第3讲圆的方程 (1)

合集下载

圆的方程 高中数学讲义

圆的方程 高中数学讲义

圆的方程讲义一、圆的标准方程:1.以点),(b a C 为圆心,r 为半径的圆的标准方程为 特别的,圆心在原点,半径为r 的圆的标准方程为 注:特殊位置的圆的方程(1)圆心在原点(2)圆心在x 轴上(3)圆心在y 轴上(4)圆过原点(5)与x 轴相切的圆(6)与y 轴相切的圆2.点与圆的位置关系:已知点),(00y x M 和圆C :)0()()(222>=-+-r r b y a x ,点M 到圆心C 的距离为d ,则(1)点M 在圆上⇔ ⇔(2)点M 在圆内⇔ ⇔(3)点M 在圆外⇔ ⇔3.典型例题例1.ABC ∆的三个顶点)8,2(),3,7(),1,5(--C B A ,求它的外接圆的方程例2.已知圆心为C 的圆经过点)1,1(A 和)2,2(-B ,且圆心C 在直线 l :01=+-y x 上,求圆心为C 的圆的标准方程例 3.已知两点),(),,(2211y x B y x A ,求证:以AB 为直径的圆的方程为0))(())((2121=--+--y y y y x x x x二、圆的一般方程1.对于方程022=++++F Ey Dx y x(1)当0422>-+F E D 时,方程表示(2)当0422=-+F E D 时,方程表示(3)当0422<-+F E D 时,方程表示2.圆的一般方程:方程 叫做圆的一般方程,其圆心为 ,半径为注圆的一般方程的系数特点:(1)22,y x 项的系数(2)无xy 的项(3)3.点与圆的位置关系:已知点),(00y x M 和圆C :022=++++F Ey Dx y x ,则(1)点M 在圆上⇔(2)点M 在圆内⇔(3)点M 在圆外⇔例1.若方程01222222=-+++++a a ay ax y x 表示圆,求a 的取值范围变式:若原点在圆01222222=-+++++a a ay ax y x 外,求a 的取值范围例2.求过三点)2,4(),1,1(),0,,0(B A O 的圆的方程,并求出这个圆的半径长和圆心坐标.三、直线与圆的位置关系1.平面几何中,直线与圆有三种位置关系:(1)直线与圆相交,有 个公共点;(2)直线与圆相切,有 个公共点;(3)直线与圆相离,有 个公共点.2.直线与圆的位置关系的判定:已知直线l :0=++C By Ax ,圆C :)0()()(222>=-+-r r b y a x(1)方法1:(几何法)设圆心C 到直线l 的距离(弦心距)为22b a C bB aA d +++=,则 ① ⇔直线与圆相交② ⇔直线与圆相切③ ⇔直线与圆相离(2)方法2:(代数法)联立直线l 与圆C 的方程0)()(02222=++⇒⎩⎨⎧=-+-=++t qx px r b y a x C By Ax ① ⇔直线与圆相交② ⇔直线与圆相切③ ⇔直线与圆相离例1.如图,已知直线l :063=-+y x 和圆心为C 的圆04222=--+y y x ,判断直线l 与圆C 的位置关系例2.直线m x y +-=33与圆122=+y x 在第一象限内有两个交点,求实数m 的取值范围3.弦长公式:设直线l :b kx y +=与圆C :)0()()(222>=-+-r r b y a x 相交于B A ,两点,则弦长AB 的求法有:(1)几何法:由弦心距d ,半弦长2L ,圆的半径r 满足勾股定理222)2(r L d =+=⇒L (2)代数法:(弦长公式)=AB == =例3.已知直线l :012=--y x 与圆C :01222=--+y y x 交于B A ,,求弦长AB例4.过点)3,3(--M 的直线l 被圆C :021422=-++y y x 所截得的弦长为54,求直线l 的方程变式1:过点)3,3(--M 的直线l 被圆C :021422=-++y y x 所截得的弦长为8,求直线l 的方程变式2:过点)0,3(P 直线l 被圆C :0122822=+--+y x y x 截得的弦长为4,求直线l 的方程4.弦的中点(中点弦)问题:例5.过点)0,4(P 的直线l 与圆C :422=+y x 交于B A ,两点,求弦AB 的中点Q 的轨迹方程例6.直线kx y =与圆0104622=+--+y x y x 相交于B A ,,求弦AB 的中点P 的轨迹方程5.以弦为直径的圆过定点问题例7.已知圆0622=+-++m y x y x 与直线032=-+y x 交于Q P ,两点,且以PQ 为直径的圆过原点,求m 的值四、圆的切线问题1.求过圆上一点的圆的切线方程例8.求过点)3,1(P 的圆O :422=+y x 的切线l 的方程例9.证明:过圆222r y x =+上一点),(00y x P 的圆的切线方程为:200r y y x x =+注:常见的与圆的切线有关的结论(1)过圆222r y x =+上一点),(00y x P 的圆的切线方程为(2)过圆222)()(r b y a x =-+-上一点),(00y x P 的圆的切线方程为(3)过圆022=++++F Ey Dx y x 上一点),(00y x P 的圆的切线方程为(4)过二次曲线(包括圆、椭圆、双曲线、抛物线)022=++++F Ey Dx Cy Ax 上一点),(00y x P 的圆的切线方程为2.求过圆外一点的圆的切线方程例10.求过点)3,4(-A 的圆1)1()3(22=-+-y x 的切线l 的方程练习:求过点)4,3(A 的圆1)1()2(22=-+-y x 的切线l 方程3.求切线长例11.过圆C :1)2()2(22=-+-y x 外一点)2,0(P 作圆C 的切线PT ,T 为切点,求切线PT 的长注:圆的切线长公式:(1)设点),(00y x P 是圆222)()(r b y a x =-+-外任意一点,过点P 作圆的切线PT ,T 为切点,则切线长=PT(2)设点),(00y x P 是圆022=++++F Ey Dx y x 外任意一点,过点P 作圆的切线PT ,T 为切点,则切线长=PT例12.已知圆C :1)1()2(22=-+-y x ,在直线l :01243=--y x 上求一点P ,过点P 作圆C 的切线,使得切线段最短4.切点弦例13.设点),(00y x P 是圆222)()(r b y a x =-+-外任意一点,过点P 作圆的切线,切点为B A ,,则切点弦AB 所在直线方程为注:圆的切点弦所在直线方程(1)设点),(00y x P 是圆222)()(r b y a x =-+-外任意一点,过点P 作圆的切线,切点为B A ,,则切点弦AB 所在直线方程为(2)设点),(00y x P 是圆022=++++F Ey Dx y x 外任意一点,过点P 作圆的切线,切点为B A ,,则切点弦AB 所在直线方程为五、圆和圆的位置关系1.圆和圆的位置关系:(1)圆和圆相离,有 个公共点(2)圆和圆外切,有 个公共点(3)圆和圆相交,有 个公共点(4)圆和圆内切,有 个公共点(5)圆和圆内含,有 个公共点2.圆和圆的五种位置关系的判定(1)几何法:设两圆21,C C 的半径分别为21,r r ,圆心距为d ,则①圆和圆相离⇔②圆和圆外切⇔③圆和圆相交⇔④圆和圆内切⇔⑤圆和圆内含⇔(2)代数法:联立两圆的方程①圆和圆相离⇔②圆和圆外切⇔③圆和圆相交⇔注:用代数法判断出两圆相切后,若要进一步区分是外切还是内切,则还要判断小圆圆心是在大圆内还是在大圆外,若在大圆内,则两圆 ,若在大圆外,则两圆 , 类似可以区分外离与内含例14.已知圆1C :088222=-+++y x y x 和圆2C :024422=---+y x y x ,试判断圆1C 与圆2C 的位置关系例15.设圆1C :088222=-+++y x y x 和圆2C :024422=---+y x y x 相交于B A ,两点,求(1)两圆的公共弦AB 所在的直线方程(2)求两圆的公共弦AB 的长3.两圆的公切线条数(1)当两圆外离时,有 条公切线, 条外公切线, 条内公切线(2)当两圆外切时,有 条公切线, 条外公切线, 条内公切线(3)当两圆相交时,有 条公切线(4)当两圆内切时,有 条公切线(5)当两圆内含时,有 条公切线例16.(1)圆1C :122=+y x 与圆1C :1)3(22=-+y x 有 条公切线(2)点)1,0(A 和)5,4(B 到直线l 的距离分别为1和2,则符合条件的直线l 有 条4.两圆公切线的求法例17.已知圆1O :096222=++++y x y x ,2O :012622=++-+y x y x ,求两圆的公切线方程。

2021高考文一轮精练:第九章 第3讲 圆的方程解析版

2021高考文一轮精练:第九章 第3讲 圆的方程解析版

[基础题组练]1.已知圆C 的圆心为(2,-1),半径长是方程(x +1)(x -4)=0的解,则圆C 的标准方程为( )A .(x +1)2+(y -2)2=4 B .(x -2)2+(y -1)2=4 C .(x -2)2+(y +1)2=16D .(x +2)2+(y -1)2=16解析:选C.根据圆C 的半径长是方程(x +1)(x -4)=0的解,可得半径长为4,故要求的圆的标准方程为(x -2)2+(y +1)2=16.2.(2020·河北九校第二次联考)圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为( )A .x 2-y 2-2x -3=0 B .x 2+y 2+4x =0 C .x 2+y 2-4x =0D .x 2+y 2+2x -3=0解析:选C.由题意设所求圆的方程为(x -m )2+y 2=4(m >0),则|3m +4|32+42=2,解得m =2或m =-143(舍去),故所求圆的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,故选C.3.方程|x |-1=1-(y -1)2所表示的曲线是( ) A .一个圆 B .两个圆 C .半个圆D .两个半圆解析:选D.由题意得⎩⎪⎨⎪⎧(|x |-1)2+(y -1)2=1,|x |-1≥0,即⎩⎪⎨⎪⎧(x -1)2+(y -1)2=1,x ≥1或⎩⎪⎨⎪⎧(x +1)2+(y -1)2=1,x ≤-1. 故原方程表示两个半圆.4.(2020·湖南长沙模拟)圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( )A .1+ 2B .2C .1+22D .2+2 2解析:选A.将圆的方程化为(x -1)2+(y -1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2距离的最大值为d +1=2+1,选A.5.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A.设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎪⎨⎪⎧x =4+x 02,y =-2+y 02,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.6.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是 ,半径是 .解析:已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆. 答案:(-2,-4) 57.过两点A (1,4),B (3,2)且圆心在直线y =0上的圆的标准方程为 . 解析:设圆的标准方程为(x -a )2+(y -b )2=r 2.因为圆心在直线y =0上,所以b =0,所以圆的方程为(x -a )2+y 2=r 2.又因为该圆过A (1,4),B (3,2)两点,所以⎩⎪⎨⎪⎧(1-a )2+16=r 2,(3-a )2+4=r 2,解得⎩⎪⎨⎪⎧a =-1,r 2=20.所以所求圆的方程为(x +1)2+y 2=20. 答案:(x +1)2+y 2=208.若圆C 与圆x 2+y 2+2x =0关于直线x +y -1=0对称,则圆C 的方程是 . 解析:设C (a ,b ),因为已知圆的圆心为A (-1,0),由点A ,C 关于x +y -1=0对称得⎩⎪⎨⎪⎧b a +1×(-1)=-1,a -12+b 2-1=0,解得⎩⎪⎨⎪⎧a =1,b =2.又因为圆的半径是1,所以圆C 的方程是(x -1)2+(y -2)2=1, 即x 2+y 2-2x -4y +4=0. 答案:x 2+y 2-2x -4y +4=0 9.求适合下列条件的圆的方程.(1)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2); (2)过三点A (1,12),B (7,10),C (-9,2).解:(1)法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎪⎨⎪⎧b =-4a ,(3-a )2+(-2-b )2=r 2,|a +b -1|2=r ,解得a =1,b =-4,r =2 2. 所以圆的方程为(x -1)2+(y +4)2=8.法二:过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).所以半径r =(1-3)2+(-4+2)2=22, 所以所求圆的方程为(x -1)2+(y +4)2=8.(2)设圆的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则⎩⎪⎨⎪⎧1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0. 解得D =-2,E =-4,F =-95.所以所求圆的方程为x 2+y 2-2x -4y -95=0.10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.①又因为直径|CD |=410,所以|PA |=210, 所以(a +1)2+b 2=40.② 由①②解得⎩⎪⎨⎪⎧a =-3,b =6,或⎩⎪⎨⎪⎧a =5,b =-2.所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.[综合题组练]1.(应用型)已知平面区域⎩⎪⎨⎪⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r2及其内部所覆盖,则圆C 的方程为 .解析:由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.因为△OPQ 为直角三角形,所以圆心为斜边PQ 的中点(2,1),半径r =|PQ |2=5,因此圆C 的方程为(x -2)2+(y -1)2=5. 答案:(x -2)2+(y -1)2=52.已知A (0,2),点P 在直线x +y +2=0上,点Q 在圆C :x 2+y 2-4x -2y =0上,则|PA |+|PQ |的最小值是 .解析:因为圆C :x 2+y 2-4x -2y =0,故圆C 是以C (2,1)为圆心,半径r =5的圆.设点A (0,2)关于直线x +y +2=0的对称点为A ′(m ,n ),故⎩⎪⎨⎪⎧m +02+n +22+2=0,n -2m -0=1,解得⎩⎪⎨⎪⎧m =-4,n =-2,故A ′(-4,-2).连接A ′C 交圆C 于Q ,由对称性可知|PA |+|PQ |=|A ′P |+|PQ |≥|A ′Q |=|A ′C |-r =2 5. 答案:2 53.(2018·高考全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16. 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.4.已知圆C 的方程为x 2+(y -4)2=1,直线l 的方程为2x -y =0,点P 在直线l 上,过点P 作圆C 的切线PA ,PB ,切点分别为A ,B .(1)若∠APB =60°,求点P 的坐标;(2)求证:经过A ,P ,C (其中点C 为圆C 的圆心)三点的圆必经过定点,并求出所有定点的坐标.解:(1)由条件可得圆C 的圆心坐标为(0,4),|PC |=2,设P (a ,2a ),则a 2+(2a -4)2=2,解得a =2或a =65,所以点P 的坐标为(2,4)或⎝ ⎛⎭⎪⎫65,125. (2)证明:设P (b ,2b ),过点A ,P ,C 的圆即是以PC 为直径的圆,其方程为x (x -b )+(y -4)(y -2b )=0,整理得x 2+y 2-bx -4y -2by +8b =0, 即(x 2+y 2-4y )-b (x +2y -8)=0.由⎩⎪⎨⎪⎧x 2+y 2-4y =0,x +2y -8=0解得⎩⎪⎨⎪⎧x =0,y =4或⎩⎪⎨⎪⎧x =85,y =165,所以该圆必经过定点(0,4)和⎝ ⎛⎭⎪⎫85,165.。

2018高考总复习数学(理科)课件:第七章 第3讲 圆的方程

2018高考总复习数学(理科)课件:第七章 第3讲 圆的方程

课堂总结
考点1
求圆的方程
例1:(1)求经过点 A(5,2),B(3,2),圆心在直线 2x-y-3=
0 上的圆的方程. (2)设圆上的点 A(2,3)关于直线 x+2y=0 的对称点仍在这个 圆上,且圆与直线 x-y+1=0 相交的弦长为 2 2 ,求圆的方 程. (3)一圆经过 A(4,2),B(-1,3)两点,且在两坐标轴上的四个 截距的和为 2,求此圆的方程.
第3讲
圆的方程
基础诊断
考点突破
课堂总结
考纲要求
1.掌握确定圆 的几何要素. 2.掌握圆的标 准方程与一般方 程. 3.初步了解用 代数方法处理几 何问题的思想
考点分布 考情风向标 2012 年新课标卷第 20 题考查直线、 本节内容具有承前启后的 圆与抛物线的综合应用; 作用,既与前面的直线相 2013 年新课标卷Ⅰ第 21 题考查直 联系,也为后面学习圆锥 线、圆、椭圆的综合应用; 曲线做准备.高考中对此 2014 年大纲卷第 16 题考查切线的 部分内容的考查主要呈现 性质及三角函数的运算; 以下几个特点:一是重基 2014 年新课标卷Ⅰ第 20 题考查求 础知识和基本技能,主要 圆的方程; 考查了直线、圆的方程, 2014 年新课标卷Ⅱ第 12 题考查直 直线与圆的位置关系,圆 线与圆的位置关系及数形结合; 与圆的位置关系;二是重 2015 年新课标卷Ⅰ第 5 题以求线 在知识的交汇处命题,把 段长度为背景,考查椭圆、抛物 解析几何初步与集合、向 线的几何性质; 量、函数等知识结合命题, 2015 年新课标卷Ⅰ第 14 题、北京 注重考查学生综合运用知 卷、浙江卷考查圆的标准方程 识解决问题的能力
D E 时,方程表示以- 2 ,- 2 为圆心,
D2+E2-4F 以 为半径的圆; 2 (2)当 D +E -4F=0

