第四章 线性空间和欧氏空间

合集下载

4-1向量的内积 欧氏空间

4-1向量的内积  欧氏空间

即 (a1 b1)2 (a2 b2 )2 (a3 b3 )2
a12 a22 a32 b12 b22 b32 2 cos( )
所以 cos( 1) a1b1 a2b2 a3b3 即 , a1b1 a2b2 a3b3 上式称为几何向量内积的坐标表达式。
0 1 (1,2,4,2)T (1 , 2 , 4 , 2)T
5
555 5
7
定理4.1 许瓦兹 不等式
向量的内积满足
<, >2 ≤<, > <, >,

|<, >|≤‖‖•‖‖.
根据许瓦兹不等式,
对任何非零向量, ,总有
,
1
即, 1
1 , 1
8
3、向量的夹角
定义3 当 ≠ , ≠ 时,
a,3a a,b 17b,3a 17b,b
3 a,a a,b 51 b,a 17 b,b
a a,a a,a a 2
12
4、欧氏空间
定义了内积的向量空间V称为欧几里德(Euclid)空间, 简称欧氏空间,仍记作V . 注:1 、定义了内积的n维向量空间R n是一个欧氏空间
arccos ,
称为n维向量与的夹角,记为(^).
说明 当<, >=0时,称向量与正交(垂直),记为
⊥. 显然,零向量与任意向量正交。
11
第三章大作业 一 填空题 3、
条 件 : a, b a b cos(a, b)
a 17b,3a b 0 解 : a 17b,3a b
在数学中向量用有向线段来表示。在几何空间中引入 坐标系后,有向线段即向量可用三元有序数组来表示, 这样几何问题可转化为代数问题来研究。

