古典概型与几何概型
古典概型与几何概型的异同点
古典概型与几何概型的异同点一、背景和定义1. 古典概型:基于等可能性的最直观概率模型。
若一个试验只有有限个基本事件,且每个基本事件发生的可能性相同,则该试验称为古典概型。
2. 几何概型:当试验的可能结果不是有限可数时,或者每个结果发生的可能性不都是相等的,这时候就需要用到几何概型。
它是基于长度、面积、体积等几何量与概率的结合。
二、相同点1. 两者都是概率模型,用于描述随机试验中各种结果出现的可能性。
2. 在每种模型下,每个基本事件(或样本点)的概率都是非负的,并且它们的和都等于1。
三、不同点1. 试验的基本事件数量:古典概型是有限可数的,而几何概型则可能无限不可数。
2. 概率的定义方式:在古典概型中,概率是基于等可能的假设来定义的。
而在几何概型中,概率是通过与某个几何量(如长度、面积、体积等)的关联来定义的。
3. 概率的计算方法:在古典概型中,概率通常是直接计算基本事件的数量来得到。
而在几何概型中,概率的计算可能需要使用几何知识,如长度、面积或体积等。
4. 适用范围:古典概型适用于具有有限个等可能结果的情况,例如掷骰子、抽签等。
而几何概型适用于试验结果连续且无限的情况,例如在一定范围内的随机落点、随机选择一条线段上的点等。
5. 公平性:古典概型假定每个基本事件的发生是公平的,即每个基本事件的概率都是相等的。
而几何概型中,公平性的概念可能不那么直观,因为基本事件的发生可能与空间的分布有关。
6. 概率的取值:在古典概型中,概率的取值是离散的,通常是0或1。
而在几何概型中,概率的取值是连续的,可以在0到1之间任意取值。
7. 问题的复杂性:对于一些复杂的问题,如复杂的多因素决策问题,可能需要考虑更复杂的概率模型,而不仅仅是古典概型或几何概型。
四、例子1. 古典概型例子:抛掷一枚硬币,正面朝上或反面朝上的概率都是0.5;从一副扑克牌中抽取一张牌,每种花色的概率都是1/4。
这些例子都是基于等可能的假设,每个基本事件的发生概率都是相等的。
概率的古典概型和几何概型
即
P({ei })
1 n
,
i 1, 2,
,n.
若事件 A 包含其样本空间 S 中 k 个基本事件,即 A {ei1} {ei2 } {eik },
则事件 A 发生的概率
k
k
P( A) P eij P eij
j1
j1
k n
A包含的基本事件数 S中基本事件的总数
.
例 1.10 将1, 2, 3, 4 四个数随意地排成一行,求下列各事件的概
设试验的样本空间为 S {e1, e2 , , en} .在古典概型的假设下,
试验中每个基本事件发生的可能性相同,即有
P({e1}) P({e2}) P({en}) . 又由于基本事件是两两互不相容的.因而
1 P(S) P({e1} {e2}
{en})
P({e1}) P({e2}) P({en}) nP({ei}) ,
(1)事件 A 中共有 2 种排法,因而
P( A) 2 1 . 24 12
(2)事件 B 中有 2 (3!) 12 种排法,故有
P(B) 12 1 . 24 2
(3)先将数字1和 2 排在任意相邻两个位置,共有 23种排法, 其余两个数可在其余两个位置任意排放,共有 2!种排法,因而事件 C 有 23 2 12种排法,即
出的 n 只球中至少有 m 只红球} , Bm { 取出的 n 只球中恰有 m 只红球
} ,求 P( Am ) 及 P(Bm ) m min(n, M ) .
解 (i)放回抽样
在放回抽样的情况下,从 N 只球中取 n 只,共有 N n 种取法.
事件 Am 相当于从 n 次取球中先选取 m 次,使得这 m 次都取红球, 剩下的 n m 次可以任意取,因而 Am 中总的取法有 Cmn M m N nm 种.
1.3古典概型与几何概型
所含的总取法为 aPbi1[(a b i)!] 故
P(B)
a
Pbi
1[(a b (a b)!
i)!]
a Pbi 1 Pai b
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
及两个球全是黑球的概率
解 (2) 已知 在 10 个球中任取两球的取法有C120 种 在 10 个球中取到一个白球和一个黑球的取法有C13C17 种 在 10 个球中取两个球均是黑球的取法有C32种 记B为事件“刚好取到一个白球一个黑球” C为事件
“两个球均为黑球” 则
P(B)
C13 C17 C120
P(D)
Ckn
(N 1)nk Nn
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
解 (ab)次取球的总取法为(ab)! 记(1) (2) (3)中的事件 分别为A B C
总数为24 记(1) (2) (3) (4)的事件分别为A B C D
(1) A有两种排法 故有
P(A)
2 24
1 12
(2) B有2(3!)12种排法 故有
P(B)
12 24
1 12
例113 将标号为1 2 3 4的四个球随意地排成一行 求下 列各事件的概率
(1)各球自左至右或自右至左恰好排成1 2 3 4的顺序 (2)第1号球排在最右边或最左边 (3)第1号球与第2号球相邻
等价于将n个球全部放到其余N1个箱子中 共有(N1)n种放
古典概型和几何概型
… 区 域应满足{ 满足 y + z > x , 则 P ㈣ ( D ) : =
1 0 一 3 ×— 1
—
: =
》例 2 ( 1 ) 在[ 0 , 1 O ] 中任 取
一
个 整数 。 求 它与2 的和小于5 的概率 ; ( 2 ) 在[ 0 , 1 0 ] 中任 取 一 个 数 , 求
的基本事件的个数m; ③计算 事件
的概 率P( A) = .
