第五章 图像复原
合集下载
第五章-图像复原
空间域法和频率域法。 重点介绍线性复原方法 方法 空间域法主要是对图像的灰度进行处理;
频率域法主要是滤波。
概述
图像在形成、记录、处理和传输过程中,由于成像 系统、记录设备、传输介质和处理方法的不完善, 会导致图像质量下降。这一过程称为图像的退化。
图像的复原就是要尽可能恢复退化图像的本来面目, 它是沿图像降质的逆向过程进行。典型的图像复原 是根据图像退化的先验知识建立一个退化模型,以 此模型为基础,采用各种逆退化处理方法进行恢复, 使图像质量得到改善。
概述
技术 特点
图像增强
图像复原
* 不考虑图像降质的原因,只将 * 要考虑图像降质的原因,建
图像中感兴趣的特征有选择地突出 立“降质模型“。
(增强),而衰减其不需要的特征。 * 要建立评价复原好坏的客观
* 改善后的图像不一定要去逼近 标准。
原图像。
*客观过程
*主观过程
主要 提高图像的可懂度 目的
提高图像的逼真度
瑞利密度曲线距原点的位移和其密度 图像的基本形状向右变形。瑞利密度 对于近似偏移的直方图十分适用 .
伽马噪声
pz
ab
b
z b1
1!
e
az
0
a>0,b为正整数
z0 z0
均值: b / a
方差:
2 b / a2
伽马噪声在激光成像中 有些应用 .
指数分布噪声
pz
aeaz
z0
0 z 0
最小值滤波器
使用序列中起始位置的数值,得出最小值滤波器, 由下式给出:
fˆ(x, y) min g(s,t) (s,t )Sxy
这种滤波器对发现图像中的最暗点非常有用。 作为最小值操作的结果,它可以用来消除 “盐”噪声。
《数图》第5章 图像复原
点扩展函数( 点扩展函数(PSF )
3.图像降质实例 图像降质实例
(1)孔径衍射造成的图像降质 )
物平面上的点光源(二维冲激函数) 物平面上的点光源(二维冲激函数) 物平面上场景= 物平面上场景=众多点光源的集合 像平面上的光斑(系统冲激响应) 像平面上的光斑(系统冲激响应) 像平面上图像=众多光斑的集合。 像平面上图像=众多光斑的集合。
2 2
(5.12)
惠更斯-菲涅尔原理 光学成像的惠更斯 菲涅尔原理:对于相干光, 光学成像的惠更斯 菲涅尔原理:对于相干光, 点扩展函数在幅值上就是光瞳函数的二维傅立叶变换。 点扩展函数在幅值上就是光瞳函数的二维傅立叶变换。即: (5.13) j 2π ( xξ + yη)]dξ dη λd2
ξ λ d2
Digital Image Processing
6
考虑加性噪声n(x , y): 考虑加性噪声 :
g( x, y) = ∫∫ f (α, β )h( x −α, y − β )dαd β + n( x, y) = f ( x, y) ∗ h( x, y) + n(x, y) (5.7)
−∞ +∞
对应的频率域表达式: 对应的频率域表达式:
(a) 原始图像
(b) 运动造成的模糊图像
(c) 复原后的图像
图5.4 相对运动造成的图像模糊及其复原
Digital Image Processing 13
在一平面内运动, 设:物体 f(x,y) 在一平面内运动, 是物体在x方向的位移 是物体在y方向的位移 x0(t)是物体在 方向的位移,y0(t)是物体在 方向的位移,t 表示运动的时间; 是物体在 方向的位移, 是物体在 方向的位移, 表示运动的时间; 感光单元的总曝光量是在快门打开到关闭这段曝光时间T 内的积分。 感光单元的总曝光量是在快门打开到关闭这段曝光时间 内的积分。 曝光成像后的降质图像为: 曝光成像后的降质图像为:
第5章 图像复原(08) 数字图像处理课件
第五章 图 像 复
第五章 图 像 复 原
5.1 图像退化与复原模型 5.2 无约束图像复原 5.3 有约束图像复原 5.4 图像的几何校正
第五章 图 像 复
第五章 图 像 复
第五章 图 像 复
➢图像复原的主要任务: 图像复原是利用退化现象的某种先验知识,建
立退化现象的数学模型,再根据模型进行反向的推 演运算,以恢复原来的景物图像。
只考虑线性和空间不变系统模型。
第五章 图 像 复
设h(x, y)为该退化系统的点扩展函数, 或叫系统的 冲激响应函数。
g ( x ,y ) f( x ,y ) * h ( x ,y ) n ( x ,y )
