专升本(高数—)第五章多元函数微积分学PPT课件
合集下载
多元函数微积分(课件)
3 V 为因变量的二元函数。根据问题的实际意义,函数的定义域为
D {(r,h) | r>0,h>0} 。
二元以及二元以上的函数统称为多元函数。
5
第、 一节 多元函数的概念、极限与连续性
、
2.二元函数的定义域 二元函数的定义域比较复杂,可以是坐标系中全部的区域,也可以是由曲线所围成的 部分区域。围成区域的曲线称为区域的边界。不包括边界的区域称为开区域,连同边 界在内的区域称为闭区域;开区域内的点称为内点,而边界上的点称为边界点。 如果一个区域 D 内任意两点之间的距离都不超过某一正常数 M ,则 D 称为有界区域, 否则称为无界区域。
、
【例 3】 求二元函数 z ln(x y) 的定义域 D 。 解 由对数函数性质可知 x 、 y 必须满足 x y>0 。直线 x y 0 是它的边界,定义域 为不包括边界在内的开区域。
D {(x, y) | x y>0}
二、多元函数的极限
定义 5.2 设二元函数 z f (x, y) ,如果当点 P(x, y) 以任意方式趋向于点 P0 (x0 , y0 ) 时,f (x, y) 总趋向于一个确定的常数 A ,则称 A 是二元函数 f (x, y) 当 (x, y) (x0, y0 ) 时的极限,记为
4
第、 一节 多元函数的概念、极限与连续性
、
一、多元函数的概念 1.二元函数的定义
定义 5.1 设 D 是平面上的一个非空点集,如果对于每个点 (x, y) D ,变量 z 按照一定的法 则总有确定的值和它对应,则称 z 是变量 x、y 的二元函数,记为 z f (x, y) 。其中 x、y 称 为自变量, z 称为因变量,自变量 x、y 的取值范围 D 称为函数的定义域。 【例 1】设圆锥体的底面半径为 r ,高为 h ,则体积V 1 πr2h 。这是一个以 r 、h 为自变量,
D {(r,h) | r>0,h>0} 。
二元以及二元以上的函数统称为多元函数。
5
第、 一节 多元函数的概念、极限与连续性
、
2.二元函数的定义域 二元函数的定义域比较复杂,可以是坐标系中全部的区域,也可以是由曲线所围成的 部分区域。围成区域的曲线称为区域的边界。不包括边界的区域称为开区域,连同边 界在内的区域称为闭区域;开区域内的点称为内点,而边界上的点称为边界点。 如果一个区域 D 内任意两点之间的距离都不超过某一正常数 M ,则 D 称为有界区域, 否则称为无界区域。
、
【例 3】 求二元函数 z ln(x y) 的定义域 D 。 解 由对数函数性质可知 x 、 y 必须满足 x y>0 。直线 x y 0 是它的边界,定义域 为不包括边界在内的开区域。
D {(x, y) | x y>0}
二、多元函数的极限
定义 5.2 设二元函数 z f (x, y) ,如果当点 P(x, y) 以任意方式趋向于点 P0 (x0 , y0 ) 时,f (x, y) 总趋向于一个确定的常数 A ,则称 A 是二元函数 f (x, y) 当 (x, y) (x0, y0 ) 时的极限,记为
4
第、 一节 多元函数的概念、极限与连续性
、
一、多元函数的概念 1.二元函数的定义
定义 5.1 设 D 是平面上的一个非空点集,如果对于每个点 (x, y) D ,变量 z 按照一定的法 则总有确定的值和它对应,则称 z 是变量 x、y 的二元函数,记为 z f (x, y) 。其中 x、y 称 为自变量, z 称为因变量,自变量 x、y 的取值范围 D 称为函数的定义域。 【例 1】设圆锥体的底面半径为 r ,高为 h ,则体积V 1 πr2h 。这是一个以 r 、h 为自变量,
专升本高数多元函数微分PPT课件
开 域 :不 包 括 边 界 在 内 的 区 域 称 为 开 域 .
无 界 区 域 有 界 区 域 :如 果 区 域 延 伸 到 无 穷 远 处 , 则称为无界区域,否则称为有界区域.
邻 域 :把 满 足 不 等 式 (x x0)2 ( y y0)2 ( 0) 的 点 P (x, y ) 的 全 体 称 为 点 P0 ( x0 , y0 ) 的 邻 域 . 它 是 以 点 P0 为 中 心 , 为 半 径 的 圆 形 开 区 域 , 称 不 包 含 点 P0 的 邻 域 为 无 心 邻 域 .