凡
( 2 ) 对 古 典 概 型 的概 率 问题 . 要 会用枚举法 , 借 助 表格 、 树 形 图等 写 出所 有 的基 本 事 件 和所 求事 件 包含 的基 本 事 件. 求 古 典 概 型 的 一 般 方 法 和 步 骤
C ” 为 事件
射 线C M在 AC B内等 可能 分 布 ,
( 4 ) 在[ 0 , 1 0 ] 中随机取三个数 , 求 使 得 任 意 两 数 之 和 大 于第 三 个 数
的概 率.
x +  ̄ -1 2
但 当射 线扫 过 相 同的 角度 时 ,在 线 段A B上 所 截 取 的 线 段 长 是 不 相 等 的, 破 坏 了等 可 能性 , 而在 圆弧AB上 截 取 的 圆弧 是 相 等 的 . 因此 此 时 区
等可能的, 所 以 区域 D为线 段AB. 测 度 为 线段AB的 长 ; 在 线 段A B上 截 取
AC C. 当点 落在 线段AC 内时 .
的 长.
事件A发 生 , 区域d 的 测 度 为 线段 C
2 8
C
d 的测 度
DC J 测度
S △ A c c ,、 /
● 呶 丽
,砒 恩 以 凇
古典概型与几何概型
古典概型与几何概型古典概型和几何概型是概率论中的两个重要概念,它们被广泛应用于统计学、数学和其他科学领域。
本文将从古典概型和几何概型的定义、特点和应用等方面进行阐述,以帮助读者更好地理解和应用这两个概念。
1. 古典概型古典概型是指在确定试验中,每个基本事件发生的概率相等的情况。
简单来说,就是试验的结果可以列举出来,并且每个结果发生的可能性相同。
比如,投掷一个均匀的骰子,每个点数出现的概率都是1/6,这就是一个典型的古典概型。
古典概型的特点是简单明确,适用于具有确定结果的试验。
它可以用于求解事件的概率、计算期望值等问题。
古典概型在实际应用中有着广泛的应用,比如扑克牌、硬币、骰子等常见的游戏和赌博问题都可以用古典概型进行分析和计算。
2. 几何概型几何概型是指试验的结果在几何空间中的分布情况。
与古典概型不同的是,几何概型中的基本事件并不一定具有相等的概率。
几何概型常用于描述连续型随机变量的分布情况,比如长度、面积、体积等。
几何概型的特点是可以用几何图形来表示,更加直观直观形象。
在几何概型中,我们可以通过计算几何形状的面积、体积等来求解概率和期望值。
几何概型在实际应用中有着广泛的应用,比如连续型随机变量的概率密度函数和分布函数的计算等。
3. 古典概型与几何概型的联系与区别古典概型和几何概型都是概率论中常用的概念,它们都可以用于描述试验结果的概率分布情况。
但是古典概型强调的是试验结果具有相等的概率,而几何概型则不一定具有相等的概率。
古典概型适用于离散型随机变量的分析,一般用于计算排列组合、事件概率等问题。
而几何概型适用于连续型随机变量的分析,一般用于计算几何空间的面积、体积等问题。
古典概型和几何概型在实际应用中常常结合使用。
例如,在计算连续型随机变量的概率时,可以先用几何概型计算几何形状的面积或体积,然后再根据总体积或面积计算概率。
4. 古典概型与几何概型的应用举例古典概型和几何概型在实际应用中有着广泛的应用。
古典概率与几何概率的区别
古典概型和几何概型的意义和主要区别在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,有利于从事相应的教学。
几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,这两种概型,在初中阶段都呈现了出来,作为教师,理解古典概型和几何概型的意义和主要区别,有利于培养学生的建模能力、逻辑推理能力和空间观念,下面我就两种概型的意义、两种概型的主要区别以及怎样应用它们发展学生的诸多能力加以简单介绍。
一、古典概型和几何概型的意义(一).几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.1.几何概型的特点:(1)试验中所有可能出现的基本事件有无限多个.(2)每个基本事件出现的可能性相等.2.几何概型求事件A的概率公式:P(A)=构成事件A的区域长度(面积或体积)/ 实验的全部结果所构成的区域长度(面积或体积)(二)古典概型的意义大家都很熟知,此处不在介绍1. 古典概型的特点:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.2. 古典概型求事件A的概率公式:P(A)=事件A可能发生的结果数/实验发生的所有等可能的结果数二. 古典概型与几何概型的主要区别几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子。
三.利用不同概率模型,培养学生的建模能力及实际应用能力(一)结合实例进行建模题组一:情境1、抛掷两颗骰子,求出现两个“6点”的概率情景2、1号口袋中装有两只红球一只白球,2号口袋中装有一只红球一只白球,这些球处颜色不同外,其他都相同,小明从两个袋各摸一球,问摸出的两球异色的概率是多少?情景3、一口袋中装有3只红球2只白球,小明从口袋里摸出一球放回去,摇匀后,在摸出一球,问两次摸出的球为异色的概率是多少?情景4、一口袋中装有3只红球2只白球,小明从口袋里一次摸出2球,问两球异色的概率是多少?说明:第一组题是古典概型,(1)通过解题让学生从多角度理解古典概型的特征;(2)通过作树状图,让学生领略各题之间存在的不同;(3)体会应用古典概型解决实际问题时应注意的事项(如:元素是否重复利用、元素间有无顺序;实验出现的结果确保等可能性)。
