高考数学 17.2 古典概型与几何概型

合集下载

古典概型与几何概型的异同点

古典概型与几何概型的异同点

古典概型与几何概型的异同点一、背景和定义1. 古典概型:基于等可能性的最直观概率模型。

若一个试验只有有限个基本事件,且每个基本事件发生的可能性相同,则该试验称为古典概型。

2. 几何概型:当试验的可能结果不是有限可数时,或者每个结果发生的可能性不都是相等的,这时候就需要用到几何概型。

它是基于长度、面积、体积等几何量与概率的结合。

二、相同点1. 两者都是概率模型,用于描述随机试验中各种结果出现的可能性。

2. 在每种模型下,每个基本事件(或样本点)的概率都是非负的,并且它们的和都等于1。

三、不同点1. 试验的基本事件数量:古典概型是有限可数的,而几何概型则可能无限不可数。

2. 概率的定义方式:在古典概型中,概率是基于等可能的假设来定义的。

而在几何概型中,概率是通过与某个几何量(如长度、面积、体积等)的关联来定义的。

3. 概率的计算方法:在古典概型中,概率通常是直接计算基本事件的数量来得到。

而在几何概型中,概率的计算可能需要使用几何知识,如长度、面积或体积等。

4. 适用范围:古典概型适用于具有有限个等可能结果的情况,例如掷骰子、抽签等。

而几何概型适用于试验结果连续且无限的情况,例如在一定范围内的随机落点、随机选择一条线段上的点等。

5. 公平性:古典概型假定每个基本事件的发生是公平的,即每个基本事件的概率都是相等的。

而几何概型中,公平性的概念可能不那么直观,因为基本事件的发生可能与空间的分布有关。

6. 概率的取值:在古典概型中,概率的取值是离散的,通常是0或1。

而在几何概型中,概率的取值是连续的,可以在0到1之间任意取值。

7. 问题的复杂性:对于一些复杂的问题,如复杂的多因素决策问题,可能需要考虑更复杂的概率模型,而不仅仅是古典概型或几何概型。

四、例子1. 古典概型例子:抛掷一枚硬币,正面朝上或反面朝上的概率都是0.5;从一副扑克牌中抽取一张牌,每种花色的概率都是1/4。

这些例子都是基于等可能的假设,每个基本事件的发生概率都是相等的。

考点2,古典概型与几何概型

考点2,古典概型与几何概型

考点二 古典概型与几何概型考点要揽◆理解古典概型及其概率计算公式,理解几何概型的意义。

◆会计算一些随机事件所包含的基本事件及事件发生的概率。

◆了解随机数的意义,能用模拟方法估计概率。

命题趋向◆古典概型经常与排列、组合知识交汇命题,多以选择题、填空题的形式出现,重点考查古典概型公式,利用列举法、树状图、分类讨论的思想解决古典概型问题是重点,也是难点。

◆几何概型多与选择题、填空题的形式出现,属容易题,经常与线性规划、不等式求解、方程的根所在的区间等知识交汇命题,重点考查几何概型概率的求法。

备考策略◆系统掌握有关概念◆熟练掌握几何概型的概率计算的几种类型一、古典概型(一)基本事件的特点1.任何两个基本事件都是互斥的.2.任何事件(除不可能事件)都可以表示成基本事件的和.(二)古典概型概念我们把具有:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等,两个特点的概率模型称为古典概率模型,简称为古典概型. 理解总结古典概型的概率公式:如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个基本事件,那么事件A 的概率()nm A P =. 高考导航例1 袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)取出的两球都是白球;(2)取出的两球1个是白球,另1个是红球.解题思路首先应求出任取两球的基本事件的总数,然后需分别求出事件:取出的两球都是白球的总数和事件:取出的两球1个是白球,而另1个是红球的总数,套用公式求解即可.解析:设4个白球的编号为1、2、3、4,2个红球的编号为5、6,从袋中的6个小球中任取两个方法为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.(1)从袋中的6个球中任取两个,所取的两球全是白球的方法总数,即是从4个白球中任取两个的方法总数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4), (3,4). ∴取出的两个球全是白球的概率为521561==P . (2)从袋中的6个球中任取两个,其中一个红球,而另一个为白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8个.∴取出的两个球一个是白球,另一个是红球的概率为1582=P . 例2 把一颗骰子投掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,已知方程组⎩⎨⎧=+=+,22,3y x by ax 解答下列各题: (1)求方程组只有一个解的概率;(2)求方程组只有正数解的概率.解析:事件()b a ,的基本事件有6×6=36(个).由方程组⎩⎨⎧=+=+,22,3y x by ax 可得()⎩⎨⎧-=--=-,32)2(,262a y b a b x b a (1) 方程组只有一个解,需满足02≠-a b ,即a b 2≠,而a b 2=的事件有(1,2),(2,4),(3,6),共3个,故a b 2≠的事件有33个,所以方程组只有一个解的概率为12113633==P (2)方程组只有正数解,需a b 2≠且⎪⎩⎪⎨⎧>--=>--=,0232,0226b a a y b a b x 即⎪⎩⎪⎨⎧<>>3232b a b a 或⎪⎩⎪⎨⎧><<3232b a b a 包含的事件有13个:(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(1,5),(1,6).因此,所求的概率为3613. 二、几何概型(一)几何概型的定义:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.(二) 几何概型的特点:1.无限性:在每次随机试验中,不同的试验结果有无穷多个,即基本事件有无限多个;2.等可能性:在这个随机试验中,每个试验结果出现的可能性相等,即基本事件发生是等可能的.理解总结几何概型的概率计算公式:在几何概型中,事件A 的概率的计算公式如下:()积)的区域长度(面积或体实验的全部结果所构成积)的区域长度(面积或体构成事件A =A P . 高考导航例1 (1)如图,在一个长为π,宽为2的矩形OABC 内,曲线()π≤≤=x x y 0sin 与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是 ( )(A) π1. (B) π2. (C) 4π. (D) π3.(2)有一段长为10米的木棍,现要截成两段,则每段不小于3米的概率是 . 解题思路(1)用定积分计算出图中阴影部分的面积,再计算出矩形的面积,利用几何概型公式计算.(2)从该题可以看出,我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样.而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解.解析: (1) 20cos cos cos sin 00=+-=-=⎰πππx xdx ,而矩形的面积为π2 ∴所投的点落在阴影部分的概率是ππ122=,故选A (2)记“剪得两段都不小于3米”为事件A ,从木棍的两端各度量出3米,这样中间就有10-3-3=4(米).在中间的4米长的木棍处剪都能满足条件,所以()4.0104103310==--=A P . 例2 如图,设T 是直线1-=x ,2=x 与函数2+=x y 的图象在x 轴上方围成的直角梯形区域, S 是T 内函数2x y =图象下方的点构成的区域(图中阴影部分).向T 中随机投一点,则该点落入S 中的概率为 ( )(A) 51. (B) 52. (C) 31. (D) 21.(2)某公共汽车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,则乘客候车时间不超过6分钟的概率是 .解题思路解析:(1) 331213212===--⎰x dx x S s ,()21534121=⨯+=r S ,522153==P ,故选B . (2)设上辆车于时刻1T 到达,而下辆车于时刻2T 到达,则线段21T T 的长度为10,设T 是线段21T T 上的点,且2TT 的长为6,记“等车时间不超过6分钟”为事件A ,则事件A 发生即当点t 落在线段2TT 上,即D =21T T =10,d =2TT =6.所以()53106===D d A P故乘客候车时间不超过6分钟的概率为53. 迁移应用1、(2011·浙江卷理科)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地抽取并排摆放在图书架的同一层上,则同一科目的书都不相邻的概率是( )(A )51 (B )52 (C )53 (D )54 2、(2011·安徽卷文科)从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )(A )101 (B )81 (C )61 (D )51 3、(2012·湖北卷文科)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。

湖南师大 高三数学 古典概型和几何概型复习课件 文

湖南师大 高三数学 古典概型和几何概型复习课件 文
P(A )A 包 含 基 的 本 基 事 本 件 事 的 件 总 的 数 个 数 .
3、几何概型 (1)定义:如果每个事件发生的概率 只与构成该事件区域的长度(面积或 体积)成比例,则称这样的概率模型 为几何概率模型,简称为几何模型.
(2)在几何概型中,事件A的概率 的计算公式如下:
P (A ) 试 验 的 构 全 成 部 事 结 件 果 A 的 构 区 成 域 的 长 区 度 域 ( 长 面 度 积 ( 或 面 体 积 积 或 ) 体 积 ) .
谢谢观赏
You made my day!
我们,还在路上……
几何概型与古典概型的异同
几何概型与古典概型是最为接近的一种概率 模型,二者的共同点是基本事件是等可能的 ,不同点是基本事件数一个是无限的,一个 是有限的.基本事件可以抽象为点, 对于几何概型,这些点尽管是无限的,但它 们所占据的区域是有限的,根据等可能的位 置和形状无关,因此我们采用几何的办法求 它的概率.
4
17
4
9.(1) 3 ;(2) ① 略 ② 2
5
5
10 .(1)略;(2) 1 .
8
11. (1) 有关 ;(2) 3 57;(5 3)2
5
类型II 几何概型
P (A ) 试 验 的 构 全 成 部 事 结 件 果 A 的 构 区 成 域 的 长 区 度 域 ( 长 面 度 积 ( 或 面 体 积 积 或 ) 体 积 ) .
1、基本事件的特点 (1)任何两个基本事件是互斥的. (2)任何事件(除不可能事件)
都可能表示成基本事件的和.
2、古典概型 (1)定义:具有以下两个特点的概率 模型称为古典概率模型,简称古典概型; ①试验中所有可能出现的基本事件只有

