11.3分式的乘除法第二课时教案教学设计

合集下载

《分式的乘除法》优质课比赛教案

《分式的乘除法》优质课比赛教案

《分式的乘除法》优质课比赛教案教案名称:分式的乘除法教学目标:1. 学会分式的乘法运算。

2. 学会分式的除法运算。

3. 能够应用分式的乘除法解决实际问题。

教学时长:2课时教学内容:第一课时:1. 复习分式的加减法,引入分式的乘法概念。

2. 讲解分式的乘法运算规则。

3. 练习分式的乘法计算。

4. 引入分式的除法概念。

5. 讲解分式的除法运算规则。

6. 练习分式的除法计算。

第二课时:1. 复习分式的乘法和除法规则。

2. 引入应用题,通过实际问题来练习分式的乘除法运算。

3. 学生上台演示解题过程。

4. 教师总结、点评和拓展,提出一些相关实际问题供学生练习。

教学准备:1. 教师准备白板、黑板、彩色粉笔等。

2. 学生准备笔记本、铅笔等。

教学步骤:第一课时:1. 引入:复习分式的加减法知识,向学生介绍分式的乘法概念。

2. 讲解:讲解分式的乘法运算规则,包括分子相乘、分母相乘。

3. 练习:给学生一些分式乘法计算的练习题,让学生在纸上计算并写出答案。

4. 引入:向学生介绍分式的除法概念。

5. 讲解:讲解分式的除法运算规则,包括将除法转化为乘法,分子相乘、分母相乘。

6. 练习:给学生一些分式除法计算的练习题,让学生在纸上计算并写出答案。

第二课时:1. 复习:复习分式的乘法和除法规则。

2. 引入:通过实际问题引入应用题,让学生能够将分式乘除法运用到实际情境中去解决问题。

3. 练习:学生上台展示解题过程,并与其他同学共同分析和讨论解题方法。

4. 总结:教师总结学生上台演示的解题方法,点评其中的优缺点,并提出相关拓展问题。

5. 拓展:提出一些相关的实际问题,供学生进一步练习分式的乘除法。

教学评价:1. 教师观察学生的学习情况,在课堂上提问学生,评价他们对分式乘除法的理解和运用能力。

2. 教师检查学生课后作业,评价他们对分式乘除法的掌握程度。

3. 学生之间互相讨论、合作解题,评价他们的合作能力和解题思路。

教学延伸:1. 学生可以在课后继续练习分式的乘除法运算,拓宽应用范围,提高运算速度和准确性。

分式的乘除_教案(教学设计)

分式的乘除_教案(教学设计)

分式的乘除【教学目标】1.让学生通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。

2.使学生理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算。

3.引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力。

【教学重难点】1.重点:分式的乘除法、乘方运算。

2.难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。

【教学过程】一、复习提问:(1)什么叫做分式的约分?约分的根据是什么?(2)下列各式是否正确?为什么?二、探索分式的乘除法的法则1.回忆: 计算:10965⨯; 4365÷。

2.例1计算:(1)x b ay by x a 2222⋅; (2)222222xb yz a z b xy a ÷。

由学生先试着做,教师巡视。

3.概括:分式的乘除法用式子表示即是:4. 例2计算:493222--⋅+-x x x x 。

分析:①本题是几个分式在进行什么运算?②每个分式的分子和分母都是什么代数式?③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?④怎样应用分式乘法法则得到积的分式? 解:原式=)2)(2()3)(3(32-+-+⋅+-x x x x x x =23+-x x 。

5.练习: 计算:2()x y xy x xy --÷ 三、探索分式的乘方的法则1.思考我们都学过了有理数的乘方,那么分式的乘方该是怎样运算的呢?先做下面的乘法:(1)=∙∙=⎪⎭⎫ ⎝⎛b a b a b a b a 3=∙∙∙∙b b b a a a 33b a ; (2)=∙∙∙=⎪⎭⎫ ⎝⎛b a b a b a b a n n n b a 。

2.仔细观察这两题的结果,你能发现什么规律?与同伴交流一下,然后完成下面的填空: (mn )(k ) =___________(k 是正整数)。

3.22212(1)441x x x x x x x-+÷+⨯++-4.练习:(1)判断下列各式正确与否:(2)计算下列各题:【作业布置】1.怎样进行分式的乘除法?2.怎样进行分式的乘方?。

最新版初中数学教案《分式的乘除 2》精品教案(2022年创作)

最新版初中数学教案《分式的乘除 2》精品教案(2022年创作)