圆的方程第3讲教师版

圆的方程第3讲教师版
3 .由直线 y x 1 上的一点向圆 x 3 y 2 1 引切线,则切线长的最小值为
2
( C ) A.1 B.2 2 C. 7 D.3 解:设直线上一点 P,切点为 Q,圆心为 M,则|PQ|即为切线长, MQ 为圆 M 的半径,长度为 1,|PQ|= |PM|2-|MQ|2= |PM|2-1, 要使|PQ|最小,即求|PM|最小,此题转化为求 直线 y=x+1 上的点到圆心 M 的最小距离,设圆心到直线 y=x+1 的距离为 d,则 d= ∴|PM|最小值为 2 2,|PQ|= |PM| -1= 2 2 -1= 7,选 C. 练:直线 y x 1 上的一点 P 向圆 C: x 3 y 2 1引切线,A,B 为切点,则四边形 APBC 的面积最小值
2 2
2
2
3.直线 3x y 2 3 0 截圆 x y 4 得的劣弧所对的圆心角为 解:依题意得,弦心距 d 对的圆心角为 AOB
3 ,故弦长 AB 2 r 2 d 2 2 ,从而△OAB 是等边三角形,故截得的劣弧所

3
.
2 2
4.直线 l 经过 (5,5) 点, 且和圆 x y 25 相交, 截得的弦长为 4 5 , 求 l 的方程 2 x y 5 0, x 2 y 5 0 题型 4:与圆有关的最值问题 1.已知直线 l : x y 4 0 与圆 C : x 1 y 1 2 ,则 C 上各点到 l 的距离的最小值为_____
12 12 终上所述, a 的取值范围为: 0, 5 5
2 2 由 5a 8a 8 0 得 x R 由 5a 12a 0 得 0 x
题型 3:直线与圆相交的弦长(解法有两种:1.几何法。2.代数法) 1.在平面直角坐标系 xOy 中,直线 3x 4 y 5 0 与圆 x2 y 2 4 相交于 A 、 B 两点,则弦 AB 的长等于 B A. 3 3 2.直线 y kx 3 与圆 x 3 y 2 4 相交于 M,N 两点,若 MN 2 3 ,则 k 的取值范

圆的方程

圆的方程

圆的方程学科:数学教学内容:圆的方程【基础知识精讲】1.圆的方程:三个独立条件确定一个圆,按照已知条件可用待定系数法求圆的方程时,如果已知圆心或半径,或圆心到某直线的距离,通常用圆的标准方程,如果已知圆通过某些点,通常可用一样式.学习圆的方程,要正确把握几何性质.和对应条件:(1)过原点的圆x2+y2+Dx+Fy=0或(x-a)2+(y-b)2=a2+b2(2)圆心在x轴上的圆x2+y2+Dx+F=0(D2-4F>0)或(x-a)2+y2=r2(3)圆心在y轴上的圆x2+y2+Ey+F=0(E2-4F>0)或x2+(y-b)2=r2(4)圆心在x轴上,且与y轴相切的圆x2+y2+px=0,或(x-a)2+y2=a2(5)圆心在y轴上,且与x轴相切的圆x2+y2+Ey=0或x2+(y-b)2=b22.直线和圆的位置关系直线与圆心位置关系的判定方法有两种:(1)判不式法(代数法):将直线和圆的方程联立得到一个关于x、y的二元二次方程组,消去y(或x)得到一个关于x(或y)的一元二次方程,则△>0⇔直线和圆相交(有两个公共点)△=0⇔直线和圆相切(有一个公共点)△<0⇔直线和圆相离(无公共点)若涉及到弦长等咨询题,则可结合韦达定理进一步解决.(2)几何法:设圆心到直线的距离为d,圆的半径为r,则d<r⇔直线与圆相交(有两个公共点)d=r⇔直线与圆相切(有一个公共点)d>r⇔直线与圆相离(无公共点)若涉及到弦长等咨询题,则可抓住圆心到直线的距离d、圆的半径r、弦长的一半l三者组成的直角三角形解决.3.圆与圆的位置关系,设两个圆的半径分不为R、r,圆心距为d,则(1)两个圆外离⇔d>R+r(2)两个圆外切⇔d=R+r(3)两个圆相交⇔|R-r|<d<R+r(4)两个圆内切⇔d=|R-r|(5)两个圆内含⇔0≤d<|R-r|4.圆系方程:(1)过直线l:Ax+By+C=0和圆x2+y2+Dx+Ey+F=0的公共点的圆的方程能够写作(Ax+By+C)+λ(x2+y2+Dx+Ey+F)=0;(2)过圆C1:x2+y2+D1x+E1y+F2=0和圆C2:x2+y2+D2x+E2y+F2=0的公共点的圆(除C2外)的方程能够写成(x2+y2+D1x+E1y+F1)+λ(x2+y2+D 2x+E2y+F2)=0.专门地,令λ=-1即得过两个圆的公共点的直线的方程:(D1-D2)x+(E 1-E2)y+(F1-F2)=0.5.圆的参数方程:圆心为(a,b)、半径为r的圆的参数方程为6.应用代入法、几何法、参数法等方法求与圆有关的轨迹咨询题.本节学习方法:(1)数形结合的思想方法;(2)充分利用圆的几何性质,简化运算;(3)循序渐近的学习方法.【重点难点解析】同学们现在所学习的圆与初中所学习的圆是一样的,也确实是讲,圆的几何性质仍旧成立.所不同的是现在我们把圆放到平面直角坐标系中去研究.这就需要大伙儿在学习本节时,先复习圆的几何意义,几何性质,要复习曲线与方程的概念,从而学习“圆的方程”这一节内容.例1 求通过点A(-2,-4)且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.分析一 设圆的方程为x2+y2+Dx+Ey+F=0则整理得⎪⎩⎪⎨⎧-=--=++=-+363100682042E D F E D F E D解得D=-11,E=3,F=-30分析二 设圆心C(a,b)且圆的方程为(x-a)2+(y-b)2=r2 ∵|CA |=|CB |,CB ⊥l解得a=211,b=-23 从而r=2125 故所求的方程的(x-211)2+(y+23)2=2125 分析三 设圆心为C ,则CB ⊥l ,∴CB 的方程为y-6=3(x-8),即3x-y+18=0,又AB 的垂直平分线的方程为x+y-4=0 联立⎪⎩⎪⎨⎧=-+-=--04)23,211(0183y x C y x 得圆心∴半径r=22)623()8211(--+-=2125 ∴所求圆的方程为(x-211)2+(y+23)2=2125 例2 当m 为何值时,直线mx-y-m-1=0与圆x2+y2-4x-2y+1=0相交,相切、相离.分析一 (判不式法)将y=mx-m-1代入圆的方程化简整理得:(1+m2)x2-2(m2+2m+2)x+m2+4m+4=0∵△=4m(3m+4)当△=0时,得m=0或m=-34时,直线与圆相切.当△>0时,得m >0或m <-34时,直线与圆相交.当△<0时,得-34<m <0时,直线与圆相离.分析二 (几何法)由已知得圆心坐标为(2,1)半径r=2,圆心(2,1)到直线mx-y-m-1=0的距离d=21112m m m +---=212m m +-当d=2时,即m=0或m=-34时,相切 当d >2时,即-34<m <0时,相离 当d <2时,即m >0或m <-34时,相交例3 已知圆C :(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4(m ∈R)(1)证明:不论m 取什么实数,直线l 与圆C 恒相交.(2)求直线l 被圆C 截得的弦长最短的长度及现在的直线方程.分析 若按常规思路只须证圆心O(1,2)到直线l 的距离恒小于半径即可.但注意到直线l 的方程可变形为x+y-4+m(2x+y-7)=0,则可知直线l 恒过定点(3,1),如果该定点在圆内,咨询题即可解决,事实上(3-1)2+(1-2)2=5<25∴点(3,1)在圆内如此,不论m 为何实数,直线l 与圆恒相交.(2)由(1)的结论可知直线l 过定点M(3,1),且与过此点的圆O 的半径垂直时,l 被圆所截的弦长|AB |最短.∵|MO |=22)21()13(-+-=5且r=5∴弦长=2·525-=45 现在kl=-OM k 1 ∴-112++m m =-31121--=2 ∴m=-43代入直线l 得方程2x-y-5=0 例4 求两圆C1:x2+y2+2x+6y+9=0和C2:x2+y2-6x+2y+1=0的公切线方程.分析 要确定公切线的条数,应先判定两圆的位置关系,圆C1的圆心O1(-1,-3),半径r1=1,圆C2的圆心O2(3,-1),半径r2=3∵|O1O2|=25>4=r1+r2∴两圆相离,公切线有四条.设公切线的交点为M(x0,y0)(1)外公切线点M 分有向线段O2O1的比为λ=12MO M O =-21r r =-3 由定比分点公式得⎩⎨⎧-=-=4300y x 设两圆外公切线方程为y+4=k(x+3)即kx-y+3k-4=0由圆心O1(-1,-3)到其距离为1得143)3()1(2+-+---k k k =1即有k=0或k=34.∴两圆的外公切线方程为y+4=0和4x-3y=0(2)内公切线点M (x0,y0)分有向线段O2O1的比为λ′=12MO M O =21r r =-3 由定比分点公式得 ⎪⎪⎩⎪⎪⎨⎧-=+-•+-==+-•+=2531)3(31031)1(3300y x 设两圆内公切线方程为y+25=kx 即2kx-2y-5=0由点O1(-1,-3)到其距离为1得 244562k k +-+-=1解得k=-34 ∴切线方程为3x+4y+10=0但由两圆外离,公切线应为4条,讲明另一条公切线斜率不存在,则它的方程为x=0.【难题巧解点拨】例1 求过两圆x2+y2+4x-3=0与x2+y2-4y-3=0的交点,且圆心在直线2x-y-4=0上的圆的方程.分析 一样思路是先求出两交点坐标,再结合圆心在直线上,由这三个条件求圆的方程.但运算量较大.能够考虑过两圆交点的圆系方程可设为(x 2+y2+4x-3)+λ(x2+y2-4y-3)=0(λ为参数且λ≠-1)整理得圆心坐标为(-λ+12,λλ+12) 又∵圆心在直线2x-y-4=0上代入得:-λ+14-λλ+12-4=0 解得λ=-34代入整理即得所求圆的方程为x2+y2-12x-16y-3=0.例2 已知定点A(3,0)和B(0,4),P 是△AOB 内切圆上的动点(O 是原点),求|PA |2+|PB |2+|PO |2的最大,最小值.解:本题可直截了当设P 点坐标为(x0,y0),先求出内切圆心方程.再结合P 点满足圆的方程代入求其最大.最小值.也可采纳参数法求解:由已知|AO |=3,|BO |=4,则|AB |=5.设△AOB 的内切圆半径为r ,则 r=25432ABBO AO -+=-+=1 故△AOB 的内切圆方程为(x-1)2+(y-1)2=1因此可设P 点坐标为(1+cos θ,1+sin θ),有|PA |2+|PB |2+|PO2|=(2-cos θ)2+(1+sin θ)2+(1+cos θ)2+(3-sin θ)2+(1+cos θ)2+(1+sin θ)2=20-2sin θ∵-1≤sin θ≤1 ∴18≤20-2sin θ≤22∴|PA |2+|PB |2+|PO |2的最大值是22,最小值是18.例3 已知圆O :x2+y2=4,与点A(4,0),过A 点作圆O 的割线交圆O 于B 、C 两点,求BC 中点M 的轨迹方程.解法一:(定义法)因为BC 为圆O 的弦,M 为弦BC 的中点,由垂线定理得OM ⊥BC ,即OM ⊥MA.∴M 点在以OA 为直径的圆上.又OA 的中点为(2,0),|OA |=4.因此点M 所在圆心方程为(x-2)2+y2=4.因为ABC 是割线,故M 点的轨迹是此圆在圆O 内部的一段弧.将方程x2+y2=4的两边减去方程(x-2)2+y2=4得x=1,∴M 点的轨迹方程为(x-2)2+y2=4(0≤x <1)解法二:(直截了当法)设M 点的坐标为(x,y)(1)当x ≠0时,kOM=x y ,kBC=kMA=4-x y 由解法一知DM ⊥MA ,∴kOM ·kBC=-1 即x y ·4-x y =-1,化简得x2-4x+y2=0 (2)当x=0时,易知M 的坐标为(0,0),它满足上述方程,∴结合解法一知点M 的轨迹方程为x2-4x+y2=0(0≤x <1=解法三:(点差法)设M 点的坐标为(x,y),B 、C 的坐标分不为(x1,y1),(x 2,y2),则有③-④得x21-x22+y21-y22=0即(x1+x2)(x1-x2)+(y1+y2)(y1-y2)=0∵x1≠x2(否则B 与C 会重合)∴x1+x2+(y1+y2)·2121x x y y --=0⑤ 又∵A 、M 、B 、C 共线,∴kBC=kMA=4-x y ⑥ 将①②、⑥代入⑤得2x+2y ·4-x y =0 化简得x2+y2-4x=0同法一得0≤x <1.即所求的轨迹方程为x2+y2-4x=0(0≤x <1)解法四:(几何法)∵OM ⊥MA ,∴|OM |2+|MA |2=|OA |2 即x2+y2+(x-4)2+y2=16即x2+y2-4x=0同解法一得0≤x <1∴所求轨迹方程的x2+y2-4x=0(0≤x <1)例4 已知定点A(4,0)和圆x2+y2=4上的动点B ,点P 分AB 之比为2∶1,求点P 的轨迹方程.