高中数学必修三 古典概型与几何概型

合集下载

高中数学:第三章概率 小结 (21)

高中数学:第三章概率 小结 (21)
第24页
探究2 解与面积相关的几何概型问题的三个关键点. (1)根据题意确认是否是与面积有关的几何概型问题; (2)找出或构造出随机事件对应的几何图形,利用图形的几 何特征计算相关面积; (3)套用公式,从而求得随机事件的概率.
第25页
思考题2
(1)(高考真题·北京卷)设不等式组
0≤x≤2, 0≤y≤2
①求乘客到站候车时间大于10分钟的概率; ②求候车时间不超过10分钟的概率; ②求乘客到达车站立即上车的概率.
第12页
【思路】 分析概率模型 → 得其为几何概型 → 结果 【解析】 ①如下图所示,设相邻两班车的发出时间为 T1,T2,T1T2=15.
设T0T2=3,TT0=10,记“乘客到站候车时间大于10分 钟”为事件A.
【解析】 ∵区间[-1,2]的区间长度为3,随机数x的取值区
间[0,1]的区间长度为1,
∴由几何概型知x∈[0,1]的概率为13.
【答案】
1 3
第9页
(2)在等腰直角三角形ABC中,在斜边AB上任取一点M,求 AM的长大于AC的长的概率.
【思路】 点M随机地落在线段AB上,故试验所有点所在的 区域为线段AB,在AB上截取AC′=AC,则当点M位于线段BC′上 时,AM>AC.故“AM的长度大于AC的长度”的度量为BC′.
思考题1 某人向平面区域|x|+|y|≤ 2 内任意投掷一枚飞 镖,则飞镖恰好落在单位圆x2+y2=1内的概率为________.
第51页
【解析】 区域|x|+|y|≤ 2是边长为2的一个正方形区域(如 图),由图知所求概率为π4.
第44页
自助餐
第45页
与线性规划有关的几何概型问题 (仅供先学必修五的学校使用)

高中数学课件-古典概型和几何概型习题课

高中数学课件-古典概型和几何概型习题课
36 12 答:事件“a b 1”的概率为 1 .
12
2用B表示事件“a b 0”,即x 2y 0.
试验的全部结果所构成的区域为{(x,y) |1 x 6,1 y 6},构成事件B的区域为{(x,y) |1 x 6,1 y 6, x 2y 0},如图所示.
1 42
所以所求的概率为P B 2
所以P A 5 .
36
2记"点P(x,y)满足y2 4x"为事件B,则事件B有17个
基本事件: 当x 1时,y 1;当x 2时,y 1, 2;当x 3时,y 1, 2,3;当x 4时,y 1, 2,3;当x 5时,y 1, 2,3, 4; 当x 6时,y 1, 2,3, 4.
基础练习
1、从数字1,2,3,4,5中任取两个不同的数字组成一 个两位数,则这个两位数大于40的概率是 2/5 2、某班有学生36人,现从中选出2人去完成一项任 务,设每人当选是等可能的.其中男生15人,则选出 的2人性别相同的概率为 0.5
3.两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,
其中第一个数表示a的取值,第二个数表示b的取值,即 基本事件总数为16.
设"方程f x 0恰有两个不相等的实根"为事件A,当a 0,b 0时,方程f x 0恰有两个不相等的实根的充要
条件是
a
0 0
b
a,且a
0.此时a,b的取值情况有
1, 2,1,3,2,3,即事件A包含的基本事件数为3.
注意放回还是不放回。
例2、在半径为1的圆的一条直径上任取一点, 过该点作垂直于直径的弦,则其长度超过该圆
内接正三角形的边长 3 的概率是多少?
1/2 变式1:在半径为1的圆内任取一点,以该点为 中点作弦,则其长度超过该圆内接正三角形的边

高中数学中几种常见的概率模型

高中数学中几种常见的概率模型

高中数学中几种常见的概率模型高中数学中几种常见的概率模型:古典概型、几何概型、贝努利概型、超几何分布概型1、古典概型:也叫传统概率、其定义是由法国数学家拉普拉斯提出的。

如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验,这种条件下的概率模型就叫古典概型。

在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的;古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。

2、几何概型:是概率模型之一,别名几何概率模型,如果每个事件发生的概率只与构成该事件区域的长度成比例,则称这样的概率模型为几何概率模型。

在这个模型下,随机实验所有可能的结果都是无限的,并且每个基本结果发生的概率是相同的。

一个试验是否为几何概型在于这个试验是否具有几何概型的两个特征,无限性和等可能性,只有同时具备这两个特点的概型才是几何概型。

3、贝努利模型:为纪念瑞士科学家雅各布·贝努利而命名。

对随机试验中某事件是否发生,实验的可能结果只有两个,这个只有两个可能结果的实验被称为贝努利实验;重复进行n次独立的贝努利试验,这里“重复”的意思是指各次试验的条件是相同的,它意味着各次试验中事件发生的概率保持不变。

“独立是指是指各次试验的结果是相互独立的。

基于n重贝努利试验建立的模型,即为贝努利模型。

4、超几何分布:是统计学上一种离散概率分布。

它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。

称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。

超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N) 。

高中数学 第三章第3节几何概型 理 知识精讲人教新课标A版必修3

高中数学 第三章第3节几何概型 理 知识精讲人教新课标A版必修3

高二数学 第三章第3节几何概型 理 知识精讲人教新课标A 版必修3一、学习目标:(1)了解几何概型的概念及基本特点 (2)熟练掌握几何概型中概率的计算公式 (3)会进行简单的几何概率计算(4)能运用模拟的方法估计概率,掌握模拟估计面积的思想二、重点、难点:重点:掌握几何概型中概率的计算公式;并能进行简单的几何概率计算。

难点:将实际问题转化为几何概型,并能正确应用几何概型的概率计算公式解决问题。

三、考点分析:本部分内容是新增的内容,对几何概型的要求仅限于体会几何概型的意义,所以在练习时,侧重于一些简单的试题即可。

(1)区别古典概型与几何概型(2)理解随机模拟求几何概型的概率1、几何概型的概念: 对于一个随机试验,我们将每个基本事件理解为从某个特定的可以几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则可以理解为恰好取到上述区域内的某个指定区域中的点。

这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型。

2、几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等。

3、几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率()d P A D的测度的测度。

说明:(1)D 的测度不为0;(2)其中“测度”的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的“测度”分别是长度,面积和体积。

(3)区域为“开区域”;(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关。

4、模拟计算几何概型的步骤: (1)构造图形(作图);(2)模拟投点,计算落在阴影部分的点的频率m n; (3)利用()m d P A n D ≈=的测度的测度算出相应的量。