第1课时分式的乘除一、新课导入1.导入课题:通过前面分式的学习,知道分式和分数有很多的相似性,如性质、约分和通分.事实上,在运算上它们也有许多的相似性.今天我们一起类比分数的运算来研究分式的运算,首先学习分式的乘除.2.学习目标:〔1〕知道并熟记分式乘除法法那么.〔2〕能准确地进行分式的乘除法的计算.〔3〕通过分式乘除法法那么得出体会类比的数学思想方法.3.学习重、难点:重点:分式乘除运算法那么.难点:分式乘除运算法那么的运用.二、分层学习1.自学指导:〔1〕自学内容:教材第135页到第136页例1上面的内容.〔2〕自学时间:8分钟.〔3〕自学方法:回忆分数乘除运算法那么,类比分数的乘除运算法那么探讨分式乘除运算法那么.〔4〕自学参考题纲:②类比以上方法,填写:③分式乘法法那么:分式乘分式,分子相乘,作为积的分子,分母相乘,作为积的分母,分式除法法那么:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.④写出以下各式结果:⑤计算:2.自学:学生结合自学指导自主学习.3.助学:〔1〕师助生:①明了学情:了解学生能否从分数乘法法那么中类比出分式乘法法那么.②差异指导:对认知不清的学生进行点拨引导.〔2〕生助生:同桌间相互交流自学参考提纲的问题,各小组间相互交流帮助.4.强化:〔1〕分式乘除法法那么.〔2〕对照法那么练一练:1.自学指导:〔1〕自学内容:教材第136页例1到例3.〔2〕自学时间:10分钟.〔3〕自学方法:结合例2体会分子、分母是多项式的分式乘除的计算方法,例3中弄清a 2-1与(a -1)2的大小关系.〔4〕自学参考提纲:①例1中参与乘除运算的两个分式的分子和分母都是单项式,这种分式的乘除运算有何特点?先做乘除法,再进行约分②由例2知,分子、分母是多项式时,通常先因式分解,再约分. ③运算结果应化为最简分式或整式.④例3是分式的应用问题,其中25001a -<2500(1)a -是怎样来的?除教材上的方法外,还可作差比较大小,即判断25001a --2500(1)a -与0的大小,有兴趣者不妨试一试. 解:∵a>1,∴a 2-1>0,(a-1)2>0而(a-1)2-(a 2-1)=-2a+2<0,∴(a-1)2<a 2-1, ∴25001a -<2500(1)a -. 2.自学:请同学们结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:了解学生是否弄清分式乘除的运算方法和运算步骤.②差异指导:对有困难的学生予以分类指导.〔2〕生助生:学生之间相互交流和帮助.4.强化:〔1〕分式乘除,当分子、分母是多项式时,通常先分解因式再约分.〔2〕运算结果应为最简分式.〔3〕对照法那么练一练:三、评价1.学生的自我评价〔围绕三维目标〕:学生代表交流自己的学习收获及学习体验.2.教师对学生的评价:〔1〕表现性评价:对学生的学习态度、方法、成果及缺乏进行总结点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:分式的乘除不是特别难上的课,主要是要让学生掌握方法.拿乘法来说,其方法有两种:一种是先约分再乘;另一种是先乘再约分.一般应这样处理:如果分子分母全是单项式,就用先乘后约分的方法;如果分子分母含有可分解因式的多项式,就先约分后相乘.当然两种方法并不一定非得有固定的模式,你觉得哪种容易接受就选择哪种,并且在约分时应教给学生一个不容易错的方法,就是约分后把每个约好的式子写在原来的上〔分子〕下〔分母〕方,不约的照抄,最后再相乘,既不容易漏乘,也不容易多乘.分式除法可转变为分式乘法后再按上述方法进行.在教学方法上,教师应努力结合现实的问题情境,引导学生理解分式乘除的意义.由于练习计算是比较单调和枯燥的,为了防止单纯的机械计算,应将计算学习与解决问题有机结合,创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出式子并计算.一、根底稳固〔第1题30分,第2、3、4题每题10分,共60分〕2.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机工作效率是小拖拉机的工作效率的〔C〕倍.3.一艘船顺流航行n千米用了m小时,如果逆流速度是顺流速度的pq ,那么这艘船逆流航行t小时走了nptmq千米.4.计算:二、综合应用〔每题10分,共20分〕三、拓展延伸〔20分〕7.|a-2|+b-3=0,计算a2+abb2·a2-aba2-b2的值.三角形的稳定性【知识与技能】1.通知过观察、实践、想象、推理、交流等活动,让学生了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用.2.培养实事求是的学习作风和学习习惯.【过程与方法】1.通过提问、合作讨论以及小组交流方式探究三角形的稳定性.2.实物演示,激发学习兴趣,活泼课堂气氛.3.探究质疑,总结结果.和学生共同探究三角形稳定性的实例,答复课前提出的疑惑.【情感态度】1.引导学生通过实验探究三角形的稳定性,培养其独立思考的学习习惯和动手能力.2.通过合作交流,养成学生互助合作意识,提高数学交流表达能力.【教学重点】了解三角形稳定性在生产、生活中的实际应用.【教学难点】准确使用三角形稳定性于生产生活之中.一、情境导入,初步认识课前准备:木条〔用硬纸条代替〕假设干、小钉假设干、小黑板.问题1 工程建筑中经常采用三角形的结构,如屋顶钢架,钢架桥,其中道理是什么?问题 2 盖房子时,在窗框未安装好之前.木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢? 活动挂架为什么做成四边形?【教学说明】问题设立要让学生体会三角形在生产和生活中的应用,并引导思考为什么要在这些地方用三角形,另一些地方又要用到四边形.注意接纳学生其他不同的思路.教师讲课前,先让学生完成“自主预习〞.二、思考探究,获取新知老师演示P6探究内容,也可叫学生亲手实验,通过实际操作加深学生印象,完后请学生们交流讨论后答复得出了什么?教师根据学生们的答复进行简要归纳.【归纳结论】三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性.还可以发现,斜钉一根木条的四边形木架的形状不会改变.这是因为斜钉一根木条后,四边形变成了两个三角形,由于三角形有稳定性,窗框在未安装好之前也不会变形.三、运用新知,深化理解1.如图,一扇窗户翻开后,用窗钩BC可将其固定,这里所运用的几何原理是 .2.以下列图形中哪些具有稳定性?【教学说明】本节课的内容较少,题目比较简单,在学生独立完成后,要求学生说明理由.【答案】1.三角形具有稳定性.2.〔1〕〔4〕〔6〕中的图形具有稳定性.四、师生互动,课堂小结三角形具有稳定性,四边形没有稳定性.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本节课学习三角形稳定性,并板书课题.完成的教学目标是通过观察、实践、想象、推理、小组交流合作,使同学们了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用,培养同学们实事求是的学习作风和学习习惯,以及自主学习和独立思考的能力.。