解:(代入法)设动点P(x,y)及圆上点B(x0,y0)∵λ=PB AP =2∴⎪⎪⎩⎪⎪⎨⎧+=++=212212300y y x x 因此⎪⎪⎩⎪⎪⎨⎧=-=y y x x 2344300 代入圆方程x2+y2=4,得(243-x )2+49y2=4 ∴P 点的轨迹方程为(x-34)2+y2=916【课本难题解答】教材第82页,习题7.79.答:(1)2x-y-7=0;(2)(x-1)2+(y+1)2=2510.答:⎩⎨⎧+=+=θθθsin 22cot 2cos 2y x (0<θ<π),θ为参数【典型热点考题】例1 设圆满足①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1,在满足条件①②的所有圆中,求圆心到直线l:x-2y=0的距离最小的方程.分析 第一求出满足条件①、②的圆的圆心轨迹方程;然后求出圆心到直线x-2y=0的最小距离,最后列出满足圆心坐标与半径r 的方程组,确定圆的方程.解法一:设圆的圆心为P(a,b),半径为r ,则P 点到x 轴,y 轴的距离分不为|b |,|a |.由条件②知圆P 被x 轴截得的劣弧所对的圆心角为90°,从而圆P 截x 轴所得的弦长为2r.∴r2=(2|b |)2=2b2又圆P 截y 轴所得的弦长为2,因此有 r=221+a ,∴r2=a2+1∴圆心P 的坐标为(a,b)满足方程2b2-a2=1,又点P(a,b)到直线x-2y=0的距离为 d=52ba - 因此|a-2b |2=a2+4b2-4ab ≥(a2+4b2)-2(a2+b2)=2b2-a2=1当且仅当a=b 时上式等号成立,现在5d2=1,从而d 取最小值. 由此有⎪⎩⎪⎨⎧==-=2222212b r a b b a 解此方程组得⎪⎩⎪⎨⎧===211r b a 或⎪⎩⎪⎨⎧=-=-=211r b a因此,所求圆的方程为 (x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2解法二:同解法一得d=52ba -∴a-2b=±5d,即a=2b ±5 d得a2=4b2±45bd+5d2将a2=2b2-1代入上式,整理得2b2±45bd+5d2+1=0把它看作关于b 的二次方程,由于方程有实根,故判不式非负.即△=8(5d2-1)≥0,得5d2≥1因此5d2有最小值1,从而d 有最小值55. 代入方程2b2±45db+5d2+1=0得b=±1 将b=±1代入r2=2b2,得r2=2.由a2=2b2-1得a=±1综上知a=±1,b=±1,r2=2将d=55代入d=52b a -得:|a-2b |=1知a,b 同号.(x-1)2+(y-1)2=1或(x+1)2+(y+1)2=2讲明:要确定圆心坐标及半径,本题的关键是求出圆心到直线的最小值,解法一利用了差不多不等式a2+b2≥2ab 求最值.而解法二利用判不式法求最值,这是求最值的两种常用方法.例2 设有圆心为(ak,0),半径为rk(k=1,2,3,…)的一系列半圆C1,C2,C3,……,每相邻两个半圆互相外切,同时都和直线l:y=-43x+1相切,直线l 分不切圆Ck 、Ck-1于A 、B 两点(1)用rk 表示ak;(2)用rk-1表示rk;(3)若a1<0,半圆C1和y 轴相切,求r1(4)在(3)中的半圆C1是这一系列半圆的左起每一个半圆,面积为S1,第k 个半圆的面积为Sk(k=1,2,3,…)求S1+S2+…+Sk+……分析 由题设条件,联想到点到直线的距离公式、数列的有关知识进行解题.解:(1)由题设得直线l 的方程为3x+4y-4=0.∴rk=d=224343+-k a =543-k a ∴ak=⎪⎪⎩⎪⎪⎨⎧-+354345k k r r ⎪⎪⎩⎪⎪⎨⎧<≥)34a ()34a (k k 当当(2)连ACk 、BCk-1,过Ck 作CkD ⊥Ck-1B ,则四边形ABDCk 为矩形. ∵kAB=kCD ,kAB=tan α=-43 设直线l 分不与x,y 轴交于M 、N 两点.∴tan ∠OMN=tan(180°-α)=-tan α=43sin ∠OMN=53 又∵sin ∠OMN=k k k C C D C 11--=k k k k r C r r +--11 ∴k k k k r C r r +--11=53 rk=41rk-1 (3)∵a1<0,r1>0,∴r1=-a1由点到直线距离公式,得r1=5431-a =5431+r ∴r1=2(4)由(2)得rk=41rk-1 r1=2,r2=21,r3=81 ∴r1,r2,r3,…等比数列,q=41又S1=21πr21=2πS2=21 πr22=81π S3=21 πr23=1281π,…… 可知S1,S2,S3……也成等比数例,公比q ′=161<1, ∴S=S1+S2+…=q s -11=16112-π=1532π. 例3 当实数x,y 满足x2-2x+y2=3时,求|x |+|y |的最大值与最小值.分析 圆心方程可化为(x-1)2+y2=4. 令t=|x |+|y |,∵它的图形是顶点在坐标轴上的正方形,如此咨询题转化为正方形与圆有公共点时,求t 的最大值与最小值.与圆有公共点的最小正方形是顶点为(1,0),(0,1),(-1,0),(0,-1)故t 的最小值为1,与圆有公共点的最大正方形是两边与圆相切的正方形,由⎩⎨⎧=+-=+3222y x x t y x 得2x2-2(t+1)x+t2-3=0,由△=0,得t=1+22(1-22 舍去),即t 的最大值为1+22,(t 的最大值也可用圆心到直线的距离等于半径去解)【同步达纲练习】A级一、选择题1.若直线4x-3y-2=0与圆x2+y2-2ax+4y+a2-12=0总有两个不同交点,则a的取值范畴是( )A.-3<a<7B.-6<a<4C.-7<a<3D.-21<a<192.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有( )A.1个B.2个C.3个D.4个3.使圆(x-2)2+(y+3)2=2上点与点(0,-5)的距离最大的点的坐标是( )A.(5,1)B.(3,-2)C.(4,1)D.(2+2,2-3)4.若直线x+y=r与圆x2+y2=r(r>0)相切,则实数r的值等于( )2B.1 C.2 D.2A.25.直线x-y+4=0被圆x2+y2+4x-4y+6=0截得的弦长等于( )A.8B.4C.22D.42二、填空题6.过点P(2,1)且与圆x2+y2-2x+2y+1=0相切的直线的方程为.7.设集合m={(x,y)|x2+y2≤25},N={(x,y)|(x-a)2+y2≤9},若M∪N=M,则实数a的取值范畴是.8.已知P(3,0)是圆x2+y2-8x-2y+12=0内一点则过点P的最短弦所在直线方程是,过点P的最长弦所在直线方程是.三、解答题9.已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P 、Q 两点,若OP ⊥OQ(O 是原点),求m 的值.10.已知直线l:y=k(x-2)+4与曲线C :y=1+24x 有两个不同的交点,求实数k 的取值范畴.AA 级一、选择题1.圆(x-3)2+(y+4)2=2关于直线x+y=0的对称圆的标准方程是( )A.(x+3)2+(y-4)2=2B.(x-4)2+(y+3)2=2C.(x+4)2+(y-3)=2D.(x-3)2+(y-4)2=2 2.点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则实数a 的取值范畴是( ) A.|a |<1B.|a |<51C.|a |<121 D.|a |<131 3.关于x,y 的方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示一个圆的充要条件是( )A.B=0,且A=C ≠0B.B=1且D2+E2-4AF >0C.B=0且A=C ≠0,D2+E2-4AF ≥0D.B=0且A=C ≠0,D2+E2-4AF >04.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.(314,5) B.(5,1) C.(0,0) D.(5,-1) 5.若两直线y=x+2k 与y=2x+k+1的交点P 在圆x2+2=4的内部,则k 的范畴是( ) A.- 51<k <-1 B.- 51 <k <1 C.- 31<k <1 D.-2<k <2二、填空题6.圆x2+y2+ax=0(a ≠0)的圆心坐标和半径分不是 .7.若方程a2x2+(2a+3)y2+2ax+a+1=0表示圆,则实数a 的值等于 .8.直线y=3x+1与曲线x2+y2=4相交于A 、B 两点,则AB 的中点坐标是 .三、解答题9.求圆心在直线2x-y-3=0上,且过点(5,2)和(3,-2)的圆的方程.10.光线l 从点P(1,-1)射出,通过y 轴反射后与圆C :(x-4)2+(y-4)2=1相切,试求直线l 所在的直线方程.【素养优化训练】一、选择题1.直线3x+y-23=0截圆x2+y2=4得的劣弧所对的圆心角为(全国高考题)( ) A.6π B. 4π C. 3π D. 2π 2.关于满足x2+(y-1)2=1的任意x,y ,不等式x+y+d ≥0恒成立,则实数d 的取值范畴是( )A.[2-1,+∞]B.(-∞,2-1)C.[2 +1,+∞]D.(-∞, 2 +1) 3.若实数x ,y 满足x2+y2=1,则12--y y 的最小值等于( ) A. 41 B. 43 C. 23 D.2 4.过点P(1,2)的直线l 将圆x2+2-4x-5=0分成两个弓形,当大、小两个弓形的面积之差最大时,直线l 的方程是( )A.x=1B.y=2C.x-y+1=0D.x-2y+3=05.一辆卡车宽2.7米,要通过一个半径为4.5米的半圆形隧道(双车道,不得违章),则这辆卡车的平顶车篷篷顶距离地面的高度不得超过( )A.1.8米B.3米C.3.6米D.4米二、填空题6.若实数x,y满足x2+y2-2x+4y=0,则x-2y的最大值是.7.若集合A={(x、y)|y=-|x|-2},B={(x,y)|(x-a)2+y2=a2}满足A∩B= ,则实数a的取值范畴是.8.过点M(3,0)作直线l与圆x2+y2=16交于A、B两点,当θ=时,使△AOB的面积最大,最大值为(O为原点).三、解答题9.令圆x2+y2-4x-6y+12=0外一点P(x,y)向圆引切线,切点为M,有|P M|=|PO|,求使|PM|最小的P点坐标.10.已知圆C:(x+4)2+y2=4和点A(-23,0),圆D的圆心在y轴上移动,且恒与圆C外切,设圆D与y轴交于点M、N,求证:∠MAN为定值.11.已知直角坐标平面内点Q(2,0),圆C:x2+y2=1,动点M到圆C 的切线长与|MQ|的比等于常数λ(λ>0),求动点M的轨迹方程,并讲明轨迹是什么曲线.12.自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线m所在直线与圆x2+y2-4x-4y+7=0相切,求光线l与m所在直线方程.13.AB 是圆O 的直径,且|AB |=2a,M 是圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使|OP |=|MN |,求点P 的轨迹.参考答案:【同步达纲练习】A 级1.B2.C3.B4.D5.C6.x=2或3x-4y-2=07.-2≤a ≤28.x+y-3=0,x-y-3=09.m=3 10.(125,43) AA 级 1.B 2.D 3.D 4.D 5.B 6.(- 2a ,0), 2a 7.-1 8.(- 103,101) 9.(x-2)2+(y-1)2=10 10.3x+4y+1=0或4x+3y-1=0【素养优化训练】1.C2.A3.B4.D5.C6.107.-2(2+1)<a <2(2+1)8.θ=arc cot22 或π-arccot22, 89.P(1312,1318) 10.60° 11.M 的轨迹方程为(λ2-1)(x2+y2)-4λ2x+(1+4x2)=0,当λ=1时,方程为直线x=45.当λ≠1时,方程为(x-1222-λλ)2+y2=222)1(31-+λλ它表示圆,该圆圆心坐标为(1222-λλ,0)半径为13122-+λλ 12.l 的方程为:3x+4y-3=0或4x+3y+3=0 M 的方程为3x-4y-3=0或4x-3y+3=0 13.x2+(y ±2a)2=(2a )2轨迹是分不以CO ,CD 为直径的两个圆.。