高中数学理科基础知识讲解《122古典概型与几何概型》教学课件

高中数学理科基础知识讲解《122古典概型与几何概型》教学课件

--
考点2
--
考点2
思考如何把f(x)在区间(-∞,-1]上是减函数的问题转换成与概率的基本事件有关的问题?
解题心得f(x)在区间(-∞,-1]上是减函数可转化成开口向上的二次函数f(x)的图象的对称轴与x轴的交点的横坐标大于或等于-1,从而得出b≤a,从而不难得出b≤a包含的基本事件数.因此也就转化成了与概率的基本事件有关的问题.
长度
--
知识梳理
1.任一随机事件的概率都等于构成它的每一个基本事件概率的和.2.求试验的基本事件数及事件A包含的基本事件数的方法有:列举法、列表法和树状图法.3.与面积有关的几何概型,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题.
B
A
--
考点2
--
考点2
--
考点2
--
考点2
--
考点3
与长度、角度有关的几何概型例6(1)(2020贵州贵阳模拟,8)某学校星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间随机到达教室,则他听第二节课的时间不少于20分钟的概率为( )(2)如图,四边形ABCD为矩形,AB= ,BC=1,在∠DAB内任作射线AP,则射线AP与线段BC有公共点的概率为 .
B
--
考点自诊
4.(2019广东东莞高三二模,6)如图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中△ABC为直角三角形,四边形DEFC为它的内接正方形,已知BC=2,AC=4,在△ABC上任取一点,则此点取自正方形DEFC的概率为( )