《分式的乘除》(第2课时)教案1doc初中数学

《分式的乘除》(第2课时)教案1doc初中数学

《分式的乘除》(第2课时)教案1doc 初中数学
[教学目标]
1. 明确分式乘、除运算的一样步骤, 能熟练地进行分式乘、除运算.
2. 能正确进行分式的加、减、乘、除混合运算.
此外, 通过分式乘、除运算法那么的探究, 感受类比的思想方法;通过对分式乘、除及混合运算法那么合理性的验证, 进一步培养学生〝猜想需要验证〞的数学素养和以理服人的良好个性品质.
[教学过程(第二课时)]
1. 情境创设
以小明和小丽讨论 的运算顺序为情境, 引入分式的混合运算——从乘、除混合运算到加、减、乘、除混合运算.
2. 探究活动
(1)你如何样判定是小明的做法对, 依旧小丽的做法正确?
(2)你会运算p
q q p m n ⋅÷吗? (3)如何样进行分式的乘、除混合运算?分式的加、减、乘、除混合运算呢?
3. 例题教学
例3的设计意图为以下两点: 其一, 运用探究所得的结论, 将乘、除混合运算统一为乘法进行运算, 并化简算式;其二, 能够让学生将a=1,b=-2,c=-3代入化简前的算式运算, 尽管运算较繁, 但可为探究所得运算法那么的合理性、正确性提供佐证.
例4是分式四那么运算的例题, 要注意运算顺序和书写格式.
能够依照学生的实际情形, 适当补充例题、习题, 关心学生把握分式运算的差不多技能.
由于«标准»只要求〝会进行简单的分式加、减、乘、除运算〞, 因此课本在例4中, 以分式乘法的特例形式, 引人分式的乘方运算, 并以卡通人的方式给出乘方运算法那么, 既让学生会进行乘方运算, 又淡化了概念. 教学时, 不要把乘方运算引申、扩展到幂的运算, 以幸免干扰分式运算的主体.。

八年级数学上册《分式的乘除法》教案、教学设计

八年级数学上册《分式的乘除法》教案、教学设计
4.引导学生总结分式乘除法的运算技巧,形成自己的知识体系,提高学生的学习效果。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的学习积极性,使学生乐于探索分式的乘除法;
2.培养学生严谨、细致的学习态度,让学生在解题过程中,养成认真审题、规范答题的良好习惯;
3.培养学生的团队协作意识,使学生学会倾听、交流、分享,提高学生的沟通能力;
三、教学重难点和教学设想
(一)教学重难点
1.重点:分式乘除法的运算法则,包括同分母分式相乘、相除,异分母分式相乘、相除的运算方法。
2.难点:理解并掌握分式乘除法的运算规律,能熟练地将实际问题转化为分式乘除运算,以及正确处理分式乘除中的符号问题。
(二)教学设想
1.创设情境,导入新课:通过生活中的实例,如购物打折、配料计算等,引出分式乘除法在实际问题中的应用,激发学生的学习兴趣,为新课的学习做好铺垫。
4.通过生活中的实例,让学生感受分式乘除法在实际问题中的应用,激发学生学习新知的兴趣。
(二)讲授新知,500字
1.教师讲解分式乘除法的概念,强调同分母分式相乘、相除的运算方法,以及异分母分式相乘、相除的运算方法。
2.通过具体的例题,演示分式乘除法的运算步骤,引导学生关注运算过程中的符号处理,特别是约分、通分等操作。
6.课堂评价,激励进步:注重课堂评价,及时反馈学生的学习情况,激发学生的学习积极性。对学生的进步给予充分肯定,培养学生的自信心。
7.课后作业,巩固成果:布置适量的课后作业,让学生在课后巩固所学知识,提高学生的自主学习能力。
8.家校合作,共同促进:加强与家长的沟通,了解学生的课后学习情况,鼓励家长参与学生的学习过程,共同促进学生数学素养的提高。
4.多元练习,巩固提高:设计不同难度的练习题,让学生在解答过程中,巩固所学知识。针对学生的个体差异,进行分层指导,提高学生的运算能力和解决问题的能力。

2022年 教学教材《分式的乘除2》参考优秀教案

2022年 教学教材《分式的乘除2》参考优秀教案
课题
分式的乘除〔2〕
教学模式
讨论交流
教学
目标〔认知技能
情感〕Байду номын сангаас
1.熟练掌握分式的约分、通分、乘除法运算法那么;
2.掌握分式的加减乘除运算,养成良好的运算习惯,并能明确每一步的算理.
教学重难点
分式的加、减、乘、除混合运算.
分式的加、减、乘、除混合运算




分式的乘除〔2〕
教学
环节
学生自学共研的内容方法
〔按环节设计自学、讨论、训练、探索、创新等内容〕
教师施教提要
〔启发、精讲、活动等〕
再次
优化






问题的引入
怎样计算:a÷b·?
小明:a÷b·=a÷1=a.
小丽:a÷b·=a··=.
谁的算法正确?请说明理由.




探索规律,揭示新知
活动一
问题1:怎样进行分式的乘、除混合运算?
分式的乘、除混合运算,要按从左到右的顺序进行.
活动二
问题2:分数的混合运算顺序是什么?怎样进行分式的加、减、乘、除混合运算?
与分数混合运算类似,分式的加、减、乘、除混合运算是:先乘除,后加减,如果有括号,先进行括号内的运算.
尝试反应,领悟新知
例3求值:
·÷,其中a=10、b=5、c=-4.
解:
当a=10、b=5、c=-4时,
原式=
例4计算:
1-÷.
解:
随堂
练习
课堂练习
1.化简÷·,其结果为〔〕
A.1 B.C.D.
2.化简,其结果为〔〕
A.a+1 B.a-1