高中数学古典概型与几何概型

高中数学古典概型与几何概型

邻边长分别等于线段 AC,CB 的长,则该矩形的面积大于 20 cm2
的概率为
()
A.16
B.13
C.23
D.45
[解析] 设|AC|=x,则|BC|=12-x,所以 x(12-x)>20, 解得 2<x<10,故所求概率 P=101-2 2=23.
[答案] C
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
解析:依题意,将一颗骰子先后投掷两次得到的点数所形成
的数组(a,b)有(1,1),(1,2),(1,3),…,(6,6),共 36 个,其 中满足直线 ax+by=0 与圆(x-2)2+y2=2 有公共点,即满足
a22+a b2≤ 2,即 a2≤b2 的数组(a,b)有(1,1),(1,2),(1,3),
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
古典概型与几何概型 结 束
解:用(x,y)(x 表示甲摸到的数字,y 表示乙摸到的数字)表示 甲、乙各摸一球构成的基本事件,则基本事件有:(1,1),(1,2), (1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1), (3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5), (5,1),(5,2),(5,3),(5,4),(5,5),共 25 个.(1)设甲获胜的事 件为 A,则事件 A 包含的基本事件有:(2,1),(3,1),(3,2),(4,1), (4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共 10 个. 则 P(A)=1205=25.
构成的四边形是梯形的概率 P=165=25. 答案:B

古典概率与几何概率的区别

古典概率与几何概率的区别

古典概型和几何概型的意义和主要区别在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,有利于从事相应的教学。

几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,这两种概型,在初中阶段都呈现了出来,作为教师,理解古典概型和几何概型的意义和主要区别,有利于培养学生的建模能力、逻辑推理能力和空间观念,下面我就两种概型的意义、两种概型的主要区别以及怎样应用它们发展学生的诸多能力加以简单介绍。

一、古典概型和几何概型的意义(一).几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.1.几何概型的特点:(1)试验中所有可能出现的基本事件有无限多个.(2)每个基本事件出现的可能性相等.2.几何概型求事件A的概率公式:P(A)=构成事件A的区域长度(面积或体积)/ 实验的全部结果所构成的区域长度(面积或体积)(二)古典概型的意义大家都很熟知,此处不在介绍1. 古典概型的特点:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.2. 古典概型求事件A的概率公式:P(A)=事件A可能发生的结果数/实验发生的所有等可能的结果数二. 古典概型与几何概型的主要区别几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子。

三.利用不同概率模型,培养学生的建模能力及实际应用能力(一)结合实例进行建模题组一:情境1、抛掷两颗骰子,求出现两个“6点”的概率情景2、1号口袋中装有两只红球一只白球,2号口袋中装有一只红球一只白球,这些球处颜色不同外,其他都相同,小明从两个袋各摸一球,问摸出的两球异色的概率是多少?情景3、一口袋中装有3只红球2只白球,小明从口袋里摸出一球放回去,摇匀后,在摸出一球,问两次摸出的球为异色的概率是多少?情景4、一口袋中装有3只红球2只白球,小明从口袋里一次摸出2球,问两球异色的概率是多少?说明:第一组题是古典概型,(1)通过解题让学生从多角度理解古典概型的特征;(2)通过作树状图,让学生领略各题之间存在的不同;(3)体会应用古典概型解决实际问题时应注意的事项(如:元素是否重复利用、元素间有无顺序;实验出现的结果确保等可能性)。

高考数学一轮复习专题训练—古典概型与几何概型

高考数学一轮复习专题训练—古典概型与几何概型

古典概型与几何概型考纲要求1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率;3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义.知识梳理1.古典概型 (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(3)古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.2.几何概型 (1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的两个基本特点(3)几何概型的概率公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法.2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)概率为0的事件一定是不可能事件.()答案(1)×(2)×(3)√(4)×解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),概率为0的事件有可能发生,所以(4)不正确.2.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( ) A.25 B .415C .35D .非以上答案答案 A解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p =615=25. 3.如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________.答案 0.6解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S4≈30200,∴S ≈0.6.4.(2020·全国Ⅰ卷)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B .25C .12D .45答案 A解析 从O ,A ,B ,C ,D 这5个点中任取3点,取法有{O ,A ,B },{O ,A ,C },{O ,A ,D },{O ,B ,C },{O ,B ,D },{O ,C ,D },{A ,B ,C },{A ,B ,D },{A ,C ,D },{B ,C ,D },共10种,其中取到的3点共线的只有{O ,A ,C },{O ,B ,D }这2种取法,所以所求概率为210=15.故选A.5.(2019·全国Ⅲ卷)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B .14C.13 D .12答案 D解析 设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.6. (2021·郑州模拟)公元前5世纪下半叶,希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自阴影部分的概率是________.答案π+68π+4解析 上方阴影部分的面积等于△AOB 的面积,S △AOB =12×2×2=2,下方阴影部分面积等于14×π×22-⎣⎡⎦⎤14×π×22-12×2×2=π2+1,所以根据几何概型概率公式得所求概率P =2+π2+14π+2=π+68π+4.考点一 古典概型的简单计算1.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B .35C .25D .15答案 B解析 设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.2.(2021·安徽江南十校质量检测)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A.15 B .13C .35D .23答案 A解析 6拆成两个正整数的和的所有基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的为(3,3),所以所求概率为15,故选A.3.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________. 答案 19解析 列表如下:1 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112点数的和共有点数和为5的概率P =436=19.感悟升华 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. 考点二 古典概型与其他知识的简单交汇【例1】 (1)(2020·郑州一模)已知集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任取k ∈A ,则幂函数f (x )=x k 为偶函数的概率为________(结果用数值表示).(2)(2021·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________. 答案 (1)14 (2)12解析 (1)集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任意k ∈A 的基本事件总数为8,当k =±2时,幂函数f (x )=x k 为偶函数,从而幂函数f (x )=x k 为偶函数包含的基本事件个数为2,∴幂函数f (x )=x k 为偶函数的概率p =14.(2)∵m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p=36=12. 感悟升华 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【训练1】 设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( ) A.18 B .14C .13D .12答案 A解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ⊥(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.考点三 古典概型与统计的综合应用【例2】 某城市100户居民的月平均用电量(单位:千瓦时)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[240,260),[260,280),[280,300]的三组用户中,用分层抽样的方法抽取6户居民,并从抽取的6户中任选2户参加一个访谈节目,求参加节目的2户来自不同组的概率.解 (1)由(0.002 0+0.009 5+0.011 0+0.012 5+x +0.005 0+0.002 5)×20=1得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002 0+0.009 5+0.011 0)×20=0.45<0.5, 且(0.002 0+0.009 5+0.011 0+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002 0+0.009 5+0.011 0)×20+0.012 5×(a -220)=0.5,解得a =224, 所以月平均用电量的中位数是224.(3)月平均用电量为[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量为[260,280)的用户有0.005×20×100=10(户), 月平均用电量在[280,300]的用户有0.002 5×20×100=5(户).抽样方法为分层抽样,在[240,260),[260,280),[280,300]中的用户比为3∶2∶1, 所以在[240,260),[260,280),[280,300]中分别抽取3户、2户和1户.设参加节目的2户来自不同组为事件A ,将来自[240,260)的用户记为a 1,a 2,a 3,来自[260,280)的用户记为b 1,b 2,来自[280,300]的用户记为c 1,在6户中随机抽取2户有(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a3,c1),(b1,b2),(b1,c1),(b2,c1),共15种取法,其中满足条件的有(a1,b1),(a1,b2),(a1,c1),(a2,b1),(a2,b2),(a2,c1),(a3,b1),(a3,b2),(a3,c1),(b1,c1),(b2,c1),共11种,故参加节目的2户来自不同组的概率P(A)=1115.感悟升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型.概率与统计的结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出的信息,准确从题中提炼信息是解题的关键.【训练2】海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为6300=1 50,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415.即这2件商品来自相同地区的概率为415.考点四 几何概型角度1 与长度(角度)有关的几何概型【例3】 (1)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215B .715C .35D .1115(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.答案 (1)D (2)34解析 (1)因为f (x )=-x 2+mx +m 的图象与x 轴有公共点,所以Δ=m 2+4m ≥0,所以m ≤-4或m ≥0,所以在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率p =[-4--6]+9-09--6=1115. (2)过点C 作CN 交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠ACN 内时,AM <AC ,又∠A =45°,所以∠ACN =67.5°,故所求概率为p =67.5°90°=34.感悟升华 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 角度2 与面积有关的几何概型【例4】 在区间(0,1)上任取两个数,则两个数之和小于65的概率是( )A.1225 B .1625C .1725D .1825答案 C解析 设这两个数是x ,y ,则试验所有的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1确定的平面区域,满足条件的事件包含的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1,x +y <65确定的平面区域,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫452=1725,所以这两个数之和小于65的概率是1725.感悟升华 几何概型与平面几何的交汇问题:要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率. 角度3 与体积有关的几何概型【例5】 有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 由题意得该圆柱的体积V =π×12×2=2π.圆柱内满足点P 到点O 的距离小于等于1的几何体为以圆柱底面圆心为球心的半球,且此半球的体积V 1=12×43π×13=23π,所以所求概率p =V -V 1V =23.感悟升华 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【训练3】 (1)(2021·西安一模)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( ) A.12B .13C .24D .23(2) (2020·新疆一模)剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上透空的感觉和艺术享受.剪纸艺术通过一把剪刀、一张纸就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A.π64B .π32C .π16D .π8答案 (1)C (2)D解析 (1)圆x 2+y 2=1的圆心为(0,0), 圆心到直线y =k (x +3)的距离为|3k |k 2+1, 要使直线y =k (x +3)与圆x 2+y 2=1相交,则|3k |k 2+1<1,解得-24<k <24. ∴在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为24-⎝⎛⎭⎫-242=24. (2)设黑色小圆的半径为r .由题意得2r +2r +2×2r =1,解得r =18,所以白色区域的面积为π·⎝⎛⎭⎫122-4×π·⎝⎛⎭⎫182-π·⎝⎛⎭⎫142=π8.所以在正方形图案上随机取一点,该点取自白色区域的概率为π81×1=π8.故选D. 基础巩固一、选择题1.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B .14C .34D .0答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.故选A.2.袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数: 343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134 由此可以估计,恰好第三次就停止摸球的概率为( ) A.19 B .16C .29D .518答案 C解析 由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为418=29.故选C.3. (2021·河北六校联考)《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为( )A.a 21-p r 2B .a 21+p r 2C.a1-p rD .a1+p r答案 A解析 由几何概型的概率计算公式,得πr 2-a 2πr 2=p ,化简得π=a 21-p r 2.故选A.4.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( ) A.12 B .13C .34D .25答案 B解析 点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.5.某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15—8:30),一名职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是( )A.23 B .58C .13D .38答案 D解析 该职工在7:50至8:30之间到达单位且到达单位的时刻是随机的,设其构成的区域为线段AB ,且AB =40,职工的有效刷卡时间是8:15到8:30之间,设其构成的区域为线段CB ,且CB =15,如图,所以该职工有效刷卡上班的概率p =1540=38.故选D.6.(2021·合肥质检)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC的概率为( ) A.13 B .49C .827D .1927答案 D解析 作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC, ∴V P -ABC ≤13V S -ABC 的概率p =1-827=1927.二、填空题7.(2020·太原模拟)下课以后,教室里还剩下2位男同学和1位女同学,若他们依次随机走出教室,则第2位走出的是女同学的概率是________.答案 13解析 2位男同学记为男1,男2,则三位同学依次走出教室包含的基本事件有:男1男2女,男1女男2,女男1男2,男2男1女,男2女男1,女男2男1,共6种,其中第2位走出的是女同学包含的基本事件有2种.故第2位走出的是女同学的概率是p =26=13.8.在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 ∵点M 在直角边BC 上是等可能出现的, ∴“测度”是长度.设直角边长为a , 则所求概率为33a a =33.9.(2021·郑州质量预测改编)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故p =212=16.三、解答题10.(2020·成都诊断)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.解(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030.(2)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,故所求概率P(M)=715.11.(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以事件M发生的概率P(M)=1115.能力提升12.(2021·长春质检)我国古人认为宇宙万物是由金、木、水、火、土这五种元素构成的,历史文献《尚书·洪范》提出了五行的说法,到战国晚期,五行相生相克的思想被正式提出.这五种物质属性的相生相克关系如图所示,若从这五种物质中随机选取三种,则取出的三种物质中,彼此间恰好有一个相生关系和两个相克关系的概率为()A.35 B .12C .25D .13答案 B解析 (列举法)依题意,三种物质间相生相克关系如下表,金木水 金木火 金木土 金水火 金水土 金火土 木水火 木水土 木火土 水火土 × √√√×××√×√所以彼此间恰好有一个相生关系和两个相克关系的概率p =510=12,故选B.13.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝⎛⎭⎫-12,32.由几何概型的概率公式,所求概率p =S 四边形OACDS △OAB =2-142=78.14.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.。