线性代数学习指导第四章线性空间

线性代数学习指导第四章线性空间

第五章 线性空间一、内容提要⒈ 线性空间定义1 设V 是一个非空集合,P 是一个数域. 若在V 中定义的加法和数乘运算对集合V 封闭,且加法与数乘运算满足线性运算的八条运算规则, 则称集合V 为数域P 上的线性空间.线性空间又称为向量空间, 线性空间的元素亦称为向量.设V 是数域P 上的线性空间, W 是V 的非空子集, 若W 对于V 的加法和数乘运算也构成数域P 上的线性空间, 则称W 为线性空间V 的一个线性子空间, 简称子空间. ⒉ 基、维数和坐标定义2 若线性空间V 中有n 个线性无关向量,而没有更多数目的线性无关的向量,则称V 是n 维线性空间,称V 中n 个线性无关的向量为V 的一组基,n 称为V 的维数,记作dim V = n .注 向量组12,,,n ααα是V 的一组基⇔12,,,n ααα是V 中的n 个线性无关向量且V中的任一向量α可由12,,,n ααα线性表示.向量组12,,,s ααα生成的空间L (12,,,s ααα)的一组基就是12,,,s ααα的一个极大无关组, 其维数就是向量组12,,,s ααα的秩.定义3 设12,,,n ααα是n 维线性空间V 的一组基, α 为V 中的任一向量, 若1122n n x x x αααα=+++则称数12,,,n x x x 为向量α 在基12,,,n ααα下的坐标, 记作 12(,,,)n x x x .向量的坐标可写成行的形式也可写成列的形式,但在利用坐标进行运算时,则要以运算式的具体情况来确定坐标的形式.定义4 设12,,,n ααα和12,,,n βββ是n 维线性空间V 的两组基, 且(12,,,n βββ)=(12,,,n ααα)C (1)称C 为由基12,,,n ααα到基12,,,n βββ的过渡矩阵,(1)式称为由基12,,,n ααα到基12,,,n βββ的基变换公式.定理1 设12,,,n ααα和12,,,n βββ是n 维线性空间V 的两组基, 由基12,,,nααα到基12,,,n βββ的过渡矩阵为C = n n ij c ⨯)( ,即(12,,,n βββ)=(12,,,n ααα)C若向量α 在这两组基下的坐标分别为 ()n x x x ,,,21 与 ()n y y y ,,,21 , 则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n y y y C x x x 2121 ⒊ 线性空间同构定义5 设V 与W 都是数域P 上的线性空间,如果由V 到W 有一个双射(一一对应)σ, 且σ具有如下性质:,,(1) ()()()(2) ()()V k Pk k αβσαβσασβσασα∀∈∈+=+= 则称线性空间V 与W 同构,并称σ为由V 到W 的同构映射.注 数域P 上任意两个有限维线性空间同构的充要条件是它们的维数相同.定理2 设线性空间V 与W 同构,σ是由线性空间V 到W 的同构映射, 则V 中向量12,,,s ααα线性相关的充要条件是它们的像12(),(),,()s σασασα线性相关.⒋ 向量的内积、长度、距离、夹角定义6 设V 是实数域R 上的线性空间, 如果在V 上定义了一个二元实函数, 称为内积, 记作(,)αβ, 且它具有以下性质: ,αβγ,是V 中任意向量,k 是任意实数(1) (,)(,)(2) (,)(,)(3) (,)(,)(,)k k αββααβαβαβγαγβγ==+=+ (4) (,)0,ααα≥=当且仅当θ时,(α,α)= 0这个定义了内积的线性空间V 称为欧几里得空间,简称欧氏空间.当n R 的向量为列向量时,上述内积可记为乘积形式 (,)T αβαβ=. 当n R 的向量为行向量时,上述内积可记为乘积形式 (,)T αβαβ=., , ,V αααα设是欧氏空间中任一向量称非负实数()为向量的长度或模,α记作 即,ααα=()向量αα是单位向量, 将非零向量α化为单位向量称为将向量α单位化.βα-称为向量α 与β的距离,记作(,)d αβ, 即(,)d αβ=αβ-.柯西-布捏柯夫斯基不等式: (,)αβαβ≤⋅ , 当且仅当α 与β 线性相关时, 等号成立.定义7 设α,β 为欧氏空间V 中的非零向量, 定义α ,β 的夹角ω为(),arccosαβωαβ=⋅ ( 0 ≤ ω ≤ π)若(,)αβ= 0, 则称α与β正交(或垂直), 记作βα⊥ .5.向量组的正交化一组两两正交的非零向量组称为正交向量组. 正交向量组一定线性无关. 定义8 设12,,,n ααα是n 维线性空间V 的一组基, 若12,,,n ααα两两正交且都为单位向量, 则称它为V 的一个标准正交基.向量组12,,,n ααα是n 维欧氏空间V 中的一组标准正交基的充要条件是()01ij i ji j αα≠⎧=⎨=⎩,,, ,1,2,,i j n =.任何一组线性无关的向量组12,,,m ααα都可用Schmidt(施密特)正交化方法化为正交向量组12,,,m βββ, 且12,,,m βββ与12,,,m ααα等价.取 11αβ=, ()()1222111βαβαβββ=-,,,()()()()()()121121112211,,,,,,i i i i i i i i i βαβαβαβαβββββββββ----=----(i = 3 , 4 , …, m )将向量组1β ,2β ,… ,m β 中的每个向量单位化, 令iii ββη=(i = 1 , 2 , … , m ) 则得到一个与原向量组12,,,m ααα等价的标准正交向量组1η,2η,… ,m η.6. 正交矩阵定义9 设Q 为n 阶实矩阵, 若TQ Q = E , 则称Q 为正交矩阵. 正交矩阵的性质:(1)若Q 为正交阵,则 Q = 1 或-1 ;(2)若Q 为正交阵,则Q 可逆,且 1-Q=T Q ;(3)若P ,Q 都是n 阶正交矩阵,则P Q 也是n 阶正交矩阵;(4)n 阶实矩阵Q 为正交矩阵的充要条件是Q 的列(行)向量组是n R 的标准正交基.二、重点难点1. 判定集合是否构成线性空间.2. 线性空间的基、维数, 向量在基下的坐标等概念以及过渡矩阵、基变换与坐标变换公式.3. 欧式空间以及内积的概念和运算性质, 用内积运算进行证明.4. 用施密特正交化方法将线性无关的向量组正交化.5. 正交矩阵的概念及其性质.三、 学习要求1. 了解线性空间、子空间的概念, 理解向量空间的基和维数, 会求向量关于基的坐标,熟悉坐标变换公式.2. 了解线性空间同构的概念.3. 了解向量的内积、长度、距离、夹角、正交等概念, 掌握内积运算的性质.4. 理解标准正交基的概念, 掌握线性无关向量组正交规范化的施密特(Schmidt)方法.5. 掌握正交矩阵的概念及其性质.四、典型题分析例1 全体n 维实向量集合V , 对于通常的向量加法和如下定义的数乘运算,,k V k R ααα=∈∈其中是否构成实数域上的线性空间.解 设,, k l R α∈是集合V 中的非零向量.因为()2k l k l ααααααα+=+=+=而,所以()k l k l ααα+≠+, 故此集合不构成实数域上的线性空间.注 检验集合是否构成线性空间的方法:如果所定义的加法和数乘运算是通常意义下的加法和数乘运算, 则它们满足线性运算的八条运算规则, 因此只需检验集合对运算的封闭性. 如果所定义的加法和数乘运算不是通常意义下的加法数乘运算, 则不仅要检验集合对运算的封闭性, 还要仔细检验加法和数乘运算是否满足八条线性运算规律. 例2 求向量空间(){1212,,,0,,1,2,,,n n i V x x x x x x x R i n =+++=∈=}2n ≥的基和维数.分析 先找出向量空间V 的一组基, 即找出一组线性无关的向量, 使得V 中任一向量可由这组向量线性表示.解 在向量空间V 中取1n -个向量1(1,1,0,0,,0)α=-, 2(1,0,1,0,,0)α=-,,1(1,0,0,,0,1)n α-=-, 显然121,,,n ααα-线性无关.对V 中任一向量12(,,,)n x x x α=, 以121,,,,n αααα-为行构造矩阵A ,则1123110010101001ni i nA x x x x x =--===-∑, 从而121,,,,n αααα-线性相关, 又因为121,,,n ααα-线性无关, 所以α可由121,,,n ααα-线性表示.故121,,,n ααα-是V 的基, V 的维数是1n -.注 这个向量空间V 就是齐次线性方程组120n x x x +++=的解空间, V 的一组基就是齐次线性方程组的一个基础解系. 例3 设12,,,n t t t 是互不相同的实数,证明向量组21(1,,,,),1,2,,n i i i i t t t i n α-==是n 维向量空间n R 中的一组基. 并求出向量()12,,,n b b b β=在这组基下的坐标.分析 12,,,n ααα是n 维向量空间n R 中的n 个向量, 只需证明12,,,n ααα线性无关即可.证 令21111121222221111n n n n nnn t t t t t t A t t t ααα---⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪== ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因为12,,,n t t t 是互不相同的实数,所以()121111121110n T ji i j nn n n nt t t A A tt ttt≤<≤---===-≠∏⇒12,,,n ααα线性无关.所以12,,,n ααα是n 个线性无关的n 维向量, 构成n 维向量空间n R 中的一组基. 设β在基12,,,n ααα下的坐标为()12,,,n x x x , 则有1122n n x x x βααα=+++⇒β=()()121212,,,,,,n n n x x x x x x A ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.因为A 可逆, 所以()112,,,n x x x A β-=. 故β在基12,,,n ααα下的坐标为1A β-.例4 设3R 中的向量α在基1231032,1,2111ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭下的坐标为123x x x ⎛⎫ ⎪⎪ ⎪⎝⎭,在基123,,βββ下的坐标为123y y y ⎛⎫⎪⎪ ⎪⎝⎭, 且11232123132y x x x y x x y x x =--⎧⎪=-+⎨⎪=+⎩ (1)123123,,,,;βββααα求由基到基的过渡矩阵(2)求基123,,βββ. 解 (1)由题有111232123233(,,)(,,)x y x y x y ααααβββ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭112323111(,,)110102x x x βββ--⎛⎫⎛⎫ ⎪⎪=- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⇒123123111(,,)(,,)110102αααβββ--⎛⎫⎪=- ⎪ ⎪⎝⎭(*),所以123123,,,,C βββααα由基到基的过渡矩阵=111110102--⎛⎫⎪- ⎪ ⎪⎝⎭.(2) 由(*)式得123(,,)βββ=123(,,)ααα1111110102---⎛⎫⎪- ⎪⎪⎝⎭123(,,)ααα=221231110⎛⎫ ⎪ ⎪ ⎪--⎝⎭111431342--⎛⎫⎪=--- ⎪ ⎪⎝⎭,故1231114,3,1342βββ--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.例 5 设,a b 是欧氏空间中的任意向量, 证明平行四边形法则(对角线的平方和等于四边的平方和).证 设,a b 是平行四边形的两条邻边, 则a b a b +-和为两条对角线. 因为22(,)(,)a b a b a b a b a b a b ++-=+++--(,)2(,)(,)(,)2(,)(,)a a a b b b a a a b b b =+++-+ 222()a b =+.所以平行四边形的对角线的平方和等于四边的平方和.例 6 1212,,,,(,)0i j ααββαβ=设线性无关线性无关且满足, 1,2,1,2.i j ==证明:1212,,,ααββ线性无关.证 设有数1212,,,,k k λλ使得112211220k k ααλβλβ+++= (*) 上式两边分别与12,αα做内积, 由(,)0i j αβ=,1,2,1,2.i j ==得111221112222(,)(,)0(,)(,)0k k k k αααααααα+=⎧⎨+=⎩ (**) 由柯西-布捏柯夫斯基不等式及12,αα线性无关得112121122211222(,)(,)(,)(,)(,)0(,)(,)αααααααααααααα=->.故方程组(**)只有零解120k k ==, 将其代入(*), 由已知12,ββ线性无关, 得120λλ==. 于是得1212,,,ααββ线性无关.例7 将R 3的一组基1231100,1,1101ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化为标准正交基.解 (1 )利用施密持正交化方法将其正交化取1110,1βα⎛⎫ ⎪== ⎪ ⎪⎝⎭ 1222111111/2(,)1101 (,)2011/2βαβαβββ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,132333*********/22/3(,)(,)11/21012/323/2(,)(,)111/22/3βαβαβαββββββ-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=--=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭, 123,,βββ则是正交向量组.(2 ) 将123,,βββ单位化11122233322, 62, 3, 3T T Tβββββββββ====3121231236320, 26, 3 263βββηηηβββ⎡⎤⎡-⎡⎢⎥⎢⎢∴======⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢-⎢⎥⎢⎥⎣⎣⎦⎣⎦,则123,,ηηη为R 3的一组标准正交基.例8 设m+n 阶矩阵P O A R Q ⎛⎫= ⎪⎝⎭, 其中P , Q 分别是m , n 阶矩阵, O 为零矩阵.证明: 若A 为正交矩阵, 则P 和Q 也是正交矩阵且R 为零矩阵. 分析 用正交矩阵的定义证 证 由题知TT TTT P R A OQ ⎛⎫= ⎪⎝⎭. 因A 为正交矩阵, 所以 TT T T T mT TT T T n E P O P R P P R R R Q A A E R Q OQ Q R Q Q ⎛⎫⎛⎫⎛⎫+⎛⎫=== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 上式最后一个等号两边比较得 T n Q Q E Q =⇒为n 阶正交矩阵.T R Q O =且Q 可逆⇒R O =.T T m P P R R E +=且R O =T m P P E ⇒=⇒P 是m 阶正交矩阵.五、习题解析习题5. 11. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间.答 是.因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间.2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R+⊕==∈∈其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈.因为,a b R a b ab R ++∀∈⇒⊕=∈,,R a R a a R λλλ++∀∈∈⇒=∈,所以R +对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕;(2)()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕;(3) R +中存在零元素1, ∀a R +∈, 有11a a a ⊕=⋅=;(4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==; (6)()()a a a a a λμμλμλμλλμ⎛⎫==== ⎪⎝⎭;(7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕;()(8)()().a b ab ab a b a b a b λλλλλλλλλ⊕====⊕=⊕所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为A B AB BA ⊕=-按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否.,()A B AB BA B A BA AB AB BA ⊕=-⊕=-=--A B B A ∴⊕⊕与不一定相等.故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间.4.在22P ⨯中,{}2222/0,,W A A A P W P ⨯⨯==∈判断是否是的子空间. 答 否.121123123345⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例如和的行列式都为零,但的行列式不为零, 也就是说集合对加法不封闭.习题1.讨论22P ⨯中1234111111,,,111111a a A A A A a a ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的线性相关性.解 设11223344x A x A x A x A O +++=,即123412341234123400ax x x x x ax x x x x ax x x x x ax +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ . 由系数行列式3111111(3)(1)111111a a a a a a=+- 知, 3 1 , , a a ≠-≠且时方程组只有零解这组向量线性无关; 3 1 , , a a =-=或 时方程组有非零解这组向量线性相关. 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中1234010011001111ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭2111,=,=,=,3010解 设11223344x x x x ααααα=+++由()1234100110010111ααααα⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭2111301010001010000010100010⎛⎫⎪ ⎪−−−−→⎪- ⎪⎝⎭初等行变换 得13ααα=-. 故向量1234ααααα在基,,,下的坐标为 ( 1, 0 , - 1 , 0 ).2212342347P ααααα⨯⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭110-11-1103.在中求在基=,=,=,=下的坐标.11100000 解 设11223344x x x x ααααα=+++则有123412341234123402030040007x x x x x x x x x x x x x x x x +++=⎧⎪--+=⎪⎨+++=⎪⎪+++=-⎩.由101121000711103010011110040010211007000130-⎛⎫⎛⎫⎪ ⎪--⎪ ⎪−−−−→⎪⎪-⎪ ⎪-⎝⎭⎝⎭初等行变换 得12347112130ααααα=-+-+.故向量1234ααααα在基,,,下的坐标为(-7,11,-21,30). 4.已知3R 的两组基(Ⅰ): 123111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11=,=0,=0-11(Ⅱ):123121βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23=,=3,=443(1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵;(2) 已知向量123123,,,,,αααααβββ⎛⎫⎪⎪ ⎪⎝⎭1在基下的坐标为0求在基下的坐标-1;(3) 已知向量123123,,,,,βββββααα⎛⎫ ⎪⎪ ⎪⎝⎭1在基下的坐标为-1求在基下的坐标2;(4) 求在两组基下坐标互为相反数的向量γ.解(1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()321321,,,,αααβββ= C即123111234100143111C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 知基(Ⅰ)到基(Ⅱ)的过渡矩阵为1111123234100234010111143101C -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.(2)首先计算得11322201013122C -⎛⎫-- ⎪⎪=- ⎪ ⎪ ⎪-⎝⎭, 于是α 在基321,,βββ 下的坐标为131200112C -⎛⎫ ⎪⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪-⎝⎭.(3)β 在基321,,ααα 下的坐标为171123C ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.(4) 设γ在基321,,βββ 下的坐标为123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭, 据题意有234010101⎛⎫ ⎪- ⎪⎪--⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭123y y y -⎛⎫⎪=- ⎪ ⎪-⎝⎭, 解此方程组可得123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭=043k k ⎛⎫ ⎪⎪ ⎪-⎝⎭,为任意常数.231430,7k k k k γββ-⎛⎫⎪∴=-= ⎪ ⎪⎝⎭为任意常数.5.