2019-2020学年八年级数学下册《分式的乘除法》(第二课时)教案 北师大版.doc

2019-2020学年八年级数学下册《分式的乘除法》(第二课时)教案 北师大版.doc

2019-2020学年八年级数学下册《分式的乘除法》(第二课时)教案北师大版课题分式的乘除法课型新授课教学目标知识与能力类比分数乘除法的运算法则.探索分式乘除法的运算法则.过程与方法在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力.用分式的乘除法解决生活中的实际问题,提高"用数学"的意识.情感态度与价值观1.通过师生共同交流、探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感.2.培养学生的创新意识和应用数学的意识.教学重点掌握分式乘除法的法则及其应用.教学难点分子、分母是多项式的分式的乘除法的运算. 教学方法引导、启发、探求教学用具课件板书设计分式的乘除法分式的基本性质分式的乘除法法则教学过程教师活动学生活动Ⅰ.创设情境,引入新课[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法.Ⅱ.讲授新课1.分式的乘除法法则[师生共析]分式的乘除法法则与分数的乘除法法则类似: 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.2.例题讲解分析:(1)将算式对照乘除法运算法则,进行运算;(2)强调运算结果如不是最简分式时,一定要进行约分,使运[生]观察上面运算,可知:两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘.[生]我们不妨设西瓜的半径为R,根据算结果化为最简分式.[例2]计算: 分析:(1)将算式对照分式的除法运算法则,进行运算;(2)当分子、分母是多项式时,一般应先分解因式,并在运算过程中约分,可以使运算简化,避免走弯路.3.做一做通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多.因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d,已知球的体积公式为V= πR3(其中R为球的半径),那么(1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积比是多少?(3)买大西瓜合算还是买小西瓜合算?[师]夏天快到了,你一定想买一个又大又甜又合算的大西瓜.赶快思考上面的问题,相信你一定会感兴趣的.[生]我们不妨设西瓜的半径为R,根据题意,可得:(1)整个西瓜的体积为V1= πR3;西瓜瓤的体积为V2= π(R-d)3.(2)西瓜瓤与整个西瓜的体积比为多少?(3)我认为买大西瓜合算.由关系可知,R越大,即西瓜越大,(R-d)的值越小,(R-d)3的值越大, ,即西瓜瓤占整个西瓜的体积比也越大,因此,买大西瓜更合算.Ⅲ.随堂练习Ⅳ.课时小结 [师]同学们这节课有何收获呢?[师]很好!其实,数学历史的发展就是不断地将原有的知识加以发展。

八年级数学下册《分式的乘除》教案、教学设计

八年级数学下册《分式的乘除》教案、教学设计
3.培养学生面对困难时,勇于挑战、积极进取的精神,增强自信心;
4.使学生认识到数学知识在实际生活中的应用价值,提高学生的数学素养;
5.通过数学学习,引导学生树立正确的价值观,培养良好的道德品质。
二、学情分析
八年级学生在经过前两年的数学学习后,已经具备了一定的数学基础知识和基本的运算能力。在本章节学习分式的乘除之前,学生已经掌握了分式的概念、性质以及分式的基本运算,这为学习分式的乘除打下了基础。但考虑到分式乘除运算的复杂性和灵活性,学生在运用过程中可能会出现混淆运算规则、忽视细节等问题。
5.能够运用分式乘除知识解决相关实际问题,提高数学应用能力。
(二)过程与方法
1.通过实际问题的引入,激发学生探究分式乘除的兴趣,培养学生的数学建模意识;
2.以自主探究、合作交流的方式,引导学生发现分式乘除的规律,培养学生的逻辑思维能力和团队协作能力;
3.通过典型例题4.设置不同难度的练习题,使学生在解决问题的过程中,逐步提高分析问题和解决问题的能力;
5.引导学生总结分式乘除运算的技巧,培养学生自我反思和归纳总结的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生主动探索新知的欲望;
2.培养学生严谨、踏实的学术态度,养成认真计算、仔细检查的好习惯;
五、作业布置
为了巩固学生对分式乘除法则的理解和应用,确保学生对本节课的知识点能够熟练掌握,特布置以下作业:
1.完成课本第56页的练习题第1-6题,重点加强对分式乘除运算的步骤和约分技巧的练习。
2.从第7题开始,尝试解决一些与实际生活相关的问题,将实际问题转化为分式乘除问题,并运用所学的知识进行解答。
-精选典型例题,详细讲解分式乘除的运算步骤,强调约分的重要性。

《分式的乘除》教案

《分式的乘除》教案

《分式的乘除》教案分式的乘除教案一、教学目标1. 理解分式的定义和基本概念。

2. 掌握分式的乘法和除法运算规则。

3. 能够解决与分式有关的实际问题。

二、教学重点1. 分式的乘法和除法运算规则。

2. 实际问题的解决。

三、教学难点实际问题的解决。

四、教学准备1. 教师准备:课本、黑板、粉笔。

2. 学生准备:课本、笔记。

五、教学过程1. 概念解释和引入(老师在黑板上写下分式的定义)分式是由分子和分母组成的数,通常用a/b的形式表示,其中a为分子,b为分母,b不等于0。

2. 分式的乘法运算规则(老师在黑板上写下分式的乘法运算规则)分式的乘法运算规则:两个分式相乘时,分子与分子相乘,分母与分母相乘。

例如: 2/3 × 4/5 = (2 × 4)/(3 × 5)= 8/153. 分式的除法运算规则(老师在黑板上写下分式的除法运算规则)分式的除法运算规则:两个分式相除时,分子与分子相乘,分母与分母相乘,然后将被除数的倒数变为乘数。

例如: 2/3 ÷ 4/5 = (2/3)×(5/4)= (2 × 5)/(3 × 4)= 10/12 = 5/64. 例题讲解和练习(老师在黑板上列出一些练习题,学生们进行解答,并逐一讲解)例题1:计算 3/5 × 7/8解答: 3/5 × 7/8 = (3 × 7)/(5 × 8)= 21/40例题2:计算 4/9 ÷ 2/3解答: 4/9 ÷ 2/3 = (4/9)×(3/2)= (4 × 3)/(9 × 2)= 12/18 =2/3例题3:计算 5/6 × 2/5 ÷ 3/4解答: 5/6 × 2/5 ÷ 3/4 = (5/6)×(2/5)÷(3/4)= (5 × 2)/(6 ×5)÷(3/4)= 10/30 ÷(3/4)= 10/30 ×(4/3)= (10 × 4)/(30 × 3)= 40/90 = 4/95. 实际问题解决(老师给出一些与分式有关的实际问题,并帮助学生思考和解决)例题4:小明做了1/3个小时的作业,他又做了2/5个小时的作业,他总共做了多长时间的作业?解答:首先计算出1/3 + 2/5 = (1 × 5 + 2 × 3)/(3 × 5)= (5 + 6)/15 = 11/15,所以小明总共做了11/15个小时的作业。