在频域上
G ( u ,v ) F ( u ,v ) H ( u ,v ) N ( u ,v ) (5.9)
第五章 图 像 复
克服不稳定性方法:
• 有约束图像复原;
• 采用限定恢复转移函数最大值的方法;可利用噪声 一般在高频范围衰减速度较慢, 而信号的频谱随频率 升高下降较快的性质,在复原时, 只限制在频谱坐标 离原点不太远的有限区域内运行,而且关心的也是信 噪比高的那些频率位置。
第五章 图 像 复
实际上,为了避免H(u, v)值太小,一种改进方法是 在H(u, v)=0的那些频谱点及其附近,人为地设置H-1(u, v)的值,使得在这些频谱点附近N(u, v)/H(u, v)不会对 (fˆ u, v)产生太大的影响。
|n ||2 |n T n |g | H f ˆ|2 |( g H f ˆ ) T ( g H f ˆ )
(5.65)
第五章 图 像 复
式(5.65)的极小值为
L(fˆ)||gHfˆ|2|
(5.64)
第五章 图 像 复 原
5.1 图像退化与复原模型 5.2 无约束图像复原 5.3 有约束图像复原 5.4 图像的几何校正
第五章 图 像 复
第五章 图 像 复
第五章 图 像 复
➢图像复原的主要任务: 图像复原是利用退化现象的某种先验知识,建
立退化现象的数学模型,再根据模型进行反向的推 演运算,以恢复原来的景物图像。
只考虑线性和空间不变系统模型。
第五章 图 像 复
设h(x, y)为该退化系统的点扩展函数, 或叫系统的 冲激响应函数。
g ( x ,y ) f( x ,y ) * h ( x ,y ) n ( x ,y )
在频域上
G ( u ,v ) F ( u ,v ) H ( u ,v ) N ( u ,v ) (5.9)
第五章 图 像 复
克服不稳定性方法:
• 有约束图像复原;
• 采用限定恢复转移函数最大值的方法;可利用噪声 一般在高频范围衰减速度较慢, 而信号的频谱随频率 升高下降较快的性质,在复原时, 只限制在频谱坐标 离原点不太远的有限区域内运行,而且关心的也是信 噪比高的那些频率位置。
第五章 图 像 复
实际上,为了避免H(u, v)值太小,一种改进方法是 在H(u, v)=0的那些频谱点及其附近,人为地设置H-1(u, v)的值,使得在这些频谱点附近N(u, v)/H(u, v)不会对 (fˆ u, v)产生太大的影响。
|n ||2 |n T n |g | H f ˆ|2 |( g H f ˆ ) T ( g H f ˆ )
(5.65)
第五章 图 像 复
式(5.65)的极小值为
L(fˆ)||gHfˆ|2|
(5.64)
图像复原
g(x,y)=∫0Tf[x-x0(t),y-y0(t)]dt
G(u,v) = F(u,v) 0Texp{-j2p[ux0(t) + vy0(t)]}dt = F(u,v)H(u,v)
H(u,v) = 0Texp{-j2p[ux0(t) + vy0(t)]}dt
如果知道运动分量x0(t)和y0(t),从上式直接得到H(u,v)
经过傅立叶反变换,可求得原始图像f(x,y)
在有噪声的情况下
F^(u,v) = F(u,v) + N(u,v)/H(u,v) 从上面两式可以看出,在进行复原处理时可能会发生下列情况: (1)H(u,v)=0或H(u,v)非常小,在这种情况下,即使无 噪声,也无法精确恢复f(x,y) (2)在有噪声存在时,在H(u,v)的邻域内,H(u,v)的值可 能比N(u,v)的值小的多,由上式得到的噪声项可能会 非常大,不能使f(x,y)正确恢复
实际上是求J(f^)的极小值问题,除了要求J(f^)为最小 外,不受任何其它条件约束,因此称为无约束复原 即 dJ(f^ )/df^ = 0 = -2HT(g – Hf^) f^ = (HTH)-1 HTg (2) M=N时,则有 f^ = H-1(HT)-1 HTg = H-1 g
约束复原方法
在最小二乘方复原处理中,为了在数学上
η(x,y)=Asin(u0x+v0y) 傅立叶变换为: N(u,v)=-jA[δ(u-u0/(2π),v-v0/v(2π))δ(u+u0/ (2π),v+v0/ (2π)) ]
这里退化仅由噪声造成,所以有:
G(u,v)=F(u,v)+N(u,v) 利用前面讲的带阻滤波器消除,以去掉正弦干扰模式影响
第5章_图像复原
f ( x, y )
考虑系统受到噪声n(x,y)的影响,对于线性 移不变系统,退化模型数学表达式为:
g ( x, y) f ( x, y) * h( x, y) n( x, y)
图像 f(x,y)
退化或降质 系统h(x,y)
降质图像 g(x,y)
噪声信号 n(x,y)
5.1.1连续图像退化的数学模型
y dd
f , hx , y dd
费雷德霍姆积 分
f ( x, y ) * h ( x, y )
线性系统H可由其冲激响应来表征
经过理想线性移不变系统,输出保持不变
循环卷积写成矩阵形式: g=Hf
H是M×M的矩阵。
he (1) he (2) he (0) h (1) he (0) he (1) e H he (2) he (1) he (0) he ( M 1) he ( M 2) he ( M 3)
C是与湍流性质有关的常数。
5.1.3离散图像退化的数学模型 一、一维离散情况退化模型
g x f x hx
设f(x)、h(x)分别具有A个和B个采样点。
离散循环卷积是针对周期函数定义的,避免 离散循环卷积的周期性序列之间发生相互重叠现 象(卷绕效应),分别对f(x)、h(x)进行填0延伸 成M=A+B-1的周期函数。
F u, exp j 2 (ux0 (t ) y0 (t )dt
0
T
F u, exp j 2 (ux0 (t ) y0 (t )dt
0
T
令
H u, exp j 2 ux0 t y0 (t )dt
第5章图像复原
图像恢复就是已知g(x,y),从上式所示的模型中求 出f(x,y),关键在于如何求出退化系统的冲击响应函数 h(x,y)。
4.离散的退化模型
将连续模型中的积分用求和的形式表示。
(1)一维离散退化模型
暂不考虑噪声: 设f(x)为被平均采样后形成具有A个采样值的离散 输入函数; h(x,y)为被采样后形成B个采样值的退化系统冲击 响应; 因此,连续函数退化模型中的连续卷积关系变为离 散卷积关系:
a) 受大气湍流的严重影响的图像 b) 用维纳滤波器恢复出来的图像
a)
b)
图5-2 用巴特沃思带阻滤波器 复原受正弦噪声干扰的图像 a) 被正弦噪声干扰的图像 b) 滤波效果图
a)
b)
3.图像复原的评价
根据一些客观准则来评价,常用的包括最小均方 准则、加权均方准则等。
4.图像复原技术的分类
若已知退化模型条件下,可分为无约束和有约束
运动模糊; (6)镜头聚焦不准产生的散焦模糊;
(7)底片感光、图像显示时造成的记录显示失真;
(8)成像系统中存在的噪声干扰。 图5-2 运动模糊图像的恢复处理
a) 原始图像
b) 模糊图像
c) 复原图像
5.2图像退化的数学模型
1.线性位移不变系统的退化模型
假定成像系统是线性位移不变系统(退化性质与 图像的位置无关),图像的退化过程用算子H表示, 则获取的图像g(x,y)表示为:
经傅里叶变换后,得:
G(u,v) H(u,v)F(u,v) H (u, v )
其中, G ( u, v )为g( x , y )的 傅 里 叶 变 换 ; F ( u, v )为f ( x , y )的 傅 里 叶 变 换 ; H ( u, v )为h( x , y )的 傅 里 叶 变 换 。
4.离散的退化模型
将连续模型中的积分用求和的形式表示。
(1)一维离散退化模型
暂不考虑噪声: 设f(x)为被平均采样后形成具有A个采样值的离散 输入函数; h(x,y)为被采样后形成B个采样值的退化系统冲击 响应; 因此,连续函数退化模型中的连续卷积关系变为离 散卷积关系:
a) 受大气湍流的严重影响的图像 b) 用维纳滤波器恢复出来的图像
a)
b)
图5-2 用巴特沃思带阻滤波器 复原受正弦噪声干扰的图像 a) 被正弦噪声干扰的图像 b) 滤波效果图
a)
b)
3.图像复原的评价
根据一些客观准则来评价,常用的包括最小均方 准则、加权均方准则等。
4.图像复原技术的分类
若已知退化模型条件下,可分为无约束和有约束
运动模糊; (6)镜头聚焦不准产生的散焦模糊;
(7)底片感光、图像显示时造成的记录显示失真;
(8)成像系统中存在的噪声干扰。 图5-2 运动模糊图像的恢复处理