古典概型与几何概型

古典概型与几何概型
6
*对应演练*
(1)如图, 在矩形区域ABCD的A, C两点处各有一 个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF(该矩形区域内无其他信号来源, 基站工 作正常). 若在该矩形区域内随机地选一地点, 求该地点无 信号的概率是多少? A. B.
C.
D.
(2)已知棱长为2的正方体有一内切球.若在正方 体内任取一点,求这一点不在球内的概率?
小结
1. 求古典概型的概率的基本步骤为:
(1) 设所求的事件为A;
(2)算出所有基本事件的个数n;
(3)求出事件A包含的所有基本事件数m;
(4)代入公式,求出P(A).
2.几何概型中的三种基本度量为长度、面积和体积, 在解题时要几何概型的区别(基本事件的有限性 和无限性),正确选用几何概型解题.
用图表和列举法解决古典概型问题显得更加直观、 清晰,这种方法可有效地防止重复和遗漏,不失为一种 好的方法,随机试验和事件的结果等都尽收眼底,大家 要好好把握这种方法.
知识点三 几何概型 例2.已知某地铁列车每5分钟一班,在车站停1分钟,求
乘客到达站台立即上车的概率.
【分析】乘客必须在6分钟内的某一时刻到达才能 上车, 或者必须在最后的1分钟内的某一时刻到达才能 立即上车,乘客在某一时刻到达站台都是一个基本事件, 而这基本事件是无限的,于是不能用古典概型计算,应考 虑用几何概型计算.
知识点一 基本事件辨析 判断下列试验是否为古典概型
(1)种下一粒种子观察它是否会发芽;
(2)从直径为250mm~250.6mm的一批合格产品中任意 抽一根,测量其直径d; (3)抛一枚硬币,观察其出现正面或反面向上; (4)某人射击中靶或不中靶;
弄清一次试验的意义以及每个基本事件的含义是解

古典概型和几何概型

古典概型和几何概型

一、古典概型1)基本事件:一次试验中所有可能得结果都就是随机事件,这类随机事件称为基本事件.2)基本事件得特点:①任何两个基本事件就是互斥得;②任何事件(除不可能事件)都可以表示成基本事件得与.3)我们将具有这两个特点得概率模型称为古典概率模型,其特征就是:①有限性:即在一次试验中所有可能出现得基本事件只有有限个。

②等可能性:每个基本事件发生得可能性就是均等得;称这样得试验为古典概型.4)基本事件得探索方法:①列举法:此法适用于较简单得实验.②树状图法:这就是一种常用得方法,适用于较为复杂问题中得基本事件探索。

5)在古典概型中涉及两种不通得抽取放方法,下列举例来说明:设袋中有个不同得球,现从中一次模球,每次摸一只,则有两种摸球得方法:①有放回得抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球得方法称为有放回得抽样,显然对于有放回得抽样,依次抽得球可以重复,且摸球可以无限地进行下去.②无放回得抽样每次摸球后,不放回原袋中,在剩下得球中再摸一只,这种模球方法称为五放回抽样,每次摸得球不会重复出现,且摸球只能进行有限次.二、古典概型计算公式1)如果一次试验中可能出现得结果有个,而且所有结果出现得可能性都相等,那么每一个基本事件得概率都就是;2)如果某个事件包括得结果有个,那么事件得概率.3)事件与事件就是互斥事件4)事件与事件可以就是互斥事件,也可以不就是互斥事件。

古典概型注意:①列举法:适合于较简单得试验。

②树状图法:适合于较为复杂得问题中得基本事件得探求、另外在确定基本事件时,可以瞧成就是有序得,如与不同;有时也可以瞧成就是无序得,如与相同、三、几何概型事件理解为区域得某一子区域,得概率只与子区域得几何度量(长度、面积或体积)成正比,而与得位置与形状无关,满足此条件得试验称为几何概型.四、几何概型得计算1)几何概型中,事件得概率定义为,其中表示区域得几何度量,表示区域得几何度量。

2)两种类型线型几何概型:当基本事件只受一个连续得变量控制时。

17.2 古典概型与几何概型

17.2  古典概型与几何概型

17、概率17.2 古典概型与几何概型【知识网络】1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率。

2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。

【典型例题】[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )A .49B .29C .23D .13(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ()A .61B .365 C .121 D .21 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为()A .56B .12C .13D .16(4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3S”的概率为 .(5)任意投掷两枚骰子,出现点数相同的概率为 .[例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。