分式的乘除第二课时教案

分式的乘除第二课时教案

第二课时一、教学目标1.进一步熟练掌握分式的乘除法法则,会进行分式乘除的混合运算.2.掌握分式乘方的运算法则,会进行简单的乘、除、乘方的混合运算.二、教学重难点重点:分式乘、除、乘方的混合运算.难点:分式乘、除、乘方混合运算中的运算顺序以及结果符号的确定.教学过程一、情境引入通过上节课的学习,同学们已经能够比较熟练地进行分式的乘除法运算,也会解决一些简单的实际问题.下面,请同学们完成下面练习:【例4】 计算2x 5x -3÷325x 2-9·x 5x +3. 学生独立练习后,教师评析.【解】 2x 5x -3÷325x 2-9·x 5x +3=2x 5x -3·25x 2-93·x 5x +3=2x 23. 教师说明:乘除混合运算可统一为乘法运算.二、互动新授 【思考】 ⎝ ⎛⎭⎪⎫a b 2=? ⎝ ⎛⎭⎪⎫a b 3=? ⎝ ⎛⎭⎪⎫a b 10=? 观察上面的式子,你想到了什么?你知道它们的结果吗?由学生小组交流、讨论,学生的回答可能会有两种:用乘方的意义将各式子还原成乘法,利用分式乘法法则计算结果;类比分数乘方运算写出结果.教师评析:根据乘方的意义和分式的乘法法则,可得:⎝ ⎛⎭⎪⎫a b 2=a b ·a b =a ·a b ·b =a 2b 2; ⎝ ⎛⎭⎪⎫a b 3=a b ·a b ·a b =a·a·a b·b·b =a 3b 3; ⎝ ⎛⎭⎪⎫a b 10=a b ·a b ·…·a b 10个=a ·a ·…·a b ·b ·…·b 10个 10个=a 10b 10. 教师总结:一般地,当n 为正整数时, ⎝ ⎛⎭⎪⎫a b n =a b ·a b ·…·a b n 个=a ·a ·…·a b ·b ·…·b n 个 n 个=a n b n ,即⎝ ⎛⎭⎪⎫a b n =a nb n . 追问:你能用语言来描述运算法则吗?学生交流、讨论,师生共同叙述分式的乘方法则:分式的乘方要把分子、分母分别乘方.【例5】 计算: (1)⎝ ⎛⎭⎪⎫-2a 2b 3c 2; (2)⎝ ⎛⎭⎪⎫a 2b-cd 33÷2a d 3·⎝ ⎛⎭⎪⎫c 2a 2. 【分析】 与数的混合运算一样,先乘方,再乘除.【解】 (1)⎝ ⎛⎭⎪⎫-2a 2b 3c 2=(-2a 2b )2(3c )2=4a 4b 29c 2; (2)⎝ ⎛⎭⎪⎫a 2b-cd 33÷2a d 3·⎝ ⎛⎭⎪⎫c 2a 2=a 6b 3-c 3d 9÷2a d 3·c 24a 2=a 6b 3-c 3d 9·d 32a ·c 24a 2=-a 3b 38cd 6. 教师强调三点:运算的顺序、符号的确定、步骤的完整.三、课堂小结四、板书设计五、教学反思本节课主要有以下两大特点:(1)创造性地使用教材,设计适合学生发展的数学学习过程,让学生经历数学知识的形成过程与应用过程,鼓励学生自主探究与合作交流;(2)相信学生的潜能,依靠学生的能力,调动学生的思维,敢于放手,善于放手,充分发挥学生的主体能动作用,在这节课中,分式的乘方的性质以及分式乘、除、乘方的混合运算方法,基本上都是通过学生独立探索,以及全班的交流与讨论完成的.在分式的乘方运算具体环节中,学生极易出现运算的错误,教师除了强化训练外,还应教学生一些计算的技巧.如:(1)计算分式的乘方时,可以类比分数的乘方,可理解为分式的乘方等于分子、分母各自乘方后,把所得的幂相除;(2)当分子、分母是多项式时,要把多项式因式分解,变成乘积形式,然后再依照乘方法则进行运算;(3)要特别注意分式乘方后的符号,可类比分数乘方符号法则,“负数”的偶次方,符号为正,如⎝ ⎛⎭⎪⎫-a b 2=a 2b 2,“负数”的奇次方,符号为负,如⎝ ⎛⎭⎪⎫-a b 3=-a 3b3.本课教学中,教师引导学生积极探索,充分发挥学生的主体能动作用,进一步提高学生的学习积极性.导学方案一、学法点津学生在学习分式的乘方时,可以类比分数的乘方,可理解为分式的乘方等于分子、分母各自乘方后,把所得的幂相乘.分子、分母如果是多项式,要先把多项式因式分解、变成乘积形式.再依照乘方法则进行计算.二、学点归纳总结(一)知识要点总结分式的乘方法则:分式的乘方要把分子、分母分别乘方.(二)规律方法总结1.分式乘方时,一定要把分式加上括号,如(a b )2=a 2b 2.2.“分子、分母分别乘方”是指分子的乘方作分子,分母的乘方作分母.分子、分母是指分子、分母的整体,而不是部分.分子、分母是多个因式相乘的形式,乘方时要将分子、分母加上括号,作“整体”来乘方,要避免出现类似⎝ ⎛⎭⎪⎫a +c b 2=a 2+c 2b 2这样的错误.第二课时作业设计一、选择题1.化简⎝ ⎛⎭⎪⎫-a 2b 2·⎝ ⎛⎭⎪⎫1ab 4的结果为( ). A.1ab 4 B .-1b 6 C.1b 6 D.1b 5 2.下列计算中,结果正确是( ).A.m 4n 5·n 4m 3=m nB.⎝ ⎛⎭⎪⎫3x 4y 3=3x 34y 3C.⎝ ⎛⎭⎪⎫2a a -b 2=4a 2a 2-b 2D.a b ·c d =ad bc 二、填空题 3.计算:⎝ ⎛⎭⎪⎫2a 2b -c 3=________. 4.计算:⎝ ⎛⎭⎪⎫-b 2m 2n +1(n 为正整数)的结果是________.三、解答题5.计算:(1)⎝ ⎛⎭⎪⎫x 3y z 2·xz y ·⎝ ⎛⎭⎪⎫yz x 23; (2)⎝ ⎛⎭⎪⎫a -b ab 2·⎝ ⎛⎭⎪⎫b -a -a 3÷1a 2-b 2【参考答案】1.C2.A3.-8a 6b 3c 34.-b 4n +2m2n +1 5.(1)xy 4z 2 (2)(a +b )(a -b )6a 5b 2。