a) 原始图像
b) 模糊图像
c) 复原图像
5.2图像退化的数学模型
1.线性位移不变系统的退化模型
假定成像系统是线性位移不变系统(退化性质与 图像的位置无关),图像的退化过程用算子H表示, 则获取的图像g(x,y)表示为:
经傅里叶变换后,得:
G(u,v) H(u,v)F(u,v) H (u, v )
其中, G ( u, v )为g( x , y )的 傅 里 叶 变 换 ; F ( u, v )为f ( x , y )的 傅 里 叶 变 换 ; H ( u, v )为h( x , y )的 傅 里 叶 变 换 。
第五章 图像的复原
5.3.1 有约束的最小二乘方图像复原
为最小。式中λ为一常数,是拉格朗日系数。加上约束条件 后,就可以按一般求极小值的方法进行求解。
5.3.1 有约束的最小二乘方图像复原
5.3.1 有约束的最小二乘方图像复原
式中 1/λ必须调整到约束条件被满足为止。 求解式(5-45)的核心就是如何选用一个合适的变换矩阵Q。 选择Q形式不同,就可得到不同类型的有约束的最小二乘 方图像复原方法。 ¾ 如果选用图像f和噪声n的相关矩阵Rf和Rn表示Q就可以 得到维纳滤波复原方法。 ¾ 如选用拉普拉斯算子形式,即使某个函数的二阶导数 最小,就可推导出有约束最小平方恢复方法。
5.1 图像退化的一般模型
一幅连续的输入图像f(x,y)可以看作是由一系列点源组成的。 因此,f(x,y)可以通过点源函数的卷积来表示。即
在不考虑噪声的一般情况下,连续图像经过退化系统H后的 输出为
5.1 图像退化的一般模型
把式(5-5)代入到式(5-6)可知,输出函数
对于非线性或者空间变化系统,要从上式求出f(x,y)是非常 困难的。 为了使求解具有实际意义,现在只考虑线性和空间不变 系统的图像退化。
¾ 逆滤波复原法也叫做反向滤波法,其主要过程是首先将要 处理的数字图像从空间域转换到傅立叶频率域中,进行反 向滤波后再由频率域转回到空间域,从而得到复原的图像 信号。 ¾ 基本原理如下。
¾ 如果退化图像为g(x,y),原始图像为f(x ,y),在不考虑噪声的情况 下,其退化模型用(5-8)式表示,现将其重写如下:
第五章
5.1 5.2 5.3 5.4 5.5 5.6
图像的复原
图像退化的模型 非约束复原 有约束复原 非线性复原方法 几种其他图像复原技术 小结
第五章
第五章图像复原
进行图像复原的关键问题是寻找降质系统在空间域上的冲激响应函数h(x, y),或者降质系统在频率域上的传递函数H(u, v),即退化函数的空域或频域
表示。
一般来说,传递函数比较容易求得。因此,在进行图像复原之前,一般应
设法求得完全的或近似的降质系统传递函数,要想得到h(x, y), 只需对H(u, v)
假定 f(x,y) 表示无运动模糊的清晰图象,相对运动用x0(t)和y0(t)表示,则
运动模糊图象g(x,y)是曝光时间内象平面上能量的积累
g(x,
y)
=
∫T 0
f
[x
−
x0 (t),
y
−
y0 (t)]dt
+∞ +∞
对上式进行傅立叶变换
G (u,v) = ∫ ∫ g ( x, y) exp (− j2π (ux + vy)) dxdy −∞ −∞
6. 图象在成象、数字化、采集和处理过程中引入的噪声等。
第五章 图像复原
5.1 图像退化/复原过程的模型
图像复原是利用退化现象的某种先验知识,建立退化现象的数学模型,再 根据模型进行反向的推演运算,以恢复原来的景物图像。因而,图像复原可 以理解为图像降质过程的反向过程。
建立图像复原的反向过程的数学模型,就是图像复原的主要任务。经过反 向过程的数学模型的运算,要想恢复全真的景物图像比较困难。所以, 图像 复原本身往往需要有一个质量标准, 即衡量接近全真景物图像的程度,或者 说,对原图像的估计是否到达最佳的程度。
(5-1)
n(x, y)是一种统计性质的信息。在实际应用中, 往往假设噪声是白噪声,
即它的频谱密度为常数,并且与图像不相关。
在图像复原处理中, 尽管非线性、 时变和空间变化的系统模型更具有普遍 性和准确性,更与复杂的退化环境相接近,但它给实际处理工作带来了巨大 的困难, 常常找不到解或者很难用计算机来处理。因此,在图像复原处理 中, 往往用线性系统和空间不变系统模型来加以近似。这种近似的优点使得 线性系统中的许多理论可直接用于解决图像复原问题,同时又不失可用性。