古典概型与几何概型
古典概型与几何概型知识归纳1.古典概型(1)定义:如果某类概率模型具有以下两个特点:①试验中所有可能出现的基本事件只有______;②每个基本事件出现的______均等。
我们将具有这两个特点的概率模型称为古典概率模型,简称为古典概型。
(2)古典概型的特点:①有限性:试验中所有可能出现的基本事件只有______;②等可能性:每个基本事件出现的______均等。
(3)古典概型的概率计算公式:mPn=,其中m表示_________________,n表示_________________2.几何概型(1)如果某个事件发生的概率只与构成该事件的区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,则称这样的概率模型为几何概率模型。
(2)几何概型的特点:①无限性:在一次试验中,可能出现的结果是无限的;②等可能性:每个结果的发生的机会均等。
(3)几何概型的概率计算公式:_______________.p=3.几何概型与古典概型的区别:4.解答概率题的步骤:(1)弄清试验是什么,找出基本事件的构成。
(2)判断概率类型。
(3)找出所求事件,同时弄清所求事迹的构成,并用符号表示。
(4)求概率。
巩固基础1.下列试验是古典概型的是()。
A 任意抛掷两枚骰子,所得点数之和作为基本事件;B为求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件;C从甲地到乙地共条路线,求某人正好选中最短路线的概率;D抛掷一枚均匀的硬币到首次出现正面为止。
2.一部三册的小说,任意排放在书架的同一层上,则各册的排放次序共有的种数()。
A 3B 4C 6D 123.将一枚均匀硬币先后抛两次,恰好出现一次正面的概率是()。
A 12B14C34D134.在区间(1,3)内的所有实数中,随机取一个实数x,则这个实数是不等式250x-<的解的概率为()。
A 34B12C13D235.在半径为2的球O内任取上点P,则||1OP≤的概率为()。
古典概型与几何概型的辨别
摇
姨
3
,则AB1=
摇
姨
3
,AC=2,则B1C=2-
摇
姨
3
.
由几何概型的概率公式求得P(A)=
B1C
=
2-
摇
姨
3
.
AC 2
(2)设“作 射 线 BM, 使
B
AM>AB”为事件A,在线段AC
上取一点B1,使得AB=AB1,所
以 △ABB1是 等 腰 三 角 形 , 可
得∠ABB1=
180°-30° 2
=75°.
图1
分清了概率题所对应的类型后,要正确做对一道概
率题,对题意中的基本事件总数的分析尤为重要.
二、古典概型的解题关键在于搞清基本事 件的个数
古典概型中,同学们在考虑总的基本事件数与所求 事件A包含的基本事件数时,首先要考虑是否需要次序. 若总的基本事件数是有次序的,那么事件A需几步发生, 也需考虑次序.反之,若总的基本事件数是没有次序的, 那么事件A的事件数也无需考虑次序.
12 4 (2)以x轴和y轴分别表示a、b所取实数,设事件A为
“方程有实数根”,即Δ≥0,化简得 y
a≥b( . a,b)的所有可能结果是长
ห้องสมุดไป่ตู้
(2,2)
(0,2)
与宽分别为3与2的矩形,而a≥b由
图1中阴影部分所表示.所以P(A)
3×2- 1 ×2×2
= S阴影 =
2
=2.
S矩形
3×2
3
O
(3,0) x
3×2×1 个,剩下3名男生即是所要求的.
(2)考虑用次序做就比较容易理解. 解:(1)设“所选3人都是男生”为事件A. 法1:考虑用排序的方法做,则P(A)= 4×3×2 = 1 .
几何概型与古典概型的区别
编辑课件
6
与长度有关的几何概型 [例 1] (2012·辽宁高考)在长为 12 cm 的线段 AB 上任取
一点 C.现作一矩形,邻边长分别等于线段 AC,CB 的长,则
该矩形面积大于 20 cm2 的概率为
1
1
A.6
B.3
()
2
4
C.3
D.5
编辑课件
7
1.在区间-π2,π2上随机取一个数 x,则 cos x 的值介于 0 到12之 间的概率为________.
编辑课件
11
3.如图所示,边长为 2 的正方形中有一封
闭曲线围成的阴影区域,在正方形中随
机撒粒豆子,它落在阴影区域内的概
率为23,则阴影区域的面积为
4
8
2
A.3
B.3
C.3
() D.无法计算
编辑课件
12
x2-4x≤0, 4.若不等式组-1≤y≤2,
x-y-1≥0
表示的平面区域为 M,(x-4)2
编辑课件
2
2.几何概型和古典概型有什么区别? 提示:几何概型和古典概型中基本事件发生的可能 性都是相等的,但古典概型的基本事件有有限个,而几 何概型的基本事件则有无限个. 2.几何概型的概率公式
构成事件A的区域长度面积或体积 P(A)=_试__验__的__全__部__结__果__所__构__成__的__区__域__长__度___面__积__或__体__积___.