七年级数学下册《分式的乘除》教案、教学设计

七年级数学下册《分式的乘除》教案、教学设计
-练习题分为基础题、提高题和拓展题,满足不同层次学生的需求。
4.归纳总结,提炼方法:引导学生对分式乘除法则进行归纳总结,提炼解题方法,培养学生的逻辑思维能力。
-教师与学生一起总结分式乘除法则的要点,强调注意事项。
5.互动反馈,查漏补缺:通过课堂提问、作业批改等方式,了解学生的学习情况,针对性地进行辅导和讲解。
-对学生在计算过程中出现的问题进行分类总结,找出共性问题进行讲解。
6.跨学科整合,拓展思维:将分式乘除与物理、化学等学科知识相结合,让学生体会数学在其他学科中的应用。
-例如,结合速度、密度等概念,让学生运用分式乘除解决实际问题。
7.情感态度与价值观的培养:关注学生在学习过程中的情感态度,营造轻松、愉快的学习氛围,提高学生的学习积极性。
3.拓展思维题:布置一些具有一定难度的题目,引导学生深入思考,培养学生的逻辑思维和创新能力。
-例如:已知$a=\frac{2}{3}$,$b=\frac{3}{4}$,求$\frac{1}{a}+\frac{1}{b}-\frac{ab}{a+b}$的值。
4.小组合作题:鼓励学生进行小组合作,共同完成一些需要团队协作的题目,培养学生的团队精神和沟通能力。
在练习过程中,我会巡回指导,解答学生的疑问。针对学生在计算过程中出现的问题,我会进行分类总结,找出共性问题,并在课堂上进行讲解。此外,我还会及时给予学生反馈,让他们了解自己的学习情况,调整学习策略。
(五)总结归纳,500字
在课堂练习结束后,我会引导学生对所学知识进行总结归纳。首先,我会让学生回顾分式乘除的法则,总结运算技巧。然后,我会强调分式乘除与整式乘除的联系与区别,提高学生的知识迁移能力。
七年级数学下册《分式的乘除》教案、教学设计

分式的乘除(第2课时)课件

分式的乘除(第2课时)课件
金融投资
研究分式乘除法在金融投资中的应用,了解投 资回报计算、利息计算等。
实例演练
1
例题一
通过实例一,巩固对分式乘除法原理的理解,提高计算准确性。
2
例题二
通过实例二,拓展对分式乘除法的应用,提高解题能力和思维灵活性。
3
例题三
通过实例三,积极解答复杂问题,培养分析和解决问题的能力。
总结
通过本课时的学习,我们掌握了分式的乘法、分式的除法以及分式的乘除法 混合运算的方法和应用场景。通过实例演练,我们提高了解题能力和分析问 题的技巧。继续努力,我们一定能在分式的乘除法中游刃有余!
应用场景
发现分式乘法在实际生活中的应 用,理解其重要性。
分式的除法
基本原理
学习如何进行分式的除法, 通过掌握基本原理,进行准 确计算。
解题技巧
掌握分式除法的解题技巧, 提高解题效率,加强记忆。
常见错误
分析常见错误,避免在分式 除法中出现常见错误,保证 计算准确。
分式的乘除法混合运算
1
步骤总结
2
总结分式的乘除法混合运算的步骤,方
技巧指南
学习解题过程中的常用技巧和策 略,提高解题速度和准确性。
分式的乘除法的应用场景
商业场景
探索分式乘除法在商业领域中的应用,如利润 分配、成本计算等。
科学研究
发现分式乘除法在科学研究中的应用,如化学 计量、实验数据分析等。
日常生活
了解分式乘除法在日常生活中的实际应用,如 调配食材、调配药量等。
便记忆和应用。
3
问题分析
通过混合运算的实例,分析问题,了解 如何解决带有分式的复杂运算。
应用拓展
发现分式的乘除法混合运算在不同领域 的应用,加深对知识的理解和应用能力。

初中数学_【课堂实录】分式的乘除法第二课时教学设计学情分析教材分析课后反思

初中数学_【课堂实录】分式的乘除法第二课时教学设计学情分析教材分析课后反思

2.2分式的乘除法(2)教学设计教学目标知识目标:1.熟练掌握分式乘除法的运算法则,2. 能明确算理,会进行含多项式简单分式的乘除运算;.能力目标:1.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和合情推理能力。

2.用分式的乘除法解决生活中的实际问题,提高“用数学”的意识.情感态度与价值观:1.通过共同交流、探讨,在掌握知识的基础上,认识事物之间的内在联系,获得成就感.2.培养创新意识和应用数学的意识.教学重点掌握分式乘除法的法则及其应用.教学难点分子、分母是多项式的分式的乘除法的运算.教学方法引导、启发、探究讨论教具准备借助多媒体教学过程本节课将采用“知识回顾,导入新课——探索新知,归纳总结——实践应用,思维拓展——检测回馈——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养。

一、知识回顾,导入新课1、分式的乘除法法则是什么?如何用字母表示?两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.即a b ×c d =ac bd ;a b ÷c d =a b ×d c =adbc 2、计算: 设计目的:两种形式巩固对法则的理解,进一步发展学生的符号感。