人教版数学必修三教案古典概型

人教版数学必修三教案古典概型

§3.2 古典概型§3.2.1 古典概型一、教材分析本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.二、教学目标1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;A包含的基本事件个数)(A=(2)掌握古典概型的概率计算公式:P总的基本事件个数2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.三、重点难点教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.四、课时安排1课时五、教学设计(一)导入新课思路1(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10)思考讨论根据上述情况,你能发现它们有什么共同特点?.教师板书课题,为此我们学习古典概型思路2将扑克牌(52张)反扣在桌上,先从中任意抽取一张,那么抽到的牌为红心的概率有多大?是否一定要进行大量的重复试验,用“出现红心”这一事件的频率估计概率?这样工作量较大且不够准确.有更好的解决方法吗?把“抽到红心”记为事件B,那么事件B相当于“抽到红心1”,“抽到红心2”,…,“抽到红心K”这13种情况,而同样抽到其他牌的共有39种情况;由于是任意抽取的,可以认为这52种情况的可能性是相等的.所以,当出现红心时“抽到红心1”,“抽131=.,于是P(B)=为此我们学这13种情形之一时,事件B就发生抽到红心到红心2”,…,“K”452习古典概型.(二)推进新课、新知探究、提出问题试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由学科代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录“1点”“2点”“3点”“4点”“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由学科代表汇总.(1)用模拟试验的方法来求某一随机事件的概率好不好?为什么?(2)根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?(3)什么是基本事件?基本事件具有什么特点?(4)什么是古典概型?它具有什么特点?(5)对于古典概型,应怎样计算事件的概率?活动:学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,讨论可能出现的情况,师生共同汇总方法、结果和感受.讨论结果:(1)用模拟试验的方法来求某一随机事件的概率不好,因为需要进行大量的试验,同时我们只是把随机事件出现的频率近似地认为随机事件的概率,存在一定的误差.(2)上述试验一的两个结果是“正面朝上”和“反面朝上”,它们都是随机事件,出现的概率是相等的,都是0.5.上述试验二的6个结果是“1点”“2点”“3点”“4点”“5点”和“6点”,它们也都是1. 都是出现的概率是相等的,随机事件,6(3)根据以前的学习,上述试验一的两个结果“正面朝上”和“反面朝上”,它们都是随机事件;上述试验二的6个结果“1点”“2点”“3点”“4点”“5点”和“6点”,它们都是随机事件,像这类随机事件我们称为基本事件(elementary event);它是试验的每一个可能结果.基本事件具有如下的两个特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.(4)在一个试验中如果①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典为什么??概型吗.因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.如下图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概型吗?为什么?不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.(5)古典概型,随机事件的概率计算对于实验一中,出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”)由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1.因此1. =”)=P(“反面朝上P(“正面朝上”)21出现正面朝上所包含的基本事件的个数?. 即P(“出现正面朝上”)= 2基本事件的总数试验二中,出现各个点的概率相等,即P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”).反复利用概率的加法公式,我们有P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1.1. =点“6”)“5点”)=P(()点“2”)=P(“3点”=P(“4点”)=P)(所以P“1点”=P(6, ,例如进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率11131++==. =点)(点)(P“出现偶数点”=P(“2”)+P“4点”+P(“6”)666623出现偶数点所包含的基本事件的个数?. )=”“P 即(出现偶数点6基本事件的总数古典概型计算任何事件的概率计算公式为:,可以概括总结出,因此根据上述两则模拟试验A所包含的基本事件的个数.)=P(A基本事件的总数在使用古典概型的概率公式时,应该注意:①要判断该概率模型是不是古典概型;②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.下面我们看它们的应用.(三)应用示例思路1例1 从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?活动:师生交流或讨论,我们可以按照字典排序的顺序,把所有可能的结果都列出来.解:基本事件共有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.点评:一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法.分布完成的结果(两步以上)可以用树状图进行列举.变式训练用不同的颜色给下图中的3个矩形随机地涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率.分析:本题中基本事件比较多,为了更清楚地枚举出所有的基本事件,可以画图枚举如下:(树形图)解:基本事件共有27个.(1)记事件A=“3个矩形涂同一种颜色”,由上图可以知道事件A包含的基本事件有1×3=3个,31?. P(A)=故279(2)记事件B=“3个矩形颜色都不同”,由上图可以知道事件B包含的基本事件有2×3=6个,故62?. P(B)=27912;3个矩形颜色都不同的概率为. 答:3个矩形颜色都相同的概率为99例2 单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一问他答对的概率是多少?,个答案.即讨论这个问,,解决这个问题的关键搜集信息,交流讨论,教师引导活动:学生阅读题目,这都不满足古典概,.如果学生掌握或者掌握了部分考查内容题什么情况下可以看成古典概型,随机地选择了一个答案的情况下只有在假定学生不会做,等可能性,因此,型的第2个条件——.才可以化为古典概型、选择CB、选择4个:选择A、选择解:这是一个古典概型,因为试验的可能结果只有从而由的可能性是相等的.个,考生随机地选择一个答案是选择A,B,C,DD,即基本事件共有41所包含的基本事件的个数答对?=0.25.)=答对P(“”古典概型的概率计算公式得:4基本事件的总数:点评:古典概型解题步骤,搜集信息;(1)阅读题目,并用字母表示事件;(2)判断是否是等可能事件m;和事件A所包含的结果数(3)求出基本事件总数n m. 求出概率并下结论4)用公式P(A)=(n变式训练.两枚均匀硬币,求出现两个正面的概率1.}. 甲反乙反,甲反乙正,解:样本空间:{甲正乙正,甲正乙反. 故属古典概型这里四个基本事件是等可能发生的,1. n=4,m=1,P= 4.求出现的点数之和为奇数的概率2.一次投掷两颗骰子,,点第一颗骰子出现i”,用(i,j)记“解法一:设表示“出现点数之和为奇数A其中个基本事件组成等概样本空间,点”,i,j=1,2,…6.显然出现的36 第二颗骰子出现j1. P(A)=k=3×3+3×3=18,故包含的基本事件个数为2,,偶)奇),(偶,(奇,偶),(偶,(奇解法二:若把一次试验的所有可能结果取为:,奇)1P(A)=故. n=4,A包含的基本事件个数k=2,则它们也组成等概率样本空间.基本事件总数2.点数和为偶数点数和为奇数},也组成等解法三:若把一次试验的所有可能结果取为:{1. P(A)=1,故概率样本空间,基本事件总数n=2,A所含基本事件数为2注:找出的基本事件组构成的样本空间,必须是等概率的.解法2中倘若解为:(两个奇),1(一奇一偶),(两个偶)当作基本事件组成样本空间,则得出P(A)=,错的原因就是它不是311,而P(一奇一偶)=.本例又告诉我们,(两个奇)等概率的.例如P=同一问题可取不同的42样本空间解答.例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种??的概率是多少5向上的点数之和是(3).解:(1)掷一个骰子的结果有6种.我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种.(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,41 . 由古典概型的概率计算公式可得P(A)=369例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?解:一个密码相当于一个基本事件,总共有10 000个基本事件,它们分别是0000,0001,0002,…,9998,9999.随机地试密码,相当于试到任何一个密码的可能性都是相等的,所以这是一个古典概型.事件“试一次密码就能取到钱”由1个基本事件构成,即由正确的密码1. ”)=P(“试一次密码就能取到钱构成.所以100001的事件是小概率事件发生概率为,通常我们认为这样的事件在一次试验中是几乎不可10000能发生的,也就是通过随机试验的方法取到储蓄卡中的钱的概率是很小的.但我们知道,如果试验很多次,比如100 000次,那么这个小概率事件是可能发生的.所以,为了安全,自动取款机一般允许取款人最多试3次密码,如果第4次键入的号码仍是错误的,那么取款机将“没收”储蓄卡.另外,为了使通过随机试验的方法取到储蓄卡中的钱的概率更小,现在储蓄卡可以使用6位数字作密码.人们为了方便记忆,通常用自己的生日作为储蓄卡的密码.当钱包里既有身份证又有储蓄卡时,密码泄密的概率很大.因此用身份证上的号码作密码是不安全的.例5 某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?解:我们把每听饮料标上号码,合格的4听分别记作:1,2,3,4,不合格的2听分别记作a,b,只要检测的2听中有1听不合格,就表示查出了不合格产品.依次不放回地从箱中取出2听饮料,得到的两个标记分别记为x和y,则(x,y)表示一次抽取的结果,即基本事件.由于是随机抽取,所以抽取到任何基本事件的概率相等.用A表示“抽出的2听饮料中有不合格产品”,A表示“仅第一次抽出的是不合格产品”,A仅第二次抽出的“表示21.是不合格产品”,A表示“两次抽出的都是不合格产品”,则A,A和A是互不相容的事件,且121122A=A ∪A∪A,从而P(A)=P(A)+P(A)+P(A).12221112因为A中的基本事件的个数为8,A中的基本事件的个数为8,A中的基本事件的个数1221882 =0.6. 所以P(A)=为2,全部基本事件的总数为30,3030302思路, 从中一次摸出两个球只白球,2只黑球,例1 一个口袋内装有大小相同的5只球,其中3 共有多少个基本事件?(1) (2)摸出的两个都是白球的概率是多少?活动:可用枚举法找出所有的等可能基本事件.号有如下基本事件(摸到1,24,5解:(1)分别记白球为1,2,3号,黑球号,从中摸出2只球,(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5). (1,2)表示):球用.10个基本事件因此,共有个基本事件是摸到两个白球(记且只有3(2)上述10个基本事件发生的可能性是相同的,3. A为事件),即(1,2),(1,3),(2,3),故P(A)=103. ∴共有10个基本事件,摸到两个白球的概率为10变式训练将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?解析:(1)将骰子抛掷1次,它出现的点数有1,2,3,4,5,6这6种结果.先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又有6种可能的结果,于是一共有6×6=36种不同的结果;(2)第1次抛掷,向上的点数为1,2,3,4,5,6这6个数中的某一个,第2次抛掷时都可以有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有6×2=12种不同的结果;(3)记“向上点数和为3的倍数”为事件A,则事件A的结果有12种,因为抛两次得到的36种结121=. ,果是等可能出现的所以所求的概率为P(A)=336答:先后抛掷2次,共有36种不同的结果;点数的和是3的倍数的结果有12种;点数的和1. 的倍数的概率为是33说明:也可以利用图表来数基本事件的个数:例2 从含有两件正品a,a和一件次品b的三件产品中,每次任取一件,每次取出后不放回,121连续取两次,求取出的两件产品中恰有一件次品的概率.活动:学生思考或交流,教师引导,每次取出一个,取后不放回,其一切可能的结果组成的基本事件是等可能发生的,因此可用古典概型解决.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a,a)和(a,b),(a,a),(a,b),(b,a),(b,a).其中小括号内左边的字母表示212211112211第1次取出的产品,右边的字母表示第2次取出的产品用A表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a,b),(a,b),(b,a),(b,a)], 2211111142=. A)=由4个基本事件组成,因而,P(事件A 63思考在上例中,把“每次取出后不放回”这一条件换成“每次取出后放回”,其余条件不变,求取出的两件中恰好有一件次品的概率.有放回地连续取出两件,其一切可能的结果有:(a,a)(a,a),(,a,b)(a,a),(a,a),,2111122112(a,b),(b,a),(b,b),由9个基本事件组成,由于每一件产品被取到的机会均等,因此可112112以认为这些基本事件的出现是等可能的.用B表示“恰有一件次品”这一事件,则B=[(a,b),11(a,b),(b,a),(b,a)], 2111124. =B),因而,P(事件B包含4个基本事件9点评:(1)在连续两次取出过程中,(a,b)与(b,a)不是同一个基本事件,因为先后1111顺序不同.(2)无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的.变式训练现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.分析:(1)为放回抽样;(2)为不放回抽样.解:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以3种;设事件A为“连续3次都取正品”,则包含的基本事件共有10=10试验结果有10×10×383=0.512. ,P(A)=,因此8×8×8=8种310(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件336≈0.467. P(B)=6=336,所以”,则事件B包含的基本事件总数为8×7ד3B为件都是正品720解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x)是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为56≈0.467. P(B)=6÷8×7×6=56,因此120也可以看作是无顺,既可以看作是有顺序的,计算基本事件个数时,关于不放回抽样点评:序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.(四)知能训练本节练习1、2、3.(五)拓展提升一个各面都涂有色彩的正方体,被锯成1 000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率.2×6个,两面涂有色彩的有8×12个解:在1 000个小正方体中,一面涂有色彩的有8,三面384=0.384;1)有一面涂有色彩的概率为P=涂有色彩的有8个,∴(1100096=0.096;(2)有两面涂有色彩的概率为P=210008=0.008.=P(3)有三面涂有色彩的概率为31000答:(1)一面涂有色彩的概率为0.384;(2)有两面涂有色彩的概率为0.096;(3)有三面涂有色彩的概率为0.008.(六)课堂小结1.古典概型我们将具有(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.2.古典概型计算任何事件的概率计算公式A所包含的基本事件的个数.=P(A)基本事件的总数3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏.(七)作业习题3.2 A组1、2、3、4.。