数的极限 lim f (x, y) A存在.反过来,如果当 P(x, y) 沿 xx0
y y 0
两条不同路径趋近于点 P0 (x0, y0 )时,函数 f (x, y) 趋近于不 同的值, 则可以断定函数的二重极限不存在.
y
Байду номын сангаас
P0
p o
x
2 . 多元函数的连续性
定义 设二元函数 z f (x, y)在点 P0 (x0 , y0 )的某个 邻域内有定义,若
点M (x, y,z).所有这样确定的点的集 x
合就是二元函数 z f (x, y)的图形,由 上一章知,通常是一张空间曲面(如 图 11.1-3 所示).
z zf(x,y) M(x,y,z)
o y
P(x,y) 图11.1-3
11.1.2 二元函数的极限与连续
1. 二 元 函 数 的 极 限
定 义 设 二 元 函 数 z f (x, y) , 如 果 当 点(x, y) 以 任 何
lim f (x, y) f (x0 , y0 )
(1)
xx0
y y0
则称二元函数 z f (x, y)在点 P0 (x0 , y0 )处连续.若函数
多元微积分基础-22页PPT资料
闭区域
D不连通
闭区域:开区域连同它的边界一起,称为闭区域。
E 2 x ,y 1 x 2 y 2 4 及 E 3x ,y xy 0 为闭区域。
5
有界点集与无界点集: 对于点集E , 若 K0, 使得 PE, P与某一定点 A间的距离 APK, 则称 E为有界点集,否则称为 无界点集。
例如, E 1 x ,y 1 x 2 y 2 4有界的开区域。 E 2 x ,y 1 x 2 y 2 4有界的闭区域。
若存在 UP,E,称点 P为点集 E的内点。
显然内点 PE.
P•
开集:若点集 E的点都是内点, 则称点集 E E
为开集.
例如 E 1 x ,y 1 x 2 y 2 4是开集。
边界点:若点 P的任一邻域内既有属于E的点,
•P
也有不属于 E的点, 称 P为 E的边界点.
边界:边界点的全体称为 E的边界.
U P 0, P P0 P
称为点 P 0 的 邻域。
P•0
即
U P 0, x ,yxx 02yy02 .
若不需要强调邻域半径 , 用 UP0 表示点 P 0 的 邻域。
U P 0,P0|P0P | 称为点 P 0 的 去心邻域.
P•0
3
2.区域
内点:设 E是平面上一个点集, P是平面上一点,
解 1x2y21;
2x
x
y
0
; 0
3x2y21.
y
y
y
xy0
O
x
O
x
O
x
(1)
(2)
(3)
9
二元函数的几何意义:
zfx,y在几何上表示空间曲面.
如, zax b yc
高数红宝书——第五章 多元函数微分学
一般地,存在下列关系:
如 ②全 导(只有多空间曲线才存在全导)
而 归结为一元函数求导,符合下列叠加原理: , 称为全导。
陈氏第8技 关于显隐式求偏导和等效表达式的结论。
● 如果(表达式,表达式,表达式),如 ,则用符号1, 2,3 分别代表对第1、第2、第3项求偏导,如。注意而。
● 一般情况下。因为为隐式求偏导,表示把复合函数中的当成不变 量,对的偏导,而为显式求偏导表示把复合函数中的和都当成不变量, 对的偏导。例如:
【例30】 求函数 在条件下的极值 解: 先计算在条件的极值即可使用拉氏乘数法则
或 当λ=1时不适题意,故λ≠1 代入方程组可得 及 又
故分别为的极小值点的极小值点为: 【例31】 求二元函数在直线,轴和轴所围成的闭域D上的最大值与最小 值。
解:① 在D内只有驻点(2,1)
②求在D的边界上的最值 在边界和上 在边界 上,代入
驻点有三类: 第一类: 第二类: 第三类:边界上的最值 综合上述结果,可得
评 注 由于积分是个区域, 故需要讨论被积函数的无条件极值和有条 件极值;如果题中所给积分曲线或曲面积分,则只需讨论有条件极值。 【例34】求证:, 其中:。 证明:等效于求函数的最大值与最小值。 先求开区域 上的极值,再求边界上的极值,一起比较得出最大值与最 小值。 【例35】求坐标原点到曲线的最短距离。
正定
负定
不定时
形象记忆法: 无根取极值,负负得正。 ④条件极值:对自变量有附加条件(一般以方程的形式给出)的极 值。 利用拉格朗日乘数法求解 一般根据实际问题来判断求得的点是否为极值点以及是极大值还是极 小值。 ⑤最值求法:比较区域内驻点的极值和边界曲线上的最大值与最小
值,其中最大的就是 最大值,最小的就是最小值。