[例 2] (1)已知平面区域 U={(x,y)|x+y≤6,x≥0,
y≥0},A={(x,y)|x≤4,y≥0,x-2y≥0},若向区域 U 内
随机投一点 P,则点 P 落入区域 A 的概率为________. (2)(2012·湖北高考)如图所示,在圆心角
古典概型和几何概型
一、古典概型1)基本事件:一次试验中所有可能得结果都就是随机事件,这类随机事件称为基本事件.2)基本事件得特点:①任何两个基本事件就是互斥得;②任何事件(除不可能事件)都可以表示成基本事件得与.3)我们将具有这两个特点得概率模型称为古典概率模型,其特征就是:①有限性:即在一次试验中所有可能出现得基本事件只有有限个。
②等可能性:每个基本事件发生得可能性就是均等得;称这样得试验为古典概型.4)基本事件得探索方法:①列举法:此法适用于较简单得实验.②树状图法:这就是一种常用得方法,适用于较为复杂问题中得基本事件探索。
5)在古典概型中涉及两种不通得抽取放方法,下列举例来说明:设袋中有个不同得球,现从中一次模球,每次摸一只,则有两种摸球得方法:①有放回得抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球得方法称为有放回得抽样,显然对于有放回得抽样,依次抽得球可以重复,且摸球可以无限地进行下去.②无放回得抽样每次摸球后,不放回原袋中,在剩下得球中再摸一只,这种模球方法称为五放回抽样,每次摸得球不会重复出现,且摸球只能进行有限次.二、古典概型计算公式1)如果一次试验中可能出现得结果有个,而且所有结果出现得可能性都相等,那么每一个基本事件得概率都就是;2)如果某个事件包括得结果有个,那么事件得概率.3)事件与事件就是互斥事件4)事件与事件可以就是互斥事件,也可以不就是互斥事件。
古典概型注意:①列举法:适合于较简单得试验。
②树状图法:适合于较为复杂得问题中得基本事件得探求、另外在确定基本事件时,可以瞧成就是有序得,如与不同;有时也可以瞧成就是无序得,如与相同、三、几何概型事件理解为区域得某一子区域,得概率只与子区域得几何度量(长度、面积或体积)成正比,而与得位置与形状无关,满足此条件得试验称为几何概型.四、几何概型得计算1)几何概型中,事件得概率定义为,其中表示区域得几何度量,表示区域得几何度量。
2)两种类型线型几何概型:当基本事件只受一个连续得变量控制时。
研修:古典概型和几何概型的意义和主要区别
古典概型和几何概型的意义和主要区别古典概型特点:1、实验的样本空间只包括有限个元素;2、实验中每个基本事件发生的可能性相同;具有以上两个特点的实验是大量存在的,这种实验叫等可能概型,也叫古典概型。
求古典概型的概率的基本步骤:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=m/n,求出P(A)。
概率模型的转换:古典概率模型是在封闭系统内的模型,一旦系统内的某个事件的概率在其他概率确定前被确定,其他事件概率也会跟着发生改变。
概率模型会由古典概型转变为几何概型。
简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。
比如:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一个点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到中述区域内的某个指定区域中的点。
这里的区域可以是线段,平面图形,立体图形等。
用这种方法处理随机试验,称为几何概型.几何概型与古典概型相对,将等可能事件的概念从有限向无限的延伸。
这个概念在我国初中数学中就开始介绍了。
古典概型与几何概型的主要区别在于:几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个。
几何概型的特点有下面两个:(1)试验中所有可能出现的基本事件有无限多个.(2)每个基本事件出现的可能性相等古典概型是概率的来源,利于学生接受和掌握,几何概率有利于学生的发展。
解决概率问题时,拿出一类概率问题要能抽象出本质,看它属于哪种模型,对于具体的某一概率问题,要能寻找它的变式,从感性到理性,从简到繁,从现象到本质,举一反三,触类旁通。
这需要老师耐心引导,学生们之间认真思考交流,抓住问题的本质,促进学生素质的提高和发展。
几何概型与古典概型的区别
与长度有关的几何概型 [例 1] (2012·辽宁高考)在长为 12 cm 的线段 AB 上任取
一点 C.现作一矩形,邻边长分别等于线段 AC,CB 的长,则
该矩形面积大于 20 cm2 的概率为
1
1
A.6
B.3
()
2
4
C.3
D.5
1.在区间-π2,π2上随机取一个数 x,则 cos x 的值介于 0 到12之 间的概率为________.
求解与长度有关的几何概型的两点注意 (1)求解几何概型问题,解题的突破口为弄清是长度 之比、面积之比还是体积之比; (2)求与长度有关的几何概型的概率的方法,是把题 中所表示的几何模型转化为线段的长度,然后求解,应 特别注意准确表示所确定的线段的长度.
与面积(体积)有关的几何概型
[例 2] (1)已知平面区域 U={(x,y)|x+y≤6,x≥0,
2.已知集合 A={x|-1<x<5},B=xx3- -2x>0 ,在集合 A 中 任取一个元素 x,则事件“x∈A∩B”的概率是_______.