已知P [x ]4的两组基(Ⅰ):2321234()1()()1()1f x x x x f x x x f x x f x =+++=-+=-=,,,(Ⅱ):2323321234()()1()1()1g x x x x x x x x x x x x x =++=++=++=++,g ,g ,g (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 求在两组基下有相同坐标的多项式f (x ).解 ( 1 ) 设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()12341234,,,,,,g g g g f f f f =C有23230111101*********(1,,,)(1,,)1101110011101000x x x x x x C ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,. 10110111100011101110101101000011 1100110100100112100111000011113⎛⎫⎛⎫⎪ ⎪--- ⎪ ⎪−−−−→⎪⎪-⎪ ⎪---⎝⎭⎝⎭初等行变换 1110001101121113C ⎛⎫ ⎪-⎪∴= ⎪- ⎪---⎝⎭. (2)设多项式f (x )在基(Ⅰ)下的坐标为1234(,,,)T x x x x .据题意有111222333444 ()x x x x x x C C E x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇒-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0 (*)因为01101101100111111001101021021021112C E ---==--==------所以方程组(*)只有零解,则f (x )在基(Ⅰ)下的坐标为(0,0,0,0)T,所以f (x ) = 0习题证明线性方程组1234512345123453642022353056860x x x x x x x x x x x x x x x +--+=⎧⎪+--+=⎨⎪--+-=⎩ 的解空间与实系数多项式空间3[]R x 同构.证明 设线性方程组为AX = 0, 对系数矩阵施以初等行变换.316421568622353043751568600000A -----⎛⎫⎛⎫⎪ ⎪=--−−−−→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭初等行变换()2()3R A R A =∴=线性方程组的解空间的维数是5-.实系数多项式空间3[]R x 的维数也是3, 所以此线性方程组的解空间与实系数多项式空间3[]R x 同构.习题1. 求向量()1,1,2,3α=- 的长度. 解 22221(1)2315α=+-++.2. 求向量()()1,1,0,12,0,1,3αβ=-=与向量之间的距离.解 (,)d αβ=2222(12)(10)(01)(13)7αβ-=-+--+-+-. 3.求下列向量之间的夹角(1) ()()10431211αβ==--,,,,,,, (2) ()()12233151αβ==,,,,,,,(3)()()1,1,1,2311,0αβ==-,,, 解(1)(),1(1)02413(1)0,,2a παββ=⨯-+⨯+⨯+⨯-=∴=.(2)(),1321253118αβ=⨯+⨯+⨯+⨯=,22222222122318,31516,αβ+++=+++=,4618πβ∴==.(3)(),13111(1)203αβ=⨯+⨯+⨯-+⨯=,11147α=+++, 911011β=+++=,77αβ∴=.3. 设αβγ,,为n 维欧氏空间中的向量,证明: (,)(,)(,)d d d αβαγγβ≤+. 证明 因为22(,)αβαγγβαγγβαγγβ-=-+-=-+--+-22(,)(,)(,)(,)(,)2(,)(,)2αγαγαγγβγβαγγβγβαγαγαγγβγβγβαγαγγβγβ=--+--+--+--=--+--+--≤-+-⋅-+-所以22()αβαγγβ-≤-+-, 从而(,)(,)(,)d d d αβαγγβ≤+.习题1. 在4R 中,求一个单位向量使它与向量组()()()1,1,1,11,1,1,11,1,1,1321--=--=--=ααα,, 正交.解 设向量1234123(,,,)x x x x αααα=与向量,,正交, 则有 112342123431234(0(,0(,)0x x x x x x x x x x x x αααααα=+--=⎧⎧⎪⎪=--+=⎨⎨⎪⎪=-+-=⎩⎩,)0)0即 (*). 齐次线性方程组(*)的一个解为 12341x x x x ====.取*1111(1,1,1,1), ,,,2222ααα=将向量单位化所得向量=()即为所求.2. 将3R 的一组基1231,2,1111ααα ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化为标准正交基.解 (1 )正交化, 取11111βα⎛⎫ ⎪== ⎪ ⎪⎝⎭ , 12221111311(,)111211221(,)11111131113βαβαβββ⎛⎫- ⎪⎛⎫⎛⎫ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪- ⎪⎝⎭ 132********1122113121020(1)()1(,)(,)2333100121(,)(,)3()()()11333123βαβαβαββββββ⎛⎫-⎛⎫⎪- ⎪⎛⎫⎪-⨯+⨯-+-⨯ ⎪ ⎪ ⎪=--=---= ⎪ ⎪ ⎪ ⎪ ⎪-++- ⎪⎝⎭⎪ ⎪-⎝⎭ ⎪⎝⎭(2 ) 将123,,βββ单位化***123362,,036236βββ⎛⎛ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝则*1β,*2β,*3β为R 3的一组基标准正交基. 3.求齐次线性方程组123451235300x x x x x x x x x +-+-=⎧⎨+-+=⎩ 的解空间的一组标准正交基.分析 因齐次线性方程组的一个基础解系就是其解空间的一组基,所以只需求出一个基础解系再将其标准正交化即可.解 对齐次线性方程组的系数矩阵施行初等行变换化为行最简阶梯形矩阵11113111011110100014---⎛⎫⎛⎫−−→ ⎪ ⎪--⎝⎭⎝⎭可得齐次线性方程组的一个基础解系123100,,010004001ηηη ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由施密特正交化方法, 取11221331211/21/311/21/3111,,011/3223004001βηβηββηββ--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪===+==-+= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,将123,,βββ单位化得单位正交向量组***12311/21/311/21/33,,011/326213004001βββ--⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪- ⎪ ⎪⎪⎪⎪⎪==⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为齐次线性方程组的解向量的线性组合仍然是齐次线性方程组的解,所以*1β,*2β,*3β是解空间的一组标准正交基.3. 设1α,2α ,… ,n α 是n 维实列向量空间n R 中的一组标准正交基, A 是n 阶正交矩阵,证明: 1αA ,2αA ,… ,n A α 也是n R 中的一组标准正交基.证明 因为n ααα,,,21 是n 维实列向量空间n R 中的一组标准正交基, 所以⎩⎨⎧=≠==j i j i j T i j i 10),(αααα (,1,2,,)i j n =. 又因为A 是n 阶正交矩阵, 所以T A A E =. 则⎩⎨⎧=≠====j i j i A A A A A A j T i j T T i j T i j i10)()()(),(αααααααα (,1,2,,)i j n = 故n A A A ααα,,,21 也是n R 中的一组标准正交基. 5.设123,,ααα是3维欧氏空间V 的一组标准正交基, 证明112321233123111(22),(22),(22)333βαααβαααβααα=+-=-+=--也是V 的一组标准正交基. 证明 由题知()()1231232211,,,,2123122βββααα⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭1232211,,2123122ααα⎛⎫ ⎪-- ⎪ ⎪--⎝⎭因为是一组标准正交基,且的行向量组是单位正交向量组.()1232211,,2123122ααα⎛⎫ ⎪-- ⎪ ⎪--⎝⎭所以和都是正交矩阵.()123,,.βββ从而也是正交矩阵123,,βββ所以是单位正交向量组, 构成V 的一组标准正交基.习题五 (A)一、填空题1.当k 满足 时,()()()31211,2,1,2,3,,3,,3k k R ααα===为的一组基. 解 三个三维向量为3R 的一组基的充要条件是123,,0ααα≠, 即26k k ≠≠且. 2.由向量()1,2,3α=所生成的子空间的维数为 .解 向量()1,2,3α=所生成的子空间的维数为向量组α的秩, 故答案为1.3.()()()()3123,,1,3,5,6,3,2,3,1,0R αααα====中的向量371在基下的坐标为 . 解 根据定义, 求解方程组就可得答案.设所求坐标为123(,,)x x x , 据题意有112233x x x αααα=++. 为了便于计算, 取下列增广矩阵进行运算 ()3213613100154,,133701082025100133αααα⎛⎫⎛⎫⎪ ⎪=−−−−→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭初等行变换,所以123(,,)x x x = (33,-82,154).4. ()()()3123123,,2,1,3,1,0,1,2,5,1R εεεααα=-=-=---中的基到基的过渡矩阵为 . 解 因为123123212(,,)(,,)105311αααεεε---⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 所以过渡矩阵为212105311---⎛⎫ ⎪- ⎪ ⎪-⎝⎭.5. 正交矩阵A 的行列式为 . 解 21T A A E A =⇒=⇒A =1±.6.已知5元线性方程组AX = 0的系数矩阵的秩为3, 则该方程组的解空间的维数为 . 解 5元线性方程组AX = 0的解集合的极大无关组(基础解系)含5 – 3 =2 个向量, 故解空间的维数为2.()()()()412342,1,1,1,2,1,,,3,2,1,,4,3,2,11,a a a R a αααα====≠7.已知不是的基且a 则满足 .解 四个四维向量不是4R 的一组基的充要条件是1234,,,0αααα=, 则12a =或1. 故答案为12a =. 二、单项选择题1.下列向量集合按向量的加法与数乘不构成实数域上的线性空间的是( ). (A ) (){}R x x x x V n n ∈=,,0,,0,111 (B ) (){}R x x x x x x x V i n n ∈=+++=,0,,,21212 (C ) (){}R x x x x x x x V i n n∈=+++=,1,,,21213(D) (){}411,0,,0,0V x x R =∈解 (C ) 选项的集合对向量的加法不封闭, 故选(C ).2.331,23P A ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭在中由生成的子空间的维数为( ). (A) 1 (B) 2 (C) 3 (D) 4解 向量组A =123⎛⎫ ⎪⎪ ⎪⎝⎭生成的子空间的维数是向量组A 的秩, 故选(A ). 331231223311223311223123123123123,,( )() ,, ()2,23,3() ,,2 () ,2322,355R R A B C D ααααααααααααααααααααααααααααααα++-+++++++++-++-3.已知是的基,则下列向量组是的基.解 因 ( B )选项1223311231012,23,3=(,,) 220033ααααααααα⎛⎫⎪+++ ⎪ ⎪⎝⎭中(), 又因123101,,220033ααα⎛⎫⎪⎪ ⎪⎝⎭线性无关且可逆, 所以1223312,23,3αααααα+++线性无关.故选(B ).33123122313122331122313122313,, () ,, () 2,2,2() ,, () 2,2,2R R A B C D ααααααααααααααααααααααααααα++++++------4.已知是的基,则下列向量组()不是的基. 解 因122313 ()()()0αααααα-+---=, 所以( C )选项中向量组线性相关, 故选(C ). 5.n 元齐次线性方程组AX = 0的系数矩阵的秩为r , 该方程组的解空间的维数为s, 则( ).(A) s=r (B) s=n-r (C) s>r (D) s<r 选(B )6. 已知A, B 为同阶正交矩阵, 则下列( )是正交矩阵. (A) A+B (B) A-B (C) AB (D) kA (k 为数) 解 A, B 为同阶正交矩阵()T T T T AB AB ABB A AA E ⇒=== 故选(C ).7. 线性空间中,两组基之间的过渡矩阵( ).(A) 一定不可逆 (B) 一定可逆 (C) 不一定可逆 (D) 是正交矩阵 选(B )(B)1.已知4R 的两组基 (Ⅰ): 1234, αααα,,(Ⅱ):11234223433444,βααααβαααβααβα=+++=++=+=,, ( 1 )求由基(Ⅱ)到(Ⅰ)的过渡矩阵; ( 2 )求在两组基下有相同坐标的向量.解 (1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 已知1234123410001100(,,,)(,,,)11101111ββββαααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 所以由基(Ⅱ)到基(Ⅰ)的过渡矩阵为11000110001100011C -⎛⎫⎪-⎪= ⎪-⎪-⎝⎭. (2)设在两组基下有相同坐标的向量为α, 又设α在基(Ⅰ)和基(Ⅱ)下的坐标均为),,,(4321x x x x , 由坐标变换公式可得11223344x x x x C x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ , 即 1234()x x E C x x ⎛⎫ ⎪⎪-= ⎪ ⎪ ⎪⎝⎭0 (*) 齐次线性方程(*)的一个基础解系为(0,0,0,1)η=, 通解为(0,0,0,) ()X k k R *=∈. 故在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量为12344000 ()k k k R αααααα=+++=∈.312312313123122323133123123123123123,, ,, ,, (1),, ,, ,, ;(3) 2 ,,R R αααβββββαααββααββααββββββαααααααβββ+=+++=++=+=+-2.已知是 的基,向量组满足证明 是的基;(2)求由基 到基的过渡矩阵求向量 在基 下的坐标.解 ( 1 ) 由题有123123110101(,,)011(,,)110101111βββααα⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⇒123123010(,,)(,,)-1-12100αααβββ⎛⎫ ⎪= ⎪ ⎪⎝⎭⇒123123001(,,)(,,)100111222βββααα⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭因 0011001112220≠,所以123,, βββ线性无关. 故123,,βββ是3个线性无关向量,构成3 R 的基. (2 ) 因为123123010(,,)(,,)-1-12100αααβββ⎛⎫ ⎪= ⎪ ⎪⎝⎭所以从123123,,,,βββααα基到基的过渡矩阵为010-1-12100⎛⎫⎪⎪ ⎪⎝⎭(3) 123123123101012,,2,,-1-12211001αααααααβββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+-== ⎪ ⎪⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭()()1232,,-51βββ⎛⎫⎪= ⎪ ⎪⎝⎭()所以1232,,5.1αβββ⎛⎫ ⎪- ⎪ ⎪⎝⎭向量在基下的坐标为412341234123412341234123412002100,,,,0012002121001100,,,,003500121,,2 2R ααααββββααααββββααααααααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎪⎪ ⎪ ⎪⎝⎭=++-3.设的两组基,与=,,且由基,到基,的过渡矩阵为()求基,;()求向量1234,,ββββ在基,下的坐标.解 (1) 因为12341234,,,,ααααββββ由基,到基,的过渡矩阵为C = 2100110000350012⎛⎫ ⎪⎪⎪ ⎪⎝⎭, 所以112341234(,,,)(,,,)12001-10013002100-120010000012002-5000100210-13037C ααααββββ-=-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪==⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭所以123413001000,,,00010037αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.(2 )11234123412341111 2(,,,)(,,,)1122C αααααααααββββ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++-== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭123401(,,,)127ββββ⎛⎫⎪ ⎪= ⎪ ⎪-⎝⎭,12341234012,,,12-7αααααββββ⎛⎫ ⎪ ⎪∴=++- ⎪ ⎪⎝⎭向量在基下的坐标为.222123324. ()1,()12,()123[]()6914f x x x f x x x f x x x P x f x x x =++=++=++=++证明是线性空间的一组基,并求在这组基下的坐标.证明 设112233()()()0t f x t f x t f x ++=,则有222123(1)(12)(123)0t x x t x x t x x ++++++++= 即123123123011120*11210230123t t t t t t t t t ++=⎧⎪++==-≠⎨⎪++=⎩()因为系数行列式所以方程组(*)只有零解. 故123(),(),()f x f x f x 线性无关, 构成3[]P x 线性空间的一组基. 设112233()()()()f x y f x y f x y f x =++ 则有1231123212336129223143y y y y y y y y y y y y ++=⎧⎛⎫⎛⎫⎪ ⎪ ⎪++=⇒=⎨ ⎪ ⎪⎪ ⎪⎪++=⎝⎭⎩⎝⎭所以()f x 123(),(),()f x f x f x 在基下的坐标为(1, 2, 3). 5.当a 、b 、c 为何值时,矩阵A = 020010a bc ⎫⎪⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭是正交阵.解 要使矩阵A 为正交阵,应有 T AA E = 001002200100100010001a b a c bc ⎫⎪⎛⎫⎪ ⎪⇒=⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 222101002201001000102a ac acbc ⎛⎫++ ⎪⎛⎫ ⎪ ⎪⇒= ⎪ ⎪ ⎪⎪⎝⎭⎪++⎪⎭⇒2221120 21a ac b c ⎧+=⎪⎪+=⇒⎨⎪+=⎪⎩①121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;②121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;③121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;④121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩. 6.设 α 是n 维非零列向量, E 为n 阶单位阵, 证明:T T E A αααα)(/2-=为正交矩阵. 证明 因为α 是n 维非零列向量, T αα所以是非零实数.又22TTT T T T T A E E A αααααααα⎛⎫=-=-= ⎪⎝⎭,所以22 T T T T T A A AA E E αααααααα⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭()()2224444()()T T T T T TTTTTE E Eαααααααααααααααααααα=-+=-+=故A 为正交矩阵.7.设TE A αα2-=, 其中12,,,Tn a a a α=(), 若 ααT = 1. 证明A 为正交阵.证明 因为A E E E A TTTTTTT=-=-=-=αααααα2)(2)2(,所以A 为对称阵.又(2)(2)T T T A A E E αααα=--244()T T T E E αααααα=-+=, 所以A 为正交阵.8. , , , 0.A B n A B A B =-+=设均为阶正交矩阵且证明证明 因为, ,A B n 均为阶正交矩阵 所以0T A A =≠且T T T T T T TA AB E A B B B A B B A BB A B B A B+=+=+=+⋅=+⋅=⋅+()()0200T A B A B A A B A B ⇒-⋅+=⇒⋅+=⇒+=.。