人教版高中数学必修三概率论-古典概型ppt课件

人教版高中数学必修三概率论-古典概型ppt课件

推广1. n个元素分成 ( r1 rk n) k组,每组有 rk 个元素, n! rk r1 r2 分法有 C n 种 C n r1 C rk r1 ! rk !
2. n个元素有2类,每类分别有m , ( n m )个,每
r1 r2 类分别取r1 , r2个, 取法有C m Cn m种
3. n个元素有k类,每类分别有n1 ,, nk 个,每类
rk r1 r2 分别取r1 , , rk 个, 取法有C n C C n2 nk 种 1
例1 袋中有外形相同的5个白球,3个黑球,一次任取两个, 求取出两个都是白球的概率
解 设A {取出两个都是白球}
2 n C8 2 0 m C5 C3
基本计数原理
3.基本计数原理: (1) 加法原理 设完成一件事有m种方式, 第一种方式有n1种方法, 则完成这件事总共有 第二种方式有n2种方法, …, n1 + n2 + … + nm 种方法 . 第m种方式有nm种方法, 无论通过哪种方法都可以完成这件事,
(2) 乘法原理 设完成一件事有m个步骤, 第一个步骤有n1种方法, 第二个步骤有n2种方法, n
6 A6 例5 6人排成一排,有多少种排法? 6! 若某人必须排在排尾 ( 排除法 ) 5! (捆绑法 ) 5! 2! 若甲乙必须在一起 2 若甲乙必须不在一起 ( 插空法 ) 4! A5 6! 若甲乙必须从左到右排 ( 去序法 ) 2! (去序) 5.组合: 从n个不同元素取 r 个组成一组 ( 从n个不同元素一次取 r 个) r A n! r n 不同取法有 C n 种 r! r !( n r )! (相当于将n个元素分成两组 )
解 设Ak {抽到k件一等品 } k 0,1,2 2 2 k k 59 n C100 C 40 m C 60 1 1 0 2 2 165 C C C 60 C 40 C 26 60 40 16 60 P ( A ) P ( A ) P ( A0 ) 1 2 2 2 2 165 33 C100 C100 C100 例3 若上例改为依次抽取2件,求抽到2件等级相同的产品的概率 排列 解 设A {2件等级相同} (1)不放回( 不重复抽样) 5 2 2 2 2 n P100 100 99 m A60 A30 A10 P ( A) 11 ( 2)有放回(重复抽样) n 1002 m 602 302 102