在长为 12 cm 的线段 AB 上任取一点 C,并以线段 AC 为边作正方形,则这个正方形的面积介于 36 cm2 与 81 cm2 之间的概率是多少?
y≥0},A={(x,y)|x≤4,y≥0,x-2y≥0},若向区域 U 内
随机投一点 P,则点 P 落入区域 A 的概率为________. (2)(2012·湖北高考)如图所示,在圆心角
为直角的扇形 OAB 中,分别以 OA,OB 为
直径作两个半圆,在扇形 OAB 内随机取一
点,则此点取自阴影部分的概率是 ( )
B.9
1
1
4.点CA.4为周长等于 3 的圆周上一个D.定2 点,若在该圆周上随
古典概型和几何概型的区别
古典概型和几何概型的区别
相同点:古典概型与几何概型中每一个基本事件发生的可能性都是相等的。
不同点:古典概型要求随机试验的基本事件的总数必须是有限多个;几何概型要求随机试验的基本事件的个数是无限的,而且几何概型解决的问题一般都与几何知识有关。
(1)试验中所有可能出现的基本事件有无限多个。
(2)每个基本事件出现的可能性相等。
(3)几何概型求事件A的概率公式:
PA=构成事件A的区域长度面积或体积/实验的全部结果所构成的区域长度面积或体积(1)试验中所有可能出现的基本事件是有限的。
(2)每个基本事件出现的可能性相等。
(3)古典概型求事件A的概率公式:
PA=事件A可能发生的结果数/实验发生的所有等可能的结果数
例题:某人午觉醒来发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率。
分析:收音机每小时报时一次,某人午觉醒来的时刻在两次整点报时之间都是等可能的,且醒来的时刻有无限多个的,因而适合几何概型。
感谢您的阅读,祝您生活愉快。
古典概型与几何概型
古典概型与几何概型一、古典概型 1、定义(1)样本空间的元素只有有限个; (2)每个基本事件发生的可能性相同。
比如:抛掷一枚均匀硬币的试验,抛掷一枚均匀骰子的试验,从一副扑克牌中随机抽取一张。
称具备条件(1)、(2)的实验称为等可能概型,考虑到它在概率论早期发展中的重要地位,又把它叫做古典概型。
2、古典概型中事件概率的计算设{}ωωωn ,,, 21=Ω ,由古典概型的等可能性,得}{}{}{21n P P P ωωω=== 又由于基本事件两两互不相容;所以},{}{}{}{121n P P P P ωωω ++=Ω=.,,2,1,1}{n i n P i ==ω若事件A 包含m 个样本点,即{}ωωωi i i A m,,,21 =, 则有 :中元素个数中元素个数Ω=A P(A)基本事件总数发生的基本事件数使A =n m= 1.(2010佛山一模)已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数: 5727 0293 7140 9857 0347 4373 8636 9647 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 6710 4281 据此估计,该射击运动员射击4次至少击中3次的概率为 ( ) A .0.85 B .0.8192 C .0.8 D . 0.752.(2007·广东)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是A .310B .15C .110D .1123.(2009江苏)现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 .4.(2009·安徽文)从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________。
“古典概型”和“几何概型”意义和区别的理解
“古典概型”和“几何概型”意义和区别的理解作者:穆高岭来源:《中学数学杂志(初中版)》2009年第06期1 两种概型的特点和意义1.1 古典概型在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的. 例如:掷一次硬币的实验,只可能出现正面或反面,由于硬币的对称性,总认为出现正面或反面的可能性是相同的. 又如对有限件外形相同的产品进行抽样检验,也属于这个模型. 它是概率论中最直观和最简单的模型;概率的许多运算规则,也首先是在这种模型下得到的.古典概型特点:1.实验的样本空间只包括有限个元素(有限性);2.实验中每个基本事件发生的可能性相同(等可能性).同时具有以上两个特点的实验叫等可能概型,也叫古典概型. 这是判断古典概型的一个依据.古典概型概率求法的基本步骤:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;2.2 几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;所谓几何概型的概率问题,是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图1),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“ 向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等.几何概型的概率公式:几何概型的意义事件A理解为区域的某一子区域A,事件A发生的概率只与构成该事件的子区域的几何度量(长度、面积、体积)成正比,而与A的位置和形状无关.2 “古典概型”和“几何概型区别几何概型是无限个等可能事件的情况,而古典概型等可能事件只有有限个.“古典概型”和“几何概型”与初中教学联系最密切的章节是“统计与概率”.“统计与概率”的教育价值主要是研究现实生活中的数据和客观世界中的随机事现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的决策. 随着社会的不断发展,统计与概率的思想方法将越来越重要. 如:奥地利遗传学家,孟德尔的“遗传定律”就是通过统计概率的知识得来的,为人类做出了伟大的贡献,孟德尔本人也成了遗传学的奠基人. 统计与初步所提供的“运用数据进行推断”的思考方法已经成为现代社会一种普遍使用的并且强有力的思维方式. 初中阶段要求学生熟悉统计与概率的基本思想方法,逐步形成统计概念,让学生了解随机现象,形成科学的世界观与方法论.初中的“统计与概率”中蕴含着极其丰富的“古典概型”和“几何概型”有关实际问题.