高中数学必修2--第四章《圆与方程》知识点总结与练习知识讲解

高中数学必修2--第四章《圆与方程》知识点总结与练习知识讲解

第三节圆_的_方_程[知识能否忆起]1.圆的定义及方程2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.[小题能否全取]1.(教材习题改编)方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A.14<m <1 B .m <14或m >1C .m <14D .m >1解析:选B 由(4m )2+4-4×5m >0得m <14或m >1.2.(教材习题改编)点(1,1)在圆(x -a )2+(y +a )2=4内,则实数a 的取值范围是( ) A .(-1,1)B .(0,1)C .(-∞,-1)∪(1,+∞)D .(1,+∞)解析:选A ∵点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4, ∴-1<a <1.3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:选A 设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1.4.(2012·潍坊调研)圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.解析:圆心(1,0),d =|1-3|1+3=1.答案:15.(教材习题改编)圆心在原点且与直线x +y -2=0相切的圆的方程为 ____________________.解析:设圆的方程为x 2+y 2=a 2(a >0) ∴|2|1+1=a ,∴a =2,∴x 2+y 2=2. 答案:x 2+y 2=21.方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是: (1)B =0;(2)A =C ≠0;(3)D 2+E 2-4AF >0.2.求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.典题导入[例1] (1)(2012·顺义模拟)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长之比为1∶2,则圆C 的方程为( )A.⎝⎛⎭⎫x ±332+y 2=43B.⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________. [自主解答] (1)由已知知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,b ),半径为r ,则r sin π3=1,r cos π3=|b |,解得r =23,|b |=33,即b =±33.故圆的方程为x 2+⎝⎛⎭⎫y ±332=43.(2)圆C 的方程为x 2+y 2+Dx +F =0,则⎩⎪⎨⎪⎧26+5D +F =0,10+D +F =0, 解得⎩⎪⎨⎪⎧D =-4,F =-6.圆C 的方程为x 2+y 2-4x -6=0. [答案] (1)C (2)x 2+y 2-4x -6=0由题悟法1.利用待定系数法求圆的方程关键是建立关于a ,b ,r 或D ,E ,F 的方程组. 2.利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.以题试法1.(2012·浙江五校联考)过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点分别为A ,B ,则△ABP 的外接圆的方程是( )A .(x -4)2+(y -2)2=1B .x 2+(y -2)2=4C .(x +2)2+(y +1)2=5D .(x -2)2+(y -1)2=5解析:选D 易知圆心为坐标原点O ,根据圆的切线的性质可知OA ⊥P A ,OB ⊥PB ,因此P ,A ,O ,B 四点共圆,△P AB 的外接圆就是以线段OP 为直径的圆,这个圆的方程是(x -2)2+(y -1)2=5.典题导入[例2] (1)(2012·湖北高考)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0(2)P (x ,y )在圆C :(x -1)2+(y -1)2=1上移动,则x 2+y 2的最小值为________. [自主解答] (1)当圆心与P 的连线和过点P 的直线垂直时,符合条件.圆心O 与P 点连线的斜率k =1,∴直线OP 垂直于x +y -2=0.(2)由C (1,1)得|OC |=2,则|OP |min =2-1,即(x 2+y 2)min =2-1.所以x 2+y 2的最小值为(2-1)2=3-2 2.[答案] (1)A (2)3-2 2由题悟法解决与圆有关的最值问题的常用方法 (1)形如u =y -bx -a的最值问题,可转化为定点(a ,b )与圆上的动点(x ,y )的斜率的最值问题(如A 级T 9);9.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:34(2)形如t =ax +by 的最值问题,可转化为动直线的截距的最值问题(如以题试法2(2)); (3)形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的最值问题(如例(2)).以题试法2.(1)(2012·东北三校联考)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.解析:(1)依题意,曲线C 表示的是以点C (-1,-1)为圆心,2为半径的圆,圆心C (-1,-1)到直线y =2-x 即x +y -2=0的距离等于|-1-1-2|2=22,易知所求圆的半径等于22+22=322.(2)令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b 与圆相切时,b 取得最值.由|2×2+1-b |5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5.答案:(1)322 (2)5+5 5-5典题导入[例3] (2012·正定模拟)如图,已知点A (-1,0)与点B (1,0),C 是圆x 2+y 2=1上的动点,连接BC 并延长至D ,使得|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.[自主解答] 设动点P (x ,y ),由题意可知P 是△ABD 的重心. 由A (-1,0),B (1,0),令动点C (x 0,y 0), 则D (2x 0-1,2y 0),由重心坐标公式得 ⎩⎪⎨⎪⎧x =-1+1+2x 0-13,y =2y 03,则⎩⎪⎨⎪⎧x 0=3x +12,y 0=3y 2(y 0≠0),代入x 2+y 2=1,整理得⎝⎛⎭⎫x +132+y 2=49(y ≠0), 故所求轨迹方程为⎝⎛⎭⎫x +132+y 2=49(y ≠0).由题悟法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据直线、圆、圆锥曲线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.以题试法3.(2012·郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:选B 设P (x ,y ),则由题意可得2(x -2)2+y 2=(x -8)2+y 2,化简整理得x 2+y 2=16.[题后悟道] 该题是圆与集合,不等式交汇问题,解决本题的关键点有: ①弄清集合代表的几何意义;②结合直线与圆的位置关系求得m 的取值范围. 针对训练若直线l :ax +by +4=0(a >0,b >0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为( )A .4B .2C .1D.14解析:选C 圆C 的圆心坐标为(-4,-1), 则有-4a -b +4=0,即4a +b =4. 所以ab =14(4a ·b )≤14⎝ ⎛⎭⎪⎫4a +b 22=14×⎝⎛⎭⎫422=1.当且仅当a =12,b =2取得等号.1.圆(x +2)2+y 2=5关于原点P (0,0)对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5解析:选A 圆上任一点(x ,y )关于原点对称点为(-x ,-y )在圆(x +2)2+y 2=5上,即(-x +2)2+(-y )2=5.即(x -2)2+y 2=5.2.(2012·辽宁高考)将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0D .x -y +3=0解析:选C 要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2).A ,B ,C ,D 四个选项中,只有C 选项中的直线经过圆心.3.(2012·青岛二中期末)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝⎛⎭⎫y -732=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝⎛⎭⎫x -322+(y -1)2=1 解析:选B 依题意设圆心C (a,1)(a >0),由圆C 与直线4x -3y =0相切,得|4a -3|5=1,解得a =2,则圆C 的标准方程是(x -2)2+(y -1)2=1.4.(2012·海淀检测)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x2,y =-2+y2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1.5.(2013·杭州模拟)若圆x 2+y 2-2x +6y +5a =0,关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( )A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)解析:选A 将圆的方程变形为(x -1)2+(y +3)2=10-5a ,可知,圆心为(1,-3),且10-5a >0,即a <2.∵圆关于直线y =x +2b 对称,∴圆心在直线y =x +2b 上,即-3=1+2b ,解得b =-2,∴a -b <4.6.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95 B .1 C.45D.135解析:选C 圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 7.如果三角形三个顶点分别是O (0,0),A (0,15),B (-8,0),则它的内切圆方程为________________.解析:因为△AOB 是直角三角形,所以内切圆半径为r =|OA |+|OB |-|AB |2=15+8-172=3,圆心坐标为(-3,3),故内切圆方程为(x +3)2+(y -3)2=9.答案:(x +3)2+(y -3)2=98.(2013·河南三市调研)已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为__________.解析:设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2=1,则R 2=d 2+⎝⎛⎭⎫|AB |22=10,因此圆C 的方程是x 2+(y -1)2=10.答案:x 2+(y -1)2=109.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:3410.过点C (3,4)且与x 轴,y 轴都相切的两个圆的半径分别为r 1,r 2,求r 1r 2. 解:由题意知,这两个圆的圆心都在第一象限, 且在直线y =x 上,故可设两圆方程为 (x -a )2+(y -a )2=a 2,(x -b )2+(y -b )2=b 2, 且r 1=a ,r 2=b .由于两圆都过点C , 则(3-a )2+(4-a )2=a 2,(3-b )2+(4-b )2=b 2 即a 2-14a +25=0,b 2-14b +25=0. 则a 、b 是方程x 2-14x +25=0的两个根.故r 1r 2=ab =25.11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2). ∴圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.12.(2012·吉林摸底)已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN |=455,求m 的值.解:(1)方程C 可化为(x -1)2+(y -2)2=5-m ,显然只要5-m >0,即m <5时方程C 表示圆.(2)因为圆C 的方程为(x -1)2+(y -2)2=5-m ,其中m <5,所以圆心C (1,2),半径r =5-m ,则圆心C (1,2)到直线l :x +2y -4=0的距离为d =|1+2×2-4|12+22=15,因为|MN |=455,所以12|MN |=255,所以5-m =⎝⎛⎭⎫152+⎝⎛⎭⎫2552, 解得m =4.1.(2012·常州模拟)以双曲线x 26-y 23=1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( )A .(x -3)2+y 2=1B .(x -3)2+y 2=3C .(x -3)2+y 2=3D .(x -3)2+y 2=9解析:选B 双曲线的渐近线方程为x ±2y =0,其右焦点为(3,0),所求圆半径r =|3|12+(±2)2=3,所求圆方程为(x -3)2+y 2=3.2.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( )A .(-1,1)B .(0,2)C .(-2,0)D .(1,3)解析:选B 根据切线长、圆的半径和圆心到点P 的距离的关系,可知|PT |=|PC |2-1,故|PT |最小时,即|PC |最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x-4),即y =-x +2,联立方程⎩⎪⎨⎪⎧y =x +2,y =-x +2,解得点P 的坐标为(0,2).3.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A 、PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.解:(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0).根据题意,得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)因为四边形P AMB 的面积S =S △P AM +S △PBM =12|AM |·|P A |+12|BM |·|PB |, 又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |, 而|P A |=|PM |2-|AM |2=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM |min =|3×1+4×1+8|32+42=3,所以四边形P AMB 面积的最小值为S =2|PM |2min -4=232-4=2 5.1.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 2解析:选B 由题意可知,圆的圆心坐标是(1,3),半径是10,且点E (0,1)位于该圆内,故过点E (0,1)的最短弦长|BD |=210-(12+22)=25(注:过圆内一定点的最短弦是以该点为中点的弦),过点E (0,1)的最长弦长等于该圆的直径,即|AC |=210,且AC ⊥BD ,因此四边形ABCD 的面积等于12|AC |×|BD |=12×210×25=10 2.2.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.解析:l AB :x -y +2=0,圆心(1,0)到l 的距离d =32, 则AB 边上的高的最小值为32-1. 故△ABC 面积的最小值是12×22×⎝⎛⎭⎫32-1=3- 2.答案:3- 23.(2012·抚顺调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解:(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.一、直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)二、圆与圆的位置关系(⊙O1、⊙O2半径r1、r2,d=|O1O2|)[小题能否全取]1.(教材习题改编)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离解析:选B由题意知圆心(1,-2)到直线2x+y-5=0的距离d=5,0<d<6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y =x +1上的一点向圆x 2+y 2-6x +8=0引切线,则切线长的最小值为( )A.7B .2 2C .3D. 2解析:选A 由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x 2+y 2-6x +8=0可化为(x -3)2+y 2=1,则圆心(3,0)到直线y =x +1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k2>1,解得-3<k < 3.答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x -2y +4=0. 答案:x -2y +4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.典题导入[例1] (2012·陕西高考) 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能[自主解答] 将点P (3,0)的坐标代入圆的方程,得 32+02-4×3=9-12=-3<0, 所以点P (3,0)在圆内.故过点P 的直线l 定与圆C 相交. [答案] A本例中若直线l 为“x -y +4=0”问题不变. 解:∵圆的方程为(x -2)2+y 2=4, ∴圆心(2,0),r =2. 又圆心到直线的距离为d =62=32>2. ∴l 与C 相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1.故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k2≤1,解得-33≤k ≤ 33.典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2=2×100-68=8. [答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4[典例](2012·东城模拟)直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l的方程为()A.5x+12y+20=0B.5x-12y+20=0或x+4=0C.5x-12y+20=0D.5x+12y+20=0或x+4=0[尝试解题]过点(-4,0)的直线若垂直于x轴,经验证符合条件,即方程为x+4=0满足题意;若存在斜率,设其直线方程为y=k(x+4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y=k(x+4)的距离为3,即|3k-2|1+k2=3,解得k=-512,此时直线方程为5x+12y+20=0,综上直线方程为5x+12y+20=0或x+4=0.[答案] D——————[易错提醒]—————————————————————————1.解答本题易误认为斜率k一定存在从而错选A.2.对于过定点的动直线设方程时,可结合题意或作出符合题意的图形分析斜率k是否存在,以避免漏解.——————————————————————————————————————针对训练1.过点A(2,4)向圆x2+y2=4所引切线的方程为__________________.解析:显然x=2为所求切线之一.当切线斜率存在时,设切线方程为y-4=k(x-2),即kx -y +4-2k =0,那么|4-2k |k 2+1=2,k =34,即3x -4y +10=0.答案:x =2或3x -4y +10=02.已知直线l 过(2,1),(m,3)两点,则直线l 的方程为________________. 解析:当m =2时,直线l 的方程为x =2; 当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,方程2x -(m -2)y +m -6=0, 即为x =2,所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3.3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212C .2 2D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2,解得k 2=4,即k =±2. 又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程;(2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |= 12-89=13,又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5,则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx-2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程.解:(1)证明:由题设知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2,化简得x 2-2tx +y 2-4ty =0, 当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB | =12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2. ∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB =(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.② 又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k.1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230. 答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF ,的最小值; (3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p 2=1,p =2,所以抛物线C 的方程为y 2=4x . (2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF ,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2. (3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,②由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y -1)2=4,圆心C 2(2,1),两圆半径均为2,又|C 1C 2|=(2+1)2+(1+1)2=13<4,则两圆相交⇒只有两条外公切线.2.(2012·江苏高考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:设圆心C (4,0)到直线y =kx -2的距离为d ,则d =|4k -2|k 2+1,由题意知,问题转化为d ≤2,即d =|4k -2|k 2+1≤2,得0≤k ≤43,所以k max =43. 答案:43 3.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为 2,则直线l 的斜率为________.解析:将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,则|2k -3|k 2+1=22,化简得7k 2-24k +17=0,得k =1或k =177. 答案:1或1774.圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A 、B 两点,且|AB |=22,求圆O 2的方程.解:(1)设圆O 2的半径为r 2,∵两圆外切,∴|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=2(2-1),故圆O 2的方程是(x -2)2+(y -1)2=4(2-1)2.(2)设圆O 2的方程为(x -2)2+(y -1)2=r 22,又圆O 1的方程为x 2+(y +1)2=4,此两圆的方程相减,即得两圆公共弦AB 所在直线的方程:4x +4y +r 22-8=0. 因为圆心O 1(0,-1)到直线AB 的距离为 |r 22-12|42= 4-⎝⎛⎭⎫2222=2, 解得r 22=4或r 22=20.故圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.。

高考数学复习第7章解析几何第3讲圆的方程

高考数学复习第7章解析几何第3讲圆的方程
故圆 C 的方程为(x-2)2+y2=9.
答案:(x-2)2+y2=9
(3)(2018 年天津) 在平面直角坐标系中,经过三点(0,0) , (1,1),(2,0)的圆的方程为______________.
解析:设圆的方程为 x2+y2+Dx+Ey+F=0,圆经过三点
F=0, (0,0),(1,1),(2,0),则1+1+D+E+F=0,
解析:抛物线 y2=4x 中,2p=4,p=2,焦点 F(1,0),准线 l 的方程为 x =-1 ,以 F 为圆心,且与 l 相切的圆的方程为 (x-1)2+y2=22,即为(x-1)2+y2=4.
考点 1 求圆的方程 例 1:(1)圆心在直线 x-2y=0 上的圆 C 与 y 轴的正半轴相 切,圆 C 截 x 轴所得弦的长为 2 3,则圆 C 的标准方程为 ________. 解析:∵圆心在直线 x-2y=0 上,∴设圆心为(2a,a), ∵圆 C 与 y 轴的正半轴相切,∴a>0,r=2a,又∵圆 C 截 x 轴 所得弦的长为 2 3,∴a2+( 3)2=(2a)2,a2=1,a=1.则圆 C 的标准方程为(x-2)2+(x-1)2=4.
(2)研究圆的问题,既要理解代数方法,熟练运用解方程思 想,又要重视几何性质及定义的运用,以降低运算量.总之,要 数形结合,拓宽解题思路.与弦长有关的问题经常需要用到点到 直线的距离公式、勾股定理、垂径定理等.
考点 2 与圆有关的最值问题 考向 1 斜率型最值问题 例 2:已知实数 x,y 满足方程 x2+y2-4x+1=0,求yx的最 大值和最小值.
的学习过程中,体会用 与圆的位置关系;二是重在知识的交
代数方法处理几何问题 汇处命题,把解析几何初步与集合、
的思想
向量、函数等知识结合命题,注重考

圆的方程以及圆的有关性质

圆的方程以及圆的有关性质

圆的⽅程以及圆的有关性质【本讲教育信息】⼀. 教学内容:圆的⽅程以及圆的有关性质⼆、学习⽬标1、通过图⽚欣赏探索确定圆的⼏何要素,在平⾯直⾓坐标系中掌握圆的标准⽅程与⼀般⽅程。

能根据给定直线、圆的⽅程判断直线与圆、圆与圆的位置关系;会利⽤直线⽅程和圆的⽅程解决简单的位置关系问题和度量问题;2、经历具体图形探索,确定圆的⼏何要素的过程;经历⽤待定系数法求圆的⽅程的过程;在学习过程中体会⽤代数⽅法处理⼏何问题的思想;3、体会转化、数形结合等数学思想和⽅法。

三、知识要点1、圆的定义①运动的观念:平⾯内⼀条线段绕着⼀个端点旋转,另⼀个端点形成的轨迹;其中,静⽌的端点叫做圆⼼,线段的长等于半径。

②集合的观念:平⾯内与定点的距离等于定长的点的集合。

其中定点叫做圆⼼,定长等于半径。

2、圆的⽅程①标准形式:圆⼼为(a,b),半径为r的圆的⽅程的标准形式是( x - a ) 2 + ( y - b ) 2 = r 2.特别地,当圆⼼在原点的时候,其⽅程为 x 2 + y 2 = r 2.②⼀般形式:x 2 + y 2 + Dx + Ey + F = 0. (*)上式可变形为:(x+)2+(y+)2=.说明:(1)圆的⼀般⽅程体现了圆的⽅程的代数特点:a. x2、y2项的系数相等且不为零.b. 没有xy项.(2)若D2 + E2- 4F > 0时,(*)式表⽰的是以为圆⼼,以为半径的圆;若D2 + E2- 4F = 0时,(*)式表⽰的是⼀个点;D2 + E2- 4F < 0时,(*)式不表⽰任何图形。

3、⼆元⼆次⽅程Ax2+Bxy+Cy2+Dx+Ey+F=0表⽰圆的充要条件①A=C≠0,②B=0,③D2+E2-4AF>0.4、点与圆的位置关系设圆⼼为M,半径为R,对于点P①|PM|=R:点P在圆上;②|PM|<R:点P在圆内;③|PM|>R:点P在圆外。

5、求曲线⽅程的两种⽅法①直接法:在不明确曲线是何种曲线的情形下,根据条件,寻找或构造等量关系,列等式,代坐标,得⽅程。

圆的标准方程

圆的标准方程

课前探究学习
课堂讲练互动
活页限时训练
(1)几何法 它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心 和半径,代入圆的标准方程,从而得到圆的标准方程.常用的 几何性质有:圆心与切点的连线垂直于切线;圆心到切点的距 离等于圆的半径;圆的弦垂直平分线过圆心;两条弦的垂直平 分线的交点为圆心等. (2)待定系数法 由三个独立条件得到三个方程,解方程组以得到圆的标准方程 中三个参数,从而确定圆的标准方程.它是求圆的方程最常用 的方法,一般步骤是:先设方程,再列式,后求解.
解 (1)由题意, 结合图(1)可知圆心(3,0), r=2 所以圆C的标准方程为(x-3)2+y2=4.
课前探究学习
课堂讲练互动
活页限时训练
【变式 3】 已知圆心在 x 轴上的圆 C 与 x 轴交于两点 A(1,0),B(5,0). (2)设 P(x,y)为圆 C 上任意一点,求点 P(x,y)到直线 x-y+1=0 的距离的最大值 和最小值.
(2 b)2
r 2解得
(3 a)2 (4 b)2 r 2
a 3
b 1
r 2 25
所以A、B、C三点确定的圆的方程为 (x+3)2+(y-1)2=25. 把D(-7,-2)代入方程,方程成立,所以点D在 圆上.
即A、B、C.D四点共圆. 课前探究学习 课堂讲练互动
活页限时训练
7. 若点P(2,-1)为圆(x-1)2+y2=25的弦AB的中 点,则直线AB的方程是( ). A. x-y-3=0 B. 2x+y-3=0 C. x+y-1=0 D. 2x-y-5=0
解析 由圆C与已知圆关于原点对称可知, 圆C的圆心与已知圆的圆心关于原点对称,半径不 变, 而点(-2,1)关于原点对称点为(2,-1),又半径为 1,故选A.