高中数学C3必修③基础题型归类

高中数学C3必修③基础题型归类

INPUT tIF t<= 4 THEN c=0.2 ELESc=0.2+0.1(t -3) END IF PRINT c END高中新课标数学必修③模块 基础题型归类1、算法框图与语句:要求:理解算法基本思想,掌握算法三种逻辑结构与五种基本语句(输入、输出、赋值、条件、循环). 例1. (1)若输入8时,则右边程序执行后输出的结果是 .(2)右图给出一个算法的程序框图,该程序框图的功能是 .(3)对任意正整数n ,设计一个求S=111123n++++的程序框图,并编写出程序.练1 (1)右边程序为一个求20个数的平均数的程序,在横线上应填充的语句为 .(2)右图输出的是的结果是 .(3)编写程序,计算12+22+32+……+1002 2、经典算法案例:要求:掌握进位制转化、辗转相除法与更相减损术求最大公约数、秦九韶算法.例2. (1)将二进制数10101(2)化为十进制数为 ,再化为八进制数为 .(2)用辗转相除法求80和36的最大公约数,并用更相减损术检验所得结果.(3)已知一个4次多项式43()6354g x x x x =-++, 试用秦九韶算法求这个多项式在x=2的值.练2 (1)下列各数中最小的数是( ). A. (9)85 B. (6)210 C. (4)1000 D. (2)111111 (2)1001101(2)= (10),318(10)= (5)3、抽样方法与频率分布:要求:掌握简单随机抽样、系统抽样、分层抽样. 能运用频率分布直方图.例3. (1)某校1000名学生中,O 型血有400人,A 型血有250人,B 型血有250人,AB 型血有100人,为了研究血型与血弱的关系,要从中抽取一个容量为40的样本,按照分层抽样的方法抽取样本,则O 型血,A 型血,B 型血,AB 型血的人要分别抽取人数为 .S=0 i=1 DO INPUT x S=S+x i=i+1LOOP UNTIL _____a=S/20 PRINT a END(2) 200辆汽车通过某一段公路时的时速频率分布直方图如图所示,则时速在[)50,60的汽车大约有____________辆练3 (1)某单位有技工18人、技术员12人、工程师6人,需要从这些人中抽取一个容量为n 的样本;如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果容量增加一个,则在采用系统抽样时,需要在总体中剔除1个个体,则样本容量n为 . (2)某公司生产三种型号的轿车, 产量分别为1200辆,6000辆和2000辆, 为检验该公司的产品质量, 现用分层抽样的方法抽取46辆进行检验, 这三种型号的轿车依次应抽取 辆.4、样本数字特征:要求:掌握样本中心位置特征数(平均数、中位数、众数)与离散程度特征数(标准差、方差)的计算. 例4. 给出下列四种说法:① 3,3,4,4,5,5,5的众数是5; ② 3,3,4,4,5,5,5的中位数是4.5;③ 频率分布直方图中每一个小长方形的面积等于该组的频率; ④ 频率分布表中各小组的频数之和等于1其中说法正确的序号依次是 .练4甲乙两种棉花苗中各抽10株, 测得它们的株高分别如下(单位:cm)甲: 25,41,40,37,22,14,19,39,21,42 乙: 27,16,44,27,44,16,40,40,16,40(1)估计两种棉花苗总体的长势:哪种长的高一些? (2)哪种棉花的苗长得整齐一些?5、概率基本性质:要求:掌握概率基本性质0()1P A ≤≤等,能运用互斥事件的概率加法公式()()()P A B P A P B =+,对立事件的概率减法公式()1()P A P A =-.例5. 一枚五分硬币连掷三次,事件A 为“三次反面向上”,事件B 为“恰有一次正面向上”,事件C 为“至少二次正面向上”. 写出一个事件A 、B 、C 的概率(),(),()P A P B P C 之间的正确关系式是 .练5 甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲、乙下成和棋的概率为 ;乙获胜的概率为 .6、古典概型与几何概型要求:掌握两种概率模型的特征,能运用概率模型解决实际问题.例6. (1)玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿. (i )从中取1个球, 求取得红或白的概率. (ii )若从中取2个球,求至少一个红球的概率.(2)甲乙两人相约某天在某地点见面,甲计划在上午8:30至9:30之间到达,乙计划在上午9:00至10:00之间到达. (i )求甲比乙提前到达的概率; (ii )如果其中一人先到达后最多等候另一人15分钟,然后离去. 求两人能够会面的概率.练6 (1)某人一次掷出两枚骰子,点数和为5的概率是 .(2)将一个各个面上均涂有颜色的正方体锯成64个同样大小的正方体,从这些小正方体中任取一个,其中恰有两面涂色的概率是 .(3)从一副扑克牌(没有大小王)的52张牌中任取2张,求: (i )2张是不同花色牌的概率; (iii )至少有一张是红心的概率.(4)在10件产品中,有8件是合格的,2件是次品,从中任意抽2件进行检验,计算:(i )两件都是次品的概率;(ii )2件中恰好有一件是合格品的概率;(iii )至多有一件是合格品的概率(5)若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标(,)m n ,则点P 在圆2225x y +=外的概率是 .(6)两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.求两人会面的概率.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

河南省商丘市高中数学《33几何概型》课件 新人教必修3

河南省商丘市高中数学《33几何概型》课件 新人教必修3
必修3第三章第三节
几何概型
商丘三高
一、复习回顾.
问题:猜中的概率 是多少?
这是什么概型问题?
我抛一枚硬币, 猜这一次是正面 向上。
1、古典概型的两个基本特点:
(1)试验中所有可能出现的基本事件只有有限个. (2)每个基本事件出现的可能性相等.
2、计算古典概型的公式:
公 式 : P (A )A 包 基 含 本 基 事 本 件 事 的 件 总 的 数 个 数
点距离都大于3的地方的概率是 4-π
解析;如果离四个顶点距离都大于
4
3,那么蚂蚁所处的位置应该四个
四分之一圆之外,圆的圆心为4个
顶点,半径都是3,
A
D
解:此试验是几何概型,正方形面
积为S,区域A的面积为SA,
S=6×6=36
SA=6×6―4×
1 4
π×32=36-9π
P(A)= SA = 36-9π = 4-π
与面积成比例
卧室
书房
问题情境3
有一杯1升的水,其中含有 1个细菌,用一个小杯从这 杯水中取出0.1升,求小杯 水中含有这个细菌的概率.
分析:细菌在1升水的杯中任何位置的机会 是等可能的,但细菌所在的位置却是无限 多个的,因而不能利用古典概型。
解:取出0.1升中“含有这个细菌”这
一事件记为A,则
与体积成比例
构成事件A的区域长度(面积或体积) P(A)=
试验的全部结果所构成的区域长度(面积或体积)
取一根长度为3m的绳子,拉直后在任意位置剪断,那 么剪得两段的长度都不小于1m的概率有多大?
记“剪得两段绳长都不小于1m”为事件A. 把绳子三等分,于是当剪断位置处在中间一段上时,事 件A发生.由于中间一段的长度等于1m.

高中数学必修3《古典概型》教案

高中数学必修3《古典概型》教案
画树状图是列举法的基本方法,数形结合和分类讨论思想渗透其中。使学生明白如何列举才能不重不漏,从而突破了没有学习排列组合而学习概率这一教学困惑。
教学设计
教学内容
师生活动
设计意图





思考交流:观察对比5等分转盘摇奖试验、掷硬币试验和例1的试验有什么共同的特点?
(提示:从试验的基本事件的个数和基本事件的概率特点两个方面入手)
古典概型
一、教材分析
教材的地位和作用:本节课是高中数学必修3第三章概率的第二节,古典概型的第一课时。本节课在教材中起着承前启后的作用。古典概型的引入避免了大量的重复试验,而且得到的概率是精确值。古典概型是一种最基本的概率模型,在概率论中占有相当重要的地位。学好古典概型为后续学习几何概型奠定了知识和方法基础,同时有助于理解概率的概念,有利于计算一些事件的概率,并解释生活中的一些概率问题。
3.课堂提问与课后作业为补偿性教学提供依据。
.1任意角
课前预习学案
一、预习目标
1、认识角扩充的必要性,了解任意角的概念,与过去学习过的一些容易混淆的概念相区分;
2、能用集合和数学符号表示终边相同的角,体会终边相同角的周期性;
3、能用集合和数学符号表示象限角;
4、能用集合和数学符号表示终边满足一定条件的角.
由特殊到一般,水到渠成的引出古典概型的定义,从而使学生对古典概型由感性认识上升到理性认识。
三个问题的设计是为了让学生更加准确的把握古典概型的两个本质特征:结果的有限性和等可能性,以突破古典概型识别的难点。其中,问题2破坏了古典概型的等可能性,问题3破坏了古典概型的有限性特征,为后续学习几何概型埋下伏笔。
用动画演示摇奖试验,由教师提出问题。