欧氏空间

欧氏空间

1 0
5 3 1 0 15
《线性代数与解析几何》 第四章 n维向量
第十七讲
4.5 欧氏空间
(几何空间的推广)
本节在实数域内讨论问题
16
本节主要内容
1. 欧氏空间的概念 2. 规范正交基 3.Schmidt正交化 4. 正交矩阵
17
引言
空间的推广: 几何空间R3 n维实向量空间Rn
度量性质的推广: R3中: 长度夹角内积 Rn中: 内积长度夹角
( )2
+ .
24
3.夹角: 设 ∈, Rn 0, 0
称 arc cos ( , ) , 0
为 与 的夹角. 4.正交: 当(,)=0 时,称 与 正交.
记为⊥ .
因为零向量与任何向量的内积为零.
规定: ∈Rn,必有 0⊥ .
25
4.5.2 规范正交基(自然基的推广)
1.正交向量组:两两正交的非零实向量构 成的向量组称为正交向量组.
正交向量组有一个非常重要的性质.
26
2.正交向量组 线性无关
证 设,2,,m是正交向量组, 若 k1+k22++kmm= 0 两边同i 作内积 (k1++kmm , i ) = 0 即 k1(,i )+k2(2, i )++km(m, i ) = 0 当ij 时(i ,j ) = , 有 ki (i ,i ) = 0 又i 0, 则(i ,i ),从而ki , i =1,2,,m 故 ,2,,m 线性无关.
(, ) a12 a22 L an2
单位向量:长度为1的向量.
20
要推广几何空间中向量夹角的概念, 必须先证明下面著名的不等式.