如 ②全 导(只有多空间曲线才存在全导)
而 归结为一元函数求导,符合下列叠加原理: , 称为全导。
陈氏第8技 关于显隐式求偏导和等效表达式的结论。
● 如果(表达式,表达式,表达式),如 ,则用符号1, 2,3 分别代表对第1、第2、第3项求偏导,如。注意而。
● 一般情况下。因为为隐式求偏导,表示把复合函数中的当成不变 量,对的偏导,而为显式求偏导表示把复合函数中的和都当成不变量, 对的偏导。例如:
【例30】 求函数 在条件下的极值 解: 先计算在条件的极值即可使用拉氏乘数法则
或 当λ=1时不适题意,故λ≠1 代入方程组可得 及 又
故分别为的极小值点的极小值点为: 【例31】 求二元函数在直线,轴和轴所围成的闭域D上的最大值与最小 值。
解:① 在D内只有驻点(2,1)
②求在D的边界上的最值 在边界和上 在边界 上,代入
驻点有三类: 第一类: 第二类: 第三类:边界上的最值 综合上述结果,可得
评 注 由于积分是个区域, 故需要讨论被积函数的无条件极值和有条 件极值;如果题中所给积分曲线或曲面积分,则只需讨论有条件极值。 【例34】求证:, 其中:。 证明:等效于求函数的最大值与最小值。 先求开区域 上的极值,再求边界上的极值,一起比较得出最大值与最 小值。 【例35】求坐标原点到曲线的最短距离。
正定
负定
不定时
形象记忆法: 无根取极值,负负得正。 ④条件极值:对自变量有附加条件(一般以方程的形式给出)的极 值。 利用拉格朗日乘数法求解 一般根据实际问题来判断求得的点是否为极值点以及是极大值还是极 小值。 ⑤最值求法:比较区域内驻点的极值和边界曲线上的最大值与最小
值,其中最大的就是 最大值,最小的就是最小值。
专升本第七课(多元积分学2)
x
故二重积分可写为
∫∫ f ( x, y)dσ =∫∫ f ( x, y)dxdy D D
高等数学 极坐标系下二重积分的计算 2. 在极坐标系下用同心圆来划分区域 , 在极坐标系下用同心圆来划分区域D, 面积微元: 面积微元 1 1 2 2 ∆σ i = ( ri + ∆ri ) ⋅ ∆θ i − ri ⋅ ∆θ i 2 2
1.根据积分区域类型选择坐标系 根据积分区域类型选择坐标系
计 ∫∫ xdxdy 其 D为 算 , 中
x2 + y2 =1, y = x,以及x轴所围成的第一象限部分。
2.根据积分区域类型选择积分次序 根据积分区域类型选择积分次序
D
计 ∫∫ xydxdy, 其 R是 抛 线 2 = x及 算 中 由 物 y
围成的第一象限内的区域。 x 2 + y 2 = 2 y及x = 0 围成的第一象限内的区域。 解
∫∫
D
x 2 + y 2 dxdy
π
2 0 2 sin θ 0
= ∫ dθ ∫
π
2 0
r 2 dr
o
r
8 3 = ∫ sin θdθ 3 π 8 1 3 = ( cos θ − cos θ ) 02 3 3
a
a2 π rdr = ( 3 − ). 2 3
)
2.计算二重积分 计算二重积分
其中D: ∫∫ ydxdy 其中 :x
D
2
+ y 2 = 2ax 与x轴所围成的上半圆。 轴所围成的上半圆。 轴所围成的上半圆
(答案: 答案:
∫
π
2 0
dθ ∫
2acosθ
0
2 3 r sin θdr =L= a 3
多元函数微分学—多元函数(高等数学课件)
xy 1 1
xy
1
1
y 0
y 0
lim ( xy 1 1) 2
x 0
y 0
2.极限的求法
sin xy
例2 求极限 lim
x 0
x
y 3
sin xy
xy
一 元函数,但在自然科学和工程两
解
lim
x 0
y 3
x
lim
x 0
y 3
x
lim y 3
lim , = 0, 0
→0
→0
则称函数 , 在点 0, 0 处连续, 点 0, 0 也称为函数 , 的连续点.
二元函数的连续性
1. 某点连续的定义
同一元函数类似,二元函数在点 0 0, 0 连续必须满足以下三个条件:
(1) 函数 , 在点0 0, 0 的某邻域内有定义;
多元函数的微分学
多元函数的概念
知识点讲解
1.二元函数定义
2.定义域的求法
3.二元函数的几何意义
定义域的求法
二元函数的对应法则可以用解析式表示,也可以用表
格表示. 在讨论用解析式表示的二元函数的定义域时,如
一元函数,但在自然科学和工程两
果不考虑变量的实际意义,那么就是使解析式有确定值的
自变量所确定的点集.