[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.[例4]抛掷骰子,是大家非常熟悉的日常游戏了.某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.方案1:总点数是几就送礼券几十元.方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.【课内练习】1. 某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是 ()A .15B .524C .1081D .5122. 盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是红球的概率为P 1,第8个人摸出红球的概率是P 8,则()A .P 8=18P 1B .P 8=45P 1 C .P 8=P 1D .P 8=03. 如图,A 、B 、C 、D 、E 、F 是圆O 的六个等分点,则转盘指针不落在阴影部分的概率为( )A .12B .13C .23D .144. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为()A .12B .13C .14D .235. 一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单位,设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为 .6. 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为 .7. 在圆心角为150°的扇形AOB 中,过圆心O 作射线交AB 于P ,则同时满足:∠AOP ≥45°且∠BOP ≥75°的概率为 .8. 某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.(1)共有多少个基本事件?(2)小曹能乘上上等车的概率为多少?第3题图C9.设A为圆周上一定点,在圆周上等可能的任取一点P与A连结,倍的概率.10.正面体ABCD的体积为V,P是正四面体ABCD的内部的点.①设“V P-ABC≥14V”的事件为X,求概率P(X);②设“V P-ABC≥14V且V P-BCD≥14V”的事件为Y,求概率P(Y).17、概率17.2 古典概型与几何概型A 组1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为 ( )A .2π B .2ππ- C D .4π2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ( )A .12B .13C .14D .163. 已知椭圆22221x y a b+=(a >b >0)及内部面积为S=πab ,A 1,A 2是长轴的两个顶点,B 1,B 2是短轴的两个顶点,点P 是椭圆及内部的点,下列命题正确的个数是 ( ) ①△PA 1A 2为钝角三角形的概率为1; ②△PB 1B 2为直角三角形的概率为0;③△PB 1B 2为钝角三角形的概率为ba ;④△PA 1A 2为钝角三角形的概率为ba ;⑤△PB 1B 2为锐角三角形的概率为a ba-。

古典概型与几何概型知识点总结

古典概型与几何概型知识点总结

古典概型与几何概型知识点总结古典概型和几何概型是概率论中最基础的概率模型,它们分别适用于简单事件和几何事件的计算。

以下是古典概型和几何概型的知识点总结:一、古典概型:1.古典概型是指事件的样本空间具有有限个数的元素,样本点的概率相等。

2.样本空间是指实验中所有可能的结果的集合,例如掷一枚骰子的样本空间为{1,2,3,4,5,6}。

3.事件是样本空间的子集,例如“掷一枚骰子,出现的点数为偶数”的事件为{2,4,6}。

4.古典概型的概率计算公式为:P(A)=n(A)/n(S),其中P(A)为事件A发生的概率,n(A)为事件A包含的样本点个数,n(S)为样本空间的样本点个数。

5.古典概型的概率计算要求样本点的概率相等,且样本点的个数有限。

二、几何概型:1.几何概型是指事件的样本空间是一个几何图形,而不是有限个元素。

2.在几何概型中,事件的概率等于事件所占的几何图形的面积或体积与样本空间所占的几何图形的面积或体积的比值。

3.几何概型的概率计算需要使用几何图形的面积或体积的计算方法,例如计算矩形的面积为长乘以宽,计算圆的面积为π乘以半径的平方。

4.几何概型可以应用于连续变量的概率计算,例如计算一些范围内的事件发生的概率。

5.几何概型的概率计算要求事件与样本空间之间存在其中一种几何关系,例如事件发生的可能性与事件所占的几何图形的面积或体积成正比。

综上所述,古典概型适用于简单事件且样本空间的样本点个数有限的情况,其概率计算公式为P(A)=n(A)/n(S);几何概型适用于事件的样本空间是一个几何图形的情况,概率等于事件所占的几何图形的面积或体积与样本空间所占的几何图形的面积或体积的比值。

掌握古典概型和几何概型的知识点,能够帮助我们更好地理解和计算事件的概率,为概率论的进一步学习奠定基础。

古典概型与几何概型

古典概型与几何概型

古典概型与几何概型题型一、古典概型的概率求法例1.单选题是标准化考试中常用的题型,一般是从A ,B ,C ,D 四个选项中选择一个正确答案。

如果考生掌握了考查的内容,他可以选择唯一正确的答案。

假设考生不会做,他随机地选择一个答案,问他答对的概率是_________.例2.在6瓶饮料中,有2瓶已过了保质期。

从中任取2瓶,取到已过保质期的饮料的概率是_______.例3. 将一枚质地均匀的硬币连掷三次,观察落地后的情形(1)写出这个试验的所有的基本事件;(2)“出现一枚正面朝上,两枚反面朝上”这一事件包含了哪几个基本事件?(3)求事件“出现一枚正面朝上,两枚反面朝上”的概率。

例4. (福建文)每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6)(I )连续抛掷2次,求向上的数不同的概率;(II )连续抛掷2次,求向上的数之和为6的概率;题型二、几何概型的概率求法例1. 如图,在墙上挂着一块边长为16cm 的正方形木板,上面画了小、中、大三个同心圆,半径分别为2cm ,4cm ,6cm ,某人在在3m 外向此板投镖,设投镖击中线上或没有投中木板时都不算,可重投,问:(1)投中小圆内的概率是多少?(2)投中大圆与中圆形成的圆环的概率是多少?(3)投中大圆之外的概率是多少?例2.在游乐场,有一种游戏是向一个画满均匀方格的大桌面上投硬币,若硬币刚巧落在任何一个方格的范围内不与方格线重叠),便可获奖。

如果硬币的直径为2cm ,而方格的边长为5cm ,随机投掷一个硬币,获奖的概率有多大?例3.假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A )的概率是多少?【小结】1、解决古典概型问题的关键是首先明确基本事件是什么,然后再分清基本事件总数n 与所研究事件A 包含的基本事件数m ,再运用公式()m P A n=求解即可. 2、几何概型的解题关键是找出正确的几何度量,长度、面积还是体积.【课堂练习】1、每次抛掷一枚骰子(六个面上分别标以1,2,3,4,5,6).连续抛掷2次,则2次向上的数之和不小于10的概率为 .2、一轮船停靠在某港口, 只有在该港口涨潮时才能出港, 已知该港口每天涨潮的时间是早晨5:00到7:00和下午5:00到7:00, 则该船在一昼夜内可以出港的概率为 .3、有100张外形完全一样且已编号的卡片(从1号到100号),从中任取一张,计算:(1)卡片编号是偶数的概率;(2)卡片编号是13的倍数的概率;(3)卡片编号是质数的概率.4、设有关于x 的一元二次方程2220x ax b ++=.若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率。

古典概型与几何概型知识点总结

古典概型与几何概型知识点总结

古典概型与几何概型知识点总结古典概型和几何概型是概率论中的两种常见概型,它们分别基于不同的概率空间的划分方式。

下面将对古典概型和几何概型的知识点进行总结。

古典概型(Classical Probability Model)是指概率实验基本样本点是有限个的概率模型。

在古典概型中,样本空间中的每一个样本点发生的机会相同,且样本空间中所有的样本点构成一个有限集合。

在古典概型中,我们通常会利用排列组合的方法来计算事件的概率。

以下是古典概型的一些重要知识点:1.样本空间和事件:样本空间是指一个概率实验中所有可能结果的集合,用Ω表示。

事件是样本空间的一个子集,表示我们感兴趣的结果。

2.事件的概率:在古典概型中,事件A的概率P(A)等于A中的样本点数目除以样本空间中的样本点总数。

即P(A)=,A,/,Ω。

3.加法法则:如果A和B是两个互不相容的事件(即A∩B=Ø),那么两个事件的并事件A∪B的概率等于事件A和事件B的概率之和。

即P(A∪B)=P(A)+P(B)。

4.乘法法则:如果A和B是两个独立事件,即事件A的发生与事件B的发生无关,那么两个事件的交事件A∩B的概率等于事件A的概率乘以事件B的概率。

即P(A∩B)=P(A)*P(B)。

几何概型(Geometric Probability Model)是指概率实验的样本空间是由几何构造组成的。

在几何概型中,样本空间通常是一个几何形状,概率的计算涉及到几何图形的面积或长度。

以下是几何概型的一些重要知识点:1.区间概率:对于一些连续型随机变量,概率可以通过计算指定区间的长度、面积或体积来求解。

这种类型的概率常常与几何图形的几何属性相关。

例如,对于均匀分布的连续随机变量,一个给定区间[a,b]内事件发生的概率等于区间长度除以总长。

2. 概率密度函数:对于连续型随机变量,其概率密度函数(Probability Density Function,PDF)描述了随机变量的可能取值的相对可能性。

古典概型和几何概型的区别

古典概型和几何概型的区别

古典概型和几何概型的区别
相同点:古典概型与几何概型中每一个基本事件发生的可能性都是相等的。

不同点:古典概型要求随机试验的基本事件的总数必须是有限多个;几何概型要求随机试验的基本事件的个数是无限的,而且几何概型解决的问题一般都与几何知识有关。

(1)试验中所有可能出现的基本事件有无限多个。

(2)每个基本事件出现的可能性相等。

(3)几何概型求事件A的概率公式:
PA=构成事件A的区域长度面积或体积/实验的全部结果所构成的区域长度面积或体积(1)试验中所有可能出现的基本事件是有限的。

(2)每个基本事件出现的可能性相等。

(3)古典概型求事件A的概率公式:
PA=事件A可能发生的结果数/实验发生的所有等可能的结果数
例题:某人午觉醒来发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率。