线性空间的基本内容

线性空间的基本内容
(2)线性变换保持线性组合与线性关系式不变
(3)线性变换将线性相关的向量组变为线性相关的向量组
注意:线性无关的向量组经过线性变换后可能会变成线性相关的向量组,如零变换
3、线性变换的矩阵
(1) 定义 教材P133定义3.11
(2) 求线性变换一组基下的矩阵 教材P134例8---例11。
(2) 正交基与标准正交基 教材P145定义3.17
对一组正交基进行单位化,就得到一组标准正交基
(3) 在标准正交基下,向量坐标可用内积简单表示:见教材P145 定理3.11
在标准正交基下,内积也有特别简单的表达式:设 ,在 的标准正交基 下,有 , ,则
(4)第二章中施密特正交化方法可以推广到一般的欧氏空间 教材P146定理3.12
② 两个等价的线性无关的向量组一定含有相同个数的向量。
(4)基 教材P122定义3.5
(5)坐标 教材P122定义3.6
注意:
① 若是 为 维线性空间 的一组基,则它们线性无关,并且对于任意 , 线性相关。
② 向量在一组基下的坐标唯一。
4、基变换与坐标变换 教材P125定理 3.4
本章小结
线性空间是线性代数最基本的概念之一,也是我们碰到的第一个抽象的概念。在线性空间中,元素之间的联系是通过映射来实现的,而通常将线性空间到自身的映射称为变换。线性变换是其中最基本也是最重要的变换,它是线性代数的主要研究对象之一。本章重点介绍了两方面的内容:线性空间的概念、性质,线性空间的基与坐标;线性变换的定义,线性变换的矩阵。最后简要介绍了欧氏空间。
(3) 线性变换的像 与 的坐标之间的关系 教材P137定理3.7
4、线性变换与矩阵的一一对应关系

欧氏空间(Eulerspace)

欧氏空间(Eulerspace)

欧氏空间(Euler space )一、 内积与欧氏空间1.设V 是实数域R 上的线性空间,在V 上定义一个二元实函数,称为内积,记为),(βα,它具有以下性质: )3(,)2(),,(),)(1( αββα= 这样的线性空间V 称为欧几里的空间,简称欧氏空间.2.设V 是数域P 上的线性空间,如果V 中的任意两个向量βα,都按某一法则对应P 内唯一确定的数,记为),(βαf ,且),(),(),(,,,,)1(221122112121βαβαβααβααk f k k k f V P k k +=+∈∈∀有;),(),(),(,,,,)2(221122112121βαβαββαββαl f l l l f V P l l +=+∈∈∀有 则称),(βαf 是V 上的一个双线性函数.3.内积是双线性函数.4.设V 是n 维欧氏空间,n e e e ,,,21 为V 的一组基,V ∈βα,,若n n e x e x e x +++= 2211α; n n e y e y e y +++= 2211β则j i n j ni j i j i n j n i j i y x a y x e e ∑∑∑∑====∆=1111),(),(βα,5.称 )),(()(j i ij e e a A ==为基n e e e ,,,21 的度量矩阵.6. 设n e e e ,,,21 是n 维欧氏空间V 的一组基,,A 是基n e e e ,,,21 下的度量矩阵,则任意V ∈βα,,有AY X '=),(βα.7.度量矩阵必为正定矩阵,且不同基下的度量矩阵是合同的.二、 长度与夹角1。

欧氏空间V 中向量长度 ),(||ααα=;单位化:当||0||0αααα=≠时, 2.欧氏空间中的重要不等式:① Cauchy-Буняковский不等式:对任意向量V ∈βα,有线性相关时等式成立。

,当且仅当βαβαβα|,||||),(|≤。

欧氏空间复习

欧氏空间复习

欧氏空间复习 一、欧氏空间定义如果V 是实数域R 上维线性空间,而且存在V 上二元实函数(,)满足: 1)(,)(,)αββα=2)(,)(,)(,)k l k l αβγαγβγ+=+3)(,)0αα≥,而且等于0的充分必要条件是0α=其中,,,,V k l R αβγ∈∈。

则称V 为具有内积(,)的欧氏空间,简称为欧氏空间。

我们有: ●(,0)0α=●1111(,)(,)rsrsi i j j i ji j i j i j k l k lαβαβ=====∑∑∑∑● 2(,)(,)(,)αβααββ≤(可以用其定义角度,证明一些不等式)如果设12,,,n εεε 为V 基,则定义(,)i j n n A εε⨯⎡⎤=⎣⎦,称其为基12,,,n εεε 的度量矩同样我们有:● 基的度量矩阵正定;● 不同基的度量矩阵合同(由此可以证明标准正交基的存在性) ●如果设1212[,,,],[,,,]n n X Y αεεεβεεε== ,则有:(,)T X AY αβ=二、标准正交基和正交补欧氏空间V 的基12,,,n εεε 称为标准正交基,如果有(,)i j ij εεδ=。

标准正交基的存在性一可以通过基的度量矩阵为正定矩阵及其正定矩阵和单位矩阵合同的性质证明。

其次可以通过施密特正交化方法证明。

我们有: ●n 维列向量12,,,n ααα 为n R 标准正交基的充分必要条件是矩阵12[,,,]n A ααα= 满足T A A E =,换句话说A 是正交矩阵。

注意一个正交矩阵决定两组正交基,一个是正交矩阵的列向量组,另外一个是正交矩阵的行向量组。

● 标准正交基的过度矩阵是正交阵。

●根据施密特正交化我们可以推出,对任意实可逆矩阵A 存在正交矩阵U 和上(或者下)三角矩阵T 使得A TU =或者A U T =。

●如果12,,,n εεε 为欧氏空间V 的标准正交基,而且:1212[,,,],[,,,]n n X Y αεεεβεεε==则有(,)T X Y αβ=。

欧式空间

欧式空间

欧氏空间(Euler space )一、 内积与欧氏空间1.设V 是实数域R 上的线性空间,在V 上定义一个二元实函数,称为内积,记为),(βα,它具有以下性质: )3(,)2(),,(),)(1( αββα= 这样的线性空间V 称为欧几里的空间,简称欧氏空间.2.设V 是数域P 上的线性空间,如果V 中的任意两个向量βα,都按某一法则对应P 内唯一确定的数,记为),(βαf ,且),(),(),(,,,,)1(221122112121βαβαβααβααk f k k k f V P k k +=+∈∈∀有;),(),(),(,,,,)2(221122112121βαβαββαββαl f l l l f V P l l +=+∈∈∀有 则称),(βαf 是V 上的一个双线性函数.3.内积是双线性函数.4.设V 是n 维欧氏空间,n e e e ,,,21 为V 的一组基,V ∈βα,,若n n e x e x e x +++= 2211α; n n e y e y e y +++= 2211β则j i n j ni j i j i n j n i j i y x a y x e e ∑∑∑∑====∆=1111),(),(βα,5.称 )),(()(j i ij e e a A ==为基n e e e ,,,21 的度量矩阵.6. 设n e e e ,,,21 是n 维欧氏空间V 的一组基,,A 是基n e e e ,,,21 下的度量矩阵,则任意V ∈βα,,有AY X '=),(βα.7.度量矩阵必为正定矩阵,且不同基下的度量矩阵是合同的.二、 长度与夹角1。

欧氏空间V 中向量长度 ),(||ααα=;单位化:当||0||0αααα=≠时, 2.欧氏空间中的重要不等式:① Cauchy-Буняковский不等式:对任意向量V ∈βα,有线性相关时等式成立。

,当且仅当βαβαβα|,||||),(|≤。

高等代数欧氏空间的定义与基本性质

高等代数欧氏空间的定义与基本性质

. .. . . ..
欧几里得空间的概念
注 在欧几里得空间的定义中, 对它作为线性空间的维数并无要 求,可以是有限维的,也可以是无限维的. 由内积的对称性可知,内积也满足 右齐次性 (α, kβ) = k(α, β);
因而我们也称内积满足齐次性、可加性,这两条性质合在一 起称为内积的双线性性. 即内积是实线性空间中的一个正定 对称双线性函数.
. .. . . ..
欧氏空间的度量
由欧氏空间定义中内积的正定性,有 √
(α,
α)

0.
所以对于任意
的向量 α, (α, α) 是有意义的. 在几何空间中,向量的长度为
√ (α, α).
类似地,我们在一般的欧氏空间中引进:
定义 √
非负实数 (α, α) 称为向量 α 的长度,(或称范数,或称模)记 为 |α|.
. .. . . ..
欧几里得空间的概念
注 在欧几里得空间的定义中, 对它作为线性空间的维数并无要 求,可以是有限维的,也可以是无限维的. 由内积的对称性可知,内积也满足
因而我们也称内积满足齐次性、可加性,这两条性质合在一 起称为内积的双线性性. 即内积是实线性空间中的一个正定 对称双线性函数.
. . . .... .... .... . . . . .... .... .... . .
显然,向量的长度一般是正数,只有零向量的长度才是零,这样 定义的长度符合熟知的性质:
|kα| = |k||α|,
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
欧氏空间的度量
这里,k ∈ αR, α ∈ V. 事实上,