表示。
一般来说,传递函数比较容易求得。因此,在进行图像复原之前,一般应
设法求得完全的或近似的降质系统传递函数,要想得到h(x, y), 只需对H(u, v)
假定 f(x,y) 表示无运动模糊的清晰图象,相对运动用x0(t)和y0(t)表示,则
运动模糊图象g(x,y)是曝光时间内象平面上能量的积累
g(x,
y)
=
∫T 0
f
[x
−
x0 (t),
y
−
y0 (t)]dt
+∞ +∞
对上式进行傅立叶变换
G (u,v) = ∫ ∫ g ( x, y) exp (− j2π (ux + vy)) dxdy −∞ −∞
6. 图象在成象、数字化、采集和处理过程中引入的噪声等。
第五章 图像复原
5.1 图像退化/复原过程的模型
图像复原是利用退化现象的某种先验知识,建立退化现象的数学模型,再 根据模型进行反向的推演运算,以恢复原来的景物图像。因而,图像复原可 以理解为图像降质过程的反向过程。
建立图像复原的反向过程的数学模型,就是图像复原的主要任务。经过反 向过程的数学模型的运算,要想恢复全真的景物图像比较困难。所以, 图像 复原本身往往需要有一个质量标准, 即衡量接近全真景物图像的程度,或者 说,对原图像的估计是否到达最佳的程度。
(5-1)
n(x, y)是一种统计性质的信息。在实际应用中, 往往假设噪声是白噪声,
即它的频谱密度为常数,并且与图像不相关。
在图像复原处理中, 尽管非线性、 时变和空间变化的系统模型更具有普遍 性和准确性,更与复杂的退化环境相接近,但它给实际处理工作带来了巨大 的困难, 常常找不到解或者很难用计算机来处理。因此,在图像复原处理 中, 往往用线性系统和空间不变系统模型来加以近似。这种近似的优点使得 线性系统中的许多理论可直接用于解决图像复原问题,同时又不失可用性。
医学图像处理 第五章 图像复原
第5章 图像退化与复原
5.1 图像退化
• 退化:图像质量的变坏叫做退化。
改善图像质量的方法: 图像增强和图像复原
图像增强:图像增强是指按特定的需要突
出一幅图像中的某些信息,同时消弱或去 除某些不需要的信息的处理方法。经处理 后的图像更适合于人的视觉特性或机器的 识别系统。
图像复原:利用退化现象的某种先验知
用卷积形式表示:
g ( x, y )
f ( , )h( x , y )d d f ( x, y) * h( x, y )
考虑噪声的情况下,连续图像的退化模型 为:
g ( x, y)
f ( , )h( x , y )dd n( x, y)
识,建立退化现象的数学模型,再根据模 型进行反向的推演运算,以恢复原来的景 物图像。
图像增强和图像复原的区别: 图像增强:不考虑图像降质的原因,只将图 像中感兴趣的特征有选择的突出,而衰减 其不需要的特征,故改善后的图像不一定 要去逼近原图像。 图像复原:它需要了解图像降质的原因,一 般要根据图像降质过程的某些先验知识, 建立“降质模型”,再用降质模型,按照 某种处理方法,恢复或重建原来的图像。
• 所以:
g ( x, y ) H f ( x, y ) H f ( , ) ( x , y )dd
在线性和空间不变系统的情况下, 退化算子H 具有如下性质: (1)线性:设f1(x,y)和f2(x,y)为两幅输入图像, k1和k2为常数, 则 :
输出为:
M 1 m 0
ge ( x) f e ( x) he ( x) f e (m)he ( x m)
5.1 图像退化
• 退化:图像质量的变坏叫做退化。
改善图像质量的方法: 图像增强和图像复原
图像增强:图像增强是指按特定的需要突
出一幅图像中的某些信息,同时消弱或去 除某些不需要的信息的处理方法。经处理 后的图像更适合于人的视觉特性或机器的 识别系统。
图像复原:利用退化现象的某种先验知
用卷积形式表示:
g ( x, y )
f ( , )h( x , y )d d f ( x, y) * h( x, y )
考虑噪声的情况下,连续图像的退化模型 为:
g ( x, y)
f ( , )h( x , y )dd n( x, y)
识,建立退化现象的数学模型,再根据模 型进行反向的推演运算,以恢复原来的景 物图像。
