九年级数学《圆的对称性》

合集下载

《圆的对称性》圆圆的对称性

《圆的对称性》圆圆的对称性
自然界中
艺术家们也经常利用圆形的对称性来创作美丽的艺术作品,例如旋转对称的图案、镜像对称的图案等。
艺术创作
02
CHAPTER
圆的轴对称性
轴对称性是一种几何属性,指的是一个图形关于某一直线(称为“对称轴”)对称,即图形上的任意点到对称轴的距离相等,且在对称轴的两侧有相对应的点。
对称轴是一条直线,它把图形划分成两个部分,其中一个部分相对于对称轴折叠后能够与另一个部分重合。
感谢您的观看。
04
CHAPTER
圆的旋转对称性
旋转对称性是指一个图形在旋转一定角度后,仍然保持不变的形状和大小。
旋转对称轴是一条通过图形中心的直线,将图形旋转特定角度后,图形上的点与旋转前的点重合。
圆在绕其中心旋转任意角度时,其形状和大小均保持不变。
圆上任意一点在绕圆心旋转一定角度后,都会与原来的点重合。
雕塑中的应用
许多生物形状都表现出圆的对称性,如人的身体、树叶等。这种对称性有助于保持生物体的平衡,使其在运动时更加流畅、自然。
在天体运动中,圆的对称性也非常重要。例如,地球的自转和公转都是以圆形轨道进行的,这种圆形运动方式使得天体能够更加稳定地运动,避免了不必要的震动和变化。
生物形状
天体运动
THANKS
圆是一个具有轴对称性的图形,它的对称轴是经过圆心的任意一条直线。
圆上的任意一点到对称轴的距离相等,且在对称轴的两侧有相对应的点。
圆沿着对称轴折叠后,两侧的点能够完全重合。
通过圆的轴对称性,我们可以很容易地找到圆上任意一点的对称点,以及通过旋转和翻转等变换得到新的图形。
圆的轴对称性也是证明一些几何定理的重要工具,例如,利用圆的轴对称性可以证明圆中的垂径定理和切线长定理等。

九年级数学上册《圆的对称性中心对称圆心角与其所对弧弦关系定理》教案、教学设计

九年级数学上册《圆的对称性中心对称圆心角与其所对弧弦关系定理》教案、教学设计
-学生在实际应用中可能会遇到计算方法和策略选择上的困难。
-教师应引导学生将理论知识与实际情境相结合,培养学生的应用能力和解决实际问题的能力。
(二)教学设想
1.创设情境,引入新课
-通过展示生活中的圆形物体或图案,如车轮、硬币等,让学生感受圆的对称美,自然引入圆的对称性质的学习。
-设计互动环节,让学生在观察和操作中自主发现圆的对称特征,激发学生的学习兴趣。
2.分层次教学,逐步突破重难点
-对于基础层次的学生,通过具体实例和重复练习,帮助他们理解和记忆圆的对称性质。
-对于中等层次的学生,引导他们通过小组合作,探讨定理的证明过程,提升逻辑推理能力。
-对于高层次的学生,设计更具挑战性的问题,鼓励他们进行深度思考和探索,培养创新思维。
3.实践操作,加深理解
-安排剪纸、模型制作等实践活动,让学生亲自动手验证圆的对称性质和定理。
(二)过程与方法
1.通过直观演示和动手操作,让学生经历探索圆的对称性质的过程,培养观察能力和空间想象能力。
-教师通过多媒体演示或实物操作,引导学生观察圆的对称性质,激发学生的直观想象。
-学生通过剪纸、折叠等活动,亲身体验圆的对称性,增强空间想象力和动手能力。
2.通过小组合作、讨论交流的方式,培养学生团队协作能力和问题解决能力。
-布置有针对性的课后作业,让学生在实践中巩固所学知识,提高解决问题的能力。
四、教学内容与过程
(一)导入新课
今天我们将开启圆的对称性的探索之旅。首先,我想请大家回想一下,在我们的生活中,你见过的哪些物体或图形具有对称性?它们给你什么样的感觉?(等待学生回答)是的,对称性给人一种平衡和美的感觉。在数学中,圆是具有高度对称性的图形之一。今天,我们将深入研究圆的对称性质,并学习一些关于圆心角、弧和弦的重要定理。

北师大版数学九年级下册圆的对称性课件

北师大版数学九年级下册圆的对称性课件

教学过程
10
记一记
通过探究,我们进一步得出同圆或等圆中圆心角、
新 弧、弦、弦心距之间关系.
知 在同圆或等圆中,如果两个圆心角、两条弧、 两条弦、两个弦心距中有一组量相等,那么
新 它们所对应的其余各组量都分别相等

O
O'
A
C
B
A' C' B'
教学过程
11
记一记
同圆或等圆中圆心角、弧、弦、弦心距之间关系的
教学过程
8
议一议
在等圆⊙O和⊙O'中,分别作相等的圆心角∠AOB和
新 ∠A'O'B',视察两个圆的重叠情况,你有什么发现?.