平 面 点 集
1.平面区域
一元函数的定义域一般是一个或几个区间,而二元函数的定义域通常
则是由平面上的一条或几条曲线所围成的平面区域,简称区域. 围成区域
的曲线称为区域的边界;边界上的点称为边界点;包括边界的区域称为闭
区域;不包括边界的区域称为开区域.若一个区域延伸到无穷远处,则称
xy
1
1
y 0
y 0
lim ( xy 1 1) 2
x 0
y 0
2.极限的求法
sin xy
例2 求极限 lim
x 0
x
y 3
sin xy
xy
一 元函数,但在自然科学和工程两
解
lim
x 0
y 3
x
lim
x 0
y 3
x
lim y 3
lim , = 0, 0
→0
→0
则称函数 , 在点 0, 0 处连续, 点 0, 0 也称为函数 , 的连续点.
二元函数的连续性
1. 某点连续的定义
同一元函数类似,二元函数在点 0 0, 0 连续必须满足以下三个条件:
(1) 函数 , 在点0 0, 0 的某邻域内有定义;
多元函数的微分学
多元函数的概念
知识点讲解
1.二元函数定义
2.定义域的求法
3.二元函数的几何意义
定义域的求法
二元函数的对应法则可以用解析式表示,也可以用表
格表示. 在讨论用解析式表示的二元函数的定义域时,如
一元函数,但在自然科学和工程两
果不考虑变量的实际意义,那么就是使解析式有确定值的
自变量所确定的点集.
平 面 点 集
1.平面区域
一元函数的定义域一般是一个或几个区间,而二元函数的定义域通常
则是由平面上的一条或几条曲线所围成的平面区域,简称区域. 围成区域
的曲线称为区域的边界;边界上的点称为边界点;包括边界的区域称为闭
区域;不包括边界的区域称为开区域.若一个区域延伸到无穷远处,则称
专升本-高数一-PPT课件
例 2.下列各函数中,互为反函数的是(
n t, x o t cy (1 ) . y a x
)
1 x , 1 y ( ) 1 - x (2) .y2 2
知识点:反函数 求反函数的步骤是:先从函数 y f ( x ) 中解出 x f 1 ( y ) ,再置换 x 与
y ,就得反函数 y f 1 ( x ) 。
故函数的定义域为:{( x , y ) | x 0 且 x y 0} (2)要使函数有意义必须满足
故
x2 x 2 0 x 1 或 x 2 ,即 , x 2 x20 D ( 2, 1) (2, ) .
二、 极限
1.概念回顾
2、 极限的求法
利用极限四则运算、 连续函数、重要极限、无穷小代换、洛比达法则等 例 5: 求 lim
x
x5 . x2 9
1 5 1 5 2 lim( 2 ) x5 x x x 0 0. 解: lim 2 lim x x x x 9 x 9 9 1 1 2 lim(1 2 ) x x x 知识点:设 a0 0, b0 0, m, n N ,
数。
: D g ( D ) D f: D f( D ) g 1 1 1
f g : D f [ g ( D ) ]
例 1.下列函数中,函数的图象关于原点对称的是( (1) y 2 x 2 1 ; (3) y x 1 . 知识点: 函数的奇偶性 (2) y x 3 2sin x ;
则 lim
am x x b x n n
m
m a bn a1 x a0 0 b1 x b0
mn mn mn
高数二多元函数微分学课件
条件极值与无约束极值
条件极值
在给定附加条件下的极值问题,需要将条件转化为约束,然后求解无约束极值问题。
无约束极值
在没有任何限制条件下的极值问题,通常通过求导数并令其为零来找到可能的极值点,再 通过充分条件判断是否为真正的极值点。
解释
在实际问题中,常常会遇到附加条件的约束,如边界条件或特定条件。条件极值问题需要 将这些约束转化为数学表达形式,并求解对应的无约束极值问题。无约束极值问题则更常 见于未加任何限制的函数最优化问题。
答案解析
习题3答案解析
首先,根据全微分的定义,有$dz=u'dx+v'dy$。然后,将函数$z=x^2+y^2$代入全微分的定义中, 得到$dz=(2x)dx+(2y)dy=2xdx+2ydy$。最后,将点$(1,1)$代入全微分中,得到全微分为 $dz=(2cdot1)dx+(2cdot1)dy=2dx+2dy$。
答案解析
习题2答案解析
首先,根据题目给出的条件,有 $lim_{(x,y)to(0,0)}frac{f(x,y)}{x^2+y^2}=0$。然后, 利用极限的运算法则,得到 $lim_{(x,y)to(0,0)}frac{f(x,y)-f(0,0)}{x^2+y^2}=lim_{(x,y)to(0,0)}frac{f(0,0)}{x^2+y^2}=-f_{xx}(0,0)f_{yy}(0,0)$。最后,根据可微的定义,如果上述极限 存在且等于$f_{xx}(0,0)+f_{yy}(0,0)$,则函数$f(x,y)$ 在点$(0,0)$处可微。
偏导数与全微分的应用 在几何上,偏导数可以用来描述曲面在某一点的切线方向, 全微分可以用来计算函数在某一点的近似值。Fra bibliotek高阶偏导数
多元函数微分基本概念ppt课件
Rn, 即 Rn R R R
Rn 中的每一个元素用单个粗体字母 x 表示, 即
定义:
x y ( x1 y1, x2 y2,, xn yn )
x ( x1, x2, , xn )
线性运算
定义了线性运算的 Rn 称为 n 维空间, 其元素称为点或
PP0
当 n =2 时, 记 PP0 (x x0 )2 ( y y0 )2
二元函数的极限可写作:
lim f (x, y) A lim f (x, y) A
0
x x0
y y0
15
例1.