图像增强和图像复原的区别: 图像增强:不考虑图像降质的原因,只将图 像中感兴趣的特征有选择的突出,而衰减 其不需要的特征,故改善后的图像不一定 要去逼近原图像。 图像复原:它需要了解图像降质的原因,一 般要根据图像降质过程的某些先验知识, 建立“降质模型”,再用降质模型,按照 某种处理方法,恢复或重建原来的图像。
• 所以:
g ( x, y ) H f ( x, y ) H f ( , ) ( x , y )dd
在线性和空间不变系统的情况下, 退化算子H 具有如下性质: (1)线性:设f1(x,y)和f2(x,y)为两幅输入图像, k1和k2为常数, 则 :
输出为:
M 1 m 0
ge ( x) f e ( x) he ( x) f e (m)he ( x m)
图像复原及应用(第五章)
fˆ ( x,
y)
1 mn
d
gr
(s,t )S
(s,t)
中值滤波示例
(a)椒盐噪声污染的图像
目前方法:1)估计方法,适用于对图像
缺乏已知信息的情况,对退化过程(模 糊和噪声)建立模型,进行描述,寻找 一种去除或削弱其影响的过程。
2)检测方法,适用于对于原始图像已有足够的已知信 息,对原始图像建立一个数学模型并根据它对退化图 像进行拟合,如,已知图像中仅含有确定大小的圆形 物体(星辰、颗粒、细胞等) 3)实验法,寻找不同的方法,不断逼近最佳结果
图像复原分类
图像恢复技术的分类:
(1)在给定退化模型条件下,分为无约束和有约束两 大类;
(2)根据是否需要外界干预,分为自动和交互两大类; (3)根据处理所在域,分为频域和空域两大类。
5.1图像退化的原因
成象系统的象差、畸变、带宽有限等造成图像图像失真; 由于成象器件拍摄姿态和扫描非线性引起的图像几何失
均值滤波-示例
(d) 几何均值滤波(e)Q=-1.5的逆谐波滤波 (f) Q=1.5滤波的结果
顺序统计滤波
1.中值滤波
fˆ(x, y) 1 [maxg(s,t) ming(s,t)]
2
( s ,t
其中,其中,g为输入图像,
)S
xy
(s,t )Sxy
s(x,y)为滤波窗口。
修正后的阿尔法均值滤波器
为在x和y方向上运动的变化分量,t表示运动时间。记 录介质的总曝光量是在快门打开到关闭这段时间的积 分。则模糊后的图像为:
T
g(x, y) 0 f [x x0 (t), y y0 (t)]dt
5.2 只存在噪声的复原:空间域滤波
定义:
第5章 图像复原
5.1 图像复原的基本概念
a) 被正弦噪声干扰的图像
b) 滤波效果图
用巴特沃思带阻滤波器复原受正弦噪声干扰的图像
5.1 图像复原的基本概念
a)受大气湍流的严重影响的图像 b)用维纳滤波器恢复出来的图像
维纳滤波器应用
5.1 图像复原的基本概念
图像复原
将降质了的图像恢复成原来的图像,针对引起图像 退化的原因,以及降质过程某先验知识,建立退化 模型,再针对降质过程采取相反的方法,恢复图像 一般地讲,复原的好坏应有一个规定的客观标准, 以能对复原的结果作出某种最佳的估计。
5.2 图像退化模型
降质过程可看作对原图像f (x,y)作线性算。
g(x,y) = H · (x,y)+n(x,y) f
降质后
降质模型
噪声 n(x,y)
f (x,y)
H
5.2 图像退化模型
以后讨论中对降质模型H作以下假设:
H是线性的
H k1 f1 x , y k 2 f 2 x , y k1Hf x , y k 2 Hf 2 x , y
5.2 图像退化模型
f , x , y d d 根据冲激响应定义
g x, y H
(H 为一线性算子) ( H 是空间移不变)
H f , x , y d d
5.2.2 离散的退化模型
对于图像降质过程进行数学建模
y (i, j ) h(i, j; k , l ) f (k , l ) n(i, j )
k 1 l 1 M N
f(i, j):原始图像
数字图像处理第5章图像复原
5.3 有约束复原
5.3.1 5.3.2 5.3.3 5.3.4 有约束的最小二乘方图像复原 维纳滤波方法 有约束最小平方滤波 去除由匀速运动引起的模糊
5.3.1 有约束的最小二乘方图像复原