O
O'

ACΒιβλιοθήκη BA' C' B'
授 在等圆⊙O和⊙O'中,当圆心角∠AOB=∠A'O'B'时,
它们所对的弦A⌒B=A⌒’B’吗?AB=A’B’吗?它们所对的
弦心距OC=O’C’吗?.
教学过程
9
记一记
通过上面的探究,我们可以得出同圆或等圆中圆心
新 角、弧、弦、弦心距之间关系. 知 在同圆或等圆中,相等的圆心角所对的弧
相等,所对的弦相等,所对的弦心距相等。
新 注意:两个圆心角、两条弧、两条弦、两 授 个弦心距相等的前提是“在同圆或等圆中”。
思考:在同圆或等圆中,两个圆心角、两 条弧、两条弦、两个弦心距中任意一组量 相等,其余的各组量也相等吗?
C. BC+BD> AB D. S△ABC>S△DBC
D O
A
B C
教学过程

《圆的对称性》圆心角优秀自己总结

《圆的对称性》圆心角优秀自己总结
思考题与练习题
在半径为5cm的圆O中,弦AB的长为6cm,则弦AB的弦心距是多少?
已知圆O的半径为5cm,弦AB的长为8cm,P是弦AB上的一个动点,则点P到圆心O的最短距离是多少?
思考题
练习题
感谢观看
THANKS
01
02
利用圆的对称性解题技巧
04
CHAPTER
利用对称性简对称性可以简化计算过程。例如,计算圆心角所对的弧长或面积时,只需考虑圆心角的一半或特定部分,然后利用对称性得到完整的结果。
对称性简化计算
利用圆的镜像对称性,可以将问题转化为更容易处理的形式。例如,在处理与弦或切线相关的问题时,可以通过作垂线或构造相似三角形等方法,利用镜像对称简化计算。
镜像对称
利用对称性判断图形性质
判定等腰三角形
在圆内接三角形中,如果两个角所对的弧相等,则这两个角相等,从而可以判定该三角形为等腰三角形。
判定直角三角形
如果圆内接三角形的一个角所对的弧是另一个角所对弧的两倍,则该三角形为直角三角形。这一性质可以通过圆的对称性和相似三角形的性质来证明。
利用对称性解决实际问题
01
圆的对称性定义
圆是中心对称图形,任意一点关于圆心的对称点仍在圆上。
02
圆心角性质
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
拓展延伸相关知识点
一条弧所对的圆周角等于它所对圆心角的一半。 圆周角定理 弦切角等于它所夹弧所对的圆周角。 弦切角定理 相交两圆的连心线垂直平分两圆的公共弦。 圆的幂定理
圆上任一点绕圆心旋转任意角度后,仍然位于圆上。
对于圆上任意两点,如果它们关于圆心对称,则它们的连线段通过圆心且被圆心平分。
中心对称性

北师大版九年级数学下册:3.2《圆的对称性》教案

北师大版九年级数学下册:3.2《圆的对称性》教案

北师大版九年级数学下册:3.2《圆的对称性》教案一. 教材分析北师大版九年级数学下册3.2《圆的对称性》是一节概念性较强的课程。

本节课主要让学生了解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。

通过学习,使学生能运用圆的对称性解决一些实际问题。

二. 学情分析九年级的学生已经掌握了八年级数学中关于对称轴、对称图形等基本知识,他们对轴对称图形有了一定的认识。

但圆的对称性较为抽象,学生需要通过实例来更好地理解和掌握。

三. 教学目标1.知识与技能:让学生理解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:圆的对称性,圆是轴对称图形,圆有无数条对称轴。