设
f (x, y) (x2
y2 ) sin x2
1
y2
求证: lim f (x, y) 0.
故
1 cos r 2 ~ r 4
2
19
方法2
见到此类问题,用极坐标替换法,也可以得前 面的结论:令 x r cos, y r sin,
20
注. 二重极限 lim f (x, y) 与累次极限 lim lim f (x, y)
x x0
xx0 y y0
y y0
不同.
如果它们都存在, 则三者相等. 仅知其中一个存在, 推不出其他二者存在.
x0
y0
证:
(x2 y2 0)
要证
ε
ε 0, δ ε , 当0 x2 y2 δ时, 总有
x2 y2
故
lim f (x, y) 0
x0
y0
16
例2.
设
f
(x,
y)
x
《多元函数的微积分》课件
最优化问题
在资源分配和生产计划中,多元函数微积分可以用于求解最优化问 题,例如最大化利润或最小化成本等。
风险评估
在金融学中,多元函数微积分可以用于评估投资风险和回报,以及 制定风险管理策略。
THANKS
感谢观看
多元函数的定义域
函数中各个自变量可以取值的范围。例如,对于函数z = f(x, y),其定义域是x和y的所有可能取值的集合。
多元函数的值域
函数中因变量可以取值的范围。例如,对于函数z = f(x, y) ,其值域是z的所有可能取值的集合。
多元函数的几何意义
平面上的曲线
对于二元函数z = f(x, y),其图像 在二维平面上表现为一条曲线。 例如,函数z = x^2 + y^2表示 一个圆。
体积计算
通过多元函数微积分,可以计算出由曲面围成的三维空间的体积 ,这在工程和科学领域中具有广泛的应用。
曲线积分
在几何学中,曲线积分是计算曲线长度的一种方法,而多元函数 微积分可以提供更精确和更高效的计算方法。
多元函数微积分在物理上的应用
力学分析
在分析力学中,多元函数微积分 被广泛应用于解决质点和刚体的 运动问题,例如计算物体的速度 、加速度和力矩等。
三维空间中的曲面
对于三元函数z = f(x, y, z),其图 像在三维空间中表现为一个曲面 。例如,函数z = x^2 + y^2表 示一个球面。
多元函数的极限与连续性
多元函数的极限
当自变量趋近于某个值时,函数值的趋近值。例如,lim (x, y) → (0, 0) (x^2 + y^2) = 0,表示当(x, y)趋近于(0, 0)时,函数x^2 + y^2的值趋近于0。
《多元函数的微积分》 ppt课件
在资源分配和生产计划中,多元函数微积分可以用于求解最优化问 题,例如最大化利润或最小化成本等。
风险评估
在金融学中,多元函数微积分可以用于评估投资风险和回报,以及 制定风险管理策略。
THANKS
感谢观看
多元函数的定义域
函数中各个自变量可以取值的范围。例如,对于函数z = f(x, y),其定义域是x和y的所有可能取值的集合。
多元函数的值域
函数中因变量可以取值的范围。例如,对于函数z = f(x, y) ,其值域是z的所有可能取值的集合。
多元函数的几何意义
平面上的曲线
对于二元函数z = f(x, y),其图像 在二维平面上表现为一条曲线。 例如,函数z = x^2 + y^2表示 一个圆。
体积计算
通过多元函数微积分,可以计算出由曲面围成的三维空间的体积 ,这在工程和科学领域中具有广泛的应用。
曲线积分
在几何学中,曲线积分是计算曲线长度的一种方法,而多元函数 微积分可以提供更精确和更高效的计算方法。
多元函数微积分在物理上的应用
力学分析
在分析力学中,多元函数微积分 被广泛应用于解决质点和刚体的 运动问题,例如计算物体的速度 、加速度和力矩等。
三维空间中的曲面
对于三元函数z = f(x, y, z),其图 像在三维空间中表现为一个曲面 。例如,函数z = x^2 + y^2表 示一个球面。
多元函数的极限与连续性
多元函数的极限
当自变量趋近于某个值时,函数值的趋近值。例如,lim (x, y) → (0, 0) (x^2 + y^2) = 0,表示当(x, y)趋近于(0, 0)时,函数x^2 + y^2的值趋近于0。
《多元函数的微积分》 ppt课件
微积分(第三版)课件:多元函数微积分
轴的直准线 C 上.所以 的坐
z
标满足曲线 C 的方程 f (x , y)= 0 .