圆的标准方程

圆的标准方程

3.解:∵圆心在y轴上, 3.解:∵圆心在y轴上, 圆心在 可设圆心坐标为(0,b),则圆的方程为: (0,b),则圆的方程为 ∴可设圆心坐标为(0,b),则圆的方程为: +(yx2+(y-b)2=r2. 圆经过A 两点, ∵圆经过A、B两点,
∴圆的方程是x2+(y-1)2=10. 圆的方程是x +(y-
所以,所求圆的方程为
练习: 、写出下列各圆的方程: 练习:1、写出下列各圆的方程:
( x − 3) 2 + ( y − 4) 2 = 16 (1)圆心在点 圆心在点C(3, 4 ),半径是 圆心在点 ,半径是4
(2) 经过点 经过点P(5,1),圆心在点 圆心在点C(8,-3) 圆心在点
( x − 8) + ( y + 3) = 25
再( x − 2) + ( y + 3) = 25
2 2
左右两边不等,则M2 不在圆上
思考:M2 的位 置在哪里?
探究 点与圆的位置关系
点 M ( x0 , y0 ) 在圆 ( x − a ) + ( y − b) = r 内的条件是什么?圆外呢?
2 2 2
结论: 结论 若 ( x0 − a ) + ( y0 − b) < r ,则M在圆内 则 在圆内 在圆内.
2
x
两边同时平方, 两边同时平方,得
(x-a)2+(y-b)2=r2 - -
( x − a ) + ( y − b) = r
2 2
2
(1)
在圆上, 若M(x,y)在圆上,由以上讨论 点M的坐标满 在圆上 由以上讨论,点 的坐标满 );反之 的坐标满( ), ),即 足(1);反之,若M(x,y)的坐标满(1),即 );反之, 的坐标满 M到A点的距离为 M点在圆上。 点的距离为r, 点在圆上 点在圆上。 到 点的距离为 我们把( )称为以 为圆心, 我们把(1)称为以A(a,b)为圆心,r为半 , 为圆心 为半 径的圆的标准方程 特别地, 表示以原点为圆心, 为 特别地,x2+y2=r2 表示以原点为圆心,r为 半径的圆. 半径的圆

金版教程2014届高考数学理总复习课件:第8章 第3讲 圆的方程

金版教程2014届高考数学理总复习课件:第8章 第3讲 圆的方程

第十一页,编辑于星期日:二十一点 二十八分。
金版教程 ·高三数学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
核心要点研究
第八章 第3讲
第12页
第十二页,编辑于星期日:二十一点 二十八分。
金版教程 ·高三数学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
3 .
∴kmax=3+4
3,kmin=3-4
3 .
第第二八十章三页,编第辑于3星讲期日:二十一点第二23十页八
分。

金版教程 ·高三数学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
例3 [2013·淮北模拟]已知点A(-3,0),B(3,0),动点P满足 |PA|=2|PB|.
第八章 第3讲
第8页
第八页,编辑于星期日:二十一点 二十八分。
金版教程 ·高三数学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
2.点与圆的位置关系 (1)理论依据:________与________的距离与半径的大小关 系. (2)三个结论 圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0) ①____________⇔点在圆上; ②____________⇔点在圆外; ③____________⇔点在圆内.
与圆有关的最值问题,常见的有以下几种类型: ①形如 μ=yx- -ba形式的最值问题,可转化为动直线斜率 的最值问题;②形如 t=ax+by 形式的最值问题,可转化为 动直线截距的最值问题;③形如(x-a)2+(y-b)2 形式的最值 问题,可转化为动点到定点的距离的平方的最值问题.
第第二八十章一页,编第辑于3星讲期日:二十一点第二21十页八

2022年高考数学(浙江专用)总复习教师用书:第9章 第3讲 圆的方程 Word版含解析

2022年高考数学(浙江专用)总复习教师用书:第9章 第3讲 圆的方程 Word版含解析

第3讲圆的方程最新考纲把握确定圆的几何要素,把握圆的标准方程与一般方程.知识梳理1.圆的定义和圆的方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)充要条件:D2+E2-4F>0圆心坐标:⎝⎛⎭⎪⎫-D2,-E2半径r=12D2+E2-4F2.平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.诊断自测1.推断正误(在括号内打“√”或“×”)(1)确定圆的几何要素是圆心与半径.()(2)方程x2+y2=a2表示半径为a的圆.()(3)方程x2+y2+4mx-2y+5m=0表示圆.()(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()解析(2)当a=0时,x2+y2=a2表示点(0,0);当a<0时,表示半径为|a|的圆.(3)当(4m)2+(-2)2-4×5m>0,即m<14或m>1时才表示圆.答案(1)√(2)×(3)×(4)√2.(2021·北京卷)圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析由题意得圆的半径为2,故该圆的方程为(x-1)2+(y-1)2=2,故选D.答案 D3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是()A.(-1,1)B.(0,1)C.(-∞,-1)∪(1,+∞)D.a=±1解析由于点(1,1)在圆的内部,所以(1-a)2+(1+a)2<4,所以-1<a<1.答案 A4.(2022·浙江卷)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.解析由已知方程表示圆,则a2=a+2,解得a=2或a=-1.当a=2时,方程不满足表示圆的条件,故舍去.当a=-1时,原方程为x2+y2+4x+8y-5=0,化为标准方程为(x+2)2+(y+4)2=25,表示以(-2,-4)为圆心,半径为5的圆.答案(-2,-4) 55.(必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即(a +1)2+1=(a -1)2+9,解得a =2,所以圆心为C (2,0), 半径|CA |=(2+1)2+1=10,∴圆C 的方程为(x -2)2+y 2=10. 答案 (x -2)2+y 2=106.(2021·湖州调研)若圆C 与圆x 2+y 2+2x =0关于直线x +y -1=0对称,则圆心C 的坐标为________;圆C 的一般方程是________.解析 已知圆x 2+y 2+2x =0的圆心坐标是(-1,0)、半径是1,设圆C 的圆心(a ,b ),则有⎩⎨⎧ba +1=1,a -12+b2-1=0,由此解得a =1,b =2,即圆心C 的坐标为(1,2),因此圆C 的方程是(x -1)2+(y -2)2=1,即x 2+y 2-2x -4y +4=0. 答案 (1,2) x 2+y 2-2x -4y +4=0考点一 圆的方程【例1】 (1)(2021·金华调研)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________.(2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为________.解析 (1)法一 由已知k AB =0,所以AB 的中垂线方程为x =3.①过B 点且垂直于直线x -y -1=0的直线方程为y -1=-(x -2),即x +y -3=0,② 联立①②,解得⎩⎪⎨⎪⎧x =3,y =0,所以圆心坐标为(3,0),半径r =(4-3)2+(1-0)2=2,所以圆C 的方程为(x -3)2+y 2=2.法二 设圆的方程为(x -a )2+(y -b )2=r 2(r >0),∵点A (4,1),B (2,1)在圆上,故⎩⎪⎨⎪⎧(4-a )2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2,又∵b -1a -2=-1,解得a =3,b =0,r =2,故所求圆的方程为(x -3)2+y 2=2.(2)设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得 ⎩⎪⎨⎪⎧2D -4E -F =20,3D -E +F =-10.①② 又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6,得D 2-4F =36,④由①,②,④解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0.故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.答案 (1)(x -3)2+y 2=2 (2)x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0规律方法 求圆的方程时,应依据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法: (1)几何法,通过争辩圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三共性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.【训练1】 (1)(2022·天津卷)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.(2)(2021·武汉模拟)以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为________.解析(1)由于圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d=2a5=455,解得a=2,所以圆C的半径r=|CM|=4+5=3,所以圆C的方程为(x-2)2+y2=9.(2)抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4.答案(1)(x-2)2+y2=9(2)(x-1)2+y2=4考点二与圆有关的最值问题【例2】已知实数x,y满足方程x2+y2-4x+1=0.(1)求yx的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.解原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,3为半径的圆.(1)yx的几何意义是圆上一点与原点连线的斜率,所以设yx=k,即y=kx.当直线y=kx与圆相切时,斜率k取最大值或最小值,此时|2k-0|k2+1=3,解得k=±3(如图1).所以yx的最大值为3,最小值为- 3.(2)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时|2-0+b|2=3,解得b=-2±6(如图2).所以y-x的最大值为-2+6,最小值为-2- 6.(3)x2+y2表示圆上的一点与原点距离的平方,由平面几何学问知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3).又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x2+y2的最大值是(2+3)2=7+43,x2+y2的最小值是(2-3)2=7-4 3.规律方法把有关式子进行转化或利用所给式子的几何意义解题,充分体现了数形结合以及转化的数学思想,其中以下几类转化极为常见:(1)形如m=y-bx-a的最值问题,可转化为动直线斜率的最值问题;(2)形如t=ax+by的最值问题,可转化为动直线截距的最值问题;(3)形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间距离的平方的最值问题.【训练2】(1)(2021·义乌市诊断)圆心在曲线y=2x(x>0)上,与直线2x+y+1=0相切,且面积最小的圆的方程为()A.(x-2)2+(y-1)2=25B.(x-2)2+(y-1)2=5C.(x-1)2+(y-2)2=25D.(x-1)2+(y-2)2=5(2)(2022·全国Ⅱ卷)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是________.解析(1)设圆心坐标为C⎝⎛⎭⎪⎫a,2a(a>0),则半径r=2a+2a+15≥22a×2a+15=5,当且仅当2a=2a,即a=1时取等号.所以当a=1时圆的半径最小,此时r=5,C(1,2),所以面积最小的圆的方程为(x-1)2+(y-2)2=5.(2)如图所示,过点O作OP⊥MN交MN于点P.在Rt △OMP 中,|OP |=|OM |·sin 45°, 又|OP |≤1,得|OM |≤1sin 45°= 2. ∴|OM |=1+x 20≤2,∴x 20≤1.因此-1≤x 0≤1. 答案 (1)D (2)[-1,1] 考点三 与圆有关的轨迹问题【例3】 设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线相互平分,故x 2=x 0-32,y 2=y 0+42.从而⎩⎨⎧x 0=x +3,y 0=y -4.又N (x +3,y -4)在圆上, 故(x +3)2+(y -4)2=4.因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM上时的状况).规律方法 求与圆有关的轨迹问题时,依据题设条件的不同常接受以下方法: (1)直接法,直接依据题目供应的条件列出方程; (2)定义法,依据圆、直线等定义列方程; (3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.【训练3】 (2022·全国Ⅰ卷)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解 (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM→=(x ,y -4),MP →=(2-x ,2-y ).由题设知CM→·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 由于ON 的斜率为3,所以l 的斜率为-13, 故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105, 所以|PM |=4105,S △POM =12×4105×4105=165, 故△POM 的面积为165.[思想方法]1.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法,是指依据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.2.解答圆的问题,应留意数形结合,充分运用圆的几何性质,简化运算. [易错防范]1.求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.2.求轨迹方程和求轨迹是有区分的,求轨迹方程得出方程即可,而求轨迹在得出方程后还要指明轨迹表示什么曲线.基础巩固题组 (建议用时:40分钟) 一、选择题1.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ) A.x 2+y 2=2 B.x 2+y 2= 2 C.x 2+y 2=1D.x 2+y 2=4解析 AB 的中点坐标为(0,0), |AB |=[1-(-1)]2+(-1-1)2=22,∴圆的方程为x 2+y 2=2. 答案 A2.(2021·嘉兴七校联考)圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为( ) A.(x -2)2+(y -1)2=1 B.(x +1)2+(y -2)2=1 C.(x +2)2+(y -1)2=1D.(x -1)2+(y +2)2=1解析 已知圆的圆心C (1,2)关于直线y =x 对称的点为C ′(2,1),∴圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为(x -2)2+(y -1)2=1,故选A. 答案 A3.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( ) A.(-∞,-2)∪⎝ ⎛⎭⎪⎫23,+∞B.⎝ ⎛⎭⎪⎫-23,0 C.(-2,0)D.⎝ ⎛⎭⎪⎫-2,23 解析 方程为⎝ ⎛⎭⎪⎫x +a 22+(y +a )2=1-a -3a 24表示圆,则1-a -3a 24>0,解得-2<a <23.答案 D4.(2021·绍兴一中检测)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A.(x -2)2+(y +1)2=1 B.(x -2)2+(y +1)2=4 C.(x +4)2+(y -2)2=4D.(x +2)2+(y -1)2=1解析 设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x 02,y =-2+y 02,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.由于点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1. 答案 A5.(2021·全国Ⅱ卷)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213 C.253D.43解析 由点B (0,3),C (2,3),得线段BC 的垂直平分线方程为x =1,① 由点A (1,0),B (0,3),得线段AB 的垂直平分线方程为 y -32=33⎝ ⎛⎭⎪⎫x -12,②联立①②,解得△ABC 外接圆的圆心坐标为⎝ ⎛⎭⎪⎫1,233, 其到原点的距离为 12+⎝ ⎛⎭⎪⎫2332=213.故选B. 答案 B 二、填空题6.若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是________. 解析 设圆心C 坐标为(2,b )(b <0),则|b |+1=4+b 2.解得b =-32,半径r =|b |+1=52,故圆C 的方程为:(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.答案 (x -2)2+⎝ ⎛⎭⎪⎫y +322=2547.(2021·广州模拟)已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为________.解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1.所以,当k =0时圆C 的面积最大. 答案 (0,-1)8.(2021·丽水调研)已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________;最长弦所在直线的方程为________.解析 过点M 的最短弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1),∵k CM =1-02-1=1,∴最短弦所在直线的方程为y -0=-(x -1),即x +y -1=0.由于直线过圆心C (2,1)时弦最长,此弦与最短弦垂直,故其斜率为1,此弦所在的直线方程为y -0=x -1,即为x -y -1=0. 答案 x +y -1=0 x -y -1=0 三、解答题9.已知三条直线l 1:x -2y =0,l 2:y +1=0,l 3:2x +y -1=0两两相交,先画出图形,再求过这三个交点的圆的方程.解 l 2平行于x 轴,l 1与l 3相互垂直.三交点A ,B ,C 连线构成直角三角形,经过A ,B ,C 三点的圆就是以AB 为直径的圆. 解方程组⎩⎨⎧x -2y =0,y +1=0得⎩⎨⎧x =-2,y =-1.所以点A 的坐标是(-2,-1). 解方程组⎩⎨⎧2x +y -1=0,y +1=0得⎩⎨⎧x =1,y =-1.所以点B 的坐标是(1,-1). 线段AB 的中点坐标是⎝ ⎛⎭⎪⎫-12,-1,又|AB |=(-2-1)2+(-1+1)2=3. 故所求圆的标准方程是⎝ ⎛⎭⎪⎫x +122+(y +1)2=94.10.在△ABC 中,已知|BC |=2,且|AB ||AC |=m ,求点A 的轨迹方程,并说明轨迹是什么图形. 解 如图,以直线BC 为x 轴、线段BC 的中点为原点,建立直角坐标系. 则有B (-1,0),C (1,0),设点A 的坐标为(x ,y ).由|AB ||AC |=m ,得(x +1)2+y 2=m (x -1)2+y 2.整理得(m 2-1)x 2+(m 2-1)y 2-2(m 2+1)x +(m 2-1)=0.①当m 2=1时,m =1,方程是x =0,轨迹是y 轴.当m 2≠1时,对①式配方,得⎝ ⎛⎭⎪⎫x -m 2+1m 2-12+y 2=4m 2(m 2-1)2.所以,点A 的轨迹是以⎝ ⎛⎭⎪⎫m 2+1m 2-1,0为圆心,2m|m 2-1|为半径的圆(除去圆与BC 的交点).力量提升题组 (建议用时:25分钟)11.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b 的最小值为( ) A.1 B.5 C.4 2D.3+2 2解析 由题意知圆心C (2,1)在直线ax +2by -2=0上, ∴2a +2b -2=0,整理得a +b =1, ∴1a +2b =(1a +2b )(a +b )=3+b a +2a b ≥3+2b a ×2ab =3+22,当且仅当b a =2ab ,即b =2-2,a =2-1时,等号成立. ∴1a +2b 的最小值为3+2 2. 答案 D12.已知圆心(a ,b )(a <0,b <0)在直线y =2x +1上的圆,其圆心到x 轴的距离恰好等于圆的半径,在y 轴上截得的弦长为25,则圆的方程为( ) A.(x +2)2+(y +3)2=9 B.(x +3)2+(y +5)2=25 C.(x +6)2+⎝ ⎛⎭⎪⎫y +732=499D.⎝ ⎛⎭⎪⎫x +232+⎝ ⎛⎭⎪⎫y +732=499 解析 由圆心到x 轴的距离恰好等于圆的半径知,所求圆与x 轴相切,由题意得圆的半径为|b |,则圆的方程为(x -a )2+(y -b )2=b 2.由圆心在直线y =2x +1上,得b =2a +1 ①,由此圆在y 轴上截得的弦长为25, 得b 2-a 2=5 ②,由①②得⎩⎪⎨⎪⎧a =-2,b =-3或⎩⎪⎨⎪⎧a =23,b =73(舍去).所以所求圆的方程为(x +2)2+(y +3)2=9.故选A.答案 A13.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|P A |2,其中A (0,1),B (0,-1),则d 的最大值为________.解析 设P (x 0,y 0),d =|PB |2+|P A |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方,∴(x 20+y 20)max =(5+1)2=36,∴d max =74.答案 7414.在平面直角坐标系xOy 中,设二次函数f (x )=x 2+2x +b (x ∈R )的图象与两个坐标轴有三个交点,经过这三点的圆记为C . (1)求实数b 的取值范围; (2)求圆C 的方程;(3)问圆C 是否经过定点(其坐标与b 无关)?请证明你的结论.解 (1)明显b ≠0,否则,二次函数f (x )=x 2+2x +b 的图象与两个坐标轴只有两个交点(0,0),(-2,0),这与题设不符.由b ≠0知,二次函数f (x )=x 2+2x +b 的图象与y 轴有一个非原点的交点(0,b ),故它与x 轴必有两个交点,从而方程x 2+2x +b =0有两个不相等的实数根,因此方程的判别式4-4b >0,即b <1.所以b 的取值范围是(-∞,0)∪(0,1).(2)由方程x 2+2x +b =0,得x =-1±1-b .于是,二次函数f (x )=x 2+2x +b 的图象与两个坐标轴的交点是(-1-1-b ,0),(-1+1-b ,0),(0,b ).设圆C 的方程为x 2+y 2+Dx +Ey +F =0,圆C 过上述三点,将它们的坐标分别代入圆C 的方程,得⎩⎪⎨⎪⎧(-1-1-b )2+D (-1-1-b )+F =0,(-1+1-b )2+D (-1+1-b )+F =0,b 2+Eb +F =0.又b ≠0,解上述方程组,得⎩⎨⎧D =2,E =-(b +1),F =b .所以圆C 的方程为x 2+y 2+2x -(b +1)y +b =0. (3)圆C 过定点,证明如下:假设圆C 过定点(x 0,y 0)(x 0,y 0不依靠于b ),将该点的坐标代入圆C 的方程,并变形为x 20+y 20+2x 0-y 0+b (1-y 0)=0(*).为使(*)式对全部满足b <1(b ≠0)的b 都成立,必需有1-y 0=0,结合(*)式得x 20+y 20+2x 0-y 0=0.解得⎩⎨⎧x 0=0,y 0=1或⎩⎨⎧x 0=-2,y 0=1.经检验知,点(0,1),(-2,1)均在圆C 上.因此,圆C 过定点.15.(2022·江苏卷)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程; (3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA→+TP →=TQ →,求实数t 的取值范围. 解 (1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25,圆心M (6,7),半径r =5, 由题意,设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0), 且(6-6)2+(b -7)2=b +5.解得b =1,∴圆N 的标准方程为(x -6)2+(y -1)2=1.(2)∵k OA =2,∴可设直线l 的方程为y =2x +m ,即2x -y +m =0. 又|BC |=|OA |=22+42=25,由题意,圆M 的圆心M (6,7)到直线l 的距离为d =52-⎝ ⎛⎭⎪⎫|BC |22=25-5=25,即|2×6-7+m |22+(-1)2=25,解得m =5或m =-15. ∴直线l 的方程为2x -y +5=0或2x -y -15=0. (3)由TA→+TP →=TQ →,则四边形AQPT 为平行四边形,又∵P ,Q 为圆M 上的两点,∴|PQ |≤2r =10. ∴|TA |=|PQ |≤10,即(t -2)2+42≤10, 解得2-221≤t ≤2+221.故所求t 的范围为[2-221,2+221].。