2.难点:理解圆的对称性与轴对称图形的关系。

五. 教学方法1.情境教学法:通过实例和问题情境,引发学生的思考和探索。

2.引导发现法:教师引导学生发现圆的对称性,培养学生独立思考的能力。

3.合作交流法:学生在小组内进行讨论和交流,分享学习心得和解决问题的方法。

六. 教学准备1.教具准备:多媒体课件、圆规、直尺、练习题等。

2.教学环境:教室布置成有利于学生思考和交流的环境。

七. 教学过程1.导入(5分钟)教师通过展示生活中的圆对称现象,如圆形的钱币、圆桌、圆形的图案等,引导学生关注圆的对称性。

提问:这些圆形的物品有什么共同特点?学生回答后,教师总结:圆的对称性。

2.呈现(10分钟)教师利用多媒体课件展示圆的对称性,让学生观察和思考。

呈现圆的轴对称图形,引导学生发现圆有无数条对称轴。

同时,让学生尝试画出圆的对称轴,并观察圆的对称轴的特点。

3.操练(10分钟)教师提出问题:如何判断一个图形是否是圆的对称图形?让学生在小组内进行讨论和交流,总结出判断方法。

北师大版数学九年级下册3.2《圆的对称性》教案

北师大版数学九年级下册3.2《圆的对称性》教案

北师大版数学九年级下册3.2《圆的对称性》教案一. 教材分析北师大版数学九年级下册3.2《圆的对称性》是本册教材中的重要内容,主要让学生了解圆的对称性质,掌握圆的对称性的应用。

本节课的内容对于学生来说比较抽象,但与生活实际息息相关,有利于激发学生的学习兴趣,培养学生的抽象思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念,如圆的半径、直径等,并了解了一些基本的平面几何知识。

但是,对于圆的对称性的理解和应用,还需要进一步的引导和培养。

因此,在教学过程中,要注重启发学生思考,引导学生发现圆的对称性,并学会运用圆的对称性解决实际问题。

三. 教学目标1.知识与技能:让学生理解圆的对称性质,学会运用圆的对称性解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的抽象思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的决心。

四. 教学重难点1.重点:圆的对称性质的理解和应用。

2.难点:圆的对称性质在实际问题中的灵活运用。

五. 教学方法采用问题驱动法、合作学习法、案例教学法等,充分调动学生的积极性,引导学生主动探究,合作交流,提高学生的抽象思维能力和解决问题的能力。

六. 教学准备1.教具:黑板、粉笔、多媒体教学设备等。

2.学具:学生每人一本教材,一份练习题。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的圆对称现象,如圆形的挂钟、圆形的脸谱等,引导学生发现圆的对称性质,激发学生的学习兴趣。

2.呈现(10分钟)教师通过讲解和演示,向学生介绍圆的对称性质,如圆的任何一条直径所在的直线都是圆的对称轴,圆的任何一点关于圆心都有对称点等。

同时,引导学生发现圆的对称性质与生活的密切关系。

3.操练(10分钟)学生分组讨论,每组设计一个具有圆对称性质的图案,并利用圆规和直尺进行绘制。

通过实践活动,加深学生对圆的对称性质的理解。

北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案

北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案

北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案一. 教材分析北师大版九年级数学下册第三章《圆》是整个初中数学的重要内容,而本节课《圆的对称性》则是这一章节的重点和难点。