由于方程 f (x , y)= 0 不含 z,所以
y
点 M(x, y, z)也满足方程 f (x, y)= 0 . x
而不在柱面上的点作平行于 z 轴的直线与 xoy 坐
标面的交点必不在曲线 C 上, 也就是说不在柱面上的
其中每个有序数组 的坐标,n个实数
称为 中的一个点,也称该点 就是这个点的坐标的分量.
n维空间中任意两点 为
与
间的距离定义
第二节 多元函数
一、二元函数 二、二元函数的极限与连续 三、多元函数
第二节 多元函数
导言:多元函数是多元函数微积分学研究的 对象,同一元函数类似对于多元函数也有极限、 连续等基本概念.这些内容作为一元函数在多元 函数中的推广,它与一元函数相关内容类似且 密切相关,在这部分内容的学习中应注意与一 元函数的对比.在研究方法上把握一般与特殊之 间辩证关系.
点的坐标不满足方程 f (x , y)= 0.
(2)以yOz 坐标面上曲线 C : g ( y , z ) = 0 为准线,
母线平行于x 轴的柱面方程为
(3)以zOx 坐标面上曲线 C : h ( x , z ) = 0 为准线,
母线平行于y 轴的柱面方程为
z
z
y
y
x
在空间直角坐标系Oxyz下,含两个变量的方程为柱 面方程,并且方程中缺少哪个变量,该柱面的母线就 平行于哪一个坐标轴 .
区域:连通的开集称为开区域,简称区域.区域及 其它的边界所成的集合称为闭区域.
有界与无界区域:对于平面点集E,如果存在一个 以原点为圆心的圆盘D ,使 ,则称E为有界区域, 否则称E为无界区域.
高等数学 多元函数微分法及其应用ppt课件
其余类推
fxy( x,
y)
lim
y0
fx(x, y
y) y
fx(x, y)
(2) 同样可得:三阶、四阶、…、以及n 阶偏导数。
(3) 【定义】二阶及二阶以上的偏导数统称为高阶偏导数。
【例
1】设 z
x3
y2
3 xy 3
xy
1,求二阶偏导数及
3z x 3
.
【解】 z 3x2 y2 3 y3 y, x
x2 y2 sin x2 y2 ( x2 y2 )3 2
y0
换元,化为一元 函数的极限
机动 目录 上页 下页 返回 结束
【阅读与练习】 求下列极限
5/51
x2
(1)lim sin( xy) (a 0); (2) lim (1 1 )x2 y2 ;
x0 x
x
x
ya
ya
1
(3)lim(1 sin xy)xy; x0
(2) 【复合函数求导链式法则】
①z
u
v
t t
dz z du z dv dt u dt v dt
全导数
u
x z z u z v y x u x v x
②z
v
x z z u z v
y y u y v y
③ z f (u, x, y)
u x z f f u
y x x u x
(
x,
y,
z)
lim
z0
z
.
机动 目录 上页 下页 返回 结束
10/51
4. 【偏导数的几何意义】 设 M0( x0 , y0 , f ( x0 , y0 )) 为曲面 z f ( x, y) 上一点, 如图
《多元函数微分学》PPT课件
0 V .
14
定义1 设D是xOy平面上的点集, 若变量z与D
多 元
函
中的变量x, y之间有一个依赖关系, 使得在D内
数 的
基
每取定一个点P(x, y)时,按着这个关系有确定的
本 概
z值与之对应, 则称z是x, y的二元(点)函数.记为 念
z f ( x, y) (或z f (P) )
称x, y为自变量,称z为因变量,点集D称为该函数
P0 称为 E 的内点:如果存在一个正数 使得U (P0 ) E P0 称为 E 的外点:如果存在一个正数 使得
U (P0 ) E
P0 称为 E 的边界点:如果对任意一个正数 使得
U (P0 ) 中即有E中点又有非E中点
P0 即不是E的内点也不是E的外点
闭区域: G G G
12
(3)Rn 中的集合到 Rm的映射
的 基 本
和方法上都会出现一些实质性的差别, 而多元
概 念
函数之间差异不大. 因此研究多元函数时, 将以
二元函数为主.
24
3、多元函数的极限
多
讨论二元函数 z f ( x, y),当x x0 , y y0 ,
元 函
即P( x, y) P0 ( x0 , y0 )时的极限.