分析:收音机每小时报时一次,某人午觉醒来的时刻在两次整点报时之间都是等可能的,且醒来的时刻有无限多个的,因而适合几何概型。

感谢您的阅读,祝您生活愉快。

高考数学考点归纳之古典概型与几何概型

高考数学考点归纳之古典概型与几何概型

高考数学考点归纳之古典概型与几何概型一、基础知识1•古典概型(1) 古典概型的特征:①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;②等可能性:每个基本事件出现的可能性是相等的一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征一一有限性和等可能性•(2) 古典概型的概率计算的基本步骤:①判断本次试验的结果是否是等可能的,设出所求的事件为A;②分别计算基本事件的总数n和所求的事件A所包含的基本事件个数m;③利用古典概型的概率公式P(A) = m,求出事件A的概率•(3) 频率的计算公式与古典概型的概率计算公式的异同(1)概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型(2 )几何概型的基本特点:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等•(3)计算公式:构成事件A的区域长度面积或体积_________P(A)=试验的全部结果所构成的区域长度面积或体积•几何概型应用中的关注点1关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率• 2确定基本事件时一定要选准度量,注意基本事件的等可能性A. 3_ 10 考点一古典概型[典例精析](1)(2018全国卷n )我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果•哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”, 如30 = 7 + 23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()C.15(2)(2019武汉调研)将一枚质地均匀的骰子投掷两次, 得到的点数依次记为 a 和b ,贝U 方程ax 2 + bx + 1 = 0有实数解的概率是()7 1 A.36 B.2 19 5 C — D — C.36D.18[解析]⑴不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个 不同的数,共有 C 1o = 45种情况,而和为30的有7+ 23,11+ 19,13 + 17这3种情况,所以所 求概率P =45=1_ *1 < a <6, a € N ,⑵投掷骰子两次,所得的点数a 和b 满足的关系为1 w b < 6, b € N *,组合有36种.若方程ax 2 + bx + 1 = 0有实数解, 贝U △= b 2— 4a > 0,所以 b 2> 4a.当b = 1时,没有a 符合条件;当 b = 2时,a 可取1;当b = 3时,a 可取1,2 ;当b = 4 时,a 可取 1,2,3,4 ;当 b = 5 时,a 可取 1,2,3,4,5,6 ;当 b = 6 时,a 可取 1,2,3,4,5,6.满足条件的组合有1919种,则方程ax 2 + bx + 1 = 0有实数解的概率 P =--.36[答案](1)C (2)C[题组训练]1. (2019 益阳、湘潭调研)已知 a € { — 2,0,1,2,3}, b € {3,5},则函数 f(x) = (a 2— 2)e x + b 为 减函数的概率是()所以a 和b 的3 21解析:选 C 若函数 f(x) = (a 2— 2)e x + b 为减函数,则 a 2— 2v 0,又 a € { — 2,0,1,2,3},故只有a = 0, a = 1满足题意,又b € {3,5},所以函数f(x)= (a 2 — 2)e x + b 为减函数的概率是2•从分别标有1,2,…,9的9张卡片中不放回地随机抽取 2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )5 4 A — B —A.18B .93•将A , B , C , D 这4名同学从左至右随机地排成一排,则“A 与B 相邻且A 与C 之间恰好有1名同学”的概率是 ( )1 A .2 1 B.4 C 1 C • 61解析:选B A , B , C ,D 4名同学排成一排有 A 4= 24种排法.当A , C 之间是B 时,4 + 2 1有2X 2=4种排法,当A , C 之间是D 时,有2种排法,所以所求概率P =-24-=4.考点二几何概型类型(一)与长度有关的几何概型[例1] (2019濮阳模拟)在[— 6,9]内任取一个实数 m ,设f(x) = — x 2 + mx + m ,则函数f(x) 的图象与x 轴有公共点的概率等于()27A B A.15 B .153 11C5 D.亦[解析]•/ f(x)=— x 2+ mx + m 的图象与 x 轴有公共点,二 △= m 2+ 4m > 0,. m < — 4 或m > 0,.••在 [—6,9]内取一个实 数m ,函数f(x)的图象 与x 轴有公共点的概 率P =[—4— — 6 ] + 9— 0 = 9——6 — [答案]D解析:选C 由题意得,所求概率5X 4X 2 9X 859. 11狗,故选D . 15类型(二)与面积有关的几何概型[例2](1)(2018潍坊模拟)如图,六边形ABCDEF 是一个正六边形,(2)由题意知圆O 的面积为n 3,正弦曲线y = sin x , x € [- n, n ] x 轴围成的区域记为 M ,根据图形的对称性得区域 M 的面积S = 2 / o sin xdx =- 2COS x|o = 4,由几何概型的概 率计算公式可得,随机往圆 O 内投一个点A ,则点A 落在区域M 内的概率P =刍.n[答案](1)C (2)B类型(三)与体积有关的几何概型[例3] 已知在四棱锥 P-ABCD 中,PA 丄底面 ABCD ,底面ABCD 是正方形,PA = AB = 22,现在该四棱锥内部或表面任取一点O ,则四棱锥 O -ABCD 的体积不小于3的概率为2[解析]当四棱锥O -ABCD 的体积为3时,设O 到平面ABCD 的距离为 12 1h ,则 3x 22x h = 3,解得 h = 1 如图所示,在四棱锥 P-ABCD 内作平面EFGH 平行于底面 ABCD ,且1平面EFGH 与底面ABCD 的距离为2.PH 3因为PA 丄底面ABCD ,且FA = 2,所以pA = 4,若在正六边形内任取一点,则该点恰好在图中阴影部分的概率是A.4B.12 C.3(2)(2019洛阳联考)如图,圆O : x 轴围成的区域记为 M (图中阴影部分 A 落在区域M 内的概率是()4 ArB. nD.[解析] ⑴设正六边形的中心为点 O,BD 与AC 交于点G,BC = 1,则BG = CG , Z BGC =120°在厶BCG 中,由余弦定理得1= BG 2+ BG 2- 2BG 2COS 120°得BG =彳,所以&BCG=2 x BG x BG x sin 120 °= 2 xf x 33 x 学=器,因为1S 六边形 ABCDEF = S A BOC x 6 = ~ x 1 x 1 x Sin 60°x 6= 乎,所以该点恰好在图中阴影部分的概率P = 1-6G BCG S 六边形ABCDEF23.又四棱锥P-ABCD与四棱锥P-EFGH相似,所以四棱锥 O -ABCD 的体积不小于2的概率P = V 四棱锥P -EFGH3 V 四棱锥P-ABCD “亠 27[答案1 64类型(四)与角度有关的几何概型[例4]如图,四边形 ABCD 为矩形,AB = 3,BC = 1,以A 为 圆心,1为半径作四分之一个圆弧 斥「,在/ DAB 内任作射线 AP ,则 射线AP 与线段BC 有公共点的概率为 _____________________ .[解析]连接AC ,如图, 因为tan / CAB =器二彳,所以/ CAB =才,满足条件的事件是直线AP 在/ CAB 内,且AP 与AC 相交时,即直线n/ CAB 61AP 与线段BC 有公共点,所以射线 AP 与线段BC 有公共点的概率 P =/DAB =n=勺2 (1)[答案1 3[题组训练]1.(2019豫东名校联考)一个多面体的直观图和三视图如图所示,点 M 是AB 的中点,一只蝴蝶在几何体 ADF -BCE 内自由飞翔,则它飞入几何体: F-AMCD 内的概率为()';A.|1所以它飞入几何体 F-AMCD 内的概率P = — = 2.I 3 2 2a2•在区间[0, n ]随机取一个数x ,则事件“ sin x + cos ”发生的概率为解析:1 1 1选 D 由题图可知 V F -AMCD = 3 X S 四边形 AMCD X DF = 4a 3, V ADF -BCE =尹3,C.3 PH 3 = 3 3= 27 PA 4 64.1sin x + cos x >解析:由题意可得20< x < n解得2. (2019漳州一模)甲、乙、丙、丁、戊 5名同学参加"《论语》知识大赛”,决出第 1 名到第5名的名次•甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,故所求的概率为 12_ 77 12答案:右3. (2018唐山模拟)向圆(x — 2)2+ (y — ,3)2= 4内随机投掷一点,则该点落在x 轴下方的概率为 _________ .解析:如图,连接CA , CB ,依题意,圆心 C 到x 轴的距离为 3,所1 2 1 以弦AB 的长为2.又圆的半径为2,所以弓形 ADB 的面积为2x 2 nX 2 —1 2X 2 X 3 = ^n — . 3,所以向圆(x — 2)2+ (y — . 3)2= 4内随机投掷一点,则该点落在x 轴下方的概率P =1-1 答案:16 [课时跟踪检测]1.(2019衡水联考)2017年8月1日是中国人民解放军建军 90周年, 中国人民银行为此发行了以此为主题的金银纪念币•如图所示是一枚 8克圆形金质纪念币,直径 22 mm ,面额100元•为了测算图中军旗部分的面 积,现用1粒芝麻向硬币内投掷 100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是 ()A. 363 n 10 2mm 2 363 n B.2 mm 2C.726 n 2 mm 2 D.3;20_n mm 2解析:选A向硬币内投掷100次,恰有30次落在军旗内,所以可估计军旗的面积大约是 S = 1°0X nx 112 =现采用分层抽样的方法从中抽取 7名同学去某敬老院参加献爱心活动但是你俩都没得到第一名”; 对乙说“你当然不会是最差的”, 从上述回答分析, 丙是第名的概率是( ) 1 A.51 B.31 C.4 1D.6 解析:选B 由于甲和乙都不可能是第一名,所以第一名只可能是丙、丁或戊 •又因为 所有的限制条件对丙、丁或戊都没有影响,所以这三个人获得第一名是等可能事件, 所以丙 1 是第一名的概率是I 3.