定义与基本性质欧氏空间

定义与基本性质欧氏空间

欧氏空间的性质
完备性
在欧氏空间中,任意柯西序列都收敛,即任意两点之间的距离可 以由有限步的有限位移得到。
有限维性
欧氏空间是有限维的,其维度等于空间中独立坐标的个数。
连通性
欧氏空间是连通的,即任意两点之间都存在一条连续的路径。
欧氏空间的维度
一维欧氏空间
只有一条坐标轴。
二维欧氏空间
有两条相互垂直的坐标轴。
向量的模
欧氏空间中向量的模定义为向量长度或大小,表 示为$| vec{v} |$,计算公式为$sqrt{v_1^2 + v_2^2 + cdots + v_n^2}$。
向量的内积
欧氏空间中向量的内积定义为两个向量的点积, 表示为$vec{v} cdot vec{w}$,计算公式为 $v_1w_1 + v_2w_2 + cdots + v_nw_n$。
连续性的几何意义
在欧氏空间中,连续性意味着函数图像的每一点附近都有其他点,这些点与图像 上对应的点足够接近。
03
欧氏空间的应用
解析几何中的欧氏空间
解析几何是数学的一个重要分支,它使用代数方法研究几何对象。在解析几何中 ,欧氏空间是一个基本的、重要的概念,用于描述平面和三维空间中的点、线、 面等几何元素。
长度和半径
欧氏空间中,线段的长度和圆的 半径可以通过度量性质进行计算 。
欧氏空间的平行性
平行直线
在欧氏空间中,两条直线平行当且仅当它们的方向向量成比 例。
平行平面
在欧氏空间中,两个平面平行当且仅当它们的法向量共线。
欧氏空间的连续性
连续性定义
在欧氏空间中,如果对于任意给定的正数$epsilon$,都存在一个正数$delta$,使 得对于空间中的任意两点$P$和$Q$,只要$d(P, Q) < delta$,就有$d(f(P), f(Q)) < epsilon$,则称函数$f$在欧氏空间中是连续的。

论文写作 论线性空间与欧式空间的对比

论文写作 论线性空间与欧式空间的对比

目录1 绪论 (3)1.1 研究目的与研究意义 (3)1.2 研究现状 (3)1.3 研究内容 (3)2 欧式空间简介 (4)2.1 提出背景 (4)2.2 定义与基本性质 (5)2.3 度量矩阵 (8)2.4 标准正交基 (9)2.5 同构 (12)2.6 正交变换 (16)2.7对称变换 (19)3 线性空间简介 (21)3.1 线性空间的概念 (22)3.2 线性变换的定义 (22)3.3 线性变换的性质和运算 (23)3.4 线性变换的矩阵 (24)4 线性空间与欧式空间的对比 (28)4.1 基础域的对比讨论 (28)4.2 运算的对比讨论 (29)4.3 基的对比讨论 (29)4.4 向量坐标的对比讨论 (29)4.5 线性变换的对比讨论 (29)4.6同构的对比讨论 (30)参考文献 (31)致谢 (32)论线性空间与欧式空间的对比摘要线性空间与欧式空间是《高等代数》的两部分重要内容,两者之间既有区别又有联系,简要描述他们的定义、概念、特征,并从它们的基础域、运算、基、向量的坐标、线性变换、同构几个方面进行对比讨论。

【关键词】欧式空间线性空间对比On the comparison of linear space and Euclidean spaceAbstractLinear space and Euclidean space is "Higher Algebra" is the two important parts, they are different and contact, a brief description of the definition, concept and characteristics of them, and from their basic domains, operation, matrix, vector coordinate, linear transformation of several aspects of the discussion than.【Key words】Euclidean space linear space contrast1 绪论1.1 研究目的与研究意义线性空间与欧式空间是《高等代数》中两部分重要内容,两者既有区别又有联系。

线性空间和欧式空间

线性空间和欧式空间

第六章 线性空间和欧式空间§1 线性空间及其同构一 线性空间的定义设V 是一个非空集合,K 是一个数域,在集合V 的元素之间定义了一种代数运算,叫做加法;这就是说,给出了一个法则,对于V 中任意两个元素α和β,在V 中都有唯一的一个元素γ与他们对应,成为α与β的和,记为βαγ+=。

在数域K 与集合V 的元素之间还定义了一种运算,叫做数量乘法,即对于数域K 中任一数k 与V 中任一元素α,在V 中都有唯一的一个元素δ与他们对应,称为k 与α的数量乘积,记为αδk =,如果加法与数量乘法满足下述规则,那么V 称为数域K 上的线性空间。

加法满足下面四条规则:1)αββα+=+;交换律2))()(γβαγβα++=++;结合律3)在V 中有一个元素0,对于V 中任一元素α都有αα=+0(具有这个性质的元素0称为V 的零元素); 存在零元4)对于V 中每一个元素α,都有V 中的元素,使得0=+βα(β称为α的负元素).存在负元数量乘法满足下面两条规则:5)αα=1; 存在1元6)αα)()(kl l k =. 数的结合律数量乘法与加法满足下面两条规则:7)αααl k l k +=+)(; 数的分配律8)βαβαk k k +=+)(. 元的分配律在以上规则中,l k ,表示数域中的任意数;γβα,,等表示集合V 中任意元素。

例1. 元素属于数域K 的n m ⨯矩阵,按矩阵的加法和矩阵的与数的数量乘法,构成数域K 上的一个线性空间,记为,()m n M K 。

例2. 全体实函数(连续实函数),按函数的加法和数与函数的数量乘法,构成一个实数域上的线性空间。

例3. n 维向量空间n K 是线性空间。

例4. 向量空间的线性映射的集合(,)m n K Hom K K 是线性空间。

二.简单性质1.零元素是唯一的。

2.负元素唯一。

3.00=α,00=k ,αα-=-)1(。

4.若0=αk ,则0=k 或者0=α。

线性代数 欧氏空间

线性代数 欧氏空间

在空间L(1, 2 ,...,m )中, 它与L(1, 2 ,...,m )中所有元素正交
21:33 第18页
正交向量组与标准正交基
定义:n维欧氏空间中,
正交向量组:两两正交的非零向量组
标准正交向量组:两两正交的非零单位向量组
正交基:由正交向量组构成的一组基
标准正交基:由标准正交向量组构成的一组基
设 ki i . 则( , ) ( , ki i ) 0.
i 1 i 1 n n
由内积正定性 , 0.
和一组基正交(内积为0)的向 量,必为0向量 线性空间中一个元素, 与这个空间中所有元素正交, 那么这个元素一定是0元素
21:33 第16页
例:1 , 2 , , m是n维欧氏空间的m个向量, (1 , 1 ) ( 2 , 1 ) 令G (1 , 2 , , m ) (1 , 2 ) (1 , m ) ( 2 , 2 ) ( 2 , m ) ,
长度的性质
(1) | | 0,且 | | 0当且仅当 0;
(2)对任意的实数 k及向量, | k || k || |;
(3)Cauchy Schwarz 不等式: 对任意两个向量 ,,我们有| ( , ) || || | , 等号成立当且仅当 ,线性相关; (4)三角不等式:
i 1 j 1
பைடு நூலகம்
例:C ([a, b])中可定义如下内积:
函数内积
b
对任意f ( x), g ( x) C ([a, b]),( f ( x), g ( x)) f (t ) g (t )dt
a
第4页
21:33
多项式内积
例:在R[ x]n 1中,对任意的p ( x), q ( x) R[ x]n 1 , 设p ( x) a0 x n a1 x n 1 an , q ( x) b0 x n b1 x n 1 bn , 定义( p ( x), q ( x)) ai bi

欧氏空间

欧氏空间

欧氏空间在线性空间中,向量之间的运算只有加法和数乘这两种基本运算,而向量的度量性质,如长度、夹角、距离等,在线性空间中没有得到反映。

因此有必要在线性空间中引入度量的概念。

而在解析几何中我们看到,向量的长度与夹角等度量性质都可以通过向量的内积表示,所以我们选取内积作为基本概念。

在线性空间中引入内积以后就成为欧氏空间。

一、定义与基本性质【定义1】设V 是实数域R 上的一个线性空间,如果在V 上定义一个二元实函数,记作()βα,,称为内积。

如果它有以下性质:1. ()()αββα,,=2. ()()βαβα,,k k =3. ()()()γβγαγβα,,,+=+4. ()0,≥αα,当且仅当0=α时,()0,=αα这里γβα,,是V 中任意向量,k 是任意实数,就称线性空间V 对内积()βα,构成一个欧几里得空间,简称欧氏空间。

注:1. 二元函数意为对V 中任意向量βα,,有唯一的实数对应 2. 内积的定义方法不唯一,不同的内积构成的欧氏空间不同 例:设V 是一个n 维实线性空间,在V 中取定一组基。

设A 是一个正定矩阵,定义V 的内积如下:()()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n n n y y y x x x21212121εεεβεεεα ()()⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n y y y A x x x2121,βα由于A 为正定矩阵,显然这样定义的内积符合定义中所列条件。

因此,V 对内积()βα,构成一个欧氏空间。

3. 定义中的性质1.说明内积是对称的。

因此,与性质2.及3.相对应的有:.2'()()βαβα,,k k = .3'()()()γαβαγβα,,,+=+进一步的,在欧氏空间V 中,对任意向量s 21,,,ααα ;t21,,,βββ 及任意实数s 21,,,k k k ;t 21,,,l l l ,都有()∑∑∑∑=====⎪⎪⎭⎫⎝⎛s i tj jiji tj jj si i i l k l k 1111,,βαβα【定义2】由()0,≥αα,设α是欧氏空间中的一个向量,非负实数()αα,称为向量α的长度,记为α。

欧氏空间中的线性变换

欧氏空间中的线性变换

《欧氏空间中的线性变换》
线性变换是数学中的一个概念,在欧氏空间(或其它数学空间)中,线性变换指的是将一个向量的线性组合与其相应的逆向量的乘积之和等于原来向量.线性变换的定义为:若将某个线性变换a 应用到b 上去,那么a 乘以b 等于b 乘以a.线性变换是一种运算.若对于任意的n 个向量v 和向量w,有: v×w= wv+ a×b,则称线性变换a 为v 和w 的一个线性变换,记作a·v·w 或简记为a·v·w.由此可见,线性变换a 是v 和w 的线性函数.
线性变换是欧氏空间(EuclideanSpace)中的基本元素,也就是说,线性变换是一种元素.线性变换的表示方式有很多种,比如矩阵形式、向量形式等等.线性变换具有许多重要特征,比如说线性变换是满射的,也就是说,线性变换总是把自身的逆映射回到原来的位置上;线性变换是一个线性映射,即对于线性变换a,存在一个唯一的线性映射b,使得a·b=0;线性变换不改变运算结果的大小.线性变换是可逆的.线性变换在欧氏空间中的表示法为:线性变换的概念最早是由柯西提出来的.。