数 的 基
怎样描述呢? 回忆: 一元函数的极限
多 元 函 数
的
基
解 定义域是 ( x 1)2 y2 1且x2 y2 1
本 概
念
y
•
O
1
x
有界半开半闭区域
18
3 求 f ( x, y) arcsin(3 x2 y2的) 定义域. x y2
解
3 x2 y2 1
多元函数微分学(共184张PPT)
z
sin
x2
1 y2
1
• 在 点圆 都周 是x2间 断y2 点1,是上一没条有曲定线义,. 所以该圆周上各
• 性质1(最大值和最小值定理) 在有界闭区域 D上的多元连续函数,在D上一定有最大值和最小
值.
• 在D上至少有一点 及一点 ,使得 为最大 值而 为最小值,P 即1 对于一切P 2 P∈D,有f ( P1 )
•
P
于E的点,也有不属于E的点,
•
E
则称P为E的边界点(图8-2).
•
设D是开集.如果对于D内的
• 图 8-1 任何两点,都可用折线连结起
上一页 下一页 返 回
•
来,而且该折线上的点都属于D,
•
P 则称开集D是连通的.
•
连通的开集称为区域或开区域.
•
E
开区域连同它的边界一起,称
•
为闭区域.
• 图 8-2
f( x x ,y ) f( x ,y ) A x ( x )
• 上式两边各除以 x ,再令 x 0而极限,就得
limf(xx,y)f(x,y)A • 从而 ,x 偏0导数 z 存 在x,而且等于A.同样可证
• =B.所以三式 x 成立.证毕.
z y
上一页 下一页 返 回
• 定理2(充分条件) 如果z=f(x,y)的偏导数
• 3.n维空间
• 设n为取定的一个自然数,我们称有序n元数组
•
的全体为n维空间,而每个有序n元数
(x1组,x2, ,xn) 称为n维空间中的一个点,数 称
(x1,x2, ,xn)
xi
上一页 下一页 返 回
• 为该点的第i个坐标,n维空间记为 .n
《多元函数积分学》课件
物理应用
重积分在物理中有广泛的应用,如计 算物体的质量、质心、转动惯量等物 理量,还可以用来解决流体动力学、 弹性力学等领域的问题。
数值分析应用
重积分在数值分析中有重要的应用, 如数值积分、数值微分等计算方法的 实现都需要用到重积分的知识。
04 曲线积分与曲面积分
曲线积分的概念与性质
总结词
理解曲线积分的定义和计算方法,掌握其在几何和物理问题中的应用。
总结词
掌握多元函数的可积性和积分的基本性 质是理解多元函数积分学的重要环节。
VS
详细描述
可积性的判定条件和积分的基本性质(如 线性性质、可加性、不等式性质等)是多 元函数积分学中的核心知识点,对于理解 和应用积分具有重要意义。
多元函数积分的计算方法
总结词
掌握多元函数积分的计算方法是学习多元函数积分学的关键。
《多元函数积分学》ppt课件
• 多元函数积分学概述 • 多元函数积分的基本概念 • 重积分 • 曲线积分与曲面积分 • 多元函数积分学的应用
01 多元函数积分学概述
多元函数积分学的定义
定义
多元函数积分学是研究多元函数 的积分、微分和微积分基本定理 的一门学科。
多元函数
一个数学函数,其中自变量不止 一个,即函数的输入和输出都是 向量或更高维度的几何对象。
计算多维工程结构的热传导和流 体流动
在工程中,很多问题需要考虑多维工程结构的热传导和 流体流动,如热力管道、流体机械等。多元函数积分学 可以用来计算这些结构的热传导和流体流动。
THANKS 感谢观看
积分
对一个函数在某个区域上的所有 点的值进行加权求和,权值由该 点的坐标决定。
多元函数积分学的重要性
解决实际问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七节 二重积分的应用
*
2
考试点津:
• 本讲出题在18分—26分之间,本讲内容是 一元函数微分内容的延伸,一般在选择题、 填空题、解答题中出现。
• 本讲重点:
(1)二元函数的偏导数和全微分。
(2)二元函数的有关极值问题及应用。 (3)会计算二重积分
• 建议重点复习前几年考过的试题,把握考 试重心和知识点,重在模仿解题。
成人高考高数一辅导
•
College of Agriculture & Biological Engineering
*
1
第五章 多元函数微积分学 (11年考了22分)
第一节 多元函数、极限和连续 第二节 偏导数与全微分 第三节 二元函数的极值 第四节 二重积分的概念和性质 第五节 直角坐标系下二重积分的计算 第六节 极坐标系下二重积分的计算
可 以 证 明 ,一 元 函 数 关 于 极 限 的 运 算 法 则 仍 适 用 于 多 元 函 数 ,即 多 元 连 续 函 数 的 和 、差 、积 为 连 续 函 数 ,在 分 母 不 为 零 处 ,连 续 函 数 的 商 也 是 连 续 函 数 ,多 元 函 数 的 复 合 函 数 也 是 连 续 函 数 .由 此 还 可 得 出 如 下 结 论 : 一 切 多 元 初等函数在其定义区域内是连续的.