(2019郑州模拟)现有5人参加抽奖活动,每人依次从装有 5张奖票(其中 3张中奖票都被抽出时活动结束,则活动恰好在 3张为中奖 票)的箱子中不放回地随机抽取一张,直到第4人抽完结束的概率为( ) 1 B.1 2D.5 解析:选C 将5张奖票不放回地依次取出共有A 5= 120(种)不同的取法,若活动恰好 在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票, 共有C 2C 1A =36(种)取法,所以P =蛊=鲁. 4.(2019长沙模拟)如图是一个边长为 8的正方形苗圃图案,中间黑色 大圆与正方形的内切圆共圆心, 圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的 2倍.若在正方形图案上随机取一点,则该点取自 黑色区域的概率为( ) n A.8nC.1—n解析:选C 正方形的面积为82,正方形的内切圆半径为4,中间黑色大圆的半径为2,黑 色小圆的半径为1,所以白色区域的面积为 nX 42—nX 22-4 XnX 12= 8 n,所以黑色区域的面积 82 — 8 n n 为82— 8 n 在正方形图案上随机取一点,则该点取自黑色区域的概率为 P == 1—刁 82 5.(2019郑州模拟)已知圆C : x 2+ y 2= 1,直线I : y = k (x + 2),在[—1,1]上随机选取一个数k ,则事件“直线I 与圆C 相离”发生的概率为( ) 2— ,2 B.2 A.1 C 3-V3 C. 32 — ,3 D. 2解析:选C 圆C : x 2+ y 2= 1的圆心C(0,0),半径r = 1,圆心到直线I : y = k(x + 2)的距离d = |0; 0+ 2F=-^L ,直线|与圆C 相离时d > r ,即丁鉴> 1,解得k v —申或 \jk + — 1 yj k + 1 yj k + 134 1(3,7), (4,6)中任选3组,有C 4= 4种选法,故这7个数的平均数是5的概率P = 36 = 了7•一个三位数的百位,十位,个位上的数字依次为 a , b , c ,当且仅当有两个数字的和等于第三个数字时称这个三位数为“好数”(如213,134),若a , b , c € {1,2,3,4},且a , b ,c 互不相同,则这个三位数为“好数”的概率是 ____________ .解析:从1,2,3,4中任选3个互不相同的数并进行全排列,共组成A 4= 24个三位数,而“好数”的三个位置上的数字为 1,2,3或1,3,4,所以共组成2A 3 = 12个“好数”,故所求概8•太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化, 相对统一的形式美•按照太极图的构图方法,在如图所示的平面直角坐标n系中,圆0被函数y = 3s“6x 的图象分割为两个对称的鱼形图案,其中小 圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为解析:根据题意,大圆的直径为函数y = 3si^ 的最小正周期 T ,又T = 3= 12,所以6 n612大圆的面积 S = n •- 2= 36n, 一个小圆的面积 S ' = n*2= n,故在大圆内随机取一点,此点取自阴影部分的概率 P =%=令=补.S 36 n 181答案:18 9.(2018天津高k >f,故所求的概率 3P =2- f1——13 —3_6•从1〜9这9个自然数中任取 7个不同的数,则这7个数的平均数是 5的概率为解析:从1〜9这9个自然数中任取7个不同的数的取法共有C 7= 36 种,从(1,9), (2,8),24 12.考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动(1) 应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?⑵设抽出的7名同学分别用 A ,B , C ,D ,E , F ,G 表示,现从中随机抽取 2名同学 承担敬老院的卫生工作•① 试用所给字母列举出所有可能的抽取结果;② 设M 为事件“抽取的2名同学来自同一年级”,求事件 M 发生的概率. 解:(1)因为甲、乙、丙三个年级的学生志愿者人数之比为3 : 2 : 2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取 3人,2人,2人.⑵①从抽取的7名同学中随机抽取 2名同学的所有可能结果为{A , B}, {A , C} , {A ,D} , {A , E} , {A , F}, {A , G} , {B , C} , {B , D} , {B , E} , {B , F} , {B , G} , {C , D}, {C , E}, {C , F}, {C , G}, {D , E}, {D , F} , {D , G} , {E , F} , {E , G} , {F , G},共 21种.②由①,不妨设抽出的7名同学中,来自甲年级的是 A , B , C ,来自乙年级的是 D , E , 来自丙年级的是 F , G ,则从抽出的7名同学中随机抽取的 2名同学来自同一年级的所有可 能结果为{A , B} , {A , C} , {B , C} , {D , E}, {F , G},共 5 种.5所以事件M 发生的概率P(M =—. 10.在某大型活动中,甲、乙等五名志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者•(1)求甲、乙两人同时参加 A 岗位服务的概率; (2) 求甲、乙两人不在同一个岗位服务的概率; (3)求五名志愿者中仅有一人参加 A 岗位服务的概率A 41⑵记“甲、乙两人同时参加同一岗位服务 ”为事件E ,那么P(E) =10,所以甲、9乙两人不在同一岗位服务的概率是P( E ) = 1 — P(E) =后.1.(2019太原联考)甲、乙二人约定 7: 10在某处会面,甲在 7: 00〜7: 20内某一时刻4解:(1)记“甲、乙两人同时参加A 岗位服务为事件E A ,那么P(E A ) =A * * 3 __1 C 5A L 40 ,即甲、乙两人同时参加 A 岗位服务的概率是140.1=4所以仅有一人参加A 岗位服2B1答案:——> > ------ >P B + P C + 2 PA = 0,现将一粒黄豆随机撒在随机到达,乙在7: 05〜7:20内某一时刻随机到达,则甲至少需等待乙 5分钟的概率是() 1 A.81 B.4 3 C.8 5 D.8 解析:选C 建立平面直角坐标系如图, x , y 分别表示甲、乙二人 到达的时刻,则坐标系中每个点 (x , y )可对应甲、乙二人到达时刻的可能 y — x > 5, 性,则甲至少等待乙5分钟应满足的条件是 0W x w 20, 其构成的区域 5< y < 20, 为如图阴影部分,则所求的概率1X 15X 15-2 3 P = =— 20 X 15 8' 2.(2019开封模拟)如图,某建筑工地搭建的脚手架局部类似于一个 2X 2X 3的长方体框架,一个建筑工人欲从 A 处沿脚手架攀登至 B 处,则其 最近的行走路线中不连续向上攀登的概率为 ( ) 解析:选B 根据题意,最近路线就是不能走回头路,不能走重复的路,•••一共要走 3 次向上,2次向右,2次向前,共7次,.••最近的行走路线共有 A 7= 5 040(种).•••不能连续向 上,.••先把不向上的次数排列起来,也就是 2次向右和2次向前全排列为 A 4.接下来,就是 把3次向上插到4次不向上之间的空当中, 5个位置排3个元素,也就是 A 5,则最近的行 走路线中不连续向上攀登的路线共有 A 4A 5= 1 440(种),•其最近的行走路线中不连续向上 1 440 2 攀登的概率p =両r 7.故选B. 3•已知等腰直角厶 ABC 中,/ C = 90°在/ CAB 内作射线 AM ,则使/ CAM V 30°的概 率为 解析:如图,在/ CAB 内作射线AM 0, 使/ CAM 0= 30° 于是有 P(/ CAM / CAM 0 30 V 30 )=TCAB"— 245一3.△ ABC 内,则黄豆落在△ PBC 内的概率是(1A]4•已知 P 是厶ABC 所在平面内一点,且1根据几何概型的概率计算公式2 3解析:选C 以PB, PC为邻边作平行四边形PBDC,连接PD交BC于点0,则再B + R6 = _PD .--- B ---- B ------ B•/ PB + PC + 2 PA = 0,二-6+_P CT=- 2-,即可6= - 2"P A ,由此可得,P是BC边上的中线A0的中点,点P到BC的距离等于点A到BC的距离,,1 1 S^PBC 的2, •••S APBC=2S S BC,.・.将一粒黄豆随机撒在△ ABC内,黄豆落在△ PBC内的概率P =王;二12.5.点集Q = {(x, y)|0w x w e, 0< y w e}, A= {(x, y)|y>e x, (x, y) € Q},在点集Q 中任取一个元素a,则a€ A的概率为()1A.—eB.4e—1C.-ee2-1 D.—2 e解析:选B 如图,根据题意可知Q表示的平面区域为正方形BCDO , 面积为e2, A表示的区域为图中阴影部分,面积为/ 0 (e- e x)dx= (ex-1e x)|0= (e- e)-(—1) = 1,根据几何概型可知 a € A的概率P=二.故选B.e n a/ C1L 电*6.如图,来自古希腊数学家希波克拉底所研究的几何图形个半圆构成,三个半圆的直径分别为直角三角形边AB, AC A ABC的三边所围成的区域记为I,黑色部分记为H,其余.此图由三ABC的斜边BC,直角P1, P2, P3,则部分记为川.在整个图形中随机取一点,此点取自I ,n,川的概率分别记为C.p2= p3D.p1 = p2+ p3解析:选A不妨设△ ABC为等腰直角三角形,AB= AC = 2, 则BC = 2 2,A. p1 = p2B.p1= p3所以区域I的面积即△ ABC的面积,1为S1 = X 2X 2= 2,区域H的面积S2= T X 12—nX22- 2 = 2,区域川的面积S3=nX2"-2 =n- 2.得 P1=p2=dk ,P3=n 2,所以 P 1M p 3,卩2工P 3, P 1工P 2 + P 3, 故选 A.X 2 3 V 27.双曲线 C :孑一詁=1(a > 0, b > 0),其中 a € {1,2,3,4} , b € {1,2,3,4},且 a , b 取到其 中每个数都是等可能的, 则直线I: y =x 与双曲线C 的左、右支各有一个交点的概率为 ()1 A.1 5 D.5解析:选B 直线I : y = x 与双曲线C 的左、右支各有一个交点,贝U b > 1,总基本事件a 数为 4X 4= 16,满足条件的(a , b)的情况有(1,2), (1,3), (1,4), (2,3), (2,4), (3,4),共 6 个, 故概率为3.818.在区间[0,1]上随机取两个数 a , b ,则函数f(x)= x 2 + ax + 4b 有零点的概率是1解析:函数 f(x)= x 2 + ax + 4b 有零点,则 △= a 2— b > 0,二 b < a 2,「.函数 f(x)= x 2 + ax (3)因为有两人同时参加 A 岗位服务的概率3务的概率P 1= 1 — P 2=;.2 / o a 2da 1 + 4b 有零点的概率 P = 1 % 1 = 3.3 B.3C.2。