高考数学(文通用)一轮复习课件:第八章第3讲圆的方程

高考数学(文通用)一轮复习课件:第八章第3讲圆的方程

第3讲第八章平面解析几何圆的方程教材回顾▼夯实基础1.圆的定义及方程平面内与定点的距离等于定长的点的集合(轨迹)课本温故追根求源标准方程(x —a)2+(y —〃)2=以0>0)心:(…),半径:丄_____一般方程x2+j2+£>x+Ey+F=0(D2+E2-4F>0)111半径:|\/z>2+E2-4F心:2•点与圆的位置关系点M(x0,旳)与圆(x—af+(y—b)2=r2的位置关系: (1)若旳)在圆外,贝l|(x0—a)2+(yo—^)2(2)若旳)在圆上,贝!|(xo-a)2+(y o-^)2(3)若为)在圆内,贝!Kx0-«)2+(y0-^)2―\,1.辨明两个易误点⑴求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.(2)对于方程X2+J2+D X+£^+F=0表示圆时易忽视Z)2+ 炉一4尸>0这一条件.2.求解有关圆的问题的转化路径(1)注意二元二次方程表示圆的充要条件,善于利用切割线定理、垂径定理等平面中动点到定点、定直线的距离转化为圆心到它们的距离.(2)在圆中,注意利用半径、半弦长及弦心距组成的直角三角形.双基自测,1•圆心在丿轴上,半径为1,且过点(1,2)的圆的方程为(A ) A. x 2+(y-2)2=l B. x 2+(y+2)2=l C. (x-1)2+ (y~3)2= 1D. x 2+(y-3)2= 1\ (0—1) 2+ (b_2) —I,解得b=2,故圆的方程为x + (y —2)2=1.2.方程^2+j 2+ 4wx —2j + 5w=0(B ) (0 , b ),则由题意知,1A•一 svl4r 1C. m<rD. m>l解析:S(W+4-4XSw>0,得m>l.43.圆心在丿轴上且经过点(3, 1)的方程是(B )A. X2+J2+10J=0B. x2+/-10y = 0C. x2+j2+10x=0 D・ x2+j2—10x=0所以9 +(1—方)2=方「解得方=5.解析:设圆心为(0,b)9半径为八Jl!| r= \b\9x2+(y —bf=b)因为点(3, 1)所以圆的方程为x2+j2—10y=0.4.点(1, 1)在圆(x-a)2+(y+a)2=4内,则实数日的取值范围思’J .解析:因为点(1, 1)在圆的内部,所以(1-a)2+(1+a)2<4, 所以一1<a<1.5.(必修2P124习题4.1 A组T4改编)圆C的圆心在x轴上, 并且过点4(-1, 1)和B(1, 3),则圆C的方程为(X—2)2+j2=10解析:设圆心坐标为C(a, 0),因为点A(-l, 1)和B(l, 3)在圆C所以IC4I= ICBI,即7(a+1)彳+1=7 (a—l) 解得a=2f所以圆心为C(2, 0), 半径IC4I=〈(2+1) 2+1=莎,所以圆C的方程为(X-2)2+/=10.典例剖析▼考点突破*考点一求圆的方程(1)经过卩(一2, 4)、0(3, 一1)两点,并且在兀轴上截得的弦 长等于6;(2)圆心在直线j=-4x±,且与直线Z : x+y-l=0相切于 点 P(3, -2).[解]⑴设圆的方程为X 2+J 2+D X +E J +F=0, 将P 、0点的坐标名师导悟以例说法根据下列条件,求圆的方程:分别代入得2D-4E-F=20,①3D-E+F=-1Q.②又令J=O,得x2+Z)x+F=0e③设帀,兀2是方程③的两根, 由I X!-X2I=6,有Q2_4F=36,④由①②④解得D=—2, E=—4, F=_8 或D = _6, E= —,F=0・故所求x2+j2—2x—4y—8=0或x2+j2—6x—8j=0.(2站^沿^啟»1窘)2+Q—y o )2H >{yoH— 4X0》(3—XO )2+(—2—YO )2H?-IF +y o —一一—— 刍J求圆的方程的两种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径, 进而写出方程. (2)待定系数法:①若已知条件与(冷方)和半径/有关,则设圆的标准方 程,依据已知条件列出关于“,"厂的方程组,从而求出“,b,厂的值;②若已知条件没有明确给出般方 程,依据已知条件列出关于D, E, F 的方程组,进而求岀D, E, F的值.跟踪训练(2)若不同的四点 4(5, 0)、5(-1, 0)、C(-3, 3)、D(a 9 3) 共圆,求“的值.1.(1)已知圆心为C4(0,-6), 5(1, -5),且|心在直线%兀一丿+1=0上, ;解:(1)法一:设圆的方程为x2+j2+Dx+ Ey+F= 0(^+E2—4F>0),则圆心坐标为(一£,—「(一6) 2_6E+F=0,由题意可得* I2 + (-5) 2+Z>-5E+F=0,— 2=0,D+E-IO=O,— 2=0,解得*二代入求得i 所以圆的方程为x2+j2+ 6x4- 4j—12= 0,标准方程为(x+ 3)2+ (y+ 2)2= 25.丄11 y+y= — 刁'即 x+y+5=0・法二:因为 A(0, —6), B(l, —5), 所以线段4B 的中点D 的坐标为g ,—因此线段AB 的垂直平分线I 的方程是直线AB 的斜率k AB = —5— ( — 6) iPox+j+5=0,圆心C的坐标是方程组, 的解,lx-j+l=Ox=— 3,解得宀b=_2,所以圆心C的坐标是(一3, -2).圆的半径长r= IACI =yj (0+3) 2+ (-6+2) 2= 5,所以,心为C的的标准方程是(x+ 3)2+ (y+ 2f= 25.3(2)设过A 、B. C 三点的圆的方程为x 2 +J 2+D X + Ey+F= 0,分别代入A 、B. C 三点坐标,得25+5D+F=0,< l-D+F=0,5>+9-3D+3E+F=0,F=-5.解得D=-4,所以A、B、C三点确定的圆的方程为x2+j2-4x-p-5 因为ZX 偽3)也在此圆上, 所以/+9—4«— 25—5=0.所以a=7或a= —3(舍去). 即a的值为7.考点二与圆有关的最值问题(高频考点)与圆有关的最值问题,是高考命题的热点,多以选择题、填空题的形式呈现,试题难度不大,多为容易题、中档题.高考中对与圆有关的最值问题的考查主要有以下四个命题角度:(1)半径、面积型最值;⑵斜率型最值;⑶截距型最值;⑷距离型最值.鯉[2 ( 1)(2014-高考江西卷)在平面直角坐标系中分别是兀轴和V轴上的动点,若以AB为直径的圆C与直线2x+y_4= 0相切,则圆C面积的最小值为(A )A 4 口3A•一兀B•一Ji5 4C. (6—2质)兀D.討(2)(2016-河南省豫西五校联考)已知M为圆C:X2+J2-4X 一14丿+45=0上任意一点,且点2(-2, 3).①求IM0的最大值和最小值;②若M(〃,砒,求三|的最大值和最小值.加十2[解]⑴选A.因为ZAOB=90°,所以点O在圆C上. 设直线2x+y-4=0与圆C相切于点D,则点C与点O间的距离等于它到直线2x+j-4=0的距离,所以点C在以O为焦点,以直线2x+j-4=0为准线的抛物线上,所以当且仅当O, C, D共线时,圆的直径最小为IODI.4 2=质,所以圆C的最小半径为恭,所以圆C面积的最小值为兀1114 亏•IIIf 12X0+0-41 又如=—^―(2)由圆C: x2+j2— 4x— 14y+ 45= 0,可得(x-2)2+(y-7)2 =8,所以圆心C的坐标为(2, 7),半径①I0C1= 7 (2+2) ?+ (7-3) j血所以IMei max= 40+20 = 60, IM0lmin= 40 —2\{2 = 2\[i.②可知表示直线MQ的斜率, 加十2设直线MQ的方程为丿一3=饥兀+2),YI — 3即 kx-y-V 2k-\- 3= 0,则—;—=k.m + 2 由直线M0与圆C 有交点,可得 2—书WEW2+V5,所以所以加+ 2的最大值为2+书, 1小值为2—书.与圆有关的最值问题的常见解法(1)形如“=巳形式的最值问题,可转化为动直线斜率的最值问题.(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题.(3)形如(兀一a)2+® —耐?形式的最值问题,可转化为动点到定点的距离的平方的最值问题.通关练习2•已知实数x, y满足方程x2+j2— 4x+1= 0.⑴求j-x的j 【大值和最小值;(2)求x2+j2的最大值和最小值.解:原方程可化为(X—2)2+J2=3,表示以(2, 0)为圆心,\[3为半径的圆.(1)丿一兀可看作是直线丿=兀+方在丿轴上的截距,当直线y= x + b与圆相切时,纵截距b取得最大值或最小值,此时号解得―朋(如图1).所以y—x的最大值为一2+心,图2(2)X 2+J 2表示圆上的一点与原点距离的平方,由平面几何知 识知,在原点和圆心连线与圆的两个交点处取得最大值和最 小值(如图2).又圆心到原点的距离为7 (2-0)牛(0一0) 2= 2, 所以x 2+j 2的最大值是(2+书)2=7+4\伎x 2+j 2的最小值 是(2—厉)2=7—4\月・1=1oyX2考点三与圆有关的轨迹问题已知圆X2+J2=4±一定点A(2, 0), B(l, 1)为圆内一点,P, 0为圆上的动点.(1)求线段4P中点的轨迹方程;(2)若ZPBQ=W ,求线段P0中点的轨迹方程.[解]⑴设AP 的中点为M(x, j),由中点坐标公式可知,P 点坐标为(2x-2, 2y).故线段AP 中点的轨迹方程为(x-l)2+j 2=l.⑵设 P0 的中点为 j),在 RtZ\PB0 中,I PN\ = \BN\, 设O 为坐标原点,连接ON (图略),贝!|ON 丄P0,所以IOP|2 = \ON\2+\PN\2=ION?+\BN\29 所以 x 2+j 2+(x —l)2+(y —1)2=4.故线段中点的轨迹方程为x 2+j 2—X —J —1 = 0.因为P+J 2=4±,所以(2X -2)2+(2J )2=4.求与圆有关的轨迹方程的方法直接法L直接根据题设给定的条件列出方程(组)求解的方法定义法一根据圆(或直线)的定义列方程(组)求解的方法跟踪训练 3•已知直角三角形ABC 的斜边为AB,且A(-l, 0), B(3, 0),求:(1)直角顶点C 的轨迹方程; (2)直角边BC 中点M 的轨迹方程.解:⑴法一:设顶点eg j),因为AC 丄BC,且A 、B 、C 三点不共线,所以兀H3且兀H —1・所以~Z7i =— 1,即 /+丿2— 2x — 3= 0・JL eV因此,直角顶点c 的轨迹方程为x 2-\-y 2— 2x — 3= 0(X7^3且 兀工一1).又 kac=x+1法二设AB的中点为D,由中点坐标公式得n(l, 0),由直角三角形的性质知,ICDI=|lABI = 2,由圆的定义知,动点C的轨迹是以D(l, 0)为圆心,2为半径长的圆(由于4B, C三点不共线,所以应除去与兀轴的交点). 所以直角顶点C的轨迹方程为(x—1)2+/= 4(xH 3且xH —1).⑵设点M(x, j),点C(x 0, jo),因为B(3, 0), M 是线段 BC 的中点,由中点坐标公式得兀=迴兰3工3且xHl), y由(1)知,点C 在圆(x-l)2+/= 4(x^3且兀工一1)上运动,将兀o=2x —3, yo=2y 代入该方程得(2x —4『+(2刃2=4,即 (X -2)2+J 2=1(X #:3且兀Hl).因此动点M 的轨迹方程为(兀 —2)2+J 2= 1(兀工 3 且 x#= 1).=Jo + O—2 ,于是有 x 0 = 2x —3, y 0=2y.拓展升华触类旁通考题溯源一一求圆的方程(2015•高考全国卷II)己知三点4(1, 0),B(0,C(2,厉),则外接圆的圆心到原点的距离为(B.长为2的正三角形,其外接圆的圆心为 [解析]法一:设圆的方程为X 2+J 2+Z)X +£J +F=0, ri+D+F=0, 则5 3+\^E+F=0, 解得 D= — 2, E=_誓法二 在平面直角坐标系兀Oy 中画出△4BG 易知△ABC 是边咼考题溯源 本题源于人教A 版必修2 P122例4 “求过三点M+3+ 2£>+ 应 + F= 0, •因此IODI =0(0, 0), Mi(l, 1), M2(4, 2)的圆的方程,并求这个圆的半径长和圆心坐标”.考题变式〔如果一个三角形的三边所在的直线方程分别为方程为闌1能训练▼轻松闯关* [学生用书单独成册]以练促学强技提能解析:因为三角形三边所在的直线方程分别为x+2y—5=0,y—2= 0, x+j—4= 0,所以可得三角形的三个顶点分别是(1, 2), (2, 2), (3, 1). 设三角形外接圆的方x2+j2+Dx+Ey+F= 0,贝||D+2E+F=-5,< 2D+2E+F=一& 3D+E+F=-10,D= _3, 所以\E=-1, 、F=0,所以该三角形外接圆的方程为x2+j2—3x—y= 0,闌1能训练▼轻松闯关* [学生用书单独成册]以练促学强技提能点击链接本部分内容讲解结束闌1能训练▼轻松闯关* [学生用书单独成册]以练促学强技提能。