(4)最大值和最小值定理
在有界闭区域D上的多元连续函数,在D上至少取得它的最大 值和最小值各一次.
(5)介值定理
在有界闭区域D上的多元连续函数,如果在D上取得两个不同的
函数值,则它在D上取得介于这两值之间的任何值至少一次.分
(一) 偏导数
1. 偏导数的定义
定义 设函数 z f (x, y)在点(x0, y0 )的某一邻域内有 定义,当 y固定在 y0,而 x在 x0处有增量x时,相应地函 数有增量 f (x0 x, y0 ) f (x0, y0 ),如果极限
lim f (x0 x, y0 ) f (x0 , y0 )
x0
x
存在,则称此极限为函数 z f (x, y)在点(x0, y0 )处对 x的
偏导数,记作
*
13
z x
xx0 y y0
, f x
xx0 y y0
, zx
xx0 y y0
,
fx (x0 ,
(1)
xx0
y y0
则称二元函数 z f (x, y)在点 P0 (x0 , y0 )处连续.若函数
z f (x, y)在区域 D上每一点都连续,则称函数 f (x, y) 在
区域 D上连续.
*
10
如 果 函 数 f (x,y) 在 点 (x0, y0)处 不 连 续 , 则 称 函 数 f (x,y)在 点 (x0, y0)处 间 断 , 点 (x0, y0)称 为 间 断 点 .
(x0, y0 )是指点(x, y) 趋近于点(x0, y0 )是沿“四面八方”的各
种各样路径来逼近的(如图 11* .1-4 所示),
8
1.二元函数的极限
设二元函数 z = f (X) = f (x, y), 定义域为D. 如图
z A
f (X)
z = f (x, y) M
o
y
x
X
X X0
D
*
图11.1-4
为 z f (x, y),于是得到了空间内的一
点M (x, y,z).所有这样确定的点的集
合就是二元函数 z f (x, y)的图形,由
上一章知,通常是一张空间曲面(如
图 11.1-3 所示).
*
图11.1-3 7
11.1.2 二元函数的极限与连续
1. 二 元 函 数 的 极 限
定 义 设 二 元 函 数 z f (x, y) , 如 果 当 点(x, y) 以 任 何
方 式 趋 近 于 点 (x0 , y0 ) 时 , f (x, y) 总 是 无 限 地 趋 近 于 一 个
确 定 的 常 数 A , 则 称 常 数 A 为 函 数 z f (x, y) 在x x0 ,
y y0时 的 极 限 , 记 作
lim f ( x, y) A , 或 f (x, y) A ( ( x, y ) ( x0 , y0 ) ) . x x0 y y0 必 须 注 意 , 定 义 中 的 当 点 (x, y) 以 任 何 方 式 趋 近 于 点
*
11
多元函数的性质
(1)多元连续函数的和、差、积、商(若分母 不为0)都是连续函数;
(2)多元连续函数的复合函数都是连续函数; (3)一切多元初等函数在其定义区域内是连续的.
多元初等函数:由多元多项式及基本初等函数经过有限 次的四则运算和复合步骤所构成的可用一个式子所表示 的多元函数叫多元初等函数
当 n 2 时 , n 元 函 数 统 称 为 多 元 函 数 .
多元函数中同样有定义域、值域、自变量、因变量等概念
*
6
2.二元函数的几何意义
一元函数 y f (x)通常表示平面
上的一条曲线.二元函数
z f (x, y) ,(x, y)D,
其定义域 D是平面上的一个区域,对
于任取点 P(x, y)D,其对应的函数值
例如 sx, (y 长方形 ), V 的 xy 面 (立 z 积 方体 ) 的
定义 1 设D是平面上的一个点集,如果对于每个点
P( x, y) D,变量 z 按照一定的法则总有唯一确定 的值和它对应,则称 z 是变量x, y 的二元函数,
记为z f ( x, y)(或记为z f (P)).
类似地可定义三元及三元以上函数.
如果当X在D内 变动并无限接近于
X0时 (从任何方向, 以任何方式),对应 的函数值 f (X)无限 接近于数 A, 则称A为当X趋近于 X0时f (X)的极限.
9
2 . 多元函数的连续性
定义 设二元函数 z f (x, y)在点 P0 (x0 , y0 )的某个 邻域内有定义,若
lim f (x, y) f (x0 , y0 )
*
3
一、主要内容
平面点集 和区域
极限运算
多元函数概念
多元函数 的极限
多元连续函数 的性质
多元函数 连续的概念
*
4
偏导数在 经济上的应用
复合函数 求导法则
全微分形式 的不变性
全微分 概念
偏导数 概念
全微分 的应用
高阶偏导数
隐函数 求导法则
多元函数的极值
*
5
第一节 多元函数、极限和连续
(一)多元函数 1.二元函数、多元函数的定义