教材从圆的轴对称性入手,引导学生探究圆的对称性质,进而推导出圆的直径所在的直线即为圆的对称轴。

本节课通过丰富的实例和生动的活动,让学生深刻理解圆的对称性,并为后续学习圆的性质打下基础。

二. 学情分析九年级的学生已经掌握了八年级数学的大部分内容,对轴对称图形有了一定的认识,能够理解并运用轴对称的性质。

但他们对圆的对称性的理解还不够深入,需要通过本节课的学习,进一步加强对圆对称性质的认识。

同时,学生对圆的相关知识掌握程度不一,需要在教学过程中关注不同学生的学习需求。

三. 教学目标1.理解圆的对称性,掌握圆的对称轴的定义及性质。

2.能够运用圆的对称性解决实际问题。

3.培养学生的观察能力、动手操作能力和推理能力。

四. 教学重难点1.圆的对称性的理解。

2.圆的对称轴的定义及性质的掌握。

五. 教学方法采用问题驱动法、合作探究法和实例分析法,引导学生从实际问题中发现圆的对称性,通过自主探究和合作交流,深入理解圆的对称性质。

六. 教学准备1.准备相关的实例和图片,用于引导学生发现圆的对称性。

2.准备圆规、直尺等学具,让学生动手操作,加深对圆对称性质的理解。

3.准备一些实际问题,用于巩固学生对圆对称性的运用。

七. 教学过程1. 导入(5分钟)通过展示一些具有对称性的图片,如剪纸、建筑等,引导学生对对称性产生兴趣。

然后提出问题:“你们认为什么样的图形才能称为对称图形?”让学生回顾轴对称图形的概念。

2. 呈现(10分钟)呈现圆的轴对称性实例,如圆形的剪纸、钟表等,引导学生观察并描述圆的对称性质。

同时提出问题:“圆有对称轴吗?如果有,在哪里?”让学生思考并讨论。

3. 操练(10分钟)让学生分组,每组用圆规和直尺画出一个圆形,并用折纸的方法找出圆的对称轴。

苏科版数学九年级上册2.2《圆的对称性》教学设计

苏科版数学九年级上册2.2《圆的对称性》教学设计

苏科版数学九年级上册2.2《圆的对称性》教学设计一. 教材分析《圆的对称性》是苏科版数学九年级上册第二章第二节的内容。

本节课主要学习了圆的对称性质,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线等。

通过本节课的学习,使学生能够理解圆的对称性质,并能运用到实际问题中。

二. 学情分析学生在学习本节课之前,已经学习了圆的基本概念,如圆的定义、圆的方程等,同时也学习了平面图形的对称性。

因此,学生对于对称性的概念已经有所了解,但对于圆的对称性质还需要进一步的引导和探究。

三. 教学目标1.理解圆的对称性质,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线。

2.能够运用圆的对称性质解决实际问题。

3.培养学生的观察能力、思考能力和解决问题的能力。

四. 教学重难点1.圆的对称性质的理解和运用。

2.圆的对称轴的确定。

五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,引导学生通过观察、思考、讨论、实践等方式,掌握圆的对称性质,并能够运用到实际问题中。

六. 教学准备1.教学课件或黑板。

2.圆形教具。

3.练习题。

七. 教学过程1.导入(5分钟)通过展示一些具有对称性的图形,如圆、正方形、矩形等,引导学生回顾对称性的概念,并提问:你们认为圆具有对称性吗?圆的对称性质是什么?2.呈现(10分钟)利用多媒体课件或黑板,呈现圆的对称性质,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线。

同时,通过举例说明圆的对称性质。

3.操练(10分钟)让学生拿出圆形教具,观察并尝试找出圆的对称轴。

学生可以自行尝试,也可以与同桌相互讨论。

在学生操作过程中,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些关于圆的对称性的练习题,让学生独立完成。

题目可以包括判断题、选择题和解答题等。

学生完成后,教师进行讲解和点评。

5.拓展(10分钟)让学生思考:圆的对称性质在实际生活中有哪些应用?引导学生举例说明,如圆形的桌面、圆形的路面等。

北师大版数学九年级下册3.2《圆的对称性》说课稿

北师大版数学九年级下册3.2《圆的对称性》说课稿

北师大版数学九年级下册3.2《圆的对称性》说课稿一. 教材分析《圆的对称性》这一节的内容是北师大版数学九年级下册第三章第二节的内容。

本节课的主要内容是让学生了解圆的对称性,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线,以及圆的对称性在实际问题中的应用。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对轴对称图形和中心对称图形有了初步的认识。