第3讲-圆的方程及直线与圆、圆与圆的位置关系

第3讲-圆的方程及直线与圆、圆与圆的位置关系

圆的方程以及直线与圆、圆与圆的位置关系学习提纲1、了解圆的方程2、了解直线和圆、圆与圆的位置关系及其判断标准3、了解圆的切线方程,相交弦方程1.圆的定义:平面内到定点的距离等于定长的点的轨迹是圆.这个定点叫做圆的圆心,定长称为该圆的半径。

2.圆的标准方程在平面直角坐标系中,设动点(,)P x y ,圆心(,)C a b ,半径为r ,由圆的定义有22()()x a y b r -+-=,即222()()x a y b r -+-=此即为:以(,)C a b 为圆心,r 为半径的圆的标准方程.特别地,以原点为圆心,半径为(0)r r >的圆的标准方程为222x y r +=3.圆的一般方程有时,我们也把圆的方程写成如下形式220x y Dx Ey F ++++= (*)由于22222240()()224D E D E F x y Dx Ey F x y +-++++=⇔+++= 因此,(*)表示圆的方程,前提是2240D E F +-> 事实上,如2240D E F +-=,方程(*)表示一个点(,)22D E -- 如2240D E F +-<,则方程(*)不表示任何图形.4、点00(,)P x y 与圆222()()(0)x a y b r r -+-=>的位置关系(1)若22200()()x a y b r -+->,则点P 在圆外;(2)若22200()()x a y b r -+-=则点P 在圆上;(3)若22200()()x a y b r -+-<,则点P 在圆内. 5.直线与圆的位置关系直线与圆的位置关系有三种:相离、相切、相交.判断直线与圆的位置关系常见的有两种方法:(1)代数法:直线方程与圆的方程联立,化简得一元二次方程,令其判别式为∆,则0∆<⇔相离; 0∆=⇔相切; 0∆>⇔相交;(2)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d r <⇔相交; d r =⇔相切; d r >⇔相离.6.圆与圆的位置关系的判定设⊙1C :2221111()()(0)x a y b r r -+-=>, ⊙2C :2222222()()(0)x a y b r r -+-=>,则有: 1212||C C r r >+⇔⊙1C 与⊙2C 相离;1212||=C C r r +⇔⊙1C 与⊙2C 外切;121212||||r r C C r r -<<+⇔⊙1C 与⊙2C 相交;121212||||()C C r r r r =-≠⇔⊙1C 与⊙2C 内切;1212||||C C r r <-⇔⊙1C 与⊙2C 内含;一条规律过圆外一点M 可作两条直线与圆相切,求切线方程时,可先设出方程,再用圆心到切线的距离等于半径列出方程求出切线的斜率.求直线被圆所截得弦长的两种常用方法(1)几何方法圆心到弦所在直线的距离、半弦长、半径构成直角三角形,用勾股定理.(2)代数方法运用根与系数关系及弦长公式 222||1||1()4A B A B A B AB k x x k x x x x =+-=++-说明:圆的弦长、弦心距的计算常用几何方法. CA B D7、切线方程,切点弦方程,相交弦方程(1)点00(,)P x y 在圆222()()(0)x a y b r r -+-=>上,则过P 的切线之方程为 200()()()()x a x a y b y b r --+--=(2)点00(,)P x y 在圆222()()(0)x a y b r r -+-=>外,则过P 可作两条切线,设切点为,A B ,则切点弦AB 所在直线的方程为 200()()()()x a x a y b y b r --+--=(3)如果圆22211:()()C x a y b r-+-=与22222:()()C x c y d r -+-=交于,A B 两点,则相交弦AB 所在直线的方程为 22222212()()[()()]x a y b x c y d r r -+---+-=-例1(1)若点(1,1)在圆22()()4x a y a -++=的内部,则实数a 的取值范围是( ).A .11a -<<B .01a <<C .1a >或1a <-D .1a =±(2)方程(1)(7)(2)(10)0x x y y --+--=表示什么曲线?【解】(1)因为点(1,1)在圆的内部,∴22(1)(1)4a a -++<∴11a -<< (2)(1)(7)(2)(10)0x x y y --+--=22812270x y x y ⇒+--+=22(4)(6)25x y ⇒-+-=故,原方程表示的曲线为以点(4,6)为圆心,5为半径的圆。

第八章第3讲圆的方程

第八章第3讲圆的方程

第3讲 圆的方程1.圆的定义及方程定义平面内与定点的距离等于定长的点的集合(轨迹)标准方程222)()(r b y a x =-+-)0(>r圆心:),(b a ,半径:r 一般方程0=++++F Ey Dx y x )04(22>-+F E D圆心:)2,2(E D --, 半径:F E D 42122-+2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )+(y 0-b )=r . (3)若M (x 0,y 0)在圆内,则(x 0-a )+(y 0-b )<r .[做一做]1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x2+(y -2)2=1 B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1 答案:A2.点(1,1)在圆(x -a )2+(y +a )2=4内,则实数a 的取值范围是( ) A .(-1,1) B .(0,1) C .(-∞,-1)∪(1,+∞) D .(1,+∞) 解析:选A.∵点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4, ∴-1<a <1.1.辨明两个易误点(1)解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.(2)对于方程x 2+y 2+Dx +Ey +F =0表示圆时易忽视D 2+E 2-4F >0这一条件. 2.待定系数法求圆的方程 (1)若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;(2)若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. [做一做]3.方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件的是( )A.14<m <1 B .m <14或m >1C .m <14D .m >1解析:选B.由(4m )2+4-4×5m >0,得m <14或m >1.4.圆心在y 轴上且经过点)1,3(的圆与x 轴相切,则该圆的方程是( )A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =0 解析:选B.设圆心为),0(b ,半径为r ,则||b r =, ∴圆的方程为222)(b b y x =-+.∵点)1,3(在圆上, ∴22)1(9b b =-+,解得:5=b . ∴圆的方程为01022=-+y y x .考点一__求圆的方程__________________________根据下列条件,求圆的方程:(1)经过)4,2(-P 、)13(-,Q 两点,并且在x 轴上截得的弦长等于6; (2)圆心在直线x y 4-=上,且与直线01:=-+y x l 相切于点)2,3(-P . [解法一] (1)设圆的方程为022=++++F Ey Dx y x , 将P 、Q 点的坐标分别代入得⎩⎨⎧=+-=--03042F E D F E D①② 又令0=y ,得02=++Dx x .③设21x x ,是方程③的两根,由6||21=-x x ,有3642=-F D ,④ 由①②④解得8,4,2-=-=-=F E D 或0,8,6=-=-=F E D 故所求圆的方程为084222=---+y x y x 或08622=--+y x y x 解法二:PQ 的中点坐标为)23,21(,直线PQ 的斜率为13214-=--+=k ,PQ 的垂直平分线的方程为2123-=-x y ,即1+=x y ,则圆心在此直线上,设圆心的坐标为)1,(+a a ,半径为r ,则有⎪⎩⎪⎨⎧-+++=++=222222)41()2(3)1(a a r a r则可得,⎩⎨⎧==131r a 或⎩⎨⎧==53r a ,故所求圆的方程为13)2()1(22=-+-y x 或25)4()3(22=-+-y x(2)设所求方程为2200)()(r y y x x =-+-,根据已知条件得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=--+--=r y x r y x x y 2|1|)2()3(4002202000解得⎪⎩⎪⎨⎧=-==224100r y x 因此所求圆的方程为8)4()1(22=-+-y x .[规律方法] 求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线. (2)代数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.1.(1)已知圆心为C 的圆经过点)5,1(),6,0(--B A ,且圆心在直线01:=+-y x l 上,求圆的标准方程;(2)若不同的四点A (5,0)、B (-1,0)、C (-3,3)、D (a ,3)共圆,求a 的值.解:(1)法一:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则圆心坐标为⎝⎛⎭⎫-D 2,-E 2.由题意可得⎩⎪⎨⎪⎧(-6)2-6E +F =012+(-5)2+D -5E +F =0,D -E -2=0消去F 得⎩⎪⎨⎪⎧D +E -10=0D -E -2=0,解得⎩⎪⎨⎪⎧D =6E =4,代入求得F =-12,所以圆的方程为x 2+y 2+6x +4y -12=0,标准方程为(x +3)2+(y +2)2=25. 法二:因为)6,0(-A ,)5,1(-B ,所以线段AB 的中点D 的坐标为⎝⎛⎭⎫12,-112,直线AB 的斜率k AB =-5-(-6)1-0=1, 因此线段AB 的垂直平分线l 的方程是y +112=-⎝⎛⎭⎫x -12, 即x +y +5=0.圆心C 的坐标是方程组⎩⎪⎨⎪⎧x +y +5=0x -y +1=0的解,解得⎩⎪⎨⎪⎧x =-3y =-2,所以圆心C 的坐标是(-3,-2).圆的半径长 r =|AC |=(0+3)2+(-6+2)2=5,所以,圆心为C 的圆的标准方程是(x +3)2+(y +2)2=25. (2)设过A 、B 、C 三点的圆的方程为x 2+y 2+Dx +Ey +F =0,分别代入A 、B 、C 三点坐标,得 ⎩⎪⎨⎪⎧25+5D +F =0,1-D +F =0,9+9-3D +3E +F =0,解得⎩⎪⎨⎪⎧D =-4,E =-253,F =-5.∴A 、B 、C 三点确定的圆的方程为x 2+y 2-4x -253y -5=0.∵D (a ,3)也在此圆上, ∴a 2+9-4a -25-5=0. ∴a =7或a =-3(舍去). 即a 的值为7.考点二__与圆有关的最值问题(高频考点)________与圆有关的最值问题,是高考命题的热点,多以选择题、填空题的形式呈现,试题难度不大,多为容易题、中档题.高考中对与圆有关的最值问题的考查主要有以下四个命题角度: (1)求一次或二次式的最值;(2)求圆上的点与圆外点距离的最值; (3)求圆上的点到直线距离的最值;(4)求z =y +nx +m的最值.已知实数x ,y 满足方程x 2+y 2-4x +1=0.(1)求yx的最大值和最小值;(2)求y -x 的最大值和最小值; (3)求x 2+y 2的最大值和最小值.[解] 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)y x 的几何意义是圆上一点与原点连线的斜率,所以设yx=k ,即y =kx . 当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3(如图1).所以yx的最大值为3,最小值为- 3.(2)y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6(如图2).所以y -x 的最大值为-2+6,最小值为-2- 6. (3)x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3).又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3. [规律方法] 与圆有关的最值问题,常见的有以下几种类型:(1)与圆有关的长度或距离的最值问题,转化为圆的圆心到点、直线的距离,再加半径、减半径求出最值;(2)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题;(3)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;(4)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.2.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)求点M 到直线x +y -7=0的最大距离;(3)若M (m ,n ),求n -3m +2的最大值和最小值.解:由圆C :x 2+y 2-4x -14y +45=0,可得(x -2)2+(y -7)2=8, ∴圆心C 的坐标为(2,7),半径r =2 2.(1)|QC |= (2+2)2+(7-3)2=4 2.∴|MQ |max =42+22=62,|MQ |min =42-22=2 2.(2)圆心C (2,7)到直线x +y -7=0的距离为d =|2+7-7|2= 2.则点M 到直线x +y -7=0的最大距离为2+22=3 2.(3)可知n -3m +2表示直线MQ 的斜率,设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,则n -3m +2=k .由直线MQ 与圆C 有交点, ∴|2k -7+2k +3|1+k 2≤2 2.可得2-3≤k ≤2+3,∴n -3m +2的最大值为2+3,最小值为2- 3. 考点三__与圆有关的轨迹问题__________________已知圆422=+y x 上一定点)0,2(A ,)1,1(B 为圆内一点,Q P ,为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若090=∠PBQ ,求线段PQ 中点的轨迹方程.[解] (1)设),(00y x P ,AP 的中点为),(y x M ,由中点坐标公式可知,⎪⎪⎩⎪⎪⎨⎧=+=22200y y x x解之得:⎩⎨⎧=-=yy x x 22200,因为P 点在圆422=+y x 上,所以4)2()22(22=+-y x (故线段AP 中点的轨迹方程为1)1(22=+-y x .(2)设PQ 的中点为),(y x N ,在PBQ R ∆t 中,||||BN PN =,设O 为坐标原点,连接ON ,则PQ ON ⊥,所以222||||||PN ON OP +=22||||BN ON +=,所以4)1()1(2222=-+-++y x y x .故线段PQ 中点的轨迹方程为0122=---+y x y x[规律方法] 求与圆有关的轨迹方程时,根据题设条件的不同常采用以下方法: (1)直接法:直接根据题目提供的条件列方程. (2)定义法:根据圆、直线等定义列方程. (3)几何法:利用圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.3.已知在ABC Rt ∆中,)0,0(A ,)0,6(B ,求直角顶点C 的轨迹方程.解:法一:依题意,顶点C 的轨迹是以AB 为直径的圆,且去掉端点B A ,,圆心坐标为)0,3(,半径为3,故直角顶点C 的轨迹方程为)0(9)3(22≠=+-y y x . 法二:设顶点C 的坐标为),(y x ,由于BC AC ⊥,故1-=⋅BC AC k k , ∴16-=-⋅x yx y ,∴0622=-+x y x ,即直角顶点C 的轨迹方程为)0(9)3(22≠=+-y y x方法思想——转化与化归思想求与圆有关的最值(2015·河北唐山一中调研)已知点)0,3(),0,3(B A -,动点P 满足||2||PB PA =.(1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线03:1=++y x l 上,直线2l 经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.[解] (1)设点P 的坐标为),(y x ,则2222)3(2)3(y x y x +-=++化简可得16)5(22=+-y x ,此即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图所示. 由直线l 2是此圆的切线,连接CQ , 则|QM |=|CQ |2-|CM |2=|CQ |2-16,当CQ ⊥l 1时,|CQ |取最小值,此时|CQ |=|5+3|2=42,则|QM |的最小值为32-16=4.[名师点评] 本题在求最值时,利用了转化与化归及数形结合的思想,把|QM |用|CQ |表示,由|CQ |的最值确定|QM |的最值,体现了转化思想.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2 D.17解析:选A.两圆的圆心均在第一象限,先求|PC 1|+|PC 2|的最小值,作点C 1关于x 轴的对称点C ′1(2,-3),则(|PC 1|+|PC 2|)min =|C ′1C 2|=52,所以(|PM |+|PN |)min =52-(1+3)=52-4.1.经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为( )A .(x -1)2+y 2=1B .(x -1)2+(y -1)2=1C .x 2+(y -1)2=1D .(x -1)2+(y -1)2=2解析:选B.由⎩⎪⎨⎪⎧x =1x +y =2,得⎩⎪⎨⎪⎧x =1,y =1, 即所求圆的圆心坐标为(1,1),又由该圆过点(1,0),得其半径为1,故圆的方程为(x -1)2+(y -1)2=1.2.已知⊙C :x 2+y 2+Dx +Ey +F =0,则“F =E =0且D <0”是“⊙C 与y 轴相切于原点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.由题意可知,要求圆心坐标为⎝⎛⎭⎫-D2,0,而D 可以大于0. 3.圆(x +2)2+y 2=5关于直线y =x 对称的圆的方程为( )A .(x -2)2+y 2=5B .x 2+(y -2)2=5C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5解析:选D.由题意知所求圆的圆心坐标为(0,-2),所以所求圆的方程为x 2+(y +2)2=5. 4.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1解析:选A.由于圆心在第一象限且与x 轴相切,故设圆心为(a ,1),又圆与直线4x -3y =0相切,可得|4a -3|5=1,解得a =2,故圆的标准方程为(x -2)2+(y -1)2=1.5.(2015·温州模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 为切点,若四边形P ACB 的最小面积是2,则k 的值为( )A .4B .3C .2 D. 2解析:选C.圆C 的方程可化为x 2+(y -1)2=1,因为四边形P ACB 的最小面积是2,且此时切线长为2,故圆心(0,1)到直线kx +y +4=0的距离为5,即51+k 2=5,解得k =±2,又k >0,所以k =2.6.如果直线l 将圆C :(x -2)2+(y +3)2=13平分,那么坐标原点O 到直线l 的最大距离为________.解析:由题意,知直线l 过圆心C (2,-3),当直线OC ⊥l 时,坐标原点到直线l 的距离最大, |OC |=22+(-3)2=13. 答案:137.已知A 、B 是圆O :x 2+y 2=16上的两点,且|AB |=6,若以AB 的长为直径的圆M 恰好经过点C (1,-1),则圆心M 的轨迹方程是________________.解析:设圆心坐标为M (x ,y ),则(x -1)2+(y +1)2=⎝⎛⎭⎫|AB |22,即(x -1)2+(y +1)2=9.答案:(x -1)2+(y +1)2=9 8.(2015·太原市模拟)已知点P 是直线3x +4y +8=0上的动点,点C 是圆x 2+y 2-2x -2y +1=0的圆心,那么|PC |的最小值是________.解析:点C 到直线3x +4y +8=0上的动点P 的最小距离即为点C 到直线3x +4y +8=0的距离,而圆心C 的坐标是(1,1),因此最小距离为|3×1+4×1+8|5=3.答案:39.在平面直角坐标系xOy 中,求与x 轴相交于A (1,0)和B (5,0)两点且半径为5的圆的标准方程.解:法一:设圆的标准方程为(x -a )2+(y -b )2=5.因为点A ,B 在圆上,所以可得到方程组:⎩⎪⎨⎪⎧(1-a )2+(0-b )2=5,(5-a )2+(0-b )2=5,解得⎩⎪⎨⎪⎧a =3,b =±1. 所以圆的标准方程是(x -3)2+(y -1)2=5 或(x -3)2+(y +1)2=5.法二:由于A ,B 两点在圆上,那么线段AB 是圆的一条弦,根据平面几何知识:这个圆的圆心在线段AB 的垂直平分线x =3上,于是可以设圆心为C (3,b ).又AC =5,得 (3-1)2+b 2= 5. 解得b =1或b =-1.因此,所求圆的标准方程为(x -3)2+(y -1)2=5 或(x -3)2+(y +1)2=5.10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410. (1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由点P 在CD 上, 得a +b -3=0.①又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧a =-3b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2). ∴圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.1.若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第二象限内,则a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)解析:选D.曲线C 的方程可化为(x +a )2+(y -2a )2=4, 其为圆心为(-a ,2a ),半径为2的圆, 要使圆C 的所有的点均在第二象限内,则圆心(-a ,2a )必须在第二象限,从而有a >0,并且圆心到两坐标轴的最短距离应该大于圆C 的半径, 易知圆心到坐标轴的最短距离为|-a |, 则有|-a |>2,得a >2.2.已知两点A (0,-3)、B (4,0),若点P 是圆C :x 2+y 2-2y =0上的动点,则△ABP 面积的最小值为( )A .6 B.112C .8 D.212解析:选B.如图,过圆心C 向直线AB 作垂线交圆于点P ,这时△ABP 的面积最小.直线AB 的方程为x 4+y-3=1,即3x -4y -12=0,圆心C 到直线AB 的距离为d =|3×0-4×1-12|32+(-4)2=165,∴△ABP 的面积的最小值为12×5×(165-1)=112.3.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.解析:由题意知,圆的半径r =12k 2+4-4k 2=124-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π4.答案:3π44.(创新题)已知直线2ax +by =1(a ,b 是实数)与圆O :x 2+y 2=1(O 是坐标原点)相交于A ,B 两点,且△AOB 是直角三角形,点P (a ,b )是以点M (0,1)为圆心的圆M 上的任意一点,则圆M 的面积的最小值为________.解析:因为直线与圆O 相交所得△AOB 是直角三角形,可知∠AOB =90°,所以圆心O 到直线的距离为12a 2+b 2=22,所以a 2=1-12b 2≥0,即-2≤b ≤ 2.设圆M 的半径为r ,则r =|PM |=a 2+(b -1)2=12b 2-2b +2=22(2-b ),又-2≤b ≤2,所以2+1≥|PM |≥2-1,所以圆M 的面积的最小值为(3-22)π.答案:(3-22)π 5.(2013·高考课标全国卷Ⅱ)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3. (1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.解:(1)设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1.(2)设P (x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1, 此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y +1)2=3或x 2+(y -1)2=3.6.(选做题)在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y=x 相切于坐标原点O . (1)求圆C 的方程;(2)试探求C 上是否存在异于原点的点Q ,使Q 到定点F (4,0)的距离等于线段OF 的长?若存在,请求出点Q 的坐标;若不存在,请说明理由.解:(1)设圆C 的圆心为C (a ,b ),则圆C 的方程为(x -a )2+(y -b )2=8.∵直线y =x 与圆C 相切于原点O , ∴O 点在圆C 上,且OC 垂直于直线y =x ,于是有⎩⎪⎨⎪⎧a 2+b 2=8b a=-1⇒⎩⎪⎨⎪⎧a =2b =-2或⎩⎪⎨⎪⎧a =-2b =2.由于点C (a ,b )在第二象限,故a <0,b >0, ∴圆C 的方程为(x +2)2+(y -2)2=8.(2)假设存在点Q 符合要求,设Q (x ,y ),则有⎩⎪⎨⎪⎧(x -4)2+y 2=16,(x +2)2+(y -2)2=8, 解之得x =45或x =0(舍去).∴存在点Q (45,125),使Q 到定点F (4,0)的距离等于线段OF 的长.。