有约束图像复原技术是指除了要求了解关于退化系统的传 递函数之外,还需要知道某些噪声的统计特性或噪声与图 像的某些相关情况。根据所了解的噪声的先验知识的不同, 采用不同的约束ห้องสมุดไป่ตู้件,从而得到不同的图像复原技术。最 常见的是有约束的最小二乘方图像复原技术。 在最小二乘方复原处理中,有时为了在数学上更容易处理, 常常附加某种约束条件。例如,可以令Q为f的线性算子, 那么,最小二乘方复原问题可看成是使形式为||Qf||2的函 数,服从约束条件 的最小化问题。
第5章 图像复原 本章重点: 图像退化的一般模型 非约束复原方法 约束复原方法 非线性复原方法
第5章 图像复原
5.1 5.2 5.3 5.4 5.5 5.6 基本概念 非约束复原 有约束复原 非线性复原方法 几种其他图像复原技术 小结
5.1 基本概念
5.1.1 5.1.2 5.1.3 5.1.4 图像退化一般模型 成像系统的基本定义 连续函数的退化模型 离散函数的退化模型
5.2.2 逆滤波器方法
逆滤波法复原的基本原理:
H(u,v)可以理解为成像系统的“滤波”传递函数,在频域中系统的传递 函数与原图像信号相乘实现“正向滤波”,这里,G(u,v)除以H(u,v)起到 了“反向滤波”的作用,这意味着,如果已知退化图像的傅立叶变换 和“滤波”传递函数,则可以求得原始图像的傅立叶变换,经反傅立 叶变换就可求得原始图像f(x,y) 。
5.2.1 非约束复原的代数方法
在并不了解噪声项n的情况下,希望找到一个f,使得对在 最小乘方意义上来说近似于g,也就是说,希望找到一个f, 使得:
第5章图像复原计算机图像处理课件
E{[ f ( x, y) f ( x, y)]2 } = min
式中,E{ }为数学期望算子。
f ( x, y ) 之间的均方
下面通过用MATLAB程序实例来完成由于运动造成的图像 模糊和去除模糊的实现。
在下面的MATLAB程序中用到了以下3个函数。
1. 预先定义的空间滤波函数
H=fspecial(type,parameters) type:表示滤波器的类型。fspecial返回指定滤波器的单 位冲激响应。当type为motion,fspecial返回运动滤 波器的单位冲激响应(PSF点扩散函数)。
Wnr1=deconvwnr(MF,PSF);
%用Wiener滤波消除运动模糊的图像
figure(3);imshow(wnr1);
3. 具有维纳滤波的deconvwnr函数
J=deconvwnr(g, PSF,NSR) 或 J=deconvwnr(g,PSF,NCORR,ICORR) g是退化的原图像,J是去模糊复原图RR和 ICORR表示噪声和原始图像的自相关函数。
频域复原方法
其它复原方法
人机交互式
在实际中,经常会遇到运动模糊图像的复原问题。如 在飞机、汽车等运动物体上所拍摄的照片,摄取镜头在曝
光瞬间的偏移会产生匀速直线运动的模糊。一般采用维纳
滤波复原方法来解决。
维纳(Wiener)滤波,也就是最小二乘滤波,它是 使原始图像f(x,y)及其恢复图像 误差最小的复原方法。即
具体用MATLAB程序设计的思路是:
1.首先使用fspecial函数创建一个运动模糊的H;
2. 然后调用imfilter函数,并使用H对原始图像进行卷积操作, 由此得到一幅模糊的图像; 3.再用Wiener滤波消除运动模糊,使图像得到复原。
式中,E{ }为数学期望算子。
f ( x, y ) 之间的均方
下面通过用MATLAB程序实例来完成由于运动造成的图像 模糊和去除模糊的实现。
在下面的MATLAB程序中用到了以下3个函数。
1. 预先定义的空间滤波函数
H=fspecial(type,parameters) type:表示滤波器的类型。fspecial返回指定滤波器的单 位冲激响应。当type为motion,fspecial返回运动滤 波器的单位冲激响应(PSF点扩散函数)。
Wnr1=deconvwnr(MF,PSF);
%用Wiener滤波消除运动模糊的图像
figure(3);imshow(wnr1);
3. 具有维纳滤波的deconvwnr函数
J=deconvwnr(g, PSF,NSR) 或 J=deconvwnr(g,PSF,NCORR,ICORR) g是退化的原图像,J是去模糊复原图RR和 ICORR表示噪声和原始图像的自相关函数。