学而思高中数学概率_古典概型与几何概型.板块二.几何概型.学生版

学而思高中数学概率_古典概型与几何概型.板块二.几何概型.学生版

版块一:古典概型 1.古典概型:如果一个试验有以下两个特征:⑴有限性:一次试验出现的结果只有有限个,即只有有限个不同的基本事件; ⑵等可能性:每个基本事件发生的可能性是均等的.称这样的试验为古典概型.2.概率的古典定义:随机事件A 的概率定义为()P A =A 事件包含的基本事件数试验的基本事件总数. 版块二:几何概型几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型.几何概型中,事件A 的概率定义为()A P A μμΩ=,其中μΩ表示区域Ω的几何度量, A μ表示区域A 的几何度量.题型一:一维情形 【例1】 在区间[010],中任意取一个数,则它与4之和大于10的概率是______.【例2】 在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为( )A .56B .12C .13D .16【例3】 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为( )知识内容典例分析板块二.几何概型A .12 B .13 C .14 D .23题型二:二维情形【例4】 (2010东城一模)某人向一个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( )A .113B .19C .14D .12【例5】 (2010西城一模)在边长为1的正方形ABCD 内任取一点P ,则点P 到点A 的距离小于1的概率为 .【例6】 (2010丰台二模)一个正三角形的外接圆的半径为1,向该圆内随机投一点P ,点P 恰好落在正三角形外的概率是_________.【例7】 (2010东城二模)在直角坐标系xOy 中,设集合{}(,)01,01x y x y Ω=≤≤≤≤,在区域Ω内任取一点(,)P x y ,则满足1x y +≤的概率等于 .【例8】 (2010丰台二模)已知(){},|6,0,0x y x y x y Ω=+≤≥≥,{}(,)4,0,20A x y x y x y =-≤≥≥.若向区域Ω上随机投一点P ,则点P 落入区域A 的概率是_________.【例9】 (2010崇文二模)在平面直角坐标系xOy 中,平面区域W 中的点的坐标(,)x y 满足225x y +≤,从区域W 中随机取点(,)M x y .⑴若x ∈Z ,y ∈Z ,求点M 位于第四象限的概率;⑵已知直线:(0)l y x b b =-+>与圆22:5O x y +=15,求y x b -+≥的概率.【例10】 (2010丰台二模)设集合{}1,2,3P =和{}1,1,2,3,4Q =-,分别从集合P 和Q 中随机取一个数作为a 和b 组成数对(),a b ,并构成函数()241f x ax bx =-+.⑴ 写出所有可能的数对(),a b ,并计算2a ≥,且3b ≤的概率;⑵ 求函数()f x 在区间[)1,+∞上是增函数的概率.【例11】 (2010宣武二模)口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5.甲先摸出一个球,记下编号为a ,放回袋中后,乙再摸一个球,记下编号为b .⑴ 求“6a b +=”的事件发生的概率;⑵ 若点(),a b 落在圆2221x y +=内,则甲赢,否则算乙赢,这个游戏规则公平吗?试说明理由.【例12】 已知椭圆22221(0)x y a b a b+=>>及内部面积为πS ab =,12A A ,是长轴的两个顶点,12B B ,是短轴的两个顶点,点P 是椭圆及内部的点,则12PA A ∆为钝角三角形的概率为_____,12PB B ∆为钝角三角形的概率为______,12PB B ∆为锐角三角形的概率为________,12PB B ∆为直角三角形的概率为_____.【例13】 已知集合{}420135A =--,,,,,,在平面直角坐标系中,点()M x y ,的坐标x A ∈,y A ∈.计算:⑴ 点M 正好在第二象限的概率;⑵ 点M 不在x 轴上的概率;⑶点M正好落在区域80x yxy+-<⎧⎪>⎨⎪>⎩上的概率.【例14】如右下图,在一个长为π,宽为2的矩形OABC内,曲线()sin0πy x x=≤≤与x 轴围成如图所示的阴影部分,向矩形OABC内随机投一点(该点落在矩形OABC内任何一点是等可能的),则所投的点落在阴影部分的概率是()y=sin x2πCBAOyxA.1πB.2πC.3πD.π4【例15】如图,在边长为25的正方形中挖去边长为23的两个等腰直角三角形,现有均匀的粒子散落在正方形,问粒子落在中间带形区域的概率是多少?【例16】在圆心角为150°的扇形AOB中,过圆心O作射线交弧AB︵于P,则同时满足:45AOP∠≥°且75BOP∠≥°的概率为.【例17】(2009福建文)点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧︵AB 的长度小于1的概率为.【例18】 设A 为圆周上一定点,在圆周上等可能的任取一点P 与A 连结,求弦长超过半径3【例19】 (08江苏)在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投的点落入E 中的概率是 .【例20】 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率( )A .2π B .π2π- C 2 D .π4【例21】 向面积为S 的ABC ∆内任投一点P ,则随机事件“PBC ∆的面积小于3S ”的概率为多少?【例22】 如图,60AOB ∠=°,2OA =,5OB =,在线段OB 上任取一点C ,试求:C E DBO A⑴AOC ∆为钝角三角形的概率;⑵AOC ∆为锐角三角形的概率.【例23】 把一根长度为6的铁丝截成3段.⑴若三段的长度均为整数,求能构成三角形的概率;⑵若截成任意长度的三段,求能构成三角形的概率.【例24】 小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率.【例25】 甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一个人一刻钟,过时即离去,求两人能会面的概率.【例26】 在区间[11]-,上任取两实数a b ,,求二次方程2220x ax b ++=的两根都为实数的概率.【例27】 (2010海淀一模)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和. ⑴若某位顾客消费128元,求返券金额不低于30元的概率;⑵若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X (元).求随机变量X 的分布列和数学期望.【例28】 (2010石景山一模)如图,两个圆形转盘,A B ,每个转盘阴影部分各占转盘面积的12和14.某“幸运转盘积分活动”规定,当指针指到,A B 转盘阴影部分时,分别赢得积分1000分和2000分.先转哪个转盘由参与者选择,若第一次赢得积分,可继续转另一个转盘,此时活动结束;若第一次未赢得积分,则终止活动.⑴记先转A转盘最终所得积分为随机变量X,则X的取值分别是多少?⑵如果你参加此活动,为了赢得更多的积分,你将选择先转哪个转盘?请说明理由.题型三:三维情形【例29】(2010朝阳一模)一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是()A.18B.116C.127D.38【例30】设正四面体ABCD的体积为V,P是正四面体ABCD的内部的点.①设“14P ABCV V-≥”的事件为X,求概率()P X;②设“14P ABCV V-≥且14P BCDV V-≥”的事件为Y,求概率()P Y.。

《古典概型》教案

《古典概型》教案

《古典概型》教学设计一、教材分析本节课是人教A版高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型能够为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