欧氏空间的定义与基本性质 PPT

欧氏空间的定义与基本性质 PPT
§9.1 定义与基本性质
一、欧氏空间的定义 二、欧氏空间中向量的长度 三、欧氏空间中向量的夹角 四、n维欧氏空间中内积的矩阵表示 五、欧氏子空间
问题的引入:
1、线性空间中,向量之间的基本运算为线性运算, 其具体模型为几何空间 R2、R3, 但几何空间的度量 性质(如长度、夹角)等在一般线性空间中没有涉及.
(5)
当且仅当、 线性相关时等号成立.
证:当 0时, ( ,0) 0, 0 ( , ) 0. 结论成立. 当 0 时,作向量 t ,
tR
由内积的正定性,对 t R,皆有
( , ) ( t , t )
注意:由于对 V , 未必有 (, ) (, )
所以1),2)是两种不同的内积. 从而 Rn 对于这两种内积就构成了不同的欧氏空间.
例2.C(a,b) 为闭区间 [a,b] 上的所有实连续函数
所成线性空间,对于函数 f ( x), g( x) ,定义
b
( f , g) a f ( x)g( x) dx
1. 引入夹角概念的可能性与困难
1)在 R3中向量 与 的夹角 , arccos
(4)
2)在一般欧氏空间中推广(4)的形式,首先
应证明不等式: 此即,
( , ) 1
2. 柯西-布涅柯夫,有
( , )
、 , 定义一个二元实函数,记作 ( , ) ,若 ( , ) 满足性质: , , V , k R
1 (, ) ( , )
(对称性)
2 (k, ) k(, )
3 ( , ) , ( , )
(数乘) (可加性)

欧氏空间与线性空间

欧氏空间与线性空间

欧氏空间与线性空间欧氏空间和线性空间是数学中两个重要的概念,它们在不同的领域和应用中发挥着重要的作用。

本文将从定义、性质和应用等方面来探讨欧氏空间和线性空间的相关内容。

一、欧氏空间欧氏空间是指具有内积的实数向量空间。

在欧氏空间中,可以定义向量的长度和向量之间的夹角。

具体而言,对于n维欧氏空间R^n 中的向量x=(x1, x2, ..., xn)和y=(y1, y2, ..., yn),其内积定义为:<x, y> = x1y1 + x2y2 + ... + xnyn而向量的长度定义为:||x|| = sqrt(<x, x>) = sqrt(x1^2 + x2^2 + ... + xn^2)欧氏空间具有一些重要的性质。

例如,欧氏空间中的向量满足三角不等式,即对于任意的向量x和y,有:||x + y|| <= ||x|| + ||y||此外,欧氏空间还满足正交性质,即对于任意的向量x和y,如果它们的内积为零,则称向量x和y是正交的。

欧氏空间的概念在几何学、物理学、统计学等领域中有广泛的应用。

在几何学中,欧氏空间可以用来描述点、线、面等几何对象之间的关系。

在物理学中,欧氏空间可以用来描述空间中的力、速度等物理量。

在统计学中,欧氏空间可以用来度量数据样本之间的相似性。

二、线性空间线性空间是指具有加法和数乘运算的向量空间。

在线性空间中,向量之间的加法满足交换律和结合律,数乘满足分配律和结合律。

具体而言,对于n维线性空间V中的向量x,y和标量a,其加法和数乘定义为:x + y = y + x (交换律)(a + b)x = ax + by (分配律)a(bx) = (ab)x (结合律)线性空间的概念在代数学、数学物理学、计算机科学等领域中有广泛的应用。

在代数学中,线性空间可以用来研究向量和矩阵的性质。

在数学物理学中,线性空间可以用来描述复杂的物理系统。

在计算机科学中,线性空间可以用来处理图像、音频等数据。

欧氏空间

欧氏空间

必要性。如果 α , β 线性无关,那么对任意实数 k , α − k β ≠ 0 所以:
0 < (α − k β , α − k β ) = (α , α ) − 2k (α , β ) + k 2 ( β , β )
右边是关于 k 的二次多项式,那么由上式不等式知,判别式: Δ = (−2(α , β ))2 − 4(α , α )( β , β ) < 0 那么就有:
注意: ① 因为对称性, 对于上面的双线性只需要求一个线性就够了, 另一个可以从单线性和对称性推 导出。 ② 同一个实线性空间可以定义不同的内积, 从而得到不同的欧氏空间, 这会在以后的习题中遇 到。 内积的基本性质
1.2
从定义容易得到,向量的内积有如下基本性质: ( 1) (0, a) = (a, 0) = 0 ( 2)任给的 α1 , α 2 ,L , α n ∈ V 和 β1 , β 2 ,L , β n ∈ V ,及 k1 , k2 ,L , kn ∈ R 和 l1 , l2 ,L , ln ∈ R 有:
k o o b n c . w ww ∑∑ ∑∑
( A, B ) =
n n i =1 j =1
aij bij =
n
n
满足对称性。 又有:
( A + C , B) =
k o o ∑∑ b n c . ∑∑ ∑∑ w ww
n n i =1 j =1 n n
i =1 j =1
bij aij = ( B, A)
b
k o o b n c . w ∫ ww ∫
1
1
称之为三角不等式。 证明: 因为:
| α + β |2 = (α + β , α + β ) = (α , α ) + 2(α + β ) + ( β , β ) ≤| α |2 +2 | α || β | + | β |2 = (| α | + | β |) 2

欧氏空间的知识点总结

欧氏空间的知识点总结

欧氏空间的知识点总结一、欧氏空间的基本概念1. 欧氏空间的定义欧氏空间是指具有度量的线性空间,它可以是具有内积的实数线性空间或者复数线性空间。

在欧氏空间中有一种特殊的度量,即欧氏距离。

欧氏距离是指在n维空间中,两点之间的距离d(x, y)定义为:d(x, y) = √((x1-y1)^2 + (x2-y2)^2 + ... + (xn-yn)^2)其中x=(x1, x2, ..., xn)和y=(y1, y2, ..., yn)分别是空间中的两个点。

2. 欧氏空间的维度欧氏空间的维度是指空间中的向量所属的维度数,通常用n表示。

在n维欧氏空间中,一个向量可以用n个实数或复数表示。

例如,在二维欧氏空间中,一个向量可以表示为(x, y)。

在三维空间中,一个向量可以表示为(x, y, z)。

3. 欧氏空间的内积在n维欧氏空间中,可以定义内积的概念。

内积是指两个向量之间的数量积,通常用"a·b"表示。

在欧氏空间中,两个向量a和b的内积定义为:a·b = a1b1 + a2b2 + ... + anbn内积满足交换律、线性性和正定性等性质。

内积可以用来定义向量的长度、夹角和投影等概念,是欧氏空间中重要的工具。

二、欧氏空间的性质和定理1. 欧氏空间的性质欧氏空间具有许多重要的性质,例如:- 距离的非负性:两点之间的距离永远是非负的。

- 距离的对称性:两点之间的距离与它们的顺序无关。

- 三角不等式:两点之间的最短距离加起来不大于第三个点所在的线段的长度。

- 同伦性:欧氏空间是同伦的,即两个点之间总可以找到一条连续的路径相连接。

2. 欧氏空间的定理在欧氏空间中,有许多重要的定理,例如:- 柯西-施瓦茨不等式:对于欧氏空间中的任意两个向量a和b,它们的内积满足|a·b| ≤ ||a|| * ||b||,其中||a||和||b||分别是向量a和b的长度。

- 皮亚诺定理:在欧氏空间中,任意有界闭集都是紧的。

欧氏空间的定义与基本性质-PPT

欧氏空间的定义与基本性质-PPT

且若 f ( x) 0, 则 f 2( x) 0, 从而 ( f , f ) 0.
故 ( f , f ) 0 f (x) 0.
因此,( f , g) 为内积, C(a,b)为欧氏空间.
2. 内积的简单性质
V为欧氏空间, , , V , k R
1) ( ,k ) k( , ), k ,k k2( , )
a
a
a
证:在 C(a,b) 中, f ( x) 与 g( x) 的内积定义为
b
( f ( x), g( x)) a f ( x)g( x)dx
由柯西-布涅柯夫斯基不等式有
( f ( x), g( x)) f ( x) g( x) 从而得证.
3)
三角 不等式
对欧氏空间中的任意两个向量 、 , 有