古典概型与几何概型

古典概型与几何概型

古典概型与几何概型一、古典概型 1、定义(1)样本空间的元素只有有限个; (2)每个基本事件发生的可能性相同。

比如:抛掷一枚均匀硬币的试验,抛掷一枚均匀骰子的试验,从一副扑克牌中随机抽取一张。

称具备条件(1)、(2)的实验称为等可能概型,考虑到它在概率论早期发展中的重要地位,又把它叫做古典概型。

2、古典概型中事件概率的计算设{}ωωωn ,,, 21=Ω ,由古典概型的等可能性,得}{}{}{21n P P P ωωω=== 又由于基本事件两两互不相容;所以},{}{}{}{121n P P P P ωωω ++=Ω=.,,2,1,1}{n i n P i ==ω若事件A 包含m 个样本点,即{}ωωωi i i A m,,,21 =, 则有 :中元素个数中元素个数Ω=A P(A)基本事件总数发生的基本事件数使A =n m= 1.(2010佛山一模)已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数: 5727 0293 7140 9857 0347 4373 8636 9647 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 6710 4281 据此估计,该射击运动员射击4次至少击中3次的概率为 ( ) A .0.85 B .0.8192 C .0.8 D . 0.752.(2007·广东)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是A .310B .15C .110D .1123.(2009江苏)现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 .4.(2009·安徽文)从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________。

古典概型和几何概型的联系和区别

古典概型和几何概型的联系和区别

古典概型和几何概型的联系和区别古典模式和几何模式是几何学中最重要的概念,两者都拥有自己独特的性质和特点,古典模式在几何学中有着重要的地位,而几何模式的作用也是不可忽视的。

本文研究古典模式和几何模式之间的联系和区别,探究它们在几何学中的作用和分别。

古典模式概念的最初来源于古希腊的几何学家,他们提出一种建立在基本几何设定上的认识框架,把它们用来构建古典几何模式。

这种模式考察两个点之间的关系,即连续无穷的直线上可以放置无数个点,而不同点之间可以确定一个角度,即认为两个点之间可以构成一条线,并且可以求出两点之间的距离和它们的点积。

古典模式可以用来定义几何图形的形状,例如圆形和多边形,也可以用来计算各种平面或空间几何形状的面积和体积。

几何模式是20世纪出现的一种新型几何学,它从古典模式出发,使用现代数学理论构建出更为复杂的几何模型。

几何模式以向量论、线性代数和拓扑学作为基础,运用几何模型来分析和解决实际几何问题。

几何模式是一种抽象的模型,用于表示几何图形的抽象特征和性质,它利用数学函数和抽象空间概念来分析和解释几何形状和空间结构的属性。

这种模型主要用于几何学研究,目的在于更好地理解复杂的几何形状和空间结构。

古典模式和几何模式之间存在着某种关联,古典模式是几何模式的基础。

古典模式的概念在几何学中有着重要的作用,它们为几何学提供了基本的基础和理论,几何学家们可以利用它们来构建和推导几何模型。

另外,古典模式也可以用来计算几何图形的面积和体积,而几何模式则可以深入分析几何形状和空间结构的抽象特征和性质。

虽然古典模式和几何模式有一定的关联,但它们之间也存在着明显的区别。

古典模式是以古希腊的几何学家所提出的一种框架为基础,主要用来定义几何图形形状和计算几何图形的面积和体积;而几何模式则是在古典模式基础上发展而来的,它建立在物理实验、向量论、线性代数和拓扑学等数学理论基础上,运用几何模型来分析和解决实际几何问题。

由此可见,古典模式主要是用来定义几何图形形状,而几何模式则是运用数学理论深入分析几何形状的性质。

古典概型和几何概型的意义和主要区别

古典概型和几何概型的意义和主要区别

专题六作业:3.在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,是否更有利于从事相应的教学,举例说明;在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,更有利于从事相应的数学教学。

一、古典概型1、古典概型的意义如果随机试验E具有下列性质:(1)E的所有可能结果(基本事件),只有有限多个;(2)E的每一个可能结果(基本事件),发生的可能性大小相等;则称E为有限等可能型随机试验或等可能概型。

因为它是概率论发展初期的主要研究对象,所以它被称为古典概型.2.古典概型的两个基本特点(1)试验中所有可能出现的基本事件只有有限个,由试验产生随机数。

(2)每个基本事件出现的可能性相等.2、常见的三种古典概型基本模型(1) 摸球模型;同类型的问题还有1) 中彩问题;2) 抽签问题;3) 分组问题;4) 产品检验问题;5) 扑克牌花色问题;6) 英文单词、书、报及电话号码等排列问题.(2) 分房问题;同类型的问题还有:1) 电话号码问题2) 骰子问题3) 英文单词、书、报等排列问题.(3) 随机取数问题.同类型的问题还有:1) 球在杯中的分配问题(球→人,杯→房)2) 生日问题;(日→房,N=365天) ( 或月→房,N=12月)3) 旅客下站问题;( 站→房)4) 印刷错误问题;(印刷错误→人,页→房)5) 性别问题(性别→房,N=2)在老教材中的古典概型是强调用排列组合的公式计算事件个数,而新教材中的古典概型是强调利用枚举法,画树形图来排出所有的事件个数。

二、几何概型1 .几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点。

用这种方法处理随机试验,称为几何概型.(这里的区域可以是线段、平面图形、立体图形等)2 .几何概型的基本特点:( 1 )基本事件的个数,有无限多个。

17.2 古典概型与几何概型

17.2  古典概型与几何概型

17、概率17.2 古典概型与几何概型【知识网络】1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率。

2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。

【典型例题】[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )A .49B .29C .23D .13(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ()A .61B .365 C .121 D .21 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为()A .56B .12C .13D .16(4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3S”的概率为 .(5)任意投掷两枚骰子,出现点数相同的概率为 .[例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。

