹扩展区 粗糙区 —— 最后突然
断裂形成的
构件的疲劳破坏,是在没有明显预兆的情况下 突然发生的,往往会造成严重的事故。
§13-5 交变应力的特性与疲劳极限
应力循环
应力每重复变化一次
一个应力循环
s
重复的次数 —— 循环次数
r s = min
构件中各质点以变速运动时,构件就承受动荷载 的作用。
构件由动荷载引起的应力和变形 动应力 动变形
静荷载作用下服从虎克定律的材料,在动荷载作用下, 只要动应力不超过材料的比例极限,虎克定律仍然成立。
构件内的应力随时间作周期性交替变化
交变应力
在交变应力的长期作用下: 即使是塑性很好的材料、最大工作应力远低于
仍服从虎克定律。
冲击过程中不考虑波动效应,不计声、热能损失。
一、竖向冲击问题
重为 W 的物体,从高度 h 处自由下落 到杆的顶端。
变形最大时:Fd 、d 、sd
冲击物在冲击前后动能和势能的改变 等于被冲击构件所获得的应变能。
工程材料力学名词解释

工程材料力学名词解释应变(strain):为一微小材料(元素)承受应力时所产生的单位长度变形量(力学定义,无量纲)弹性变形(elastic deformation): 材料在外力作用下产生变形,当外力去除后恢复其原来形状,这种随外力消失而消失的变形。
重要特征:可逆性、胡克定律(是力学基本定律之一。
适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比)4)塑性变形(plastic deformation):材料在外力作用下产生的永久不可恢复的变形。
(5)断裂(fracture,rupture 破裂、crack 裂纹):物体在外力作用下产生裂纹以至断开的现象。
脆性断裂(未发生较明显的塑性变形)、韧性断裂(发生较明显的塑性变形),宏观特征(1)弹性(elasticity):是指物体(材料)本身的一种特性,发生形变后可以恢复原来的状态的一种性质。
(2)弹性变形(elastic deformation):材料在外力作用下产生变形,当外力去除后恢复其原来形状,这种随外力消失而消失的变形。
(3)弹性模量(elastic modulus,modulus of elasticity):是表征材料弹性的物理参数,是指材料在弹性变形范围内,应力和对应的应变的比值E=σ/ε,也是材料内部原子之间结合力强弱的直接量度。
(4)刚度(stiffness):指物体(固体)在外力作用下抵抗变形的能力,可用使产生单位形变所需的外力值来量度。
刚度越高,物体表现越硬。
(5)弹性比功(elastic specific work):表示材料吸收弹性变形功的能力,弹性比能、应变比能,决定于弹性模量和弹性极限(即材料由弹性变形过渡到弹-塑性变形时的应力)。
(6)滞弹性(anelasticity):在弹性范围内加快加载或卸载后,随时间延长产生附加弹性应变的现象。
7)循环弹性(cyclic elasticity):在交变载荷(振动)下材料吸收不可逆变形功的能力。
材料力学第10章(动载荷)

l
l
d 2 A 4
P 2 103 0.028(MPa) st 4 A 7.1 10 d Kd st
7.07 104 mm2 ( )
d Kd2h 6.86(MPa) st K d 1 1 st
[题10.16](P340)已知:重量P=2kN,h=0.5m,d=30cm, l=6m,E=10GPa,求木桩内最大正应力。 P
达朗贝尔原理认为:处于不平衡状态的物体,存在惯性力 ( Force of Inertia) ,惯性力的方向与加速度方向相反,惯性力 的数值等于加速度与质量的乘积。只要在物体上加上惯性力,
就可以把动力学问题在形式上作为静力学问题来处理,这就是
动静法。
一、直线运动构件的动应力 [例1] 杆件的横截面面积为A,单位体积的质量为 , 以加速 度a上升,试求杆子中央横截面上的动应力。 解:①受力P g st
[刘题10.20](P341) 已知:重量P=25kN, v=100cm/s, l=20m,A=4.14cm2,E=170GPa,滑轮和吊索的质量不计, 求:滑轮被突然卡住时吊索受到的冲击载荷Fd。