第四章第3讲圆周运动-2025年高考物理一轮复习PPT课件

第四章第3讲圆周运动-2025年高考物理一轮复习PPT课件

高考一轮总复习•物理
第6页
2.描述匀速圆周运动的物理量
项目
定义、意义
公式、单位
线速度(v)
描述做圆周运动的物 体运动 快慢 的物理
(1)v=ΔΔst=
2πr T
.

(2)单位: m/s
角速度(ω)
描述物体绕圆心 转动快慢 的物理量
(1)ω=ΔΔθt =
2π T
.
(2)单位: rad/s
高考一轮总复习•物理
1 =2π×150π.08 r/s=25 r/min,D 错误.
解析
高考一轮总复习•物理
考点 水平面内圆周运动的动力学分析
1.圆周运动实例分析 实例分析
在匀速转动的圆筒 内壁上,有一物体随 圆筒一起转动而未 发生滑动
图例
动力学方程
FN=mω2r=mvr2= m2Tπ2r
第25页
高考一轮总复习•物理
高考一轮总复习•物理
第13页
2.自行车的大齿轮 A、小齿轮 B、后轮 C 的半径之比为 4∶1∶16,在用力蹬脚踏板 前进的过程中,关于 A、C 轮缘的角速度、线速度和向心加速度的说法正确的是( )
A.vA∶vC=1∶4 B.vA∶vC=1∶16 C.ωA∶ωC=4∶1 D.aA∶aC=1∶4
答案
高考一轮总复习•物理
直 观 情 境
第10页
高考一轮总复习•物理
第11页
3.本质:离心运动的本质并不是受到离心力的作用,而是提供的力小于做匀速圆周运动 需要的向心力.
高考一轮总复习•物理
第12页
1.思维辨析 (1)匀速圆周运动是匀变速曲线运动.( ) (2)做匀速圆周运动的物体所受合力是保持不变的.( ) (3)做匀速圆周运动的物体向心加速度与半径成反比.( ) (4)做匀速圆周运动的物体角速度与转速成正比.( √ ) (5)随水平圆盘一起匀速转动的物块受重力、支持力和向心力的作用.( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 圆的方程
一、选择题
1.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( )
A.x 2+y 2=2
B.x 2+y 2= 2
C.x 2+y 2=1
D.x 2+y 2=4
解析 AB 的中点坐标为(0,0),
|AB |=[1-(-1)]2+(-1-1)2=22,
∴圆的方程为x 2+y 2=2.
答案 A
2.(2017·漳州模拟)圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为
( )
A.(x -2)2+(y -1)2=1
B.(x +1)2+(y -2)2=1
C.(x +2)2+(y -1)2=1
D.(x -1)2+(y +2)2=1
解析 已知圆的圆心C (1,2)关于直线y =x 对称的点为C ′(2,1),∴圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为(x -2)2+(y -1)2=1,故选A. 答案 A
3.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( )
A.(-∞,-2)∪⎝ ⎛⎭
⎪⎫23,+∞ B.⎝ ⎛⎭⎪⎫-23,0 C.(-2,0) D.⎝ ⎛⎭
⎪⎫-2,23 解析 方程为⎝ ⎛⎭
⎪⎫x +a 22+(y +a )2=1-a -3a 24表示圆,则1-a -3a 24>0,解得-2<a <23.
答案 D
4.(2017·淄博调研)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )
A.(x -2)2+(y +1)2=1
B.(x -2)2+(y +1)2=4
C.(x +4)2+(y -2)2=4
D.(x +2)2+(y -1)2=1
解析 设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+
x 02,y =-2+y 02,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.
因为点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.
答案 A
5.(2015·全国Ⅱ卷)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )
A.53
B.213
C.253
D.43
解析 由点B (0,3),C (2,3),得线段BC 的垂直平分线方程为x =1,① 由点A (1,0),B (0,3),得线段AB 的垂直平分线方程为
y -32=33⎝ ⎛⎭
⎪⎫x -12,② 联立①②,解得△ABC 外接圆的圆心坐标为⎝
⎛⎭⎪⎫1,233, 其到原点的距离为 12
+⎝ ⎛⎭⎪⎫2332=213.故选B. 答案 B
二、填空题
6.若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是________.
解析 设圆心C 坐标为(2,b )(b <0),则|b |+1=4+b 2.解得b =-32,半径r =|b |+1=52,故圆C 的方程为:(x -2)2+⎝ ⎛⎭
⎪⎫y +322=254.
答案 (x -2)2
+⎝ ⎛⎭⎪⎫y +322=254 7.(2017·广州模拟)已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为________.
解析 圆C 的方程可化为⎝ ⎛⎭
⎪⎫x +k 22+(y +1)2=-34k 2+1.所以,当k =0时圆C 的面积最大.
答案 (0,-1)
8.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________.
解析 过点M 的最短弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,
1),∵k CM =1-0
2-1=1,
∴最短弦所在直线的方程为y -0=-(x -1),即x +y -1=0.
答案 x +y -1=0
三、解答题
9.已知三条直线l 1:x -2y =0,l 2:y +1=0,l 3:2x +y -1=0两两相交,先画出图形,再求过这三个交点的圆的方程.
解 l 2平行于x 轴,l 1与l 3互相垂直.三交点A ,B ,C 连线
构成直角三角形,经过A ,B ,C 三点的圆就是以AB 为直
径的圆.
解方程组⎩⎨⎧x -2y =0,y +1=0得⎩⎨⎧x =-2,y =-1.
所以点A 的坐标是(-2,-1).
解方程组⎩⎨⎧2x +y -1=0,y +1=0得⎩⎨⎧x =1,y =-1.
所以点B 的坐标是(1,-1).
线段AB 的中点坐标是⎝ ⎛⎭
⎪⎫-12,-1,
又|AB |=(-2-1)2+(-1+1)2=3.
故所求圆的标准方程是⎝ ⎛⎭
⎪⎫x +122+(y +1)2=94. 10.在△ABC 中,已知|BC |=2,且|AB ||AC |=m ,求点A 的轨迹方程,并说明轨迹是
什么图形.
解 如图,以直线BC 为x 轴、线段BC 的中点为原点,
建立直角坐标系.
则有B (-1,0),C (1,0),设点A 的坐标为(x ,y ).
由|AB ||AC |=m ,得(x +1)2+y 2=m (x -1)2+y 2.整理得
(m 2-1)x 2+(m 2-1)y 2-2(m 2+1)x +(m 2-1)=0.①
当m 2=1时,m =1,方程是x =0,轨迹是y 轴.
当m 2≠1时,对①式配方,得⎝ ⎛⎭
⎪⎫x -m 2+1m 2-12+y 2=4m 2(m 2-1)2. 所以,点A 的轨迹是以⎝ ⎛⎭
⎪⎫m 2+1m 2-1,0为圆心,2m |m 2-1|为半径的圆(除去圆与BC 的交点).
11.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,
则1a +2b 的最小值为( )
A.1
B.5
C.4 2
D.3+2 2
解析 由题意知圆心C (2,1)在直线ax +2by -2=0上,
∴2a +2b -2=0,整理得a +b =1,
∴1a +2b =(1a +2b )(a +b )=3+b a +2a b
≥3+2 b a ×2a
b =3+22,
当且仅当b a =2a b ,即b =2-2,a =2-1时,等号成立.
∴1a +2b 的最小值为3+2 2.
答案 D
12.已知平面区域⎩⎨⎧x ≥0,
y ≥0,x +2y -4≤0
恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及
其内部所覆盖,则圆C 的方程为________.
解析 由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.
∵△OPQ 为直角三角形,
∴圆心为斜边PQ 的中点(2,1),半径r =|PQ |2=5,
因此圆C 的方程为(x -2)2+(y -1)2=5.
答案 (x -2)2+(y -1)2=5
13.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|P A |2,其中A (0,1),B (0,-1),则d 的最大值为________.
解析 设P (x 0,y 0),d =|PB |2+|P A |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20
+y 20为圆上任一点到原点距离的平方,∴(x 20+y 20)max =(5+1)2=36,∴d max =74. 答案 74
14.(2016·江苏卷)如图,在平面直角坐标系xOy 中,已知以M
为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,
4).
(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6
上,求圆N 的标准方程;
(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程;
(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA
→+TP →=TQ →,求实数t
的取值范围.
解 (1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25,圆心M (6,7),半径r =5,
由题意,设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0),
且(6-6)2+(b -7)2=b +5.
解得b =1,∴圆N 的标准方程为(x -6)2+(y -1)2=1.
(2)∵k OA =2,∴可设直线l 的方程为y =2x +m ,即2x -y +m =0.又|BC |=|OA |=22+42=25,
由题意,圆M 的圆心M (6,7)到直线l 的距离为d =
52
-⎝ ⎛⎭⎪⎫|BC |22=25-5=25, 即|2×6-7+m |22+(-1)2
=25,解得m =5或m =-15. ∴直线l 的方程为2x -y +5=0或2x -y -15=0.
(3)由TA
→+TP →=TQ →,则四边形AQPT 为平行四边形, 又∵P ,Q 为圆M 上的两点,∴|PQ |≤2r =10.
∴|TA |=|PQ |≤10,即(t -2)2+42≤10,
解得2-221≤t ≤2+221.
故所求t 的范围为[2-221,2+221].。

相关文档
最新文档