但是,对于圆的对称性的理解还需要进一步的引导和培养。

因此,在教学过程中,我将会以学生的已有知识为基础,通过实例和问题,引导学生深入理解圆的对称性。

三. 说教学目标1.知识与技能:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

2.过程与方法:通过观察、思考、交流等活动,学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。

3.情感态度与价值观:学生能够培养对数学的兴趣,提高对几何图形的审美能力。

四. 说教学重难点1.教学重点:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

2.教学难点:学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。

五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法和实例教学法。

通过提出问题,引导学生思考和探索,从而发现圆的对称性。

同时,我会利用多媒体教学手段,展示相关的几何图形和实例,帮助学生更好地理解和掌握圆的对称性。

六. 说教学过程1.导入:通过提出问题,引导学生思考和探索圆的对称性。

2.新课导入:介绍圆的对称性,让学生了解圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

3.实例讲解:通过展示相关的实例,让学生深入理解圆的对称性。

4.练习与讨论:让学生进行相关的练习,并通过讨论交流,巩固对圆的对称性的理解。

5.总结与拓展:总结本节课的主要内容,并进行拓展,引导学生思考圆的对称性在实际问题中的应用。

九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件

九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件
在同圆或等圆中,如果两条弦相等,你能得出什么 结论?
归纳
知2-导
1.在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦 中有一组量相等,那么它们所对应的其余各组量都分 别相等.
(来自教材)
知2-讲
例2 下列命题中,正确的是( C ) ①顶点在圆心的角是圆心角;
形、圆、等腰三角形,这些图形中只是轴对称图
形的有( A )
A.1个
B.2个
C.3个
D.4个
知1-练
4 【2017·黄石】下列图形中既是轴对称图形,又是 中心对称图形的是( D )
知2-导
知识点 2 圆心角与所对的弧、弦之间的关系
在同圆或等圆中,如果两个圆心角所对的弧相等,那 么它们所对的弦相等 吗?这两个圆心角相等吗?你是怎 么想的?
②相等的圆心角所对的弧也相等;
③在等圆中,圆心角不等,所对的弦也不等.
A.①和②
B.②和③
C.①和③
D.①②③
知2-讲
导引:①根据圆心角的定义知,顶点在圆心的角是圆心角, 故正确;②缺少条件,必须是在同圆或等圆中,相等 的圆心角所对的弧才相等,故错误;③根据弧、弦、 圆心角之间的关系定理,可知在等圆中,若圆心角相 等,则所对的弦相等,若圆心角不等,则所对的弦也 不等,故正确.
总结
知2-讲
本题考查了对弧、弦、圆心角之间的关系的理解,对于 圆中的一些易混易错结论应结合图形来解答.特别要注 意:看是否有“在同圆或等圆中”这个前提条件.
知2-练
1 下面四个图形中的角,是圆心角的是( D )
知2-练
2 如图,AB为⊙O的弦,∠A=40°,则A︵B所对的 圆心角等于( C ) A.40° B.80° C.100° D.120°

九年级数学下册圆的对称性

九年级数学下册圆的对称性

A B
o
C
D
下面我们一起来观察一下圆心角与它所对的弦、弧有什么关系?
如图: AOB= COD
A B
o
C
D
下面我们一起来观察一下圆心角与它所对的弦、弧有什么关系?
如图: AOB= COD
A B

o
C
D
下面我们一起来观察一下圆心角与它所对的弦、弧有什么关系?
如图: AOB= COD
A B
o
C
D
下面我们一起来观察一下圆心角与它所对的弦、弧有什么关系?
④ OD=O′D′
结论
1、在一个圆中,假设圆心角相等,则它所对的弧相 等,所对的弦相等。
2、在一个圆中,假设弧相等,则所对的圆心角相等, 所对的弦相等。
3、在一个圆中,假如弦相等,则所对的圆心角相等, 圆心角所对的弧 相等。
B' O
A'
A
B
例题
⌒⌒ 例1.如图,在⊙O中AC=BD, ∠1=45°,求∠2的度 数。
如图: ∠AOB=∠
A
COD
B

o C
D
下面我们一起来观察一下圆心角与它所对的弦、弧有什么关系?
A
如图:
∠AOB=∠COD
B
o
C
D
下面我们一起来观察一下圆心角与它所对的弦、弧有什么关系?
如图: AOB= COD
A B
o
C
D
下面我们一起来观察一下圆心角与它所对的弦、弧有什么关系?
如图: AOB= COD
A
O
E
C
D
B
∠AOB=∠COD, AB=CD ,OE=OF ;