例1 (淮安金湖实验区)为了调查淮安市今年有多少名考生参加中考,小华从全市所有家庭中抽查了200个家庭,发现了其中10个家庭有子女参加中考.(1)本次抽查的200个家庭中,有子女参加中考的家庭频率是多少?(2)如果你随机调查一个家庭,估计家庭有子女参加中考的概率是多少?(3)已知淮安市约有个家庭,假设有子女参加中考的每个家庭中只有一名考生,请你估计今年全市有多少名考生参加中考?例2 (河南课改实验区)若从一副扑克牌中取出的两组牌,分别是黑桃1、2、3、4和方块1、2、3、4,将它们背面朝上,分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面的数字之和等于5的概率是多少?请你用列举法(列表或画树状图)加以分析说明.解可用列举法列出所有的可能得到的牌面数字之和:从上表可知,共有m=16种情况,每种情况发生的可能性相同,而两张牌的牌面数字之和等于5的情况共有n=4次. 记牌面数字之和等于5为事件A,则评注计数的常用方法是列表或画树状图.例3 (扬州课改实验区)某商场进行有奖促销活动. 活动规则:购买500元商品就可以获得一次转盘的机会(转盘分为5个扇形区域,分别是特等奖彩电一台,一等奖自行车一辆,二等奖圆珠笔一枝,三等奖卡通画一张及不获奖)转盘指针停在哪个获奖区域就可以获得该区域相应等级奖品一件. 商场工作人员在制作转盘时,将获奖扇形区域圆心角分配如下表:(2)可采用“抓阄”或“抽签”等方法代替,规则如下:在一个不透明的箱子里放进360个除标号不同外,其他均一样的乒乓球,其中一个标“特”,10个标“1”,30个标“2”,90个标“3”,其余的不标数字,摸出标有哪个奖次的乒乓球,则获相应等次的奖品.评注从例1、例2看学生脑海中虽没有“古典概型”的概念,但此概念即将呼之欲出!从例3看学生已经潜意识的,在使用“几何概型”.无论是从统计与概率的教育价值,还是新课标的教学内容,以及对学生的思维能力培养来看,作为我们初中教师就更应该理解“古典概型”和“几何概型”的意义和区别,以便更好的有的放矢的进行潜移默化的教学,便于使学生在丰富的生活素材实验中去归纳、分析、总结,使学生逐渐形成对“古典概型”和“几何概型”的潜意识. 有助于学生向高中阶段学习的顺利过渡,有助于培养学生对数学思维方法的情感体验,更有助于学生健康发展.作者简介穆高岭,男,1965年9月生,中学数学一级教师,中国尝试教学会会员.主要研究中学数学课堂教学改革,发表论文数篇.。
古典概型和几何概型
3. 你能够将这个例子一般化吗?
例2 从一个装有a个白球b个红球的袋中不放回地取球 ,
求 (1)第i次取到红球的概率;(2)第i次才取到红球的概率; (3)前i次取到红球的概率. (为简化讨论 , 设1 i a b )
(3) 因为C 有( N 1)n 种放法 , 所以C有N n ( N 1)n 种放法 , 故 P (C ) [ N n ( N 1)n ]/ N n .
例1 从一个装有2个白球 1个红球的袋中不放回地取球 ,
求第2次取到红球的概率.
说明 1. 利用古典概型求记录前i次的取球结果 , 则 P ( B ) . i Pa b
(3) 仅记录前i次的取球结果 , 则 P (C )
C
i ab
C
i ab
i a
C
.
二、几何概型
引例2 某人午觉醒来,发觉表停了.于是,他打开收 音机想听电台报时.已知电台是整点报时的,求他等待 时间短于十分钟的概率.
解: 记 A “等待时间短于10分钟”.
以分钟为单位, 令上一次报时时刻为0, 则下一次报时 时刻为60. 于是 , 可取样本空间 (0, 60), 且 A (50, 60).
根据题意, 可合理地认为 : 该人醒来的时刻具有等可 能性, 即 内的点具有等可能性, 所以
A 的几何长度 60 50 1 . P ( A) 60 0 6 的几何长度
简要回顾
1. 给定条件下, 不能预知结果的现象称为随机现 象. 对随机现象的任何形式的观察都统称为随机试验, 简称试验. 2. 随机现象或试验中任一可观察的结果称为随机事 件 , 简称事件, 记作 A, B, C… 3. 随机试验的所有基本结果组成的集合称为样本空 间. 随机事件均可表为适当选定的样本空间的子集. 4. 随机事件的运算(和 积 差)和关系(包含 相等 互 斥 对立).
古典概型和几何概型的意义和主要区别
专题六作业:3.在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,是否更有利于从事相应的教学,举例说明;在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,更有利于从事相应的数学教学。
一、古典概型1、古典概型的意义如果随机试验E具有下列性质:(1)E的所有可能结果(基本事件),只有有限多个;(2)E的每一个可能结果(基本事件),发生的可能性大小相等;则称E为有限等可能型随机试验或等可能概型。
因为它是概率论发展初期的主要研究对象,所以它被称为古典概型.2.古典概型的两个基本特点(1)试验中所有可能出现的基本事件只有有限个,由试验产生随机数。
(2)每个基本事件出现的可能性相等.2、常见的三种古典概型基本模型(1) 摸球模型;同类型的问题还有1) 中彩问题;2) 抽签问题;3) 分组问题;4) 产品检验问题;5) 扑克牌花色问题;6) 英文单词、书、报及电话号码等排列问题.(2) 分房问题;同类型的问题还有:1) 电话号码问题2) 骰子问题3) 英文单词、书、报等排列问题.(3) 随机取数问题.同类型的问题还有:1) 球在杯中的分配问题(球→人,杯→房)2) 生日问题;(日→房,N=365天) ( 或月→房,N=12月)3) 旅客下站问题;( 站→房)4) 印刷错误问题;(印刷错误→人,页→房)5) 性别问题(性别→房,N=2)在老教材中的古典概型是强调用排列组合的公式计算事件个数,而新教材中的古典概型是强调利用枚举法,画树形图来排出所有的事件个数。
二、几何概型1 .几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点。
用这种方法处理随机试验,称为几何概型.(这里的区域可以是线段、平面图形、立体图形等)2 .几何概型的基本特点:( 1 )基本事件的个数,有无限多个。
古典概型与几何概型
设几何概型的基本事件空间可表示成可度量的区域Ω,事件A所对应的
区域用A表示(A⊆Ω),则P(A)=②
A的度量 Ω的度量
.