通过计算,加强学生对的分式乘除法运算法则的应用。

二、探索新知,归纳总结1、想一想: 分析:它与刚才的计算题有什么不同?能直接约分吗?(2)两个分式相乘时,如果分子或分母是多项式,应当怎样进行?预期:分子和分母中有多项式,不能直接约分,应该先进行分解因式。

设计目的:这道题的分子分母有多项式,应先把有的多项式分解因式,再进行约分。

为了突破难点,避免学生直接把a 或者2约分,我和学生一起详细分析,与分子分母是单项式的分式乘除法比较,发现规律,提醒学生关注易错环节,学会解题的方法。

2、例3 计算:分析:观察第(1)小题你认为运算的第一步应该是什么?哪一个多项式需要分解?怎样分解?设计目的:这道例题的分子分母是多项式,第(1)题应先把多项式分解因式,再进行约分;第(2)题需要先把除法变成乘法,再分解因式,结果要化成最简分式或整式。

数学八年级上册《分式的乘除法(2)》教案

数学八年级上册《分式的乘除法(2)》教案
教学方法与手段
观察思考——归纳结论——补充讲解——练习提高
教学准备
多媒体
第 一 课时
课ห้องสมุดไป่ตู้数
1课时
课堂教学实施设计
(教师活动、学生活动)
复备内容或集体备课讨论记录(标、增、改、删、调)
一、复习回顾
分式的乘除法运算法则如何?积的乘方法则是什么?
二、新课学习
知识点一:分式乘除混合运算
计算 ÷ · .
归纳:同分数的混合运算方法是一致的,分式乘除混合运算可以统一为乘法运算.
知识点二 分式的乘方的法则及应用
1.思考: = = =
(1)从乘方的意义去理解, 、 、 的意义是什么?
(2)请根据乘方的意义和分式乘法法则计算:
=________=_______ =________=________
=________=________
归纳:一般地,当n是正整数时,
=________=________=________,即 =________.
初中20 -20 学年度第一学期教学设计
主备教师
审核教师
授课周次
授课时间
课 题
分式的乘除(2)
课型
新授课
教学目标
1.能运用分式的乘除法法则进行分式乘除的混合运算。
2.探索并掌握分式的乘方法则,并能运用它进行运算。
教学重点
能运用分式的乘除法法则进行分式乘除的混合运算.
教学难点
掌握分式的乘方法则,并能运用它进行运算
这就是说,分式的乘方要把________、________分别乘方.
归纳:分式乘方法则的推导,就是转化成乘方意义和分式乘法的问题.
2:计算:
(1) 解:原式=

分式的乘除法教案

分式的乘除法教案

分式的乘除法教案一、教学目标1. 知识与技能:(1)理解分式乘除法的概念和运算规则;(2)能够正确进行分式的乘除运算;(3)掌握分式乘除法在实际问题中的应用。

2. 过程与方法:(1)通过实例演示和练习,培养学生运用分式乘除法解决实际问题的能力;(2)引导学生运用转化思想,将分式乘除法问题转化为整式乘除法问题进行求解。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和自信心;(2)培养学生勇于探索、合作交流的良好学习习惯。

二、教学重点与难点1. 教学重点:(1)分式乘除法的概念和运算规则;(2)分式乘除法在实际问题中的应用。

2. 教学难点:(1)分式乘除法运算的灵活运用;(2)将分式乘除法问题转化为整式乘除法问题进行求解。

三、教学准备1. 教学工具:黑板、粉笔、多媒体教学设备;2. 教学素材:分式乘除法的例题和练习题。

四、教学过程1. 导入新课:(1)复习相关知识点,如分式的基本概念、分式的加减法;(2)提问:分式乘除法与整式乘除法有何区别?2. 知识讲解:(1)讲解分式乘法法则;(2)讲解分式除法法则;(3)举例说明分式乘除法在实际问题中的应用。

3. 课堂练习:(1)让学生独立完成分式乘除法的练习题;(2)引导学生运用转化思想,将分式乘除法问题转化为整式乘除法问题进行求解。

(1)回顾本节课所学内容,让学生梳理知识体系;(2)强调分式乘除法在实际问题中的应用。

五、课后作业1. 请学生完成课后练习题,巩固分式乘除法的运算规则;2. 选取一些实际问题,让学生运用分式乘除法进行求解;3. 鼓励学生进行自主学习,探索分式乘除法的更多应用。

六、教学拓展1. 对比分式乘除法与整式乘除法的差异,分析各自的优缺点;2. 探讨分式乘除法在实际生活中的应用,如概率、统计等领域;3. 介绍分式乘除法的相关数学史,让学生了解其发展过程。

七、课堂小结1. 回顾本节课所学内容,让学生梳理知识体系;2. 强调分式乘除法在实际问题中的应用,激发学生学习兴趣;3. 提醒学生注意分式乘除法中的易错点,如约分、通分等。

《分式的乘除》第2课时参考教案

《分式的乘除》第2课时参考教案

教师寄语春来春去,燕离燕归,枝条吐出点点新绿,红花朵朵含苞欲放,杨柳依依书写无悔年华,白云点点唱响人生奋斗的凯歌,微冷的春风淡去了烟尘与伤痛,沉淀在内心的却是缤纷的梦想以及那收获前的耕耘与奋斗。