K d (1
v2 ) g st
l
Pl 7.1mm st EA
④静应力
( a 0)
Ag l st ( b)l 2W 4
动荷系数: K d
d 1 a g st
§10–4 杆件受冲击时的应力和变形
方法原理:能量法(机械能守恒)
在冲击物与受冲构件的接触区域内,应力状态异常复杂, 且冲击持续时间非常短促,接触力随时间的变化难以准确分
A
Δst
P
B
Kd P
Fd 动荷系数 K d P
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1 a )W
d
FT A
g A
(1
a g
) st
静载荷情况下的钢索中的应力: st
例1
§ 10.1 概述
讨论 1:
FT a
Mechanic of Materials
引入:动载荷因数kd
W
a kd 1 g
有:
d kd st
FI
(1 a )W
d
FT A
g A
(l 2
a2
b2 )
1,d
= w1,d
kd 1,st
kd
mgba (l2 6EIl
a2
b2)
§10.4 杆件受冲击时的应力和变形
h
1 1' d
l
动荷因数Kd
kd 1
2h 1 1
st
1
2h mgl 3
3EI
静
荷载 弯矩 应力 ቤተ መጻሕፍቲ ባይዱ度条件
挠度
Fst mg
M max,st M固 mgl
1 2T0 mg st
Mechanic of Materials
§10.4 杆件受冲击时的应力和变形
几种常见的冲击动荷因数
4、重物以水平速度v冲击构件:
EA l
v
st
FN l EA
mgl EA
1 2
mv2
1 2
d
Fd
1 2
(kd
st
)
(kd
mg
)
kd
v2 g st
v2 EA g 2ml
kd
mgl Wz
1,d
=
w1,d
kd 1,st
kd
mgl 3 3EI
Mechanic of Materials
§10.4 杆件受冲击时的应力和变形
几种常见的冲击动荷因数
1、冲击物体作为突加载荷作用在梁上,此时h=0
kd 1
1 2h 11 2 突加载荷作用是静载荷作用的两倍。
采用能量法处理冲击问题的基本假设: 1、除机械能外,所有其它的能量损失(塑性变形能、
热能)等均忽略不计; 2、冲击过程中,结构保持线弹性范围内,即力与变
形成正比; 3、假定冲击物为刚体,只考虑其机械能,不计变形
能; 4、假定被冲击物为弹性体,只考虑其变形能,不考
虑其机械能。
§10.4 杆件受冲击时的应力和变形
§ 10.1 概述
3、达朗伯原理的回顾 用静力学的方法求解动力学的问题。 虚拟的“惯性力”
FI ma
惯性力与主动力、约束力共同构成“平衡力 系”,通过静力学平衡方程求解未知力。
Mechanic of Materials
§ 10.1 概述 例1: 起重机以等加速度 a 起吊重量为 W的物体,求钢索中的应力。
Mechanic of Materials
h
1
1'
d
§10.4 杆件受冲击时的应力和变形
Mechanic of Materials
在冲击物自由下落的情况下,冲击
物的初速度和末速度为零,故动能
h
没有变化,即:
1
T= 0
1' d
T V Vεd
0
mg (h
d
)
Fd d 2
当重物落到最低点1’时,重物损失 的势能为:
Mechanic of Materials
Mechanic of Materials
§ 10.1 概述
一、构件作等速直线运动时的动应力与动变形 1、此类问题的特点:
加速度保持不变或加速度数值保持不变,即角速度w
=0 2、解决此类问题的方法:
牛顿第二定律 动静法(达朗伯原理)
Mechanic of Materials
例2
§ 10.1 概述
Mechanic of Materials
(5)构件轴向变形 取构件当中一微段 dx
a
m
F
dx
d (L)
Fd (x)dx EA
d (x)
E
dx
d (x)dx
Fd(x)
Fd(x)+dFd
d (x)
Fd (x) A
Fx AL
L l Fx dx FL 0 EAL 2EA
V=mg ( h + △d)
在冲击过程中,冲击载荷作功等于 梁的变形能,则:
Vd=(Fd △d)/2
而重物以静载荷的方式作用于梁上时,相应的静变形为
△st,在线弹性范围内,载荷和位移成正比,有:
Fd d mg st
d2 2dst 2hst 0
d st (1
Mechanic of Materials
二、冲击问题的特点:
构件受到外力作用的时间很短, v 冲击物的速度在很短的时间内发生 很大的变化,甚至降为0,冲击物得 到一个很大的负加速度 a
a
冲击物
被冲击物
解决冲击问题的方法:近似但偏 于安全的方法--能量法
Mechanic of Materials
§10.4 杆件受冲击时的应力和变形
Mechanic of Materials
§ 10.1 概述
一、什么是动载荷,与静荷载的区别。
1、静荷载:
从零开始缓慢地增到终值,然后保持不变的载荷 2、动载荷:
使构件产生明显的加速度的载荷或随时间变化 的载荷。动载荷本质:是惯性力 3、动应力、动变形
构件由于动荷载所引起的应力、变形 4、分类:惯性载荷、冲击载荷、振动载荷、交变载荷
v
mgl Wz
3EIm v mg
l
Wz
§10.4 杆件受冲击时的应力和变形
三、求冲击问题的解题步骤
Mechanic of Materials
1、求静位移、静应力
静冲击物静置在被冲击物的冲击位置上,由拉压杆胡克定 理,梁可以查表,求冲击处发生静位移。也可以由能梁法 求解。
2、求动荷系数
kd 1
§ 10.1 概述
例2: 设有等直杆,长度为L,截面积为A,比 重g,受拉力F的作用,以等加速度a运动,求构件 的应力和变形。(不计摩擦力)
a
m
F
Mechanic of Materials
例2
§ 10.1 概述
a
解:(1)构件加速度:
FF
Fg
m
F
a
m ALg / g ALg
x
(2)构件单位长度qd 上的惯性力(集度):
Mechanic of Materials
第二十八、九讲的内容、要求、重难点 教学内容:
构件作加速直线运动或匀速转动时的动应力计算, 构件受冲击荷载时的动应力计算;交变应力的概念, 交变应力下材料的疲劳破坏,疲劳极限。
教学要求:
1、了解材料疲劳极限曲线、提高疲劳强度措施;
2、理解动荷载和循环应力概念,循环应力的类型;
二、构件作等速转动时的动应力
Mechanic of Materials
环内任意一点有向心加速度an,设圆环的横截 面积为A,单位体积的重量为g。
y qd ds
惯性力:
qd
Ag
g
an
AgD w 2
2g
平衡方程
2FN
0
qd
sin
D 2
d
0
jan
2FN qd D 0
FFNn
d (x)
d (x)
E
Fx EAL
d (x)
Fd (x) A
Fx AL
Mechanic of Materials
§ 10.1 概述 二、构件作等速转动时的动应力
设圆环以等角速度w 绕通过圆心且垂直
于圆环平面的轴旋转,如图所示(平均直 径D>>厚度t,讨论环内的应力。
w
D
§ 10.1 概述
5、研究意义
§ 10.1 概述
二、实例 惯性载荷
Mechanic of Materials
§ 10.1 概述
冲击载荷
Mechanic of Materials
§ 10.1 概述
振动载荷(Tacoma大桥共振断裂)
Mechanic of Materials
§ 10.1 概述 交变载荷(交变载荷引起疲劳破坏)
1 2h st
kd
v2 g st
3、求动位移、静应力等
Mechanic of Materials
§10.4 杆件受冲击时的应力和变形
例题 : 图中所示的两根受重物Q冲击的钢梁,其中一根是支承于 刚性支座上,另外一根支于弹簧刚度系数k=100N/mm的弹性支 座上。已知l = 3m, h=0.05m, Q=1kN, Iz=3.4×107mm4, Wz=308.6×109mm3,E=200GPa,比较两者的冲击应力。
应力
1st ,max
mgab Wz
/l
1d ,max
kd 1st,max
kd
mgab / l Wz
强度条件
1st,max
mgab / l Wz
1d ,max
kd 1st,max
kd
mgab / l Wz
挠度
1 , st
=
w1