[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.[例4]抛掷骰子,是大家非常熟悉的日常游戏了.某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.方案1:总点数是几就送礼券几十元.方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.【课内练习】1. 某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是 ()A .15B .524C .1081D .5122. 盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是红球的概率为P 1,第8个人摸出红球的概率是P 8,则()A .P 8=18P 1B .P 8=45P 1 C .P 8=P 1D .P 8=03. 如图,A 、B 、C 、D 、E 、F 是圆O 的六个等分点,则转盘指针不落在阴影部分的概率为( )A .12B .13C .23D .144. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为()A .12B .13C .14D .235. 一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单位,设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为 .6. 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为 . 7. 在圆心角为150°的扇形AOB 中,过圆心O 作射线交AB 于P ,则同时满足:∠AOP ≥45°且∠BOP ≥75°的概率为 .8. 某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.(1)共有多少个基本事件?(2)小曹能乘上上等车的概率为多少?第3题图C9.设A为圆周上一定点,在圆周上等可能的任取一点P与A连结,倍的概率.10.正面体ABCD的体积为V,P是正四面体ABCD的内部的点.①设“V P-ABC≥14V”的事件为X,求概率P(X);②设“V P-ABC≥14V且V P-BCD≥14V”的事件为Y,求概率P(Y).17、概率17.2 古典概型与几何概型A 组1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为 ( )A .2π B .2ππ- C D .4π2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ( )A .12B .13C .14D .163. 已知椭圆22221x y a b+=(a >b >0)及内部面积为S=πab ,A 1,A 2是长轴的两个顶点,B 1,B 2是短轴的两个顶点,点P 是椭圆及内部的点,下列命题正确的个数是 ( ) ①△PA 1A 2为钝角三角形的概率为1; ②△PB 1B 2为直角三角形的概率为0;③△PB 1B 2为钝角三角形的概率为ba ;④△PA 1A 2为钝角三角形的概率为ba ;⑤△PB 1B 2为锐角三角形的概率为a ba-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17、概率17.2 古典概型与几何概型【知识网络】1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率。

2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。

【典型例题】[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )A .49B .29C .23D .13(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ( )A .61B .365 C .121 D .21 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为()A .56B .12C .13D .16(4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3S”的概率为 .(5)任意投掷两枚骰子,出现点数相同的概率为 .[例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。

[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.[例4]抛掷骰子,是大家非常熟悉的日常游戏了.某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.方案1:总点数是几就送礼券几十元.方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.【课内练习】1. 某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是 ()A .15 B .524C .1081D .512 2. 盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是红球的概率为P 1,第8个人摸出红球的概率是P 8,则()A .P 8=18P 1B .P 8=45P 1 C .P 8=P 1 D .P 8=0 3. 如图,A 、B 、C 、D 、E 、F 是圆O 的六个等分点,则转盘指针不落在阴影部分的概率为( )A .12 B .13C .23D .144. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为()A .12B .13C .14D .235. 一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单位,设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为 .6. 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为 . 7. 在圆心角为150°的扇形AOB 中,过圆心O 作射线交AB 于P ,则同时满足:∠AOP ≥45°且∠BOP ≥75°的概率为 .8. 某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.(1)共有多少个基本事件?(2)小曹能乘上上等车的概率为多少?9.设A 为圆周上一定点,在圆周上等可能的任取一点P 与A 连结,第3题图倍的概率.10.正面体ABCD的体积为V,P是正四面体ABCD的内部的点.①设“V P-ABC≥14V”的事件为X,求概率P(X);②设“V P-ABC≥14V且V P-BCD≥14V”的事件为Y,求概率P(Y).17、概率17.2 古典概型与几何概型A 组1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为 ( )A .2π B .2ππ- C D .4π2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ( )A .12B .13C .14D .163. 已知椭圆22221x y a b+=(a >b >0)及内部面积为S=πab ,A 1,A 2是长轴的两个顶点,B 1,B 2是短轴的两个顶点,点P 是椭圆及内部的点,下列命题正确的个数是 ( ) ①△PA 1A 2为钝角三角形的概率为1; ②△PB 1B 2为直角三角形的概率为0;③△PB 1B 2为钝角三角形的概率为ba ;④△PA 1A 2为钝角三角形的概率为ba ;⑤△PB 1B 2为锐角三角形的概率为a ba-。

A .1B 。

2C 。

3D 。

44. 古典概型与几何概型的相同点是 ,不同点是基本事件的 .5. 连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.其中“恰有两枚正面向上”的事件包含 个等可能基本事件.6. 任取一正整数,求该数的平方的末位数是1的概率.7. 如图,在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,求使得∠AOC 和∠BOC 都不小于30°的概率.8. 如图,在等腰三角形ABC 中,∠B =∠C =30°,求下列事件的概率:问题1 在底边BC 上任取一点P ,使BP <AB ; 问题2 在∠BAC 的内部任作射线AP 交线段BC 于P ,使BP <AB .17、概率17.2 古典概型与几何概型B 组1. 在20瓶饮料中,有2瓶过了保质期,从中任取1瓶,恰好为过期饮料的概率为 ( )A .12 B 。

110 C 。

120 D 。

1402. 一个罐子里有6只红球,5只绿球,8只蓝球和3只黄球。

从中取出一只球,则取出红球的概率为 ( )A .122B 。

522C 。

311D 。

6113. 已知O (0,0),A (30,0),B (30,30),C (0,30),E (12,0),F (30,18),P(18,30),Q (0,12),在正方形OABC 内任意取一点,该点在六边形OEFBPQ 内的概率为 ( )A .425B 。

2125C 。

725D 。

16254. 若以连续掷两次骰子分别得到的点数m 、n 作为P 点的坐标,则点P 落在圆x 2+y 2=16A CPB第8题A第7题 OE D CB内的概率是_________.5.在所有的两位数(10~99)中,任取一个数,则这个数能被2或3整除的概率是.6.在△AOB中,∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C。

试分别求下列事件的概率:①△AOC为钝角三角形;②△AOC为锐角三角形;③△AOC为锐角三角形。

7.在区间[-1,1]上任取两实数a、b,求二次方程x2+2ax+b2=0的两根都为实数的概率.8.一海豚在水池中自由游弋.水池为长30m,宽20m的长方形,随机事件A记为“海豚嘴尖离岸边不超过2m”.(1)试设计一个算法(用伪代码表示),使得计算机能模拟这个试验,并估算出事件A发生的概率;(2)求P(A)的准确值.参考答案17.2 古典概型与几何概型【典型例题】 [例1](1)A 。

(2)C .提示:总事件数为36种。

而满足条件的(x ,y)为(1,2),(2,4),(3,6),共3种情形。

(3)D .提示:M 只能在中间6cm~9cm 之间选取,而这是一个几何概型。

(4)作△ABC 的边BC 上的高AD ,取E ∈AD 且ED=13AD ,过E 作直线MN ∥BC 分别交AB 于M ,AC 于N ,则当P 落在梯形BCNM 内时,△PBC 的面积小于△ABC 的面积的13,故P=59BCNM ABCS S ∆=梯形. (5)16。

提示:总事件数为6×6=36种,相同点数的有6种情形。

[例2]由方程有实根知:m 2≥4n .由于n ∈N *,故2≤m ≤6.骰子连掷两次并按先后所出现的点数考虑,共有6×6=36种情形.其中满足条件的有: ①m=2,n 只能取1,计1种情形; ②m=3,n 可取1或2,计2种情形; ③m=4,n 可取1或2、3、4,计4种情形;④m=5或6,n 均可取1至6的值,共计2×6=12种情形.故满足条件的情形共有1+2+4+12=19(种),答案为1936. [例3]以x 和y 分别表示甲、乙两人到达约会地点的时间,则两人能够会面的条件是15x y -≤.在平面上建立直角坐标系如图7,则(x ,y)的所有基本事件可以看作是边长为60的正方形,而可能会面的时间由图中的阴影部分所表示.故P(两人能会面) 167604560222=-=. 答 两人能会面的概率为716. [例4]由图可知,等可能基本事件总数为36种.其中点数和为2的基本事件数为1个,点数和为3的基本事件数为2个,点数和为4的基本事件数为3个,点数和为5的基本事件数为4个,点数和为6的基本事件数为5个,点数和为7的基本事件数的和为6个,点数和为8的基本事件数为5个,点数和为9的基本事件数为4个,点数和为10的基本事件数为3个,点数和为11的基本事件数为2个,点数和为12的基本事件数为1个.根据古典概型的概率计算公式易得下表:由概率可知,当点数和位于中间(指在7的附近)时,概率最大,作为追求最大效益与利润的老总,当然不能选择方案2,也不宜选择方案1,最好选择方案3.另外,选择方案3,还有最大的一个优点那就是,它可造成视觉上与心理上的满足,顾客会认为最高奖(120元)可有两次机会,即点数和为2与12,中次最高奖(100元)也有两次机会,所以该方案是最可行的,事实上也一定是最促销的方案.我们还可以从计算加以说明.三个方案中,均以抛掷36次为例加以计算(这是理论平均值):从表清楚地看出,方案3所需的礼券额最少,对老总来说是应优先考虑的决策.【课内练习】1. D 。

3个人加入6个小组中有36种方法。

3人中恰有2人在同一小组的,于是只须加入两个小组,共有652⨯=15种选择,而3人的分组又有6种情形,故答案为156521612⨯=。

2. C 。

提示:虽然摸球的顺序有先后,但只需不让后摸的人知道先摸人摸出的结果,那么各个摸球者摸到红球的概率都是相等的,并不因摸球的顺序不同而影响到其公平性.∴P 8=P 1。

相关文档
最新文档