九年级数学圆的对称性

九年级数学圆的对称性

在a,d,r,h中,已知其中任意两个 量,可以求出其它两个量.
做一做
8
驶向胜利 的彼岸
• 在直径为650mm的圆柱形油槽内装入一些油后,截面 如图所示.若油面宽AB = 600mm,求油的最大深度.
A
O ┌ E
D
600
B
想一想
垂径定理的逆应用
9
驶向胜利 的彼岸
• 在直径为650mm的圆柱形油槽内装入一些油后,截 面如图所示.若油面宽AB = 600mm,求油的最大深 度.
想一想
7
已知:如图,直径CD⊥AB,垂足为E . ⑴若半径R = 2 ,AB = 2 3 , 求OE、DE 的长. ⑵若半径R = 2 ,OE = 1 ,求AB、DE 的长. ⑶由⑴ 、⑵两题的启发,你还能编出什么其他问题?
C
a 2 ⑴d + h = r ⑵ r d ( ) 2
2 2
O E A D B
2 2 2
R 300 R 90 . 解这个方程, 得R 545. 这段弯路的半径约为545 m.
随堂练习 3
赵州石拱桥
驶向胜利 的彼岸
• 1.1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥 拱是圆弧形,它的跨度(弧所对是弦的长)为 37.4 m,拱高 (弧的中点到弦的距离,也叫弓形高)为7.2m,求桥拱的半 径(精确到0.1m).
O
做一做
5
船能过拱桥吗
驶向胜利 的彼岸
• 2 . 如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶 高出水面2.4米.现有一艘宽3米、船舱顶部为长方形并 高出水面2米的货船要经过这里,此货船能顺利通过这 座拱桥吗?
• 相信自己能独立 完成解答.

湘教版数学九年级下册2.1《圆的对称性》教学设计

湘教版数学九年级下册2.1《圆的对称性》教学设计

湘教版数学九年级下册2.1《圆的对称性》教学设计一. 教材分析《圆的对称性》是湘教版数学九年级下册第2.1节的内容,主要介绍了圆的对称性质。

本节内容是在学生已经掌握了圆的基本概念和性质的基础上进行授课的,为后续学习圆的方程和应用打下基础。

教材从圆的轴对称性和中心对称性两个方面展开,通过实例和习题使学生理解和掌握圆的对称性质。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对圆的基本概念和性质有一定的了解。

但是,对于圆的对称性质的理解可能会存在一定的困难,特别是对于圆的轴对称性和中心对称性的区别和联系。

因此,在教学过程中,需要通过具体的实例和习题,帮助学生理解和掌握圆的对称性质。

三. 教学目标1.理解圆的轴对称性和中心对称性的概念。

2.掌握圆的对称性质,并能够运用到实际问题中。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.圆的轴对称性和中心对称性的概念及区别。

2.圆的对称性质的应用。

五. 教学方法1.采用问题驱动的教学方法,通过提问和解答的方式引导学生思考和探索圆的对称性质。

2.使用多媒体辅助教学,通过图形和动画的展示,帮助学生直观地理解和掌握圆的对称性质。

3.运用实例和习题,让学生在实践中巩固和应用圆的对称性质。

六. 教学准备1.多媒体教学设备。

2.教学PPT。

3.实例和习题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾圆的基本概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)使用PPT展示圆的轴对称性和中心对称性的定义和性质,让学生直观地理解圆的对称性质。

3.操练(10分钟)让学生通过观察和分析具体的实例,找出圆的对称轴和中心,加深对圆的对称性质的理解。

4.巩固(10分钟)让学生分组讨论,总结圆的对称性质,并互相解答疑问。

教师巡回指导,帮助学生巩固所学知识。

5.拓展(10分钟)引导学生运用圆的对称性质解决实际问题,如圆的切割、设计等,提高学生的应用能力。

人教版初三九年级数学第二十一章《圆的对称性》课件

人教版初三九年级数学第二十一章《圆的对称性》课件

• ⑶经过弦的中点的直径一定垂直于弦.(


• ⑷圆的两条弦所夹的弧相等,则这两条弦平行 . ( )
圆的对称性
• 圆是轴对称图形. 圆的对称轴是任意一条经过圆心的直线,它有无 数条对称轴. 可利用折叠的方法即可解决上述问题. 圆也是中心对称图形.

O
它的对称中心就是圆心. 用旋转的方法即可解决这个 问题.
读一读P88 3
圆的相关概念
• 圆上任意两点间的部分叫做圆弧,简称弧. 以A,B两点为端点的弧.记作 ⌒ AB,读作“弧 AB”. 连接圆上任意两点间的线段叫做弦(如弦AB).
圆 的 对 称 性
(共三课时)
想一想P88 1
圆的对称性
• 圆是轴对称图形吗? 如果是,它的对称轴是什么?你能找到多少条对称 轴? 你是用什么方法解决上述问题的? 圆是中心对称图形吗? 如果是,它的对称中心是什么? O 你能找到多少条对称轴? 你又是用什么方法解决这个 问题的?