二、教学目标1.知识与技能(1)理解基本领件的特点;(2)通过实例,理解古典概型及其概率计算公式;(3)会用列举法计算一些随机事件所含的基本领件数及事件发生的概率。

2.过程与方法根据本节课的内容和学生的实际水平,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,表达了化归的重要思想,掌握列举法,学会使用数形结合、分类讨论的思想解决概率的计算问题。

3.情感态度与价值观概率教学的核心问题是让学生理解随机现象与概率的意义,增强与实际生活的联系,以科学的态度评价身边的一些随机现象。

适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型相关的实例。

使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。

三、重点、难点重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本领件的个数和试验中基本领件的总数。

四、教学过程教学环节教学内容师生互动设计意图以境激情试验1:掷一枚质地均匀的硬币,观察出现哪几种结果?(见课件)试验2:抛掷一颗均匀的骰子一次,观察出现的点数有哪几种结果?1.基本领件的概念一次试验可能出现的每一个结果称为一个基本领件。

如:试验1中的“正面朝上”、“正面朝下”;试验2中的出现“1点”、“2点”、“3点”、“4点”、“5点”、“6点”教师创设情境,为导入新知做准备。

概率问题常见解题方法

概率问题常见解题方法

概率问题常见解题方法作为<<概率统计>>这门应用数学的重要分支之一,概率问题在中学数学中越来越得到重视,也是近年高考的热点。

在高中数学新教材中,必修三和理科的选修课本中重点介绍了等可能事件的概率(即古典概型)、几何概型、条件概率、互斥事件有一个发生的概率、相互独立的事件同时发生的概率(包括n 次独立重复试验)。

高考中对概率的考查主要以大题形式出现,重点在分布列问题与其他章节内容相结合,但始终离不开各种概率的求法。

因此要让学生正确理解概率发生的条件,并掌握一些基本的概率“模型”及其解题方法。

一、公式法 概率部分有四个主要的公式(1)等可能事件发生的概率P (A )=nm (2)互斥事件有一个发生的概率 P (A+B )= P (A )+ P (B ) (3)相互独立事件同时发生的概率P (A ·B )= P (A )·P (B ) (4)独立重复试验概率公式k k n k n P C P =)((1―P)k n -,应用这些公式的关键在于正确理解公式成立的条件。

例1:猎人在距100米处射击一野兔,其命中率为21,如果第一次射击未中,则猎人进行第二次射击,但距离为150米,如果第二次未击中,则猎人进行第三次射击,并且在发射瞬间距离为200米,已知猎人命中概率与距离平方成反比,求猎人命中野兔的概率。

解:记三次射击为事件A 、B 、C 其中P (A )=21 由21= P (A )=50001002=⇒K K ∴ P (B )=9215050002= P (C )=8120050002= ∴命中野兔的概率为:P (A )+P (A ·B )+ P (A ·B ·C )=14495 二、组合分析法对于等可能的事件,我们可以利用组合分析法来计算其概率,其关键是寻求等可能事件的总数和事件的发生数。

例2:设有n 个人,每个人都等可能地被分配到N 个房间中的任意一间去住(n ≤N ),求下列事件的概率(1)指定的n 个房间各有一个人住(2)恰好有n 个房间,其中各住一人解:∵每个人有N 个房间可供选择,所以n 个人住的方式共有 N n 种,它们是等可能的,∴(1)指定n 个房间各有一个人住记作事件A :可能的总数为n !则 P (A )=nN n ! (2)恰好有n 个房间其中各住一人记作事件B ,则这n 个房间从N 个房间中任选共有n N C 个, 由(1)可知:P (B )=n n N Nn C ! 三、间接法某些概率问题,正面求解,不是很容易,特别当问题中出现至多(至少)等条件时,可采用间接方法转化为“对立事件”来求解例3:已知某种高炮在它控制的区域内击中敌机制概率为0.2(1)假定有5门这种高炮控制某区域,求敌机进入该区域后被击中的概率。

高中数学必修3第三章概率全章复习

高中数学必修3第三章概率全章复习

⾼中数学必修3第三章概率全章复习概率全章复习⼀、基础知识梳理(⼀)随机事件的概率随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,⼀定会发⽣的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S 下,⼀定不会发⽣的事件,叫相对于条件S 的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发⽣也可能不发⽣的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某⼀事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数;称事件A 出现的⽐例nn A f An)(为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发⽣的频率)(A f n 稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发⽣的次数A n 与试验总次数n 的⽐值nn A,它具有⼀定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越⼩。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发⽣的可能性的⼤⼩。

频率在⼤量重复试验的前提下可以近似地作为这个事件的概率概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B 为不可能事件,即A∩B=ф,那么称事件A 与事件B 互斥;(3)若A∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对⽴事件;(4)当事件A 与B 互斥时,满⾜加法公式:P(A ∪B)=P(A)+P(B);若事件A 与B 为对⽴事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+P(B)=1,于是有P(A)=1—P(B) 2、概率的基本性质:(1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; (2)当事件A 与B 互斥时,满⾜加法公式:P(A ∪B)=P(A)+P(B);(3)若事件A 与B 为对⽴事件,则A ∪B 为必然事件,所以P(A ∪B)=P(A)+ P(B)=1,于是有P(A)=1—P(B); (4)互斥事件与对⽴事件的区别与联系,互斥事件是指事件A 与事件B 在⼀次试验中不会同时发⽣,其具体包括三种不同的情形:(1)事件A 发⽣且事件B 不发⽣;(2)事件A 不发⽣且事件B 发⽣;(3)事件A 与事件B 同时不发⽣,⽽对⽴事件是指事件A 与事件B 有且仅有⼀个发⽣,其包括两种情形;(1)事件A 发⽣B 不发⽣;(2)事件B 发⽣事件A 不发⽣,对⽴事件互斥事件的特殊情形。