4.几何概型与古典概型的区别与联系 (1)共同点:基本事件都是③ 等可能的 . (2)不同点:基本事件的个数一个是无限的,一个是有限的.基本事件可以 抽象为点,对于几何概型,这些点尽管是无限的,但它们所占据的区域却 是有限的,根据等可能性,这个点落在该区域的概率与该区域的度量成 正比,而与该区域的位置和形状无关.
= =6, C2 4
∴取出的2个集合中各有三个元素的概率P= = .故选A.
m 1 n 6
方法 2 几何概型的概率求法
1.判断试验是否为几何概型,要切实理解并掌握几何概型的两个基本特
点:无限性和等可能性. 2.求解几何概型问题的关键在于弄清题中的考察对象和对象的活动范 围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考 察的对象在某块区域时,用面积比计算;当考察对象在某个空间时,用体 积比计算. 3.在解决面积型几何概型时,要充分借助线性规划的可行域、定积分等 相关知识进行求解.
高考理数
§11.2 古典概型与几何概型
知识清单
考点一
1.古典概型的两个特点
(1)有限性:试验中所有可能出现的基本事件只有有限个. (2)等可能性:每个基本事件出现的可能性相等. 2.古典概型的概率公式 (1)在基本事件总数为n的古典概型中,每个基本事件发生的概率都是相 等的,即每个基本事件的概率都是 .
1 A. 6 1 B. 7
1 C. 8
1 D. 9
解题导引
解析 令ln(x2+1)=0,得x=0,
e 1 , 令ln(x2+1)=1,得x2+1=e,∴x=±
古典概型与几何概型
(3,1),(4,0)五种情形。
显然后者比前者发生的可能性大。
正确的解法为:n=10×10=100
取出的两数之和等于5由 (0,5),(1,4),(2,
3),(3,2),(4,1),(5,0)这6个基本事件组成,
k=6,则
PA 6 3
100 50
排列组合有关知识复习
加法原理:完成一件事情有n 类方法,第 i 类
n
n2
C
证:如图
SABP
1 2
AB x
x
SABC 1 AB h h
2
M
A
SABP n1即xn1 即x n1h
SABC n h n
n
P PE N F DB
若CE 1 h n
当点P落入 CMN中时,
AB与 PAB的 C 面积之n比 1 大于
则PASCMN1nh2 1
n
SABC
h2
n2
例7.在线段AB上任取三点x1,x2,x3,求:
可能的确切意义是这样的:设在区域 中有任意一个小区域A,如果它的面积为 ,则点
落入A中的可能性大小与 成正比,而与A的位置及形状无关,如果“点落入小区域A”这
个随机事件仍然记作A,则由
可得
这一类概率通 常称作几何概 率
定义:一个试验具有下列两个特征: (1)每次试验的结果是无限多个,且全体结果可用一个 有度量的几何区域来表示
设B=“第三卷恰好 在中央”,
设C=“各卷自左向 右或自右向左恰成 12345的顺序”,
设D=“某三卷放在 一起”,
4
A 1 4
则P(D)
A33A33 A55
3 10
则P(B) 5 A 5 5
则P(A)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
古典概型与几何概型古典概型与几何概型【知识网络】1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率。
2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。
【典型例题】[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )A .49B .29C .23D .13(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ( )A .61 B .365 C .121 D .21 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为()A .56B .12C .13D .16(4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3S”的概率为 .(5)任意投掷两枚骰子,出现点数相同的概率为 .[例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。
[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.[例4]抛掷骰子,是大家非常熟悉的日常游戏了.某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.方案1:总点数是几就送礼券几十元.方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.【课内练习】1.某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是()A.15B.524C.1081D.5122.盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是红球的概率为P1,第8个人摸出红球的概率是P8,则()A.P8=18P1 B.P8=45P1 C.P8=P1 D.P8=03. 如图,A 、B 、C 、D 、E 、F 是圆O 的六个等分点,则转盘指针不落在阴影部分的概率为( ) A .12 B .13C .23D .144. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为()A .12B .13C .14D .235. 一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单位,设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为 .6. 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为 . 7. 在圆心角为150°的扇形AOB 中,过圆心O 作射线交AB 于P ,则同时满足:∠AOP ≥45°且∠BOP ≥75°的概率为 .8. 某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.(1)共有多少个基本事件?(2)小曹能乘上上等车的概率为多少?9.设A 为圆周上一定点,在圆周上等可能的任取一点P 与A 连结,的概率.10.