分式的乘除(二)一、教学目标:1.熟练地进行分式乘除法的混合运算.2.理解分式乘方的运算法则,熟练地进行分式乘方的运算.二、重点、难点1.熟练地进行分式乘除法的混合运算. 关键是点拨运算符号问题、变号法则.2.熟练地进行分式乘、除、乘方的混合运算.三、例、习题的意图分析1. P13例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P13例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2. P13页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.3. P14例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..4.教材P14例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.四、课堂引入1.计算(1))(xy yx xy -⋅÷ (2) )21()3(43xyx yx -⋅-÷ 2.计算下列各题:(1)2)(b a =⋅b a b a =( ) (2) 3)(b a =⋅b a ⋅b a b a=( )(3)4)(b a =⋅b a ⋅b a b a ba⋅=( )[提问]由以上计算的结果你能推出n ba)((n 为正整数)的结果吗?五、例题讲解1.(P13)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1))4(3)98(23232b x b a xy y x ab -÷-⋅=x b b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算) =xbb a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916axb (约分到最简分式) (2) x x x x x x x --+⋅+÷+--3)2)(3()3(444622=x x x x x x x --+⋅+⋅+--3)2)(3(31444622(先把除法统一成乘法运算) =x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22 (分子、分母中的多项式分解因式)=)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x =22--x 2.(P14)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.六、随堂练习1.计算(1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25b a c c ab b a c ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷- 2. 判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249a b - (3)3)32(x y -=3398x y (4)2)3(b x x -=2229b x x - 七、课后练习1.计算(1))6(4382642z yx yx y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244y y y y y y --÷+⋅-+- (4)xyy xyy x xy x xy x -÷+÷-+222)( 2. 计算 (1) 332)2(a b - (2) 212)(+-n ba(3)4234223)()()(c aba cb ac ÷÷ (4) )()()(2232b a a b a ab b a -⋅--⋅- 八、答案:六.1.(1)c a 432- (2)485c- (3)3)(4y x - (4)-y2.(1)不成立,23)2(a b =264a b (2)不成立,2)23(a b -=2249a b (3)不成立,3)32(x y -=33278xy - (4)不成立,2)3(b x x -=22229b bx x x +-七.1. (1)336yxz(2) 22-b a (3)122y - (4)x 1-2. (1) 968a b -- (2) 224+n b a (3)22ac (4)b b a +课后反思:。

《分式的乘除法》教案

《分式的乘除法》教案

《分式的乘除法》教学设计曹燕一、教学目标:1.学生类比分数的乘除法运算法则归纳分式的乘除法运算法则。

2.学生运用所学的分式的乘除法运算法则准确计算。

3.学生在掌握分式的乘除法运算法则的基础上,能解决简单的实际问题.二、教学重难点:重点:分式的乘除法运算法则.难点:准确熟练地进行分式的乘除法的混合运算.三、教学过程:(一)情境导入1、提出问题,引入课题(是何)问题1:一个长方体容器的容积为V ,地面的长为a ,宽为b ;当容器内的水的高度占容器的m /n 时,求水面的高是多少,(引出分式乘法的学习需要).答案:nm ab v ⋅. 问题2:大拖拉机m 天可耕地a 公顷,小拖拉机n 天可耕地b 公顷,求大拖拉机的工作效率是小拖拉机的工作效率的几倍,(引出分式除法的学习需要).答案:⎪⎭⎫⎝⎛÷n b m a .2、类比联想,探究新知(如何)3、师生活动:首先让学生计算式子 (1) (2)解后反思:(1)式是什么运算?依据是什么?(是何,为何)(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导) (学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则. 引出“类比”是数学学习中常用的一种重要方法.提出问题,让学生大胆去猜想.多媒体显示小学学过的分数运算法则.(二)归纳新知 观察下列运算5432⨯5432÷24243535⨯⨯=⨯ 435245325432⨯⨯=⨯=÷ 1、引导学生运用“数式相通”的类比思想,归纳分式乘除法法则.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(让学生全面参与、独立思考,由自己总结出分式的乘除法法则,培养学生的归纳能力.) 2、乘除法法则运用多媒体示题,理解和巩固分式乘除法法则.强调分式的运算结果要化成最简分式. 例1 计算:注意:按照法则进行分式乘除运算,如果运算结果不是最简分式,一定要进行约分,使运算结果化成最简分式.例2 计算注意:(1)分式的分子,分母都是多项式的分式,除法先转化为乘法,然后把多项式进行因式分解,最后约分,化为最简分式.(2)如果除式是整式,则把它的分母看做”1”.(三)巩固练习完成随堂练习.重点看学生能否正确运用分式乘除法法则,能否利用分式的基本性质约分化简分式.(四) 分式的乘除法的混合运算注意:乘法混合运算可以统一为乘法运算.1.判断正误(为何)2.特别注意,分母不为零(为何)(五) 简单实际应用根据情境列式,运用法则解决简单实际问题即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案序号:5
授课时间:
课型:新授
课题:§11.3分式的乘除法(2)




知识与技能
1.使学生理解分式的约分的意义,明确约分的理论依据,掌握约分的方法,会将一个分式约分成最简分式.
2.使学生理解并掌握分式的乘除法则,熟练地运用法则进行运算,提高学生的运算能力.
过程与方法
教学过程中渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练.
情感态度
与价值观
在学习中体会数学的运算的魅力,培养学数学,应用数学的意识。
教学重点:应用分式的乘方法则,进行分式的乘方运算.
教学难点:分式乘除和乘方的混合运算.
教学方法:启发式
教学用具:多媒体
教学过程
教学活动
学生活动
教学意图
五、教学过程
(一)复习提问
1.分式的乘除法法则.
2.乘方的意义:
an=a·a·…·a(n为正整整数).
法则的运用
小结方法
课后作业:
A组:P15 1
B组:P14 2(2)、3(3)(4)
C组:P14 2(1)、3(1)(2)
板书设计:
课题
法则例练习
课后反思:
n个a
(二)新课
1.由整式的乘方引出分式的乘方,
由乘方的意义和分式的乘法法则
(2)同理:
2.分式乘方法则:
文字叙述:分式乘方是把分子、分母各自乘方.
3.目前为止,幂的运算法则都有什么?
(1)am·an=am+n;
(2) am÷an=am-n;
(3)(am)n=amn;
(4)(ab)n=anbn;
例1计算:
小结:
①对于乘、除和乘方的混合运算,应注意运算顺序,但在做乘方运算的同时,可将除变乘.
②做乘方运算要先确定符号.
练习:教材P.73中1、2.
(三)小结
1.分式的乘方法则.
2.运算中的注意事项.
复习
分析归纳
总结
根据法则进行计算
小结
为学习新知识做准备
由特殊到一般地引导学生进行归纳.
便于计算中的区分与运用
相关文档
最新文档