人教A版高中数学必修三3-3-1 几何概型

人教A版高中数学必修三3-3-1 几何概型

[归纳总结] 几何概型的两个特点,一是无限性,即在 一次试验中,基本事件的个数可以是无限的;二是等可能 性,即每一个基本事件发生的可能性是均等的.
(2)计算公式. 在几何概型中,事件A的概率的计算公式是:
构成事件A的区域长度或面积或体积 P(A)= 试验的全部结果构成的区域长度或面积或体积 .
[破疑点] 几何概型的概率计算公式中的“长度”并不 是实际意义上的长度,它的意义取决于试验的全部结果构成 的区域,当区域分别是线段、平面图形和几何体时,相应的 “长度”分别是线段的长度、平面图形的面积和几何体的体 积.
[特别提醒] 解几何概型问题时,常常需要寻找不等关 系.要找不等关系,先找等量关系,再借助图形分析寻找不 等关系.
取一根长度为3 m的绳子,拉直后在任意位置剪 断,那么剪得两段的长度都不小于1 m的概率是多少?
[分析] 从每一个位置上剪断绳子,都是一个基本事件, 剪断位置可以是长度为3 m的绳子上的任意一点,基本事件有 无穷多个,而且每一个基本事件的发生是等可能的,因此事 件发生的概率只与剪断位置所处的绳子的长度有关,符合几 何概型的条件.
(4,3),(4,4)共16种.能使
x y
为整数的有(1,1),(2,1),(2,2),
(3,1),(3,3),(4,1),(4,2),(4,4)8种,
∴xy为整数的概率为186=12.
新课引入
数学与我们的生活密切相关,我们最好能将学到的数学 知识用到生活中,更加可贵的是,同学们能主动发现生活中 的问题,然后再考虑用什么数学知识来解决,遇到没学过的 知识还能积极探索!
记等车时间大于10分钟为事件A,则当乘客到达车站的 时刻t落在线段T1T上时,事件A发生,区域T1T2的长度为15, 区域T1T的长度为5.所以P(A)=TT11TT2的的长长度度=155=13.

高中数学必修3第三章:概率3.2古典概型

高中数学必修3第三章:概率3.2古典概型

验,如果这2个元素没有顺序,那么这次试验共有
nn-1 2

基本事件;如果这2个元素有顺序,那么这次试验有n(n-1)
个基本事件.可以作为结论记住(不要求证明),在选择题或
填空题中可以直接应用.
计算基本事件个数的常用法
1.列举法 列举法也称枚举法.对于一些情境比较简单,基本事件 个数不是很多的概率问题,计算时只需一一列举即可得出随 机事件所含的基本事件数.但列举时必须按一定顺序,做到 不重不漏.
球,d,e为黑球.
列表如下:
a
b
c
d
e
a
(a,b) (a,c) (a,d) (a,e)
b (b,a)
(b,c) (b,d) (b,e)
c (c,a) (c,b)
(c,d) (c,e)
d (d,a) (d,b) (d,c)
(d,e)
e (e,a) (e,b) (e,c) (e,d)
由于每次取两个球,每次所取两个球不相同,而摸(b,a) 与(a,b)是相同的事件,故共有10个基本事件.
新课引入 “三门问题”是美国一个经典的电视游戏节目,内容如 下:现有三扇门,其中一扇后面有一辆汽车,另外两扇门后 各有一只羊,参赛者选中车门就得车,选中羊门就得羊,首 先参赛者选一扇门,然.后主持人故意打开剩下两门中的一 扇羊门(主持人知道车在何处),接着主持人给参赛者选择机 会,是坚持原门还是换另一扇门?
[解析] 第1个概率模型不是古典概型,因为从区间[1,10] 内任意取出一个数,有无数个对象可取,所以不满足“有限 性”.
第2个概率模型是古典概型,因为试验结果只有10个, 而且每个数被抽到的可能性相等,即满足有限性和等可能 性;
第3个概率模型不是古典概型,而是以后将学的几何概 型;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

古典概型与几何概型
1.1基本事件的特点
①任何两个基本事件都是互斥的;
②任何事件(除不可能事件)都可以表示成基本事件的和. 1.2古典概型 1.2.1古典概型的概念
我们把具有:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等,两个特点的概率模型称为古典概率模型,简称为古典概型. 1.2.2古典概型的概率公式:
如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是
n
1
,如果某个事件A 包含的结果有m 个基本事件,那么事件A 的概率()n
m A P =
. 1.3几何概型
1.3.1几何概型的概率公式:
在几何概型中,事件A 的概率的计算公式如下:
()积)
的区域长度(面积或体实验的全部结果所构成积)
的区域长度(面积或体构成事件A =
A P
1.从长度为1,3,5,7,9五条线段中任取三条能构成三角形的概率是( )
A .
2
1 B .
10
3 C .
5
1 D .
5
2 2.甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为( )
A .
12
B .13
C .
14 D .16
3.袋中有白球5只,黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为( )
A .
11
1
B .
33
2 C .
33
4 D .
33
5 4.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子
朝上的面的点数分别为X ,Y ,则1log 2=Y X 的概率为( )
A .
6
1
B .
36
5 C .
121 D .2
1
5.在正四面体的6条棱中随机抽取2条,则其2条棱互相垂直的概率为( )
A .3
4
B .23
C .1
5
D .13
6.将8个参赛队伍通过抽签分成A 、B 两组,每组4队,其中甲、乙两队恰好不在同组的概率为( )
A .
7
4 B .
2
1 C .
7
2 D .
5
3 7.将4名队员随机分入3个队中,对于每个队来说,所分进的队员数k 满足0≤k ≤4,假设各种方法是等可能的,则第一个队恰有3个队员分入的概率是( )
A .
81
16 B .
81
21 C .
81
8 D .
81
24 8.取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率 为( )
A .

B .
2
ππ
- C .
2
π
D .
4
π 9.如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )
A .49
B .29
C .
23
D .13
10.在腰长为2的等腰直角三角形内任取一点,使得该点到此三角形的直角顶点的距离不大于1的概率是( )
A .
π
16
B .
π8
C .
π4
D .
π2
11.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。

在扇形
OAB 内随机取一点,则此点取自阴影部分的概率是( )
A .
π1
21- B .
π1
C .π
2
1-
D .π
2
12.在正方形ABCD 内任取一点P ,则使90APB ∠<°的概率是( )
A .
π8
B .
π4
C .π18
-
D .π14
-
14.已知集合A ={1,2,3},B ={7,8},现从A ,B 中各取一个数字,组成无重复数字的二位数,在这些二位数中,任取一个数,则恰为奇数的概率为 .
9
8
7321
7
54
3
21
15.在所有的两位数(10~99)中,任取一个数,则这个数能被2或3整除的概率是.16.某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为.
17.若以连续掷两次骰子分别得到的点数m、n作为P点的坐标,则点P落在圆x2+y2=16内的概率是_________.
18.在半径为3的球内随机取一个点,则这个点到球面的距离大于1的概率为________.19.利用计算机产生0~1之间的均匀随机数a,则事件“3a-1>0”发生的概率为________.20.考虑一元二次方程x2+mx+n=0,其中m,n的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率.
20.如图,在等腰三角形ABC中,∠B=∠C=30°,求下列事件
的概率:
(1)在底边BC上任取一点P,使BP<AB;
(2)在∠BAC的内部任作射线AP交线段BC于P,使BP<AB.
21.甲.乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.。

相关文档
最新文档