C
cij
nn
C1,C2 ,
,Cn ,
n
则 i ckik ,i 1,2, ,n
k 1
于是
n
n
nn
(i , j ) ( ckik , cljl )
( k , l )ckiclj
k 1
l 1
k1 l 1
nn
aklckiclj CiAC j
k1 l 1
B (i , j ) CiAC j
所以 ( , ) 也为内积. 从而Rn 对于内积 ( , )也构成一个欧氏空间.
注意:由于对 V , 未必有 (, ) (, )
所以1),2)是两种不同的内积. 从而 Rn 对于这两种内积就构成了不同的欧氏空间.
例2.C(a,b) 为闭区间 [a,b] 上的所有实连续函数
所成线性空间,对于函数 f ( x), g( x) ,定义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于向量(即列矩阵) 关于向量(即列矩阵)的加法和数乘运算 满足如下8条基本性质: 满足如下8条基本性质:
第四章 线性空间和欧氏空间
§4.1 向量空间 Rn及其子空间
2. 设V是Rn的非空子集, 且对向量的加法及数 的非空子集, 乘封闭, 乘封闭, 即 ∀α, β∈V, k∈R, 有α+β∈V, kα∈V 则称V是一个( 向量空间. 则称V是一个(实)向量空间. 设V是一个向量空间, U⊆V, 若U也构成一个 是一个向量空间, 向量空间, 则称U 是一个子空间 子空间. 向量空间, 则称U为V是一个子空间. 的集合{ 仅含有零向量θ的集合{θ}关于向量的线性运 零空间. 算也构成一个向量空间, 我们称之为零空间 算也构成一个向量空间, 我们称之为零空间. Rn和{θ}称为Rn的平凡子空间. 称为R 平凡子空间.
第四章 线性空间和欧氏空间
§4.1 向量空间 Rn及其子空间
A, B可逆, 且B = AC, A = BD. 可逆, AC, BD. 由此可得A ACD, 因而CD 由此可得A = BD = ACD, 因而CD = I. 易见C 易见C = A−1B, D = C−1 = B−1A. 我们称C 我们称C为从基α1, α2, …, αn到基β1, β2, …, βn 过渡矩阵. 的过渡矩阵. 特别地, 从自然基e 特别地, 从自然基e1, e2, …, en到基α1, α2, …, αn 的过渡矩阵为I 的过渡矩阵为I −1A = A. 从基α1, α2, …, αn到自然基e1, e2, …, en的过渡 到自然基e 矩阵为A 矩阵为A−1I = A−1.
返回主界面
第四章 线性空间和欧氏空间
§4.1 向量空间 Rn及其子空间 一. 向量空间·基和维数 向量空间· 1. n维实(列)向量的全体 维实( Rn = {[x1, x2, …, xn]T | ∈R} {[x
关于加法: 关于加法: (1) 交换律; (2) 结合律; (3) ∃θ; (4) − 交换律; 结合律; 关于数乘: kl) 关于数乘: (5) 1·α =α; (6) k(lα) = (kl)α; (7) (k+l)α = kα +lα; (k (8) k(α+β) = kα +kβ.
第四章 线性空间和欧氏空间
§4.1 向量空间 Rn及其子空间
3. 设V是一个向量空间, α1, α2, …, αr是V中一 是一个向量空间, 线性无关向量组, 并且V 线性无关向量组, 并且V中任一向量都能由 α1, α2, …, αr 线性表示, 则称(有序)向量组 线性表示, 则称(有序) α1, α2, …, αr 是向量空间V的一组基. 是向量空间V的一组基 r称为V的维数. 记为维(V)或dim(V). 称为V 维数. 记为维( dim(V 零空间没有基, 规定dim{ 零空间没有基, 规定dim{θ} = 0. 由定义, 唯一的一组有序实数 由定义, 对∀α∈V, ∃唯一的一组有序实数 k1, k2, …, kr使得α = k1α1+k2α2+…+krαr . +…+k 我们把r维向量[ 我们把r维向量[k1, k2, …, kr]T 称为α 在α1, α2, …, αr 这组基下的坐标. 这组基下的坐标 坐标.
第四章 线性空间和欧氏空间
§4.性映射, 为线性映射, Imf = {y = f(x) | x∈Rn}, Imf {y Kerf {x Kerf = {x∈Rn | f(x) = θ }. Imf Kerf分别为R 的子空间, 则Imf和Kerf分别为Rn和Rm的子空间, 我们 值域, Kerf Imf 称Imf为f的值域, 称Kerf为f的核. 其中A 若f(ξ) = Aξ, ∀ξ∈Rn, 其中A∈Rm×n, A的列向 量依次为A 量依次为A1, A2, …, An. Imf {Ax 则Imf = {Ax | x∈Rn} = L(A1, A2, …, An), Kerf {x Kerf = {x∈Rn | Ax = θ }, 即Ax = θ的解空间. 的解空间. 此时, 也记Imf Kerf 此时, 也记Imf = R(A), Kerf = K(A).
第四章 线性空间和欧氏空间
§4.1 向量空间 Rn及其子空间
因而dim(L 因而dim(L(α1, α2, …, αs)) = 秩{α1, α2, …, αs}. 特别地, 设矩阵A 特别地, 设矩阵A∈Rn×s, A1, A2, …, As依次为A 依次为A s个列向量. 则称L(A1, A2, …, As)为矩阵A的列 个列向量. 则称L 矩阵A 空间. dim(L 空间. dim(L(A1, A2, …, As)) = 秩(A). 1 2 1 −1 [A 例3. 设A = [A1, A2, A3, A4] = 0 −1 −1 1 , −1 0 1 −1 的一组基和维数. 求L(A1, A2, A3, A4)的一组基和维数
第四章 线性空间和欧氏空间
§4.1 向量空间 Rn及其子空间
这就是说每个矩阵A 这就是说每个矩阵A∈Rm×n对应于一个线性映 反之, 射 f: Rn→Rm; 反之, 每个线性映射 f: Rn→Rm 对应于一个矩阵A 都对应于一个矩阵A∈Rm×n. 特别地, 每个方阵A 对应于R 特别地, 每个方阵A∈Rn×n对应于Rn的一 反之, 个线性变换 f : Rn→Rn; 反之, Rn的每个线性 变换都对应于一个方 变换都对应于一个方阵A∈Rn×n. 此时, 线性变换f 作为映射) 此时, 线性变换f : Rn→Rn (作为映射)可逆 ⇔ A可逆. 可逆.
αj在β1, β2, …, βn下的坐标为
[d1j, d2j, …, dnj]T, j = 1, 2, …, n. 记A = [α1, α2, …, αn], B = [β1, β2, …, βn], C = [cij], D = [dij], 则 [c A, B可逆, 且B = AC, A = BD. 可逆, AC, BD.
第四章 线性空间和欧氏空间
§4.1 向量空间 Rn及其子空间
1 2 1 −1 1 2 1 −1 初等 解: 0 − 1 − 1 1 0 −1 −1 1 −1 0 1 −1 行变换 0 0 0 0 可见dim 可见dim L(A1, A2, A3, A4) = 2, 的一组基. A1, A2是L(A1, A2, A3, A4)的一组基. 注: 此外A1, A3也是L(A1, A2, A3, A4)的一组基. 此外A 的一组基. 还有A 还有A1, A4. 事实上, 对于这个例子, 除了A 事实上, 对于这个例子, 除了A3, A4以外, 以外, A1, A2, A3, A4中任意两个向量都构成 L(A1, A2, A3, A4)的一组基. 的一组基.
第四章 线性空间和欧氏空间
§4.1 向量空间 Rn及其子空间
2. 线性映射的矩阵 则可以定义f 如下: 设A∈Rm×n, 则可以定义f: Rn→Rm如下: f(ξ) = Aξ, ∀ξ∈Rn. 可以直接验证f为线性映射. 可以直接验证f为线性映射. 反之, 给定线性映射f 反之, 给定线性映射f: Rn→Rm, 取Rn的自然 基e1, e2, …, en, Rm的自然基ε1, ε2, …, εm. 设f(e1), f(e2), …, f(en)在ε1, ε2, …, εm下的矩阵 为A, 即 [f(e1), f(e2), …, f(en)] = [ε1, ε2, …, εm]A, 则A∈Rm×n, 且f(ξ) = Aξ, ∀ξ∈Rn.
第四章 线性空间和欧氏空间
§4.1 向量空间 Rn及其子空间
2. 同一个向量在两组级下的坐标之间的关系 下的坐标为x 设ξ 在基α1, α2, …, αn下的坐标为x,在基β1, β2, …, βn下的坐标为y, 即ξ = Ax = By, 因此 下的坐标为y By, y = Dx, x = Cy Dx, 上述公式称为坐标变换公式 上述公式称为坐标变换公式. 坐标变换公式. 特别地, [x 特别地, 向量ξ = [x1, x2, …, xn]T 在基α1, α2, 的坐标为A …, αn的坐标为A−1ξ .
第四章 线性空间和欧氏空间
§4.1 向量空间 Rn及其子空间
4. 设α1, α2, …, αs∈Rn, 用L(α1, α2, …, αs)表示 α1, α2, …, αs的一切线性组合所成的集合, 的一切线性组合所成的集合, 即 L(α1, α2, …, αs) = {k1α1+k2α2+…+ksαs | k1, k2, …, ks∈R} {k +…+k 则L(α1, α2, …, αs)是 (包含{α1, α2, …, αs}的 包含{ 向量空间中最小的) 一个向量空间, 向量空间中最小的) 一个向量空间, 我们称 之为由 生成的子空间. 之为由α1, α2, …, αs生成的子空间. 而α1, α2, …, αs称为L(α1, α2, …, αs)生成元. 称为L 生成元. L(α1, α2, …, αs)的基可以取为α1, α2, …, αs 的任一极大无关组. 的任一极大无关组.
第四章 线性空间和欧氏空间
§4.1 向量空间 Rn及其子空间
例2. 设A∈Rm×n, b∈Rm, b≠θ, r(A, b) = r(A) = r, r(A r(A KA = {x | Ax = θ, x∈Rn}, {x SB = {x | Ax = b, x∈Rn}. {x 其中K 是向量空间, 其中KA是向量空间, 称为齐次线性方程组 Ax = θ 的解空间, Ax = θ 的一个基础解系 解空间, 就是K 的一组基, 因此dim(K 就是KA的一组基, 因此dim(KA) = n − r. 但SB不是向量空间. 事实上, SB中不含θ. 不是向量空间. 事实上, 在R3中, 过原点的平面是R3的2维子空间, 过原点的平面是R 维子空间, 过原点的直线是R 维子空间, 过原点的直线是R3的1维子空间, 而不经 过原点的直线与平面都不是向量空间. 过原点的直线与平面都不是向量空间.
相关文档
最新文档