想一想P88 2

B
A
经过圆心弦叫做直径(如直径AC). • m 直径将圆分成两部分,每一部分都叫做半 ⌒ 圆(如弧ABC).
C D

O
小于半圆的弧叫做劣弧,如记作 ⌒ AB(用 两个字母).

⌒ 大于半圆的弧叫做优弧,如记作 AmB (用三个字母).

做一做P89 4
垂径定理
• AB是⊙O的一条弦. 作直径CD,使CD⊥AB,垂足为M.

做一做
右图是轴对称图形吗?如果是,其对称轴是什么?
C
A
M└

O
• 你能发现图中有哪些等量关系?与同伴说 说你的想法和理由. B 小明发现图中有: ③AM=BM, 由 ① CD是直径 ⌒ ⌒ 可推得 ④ AC=BC, ② CD⊥AB

九上数学课件 圆的对称性(课件)

九上数学课件  圆的对称性(课件)
A
则AC与AE的大小关
系是 AC=AE .
C
D B
O
2.如图,在△ABC中,
∠C=90°,∠A=25°,以点C
为圆心,BC为半径的圆交
AB于点D,交AC于点E,
则弧BD度数5为0°
.
B D
C
EA
能力提升: 我们已经知道在⊙O中,如果2∠AOB=∠COD,则 C⌒D=2A⌒B,那么CD=2AB也成立吗?若成立,请说明 理由;若不成立,那它们之间的关系又是什么?
B D OC A
知 一 推 三
1.判断题 (1)等弦所对的弧相等.
(× )
(2)等弧所对的弦相等.
(√ )
(3)圆心角相等,所对的弦相等. ( × )
2.弦长等于半径的弦所对的 圆心角等于 60 ° .
弧、弦与圆心角关系定理的推论
在同圆或等圆中,如果 两个圆心角、两条弧、两条 弦中有一组量相等,那么它 们所对应的其余各组量都分 别相等.
( ( ( (
( (
填一填: 如图,AB、CD是⊙O的两条弦.
(1)如果AB=CD,那么_A_B_=__C_D___,∠__A_O_B__=_∠__C_O_D_. (2)如果AB=CD ,那么_A_B__=_C_D___,∠_A_O__B_=_∠__C_O__D__.
(3)如果∠AOB=∠COD,那么__A__B_=__C_D___,A__B_=_C__D___.
2AB>CD
AB C
O
E
D
如图,已知⊙O与△ABC三
A
边均相交,在三边上截得的
D
H
线段DE=FG=HK,∠A= 50°,则∠BOC的度数
N
Q
O E
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ຫໍສະໝຸດ 题设如果圆心角相等


圆 或
如果弧相等



如果弦相等
那么 那么 那么
结论 圆心角所对的弧相等 圆心角所对的弦相等
弧所对的圆心角相等 弧所对的弦相等
弦所对应的圆心角相等 弦所对应的优弧相等 弦所对应的劣弧相等
要点归纳 弧、弦与圆心角关系定理的推论
在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量 相等,那么它们所对应的其余各组量都分别相等.
圆的对称性
探究归纳 问题1 圆是轴对称图形吗?如果是,它的对称轴是什么? 你能找到多少条对称轴? 问题2 你是怎么得出结论的? 用折叠的方法
圆的对称性:
●O
圆是轴对称图形,其对称轴是任意一
条过圆心的直线.
探究归纳 问题3 将圆绕圆心旋转180°后,得到的图形与原图形重合吗?由此你得 到什么结论呢?
AOD BOC.
C B
O.
D A
AOD+BOD=BOC+BOD.
即AOB COD,
AB=CD.
能力提升:
我们已经知道在⊙O中,如果2∠AOB=∠COD,则CD=2AB,那么
C⌒D=2⌒AB也成立吗?若成立,请说明理由;若不成立,那它们之间的关 系又是什么?
解:CD=2AB不成立.理由如下: 取 C的D 中点E,连接OE,CE,DE. 那么∠AOB=∠COE=∠DOE, 所以弦AB=CE=DE, 在△CDE中,CE+DE>CD,即CD<2AB.
要点归纳
弧、弦与圆心角的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
①∠AOB=∠COD
C
D O
B A
②AB⌒=CD⌒ ③AB=CD
想一想:定理“在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦也相等.”中,可否把条件“在同圆或等圆中”去掉?为什么?
不可以,如图.
B D OC A
AE 1 AB, CF 1 CD.
2
2
又 AB=CD , AE=CF.
又 OA=OC, RtAOE≌RtCOF.
C
OE OF.
E O·
F
B D
当堂练习
1.如果两个圆心角相等,那么
(D )
A.这两个圆心角所对的弦相等
B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等
归纳 由圆的旋转不变性,我们发现: 在⊙O中,如果∠AOB= ∠COD, 那么, AB ,C弦DAB=弦CD
C
B D
·
O
A
在等圆中探究 如图,在等圆中,如果∠AOB=∠CO ′ D,你发现的等量关系是否依
然成立?为什么?
A
B
C
D