正面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. ①设“V P -ABC ≥14V ”的事件为X ,求概率P (X );②设“V P -ABC ≥14V 且V P -BCD ≥14V ”的事件为Y ,求概率P (Y ).第3题图C古典概型与几何概型A 组1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为( )A .2π B .2ππ- C.π D .4π2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ( )A .12B .13C .14D .163. 已知椭圆22221x y a b+=(a >b >0)及内部面积为S=πab ,A 1,A 2是长轴的两个顶点,B 1,B 2是短轴的两个顶点,点P 是椭圆及内部的点,下列命题正确的个数是 ( ) ①△PA 1A 2为钝角三角形的概率为1; ②△PB 1B 2为直角三角形的概率为0;③△PB 1B 2为钝角三角形的概率为ba ;④△PA 1A 2为钝角三角形的概率为ba ;⑤△PB 1B 2为锐角三角形的概率为a ba-。
A .1B 。
2C 。
3D 。
44. 古典概型与几何概型的相同点是 ,不同点是基本事件的 . 5. 连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.其中“恰有两枚正面向上”的事件包含 个等可能基本事件.6. 任取一正整数,求该数的平方的末位数是1的概率.7. 如图,在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,求使得∠AOC 和 ∠BOC 都不小于30°的概率.A第7题OE D CB8. 如图,在等腰三角形ABC 中,∠B =∠C =30°,求下列事件的概率:问题1 在底边BC 上任取一点P ,使BP <AB ; 问题2 在∠BAC 的内部任作射线AP 交线段BC 于P ,使BP <AB .古典概型与几何概型B 组1. 在20瓶饮料中,有2瓶过了保质期,从中任取1瓶,恰好为过期饮料的概率为 ( )A .12 B 。
110 C 。
120 D 。
1402. 一个罐子里有6只红球,5只绿球,8只蓝球和3只黄球。
从中取出一只球,则取出红球的概率为 ( )A .122B 。
522C 。
311D 。
6113. 已知O (0,0),A (30,0),B (30,30),C (0,30),E (12,0),F (30,18),P (18,30),Q (0,12),在正方形OABC 内任意取一点,该点在六边形OEFBPQ 内的概率为 ( )A .425B 。
2125C 。
725D 。
16254. 若以连续掷两次骰子分别得到的点数m 、n 作为P 点的坐标,则点P 落在圆x 2+y 2=16内的概率是_________. 5. 在所有的两位数(10~99)中,任取一个数,则这个数能被2或3整除的概率是 . 6. 在△AOB 中,∠AOB=60°,OA=2,OB=5,在线段OB 上任取一点C 。
试分别求下列事件的概率: ①△AOC 为钝角三角形; ②△AOC 为锐角三角形; ③△AOC 为锐角三角形。
A CPB第8题7.在区间[-1,1]上任取两实数a、b,求二次方程x2+2ax+b2=0的两根都为实数的概率.8.一海豚在水池中自由游弋.水池为长30m,宽20m的长方形,随机事件A记为“海豚嘴尖离岸边不超过2m”.(1)试设计一个算法(用伪代码表示),使得计算机能模拟这个试验,并估算出事件A发生的概率;(2)求P(A)的准确值.参考答案古典概型与几何概型【典型例题】 [例1](1)A 。
(2)C .提示:总事件数为36种。
而满足条件的(x ,y)为(1,2),(2,4),(3,6),共3种情形。
(3)D .提示:M 只能在中间6cm~9cm 之间选取,而这是一个几何概型。
(4)作△ABC 的边BC 上的高AD ,取E ∈AD 且ED=13AD ,过E 作直线MN ∥BC 分别交AB 于M ,AC 于N ,则当P 落在梯形BCNM 内时,△PBC 的面积小于△ABC 的面积的13,故P=59BCNM ABC S S ∆=梯形.(5)16。
提示:总事件数为6×6=36种,相同点数的有6种情形。
[例2]由方程有实根知:m 2≥4n .由于n ∈N *,故2≤m ≤6.骰子连掷两次并按先后所出现的点数考虑,共有6×6=36种情形.其中满足条件的有: ①m=2,n 只能取1,计1种情形; ②m=3,n 可取1或2,计2种情形; ③m=4,n 可取1或2、3、4,计4种情形;④m=5或6,n 均可取1至6的值,共计2×6=12种情形.故满足条件的情形共有1+2+4+12=19(种),答案为1936. [例3]以x 和y 分别表示甲、乙两人到达约会地点的时间,则两人能够会面的条件是15x y -≤.在平面上建立直角坐标系如图7,则(x ,y)的所有基本事件可以看作是边长为60的正方形,而可能会面的时间由图中的阴影部分所表示.故P(两人能会面) 167604560222=-=. 答 两人能会面的概率为716. [例4]由图可知,等可能基本事件总数为36种.其中点数和为2的基本事件数为1个,点数和为3的基本事件数为2个,点数和为4的基本事件数为3个,点数和为5的基本事件数为4个,点数和为6的基本事件数为5个,点数和为7的基本事件数的和为6个,点数和为8的基本事件数为5个,点数和为9的基本事件数为4个,点数和为10的基本事件数为3个,点数和为11的基本事件数为2个,点数和为12的基本事件数为1个.根据古典概型的概率计算公式易得下表:例3答图由概率可知,当点数和位于中间(指在7的附近)时,概率最大,作为追求最大效益与利润的老总,当然不能选择方案2,也不宜选择方案1,最好选择方案3.另外,选择方案3,还有最大的一个优点那就是,它可造成视觉上与心理上的满足,顾客会认为最高奖(120元)可有两次机会,即点数和为2与12,中次最高奖(100元)也有两次机会,所以该方案是最可行的,事实上也一定是最促销的方案.我们还可以从计算加以说明.三个方案中,均以抛掷36次为例加以计算(这是理论平均值):从表清楚地看出,方案3所需的礼券额最少,对老总来说是应优先考虑的决策.【课内练习】1. D 。
3个人加入6个小组中有36种方法。
3人中恰有2人在同一小组的,于是只须加入两个小组,共有652⨯=15种选择,而3人的分组又有6种情形,故答案为156521612⨯=。
2. C 。
提示:虽然摸球的顺序有先后,但只需不让后摸的人知道先摸人摸出的结果,那么各个摸球者摸到红球的概率都是相等的,并不因摸球的顺序不同而影响到其公平性.∴P 8=P 1。