O·′
归纳 通过平移和旋转将两个等圆变成同一个圆,我们发现: 如果∠AOB=∠COD,那么,AB=CD,弦A⌒B=弦C⌒D.
九年级数学《圆的对称性》
学习目标
1.掌握圆是轴对称图形及圆的中心对称性和旋转不变性. 2.探索圆心角、弧、弦之间关系定理并利用其解决相关问题.(重点) 3.理解圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的 意义.(难点)
导入新课
情境引入
熊宝宝要过生日了!要把蛋糕平均分成四块,你会分吗?
讲授新课
(3)如果∠AOB=∠COD,那么__A__B_=_C_D______,_A_B_=_C__D___.
A
E
B

D
F C
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?
为什么?
解:OE=OF.
理由如下:
△OAB和△OCD均为等腰三角形, A
OE AB, OF CD,
AB C
O
E
D
课堂小结

圆是轴对称图形,其对称轴是任意一条过 圆心的直线; 圆是中心对称图形,对称中心为圆心.
弦、弧、圆心角的关



在同圆或等圆中
圆心角 相等
应用提醒
①要注意前提条件; ②要灵活转化.
弧 相等
弦 相等
抢答题
1.等弦所对的弧相等.
(× )
2.等弧所对的弦相等.
(√ )
3.圆心角相等,所对的弦相等. ( × )
关系定理及推论的运用
典例精析
例1 如图,AB,DE是⊙O 的直径,C是⊙O 上的一点, 且A⌒D=C⌒E.BE和CE的大小有什么关系?为什么?
解:BE=CE.理由是:
∵∠AOD=∠BOE, ∴A⌒D=B⌒E. 又∵AD⌒=CE⌒, ∴B⌒E=C⌒E.
180° A
圆的对称性: 圆是中心对称图形,对称中心为圆心.
探究归纳 问题4 把圆绕圆心旋转任意一个角度呢?仍与原来的圆重合吗?
α
·
O
圆是旋转对称图形,具有旋转不变性.
圆心角、弧、弦之间的关系
在同圆中探究 在⊙O中,如果∠AOB= ∠COD,那么,AB与CD,弦A⌒B与弦C⌒D有
怎样的数量关系?
∴BE=CE.
B · O
D
E C
A
例2 如图,AB是⊙O 的直径, BC=CD=DE, ∠COD=35°,
求∠AOE 的度数.
E
D
解: ∵ BC=CD=DE,
C
BOC COD DOE=35 ,
A
· O
B
75 .
例3 如图,在⊙O中, AB=AC ,∠⌒ACB⌒=60°,
求证:∠AOB=∠BOC=∠AOC.
D.以上说法都不对
2.弦长等于半径的弦所对的圆心角等于60 ° .
3.在同圆中,圆心角∠AOB=2∠COD,则A⌒B与C⌒D的关系是( A)
A. A⌒B=2C⌒D
⌒⌒ B. AB>CD
C. A⌒B<CD⌒
D. 不能确定
4.如图,已知AB、CD为⊙O的两条弦,AD BC
求证:AB=CD.
证明:连接AO,BO,CO,DO. AD BC,
A
证明: ∵AB⌒=CD⌒,
∴ AB=AC.△ABC是等腰三角形. 又∠ACB=60°,
·O
B
C
∴ △ABC是等边三角形 , AB=BC=CA.
∴ ∠AOB=∠BOC=∠AOC.
温馨提示:本题告诉我们,弧、圆心角、弦灵活转化是解题的关键.
针对训练
( ( ( (
( (
填一填: 如图,AB、CD是⊙O的两条弦. (1)如果AB=CD,那么_A_B__=_C_D___,_∠__A_O__B_=__∠__C_O.D (2)如果 AB=CD ,那么_A__B_=_C_D___,__∠__A_O_B__=_∠__C__O.D
相关文档
最新文档