频域复原方法
其它复原方法
人机交互式
在实际中,经常会遇到运动模糊图像的复原问题。如 在飞机、汽车等运动物体上所拍摄的照片,摄取镜头在曝
光瞬间的偏移会产生匀速直线运动的模糊。一般采用维纳
滤波复原方法来解决。
维纳(Wiener)滤波,也就是最小二乘滤波,它是 使原始图像f(x,y)及其恢复图像 误差最小的复原方法。即
具体用MATLAB程序设计的思路是:
1.首先使用fspecial函数创建一个运动模糊的H;
2. 然后调用imfilter函数,并使用H对原始图像进行卷积操作, 由此得到一幅模糊的图像; 3.再用Wiener滤波消除运动模糊,使图像得到复原。
数字图像处理方法第五章图像复原和重建
大气
图像
流的
运动
扰动
造成
效应 的模 数字图像处理方法第五章图像复原和重
建
糊
背景知识
几何畸变
数字图像处理方法第五章图像复原和重 建
背景知识
运动模糊
数字图像处理方法第五章图像复原和重 建
背景知识
图像复原是试图利用退化过 程的先验知识去除已退化的 图像的退化因素,尽可能恢 复图像本来面目的技术。
g ex ,y fe(m ,n )h e(x m ,y n )ex ,y
m 0 n 0
向量矩阵形式为
gHfn
其中,H为MN×MN的矩阵。
数字图像处理方法第五章图像复原和重 建
主要内容
背景知识 图像退化/复原过程的模型 代数恢复 频域恢复 几何校正
数字图像处理方法第五章图像复原和重 建
数字图像处理方法第五章图像复原和重 建
图像退化/复原过程的模型
图像复原的关键在于建立图像退化模型, 反映图像退化原因 通常将成像系统作为线性位移不变系统,点扩散函数用h (x,y)表示,获取退化图像为g(x,y),建立系统退
化模型如下:
退化函数 H
复原滤波
F(u) f(x)ej2uxdx
退化
复原
λ为常数系数(拉格朗日系数),γ为1/ λ 指定不同Q,得到不同复原图像
数字图像处理方法第五章图像复原和重 建
约束最小二乘复原
能量约束 Q=I
I表示单位矩阵
解得最佳复原解为
fˆ(H'HI)1H'g
物理意义为在约束条件下复原图像能量 | | fˆ | |2 最小
数字图像处理方法第五章图像复原和重 建
约束最小二乘复原
第5章医学图像的复原
医学图像处理—图像的复原
34
©广东药学院医药信息工程学院图像处理教研室
维纳滤波
讨论: 1 (1)无噪声: (u , v) P 。 H (u , v ) ( 2)有噪声:在H (u , v ) 很小时, P (u , v) H (u , v)
*
S ff (u , v) S nn (u , v)
G(u, v) F (u, v) H (u, v)
F (u, v) G(u, v) / H (u, v) f ( x, y) F 1[G(u, v) / H (u, v)]
医学图像处理—图像的复原
29
©广东药学院医药信息工程学院图像处理教研室
逆滤波
1 令P(u, v) , 它是H (u, v)之逆, H (u, v) 代表恢复滤波器的转移 函数。
©广东药学院医药信息工程学院图像处理教研室
医学图像处理—图像的复原
25
©广东药学院医药信息工程学院图像处理教研室
医学图像处理—图像的复原
26
©广东药学院医药信息工程学院图像处理教研室
因为不同原因产生的噪音的分布是不同,可以通 过分析图片中噪音的分布得到产生这些噪音的参 数,然后进行逆运算进行图像复原。 eg:维纳滤波要知道噪声的谱密度 约束最小平方滤波要知道噪声的方差
补充:图像的几何变换
医学图像处理—图像的复原
38
©广东药学院医药信息工程学院图像处理教研室
图像的几何变换
图像的几何变换包括了图像的形状变换和图像的位 置变换。
图像的形状变换是指图像的放大、缩小与错切。 图像的位置变换是指图像的平移、镜像与旋转。 图像的仿射变换描述。 图像的几何变换不改变像素的 值,只改变像素的位置。 医学图像处理—图像的复原
34
©广东药学院医药信息工程学院图像处理教研室
维纳滤波
讨论: 1 (1)无噪声: (u , v) P 。 H (u , v ) ( 2)有噪声:在H (u , v ) 很小时, P (u , v) H (u , v)
*
S ff (u , v) S nn (u , v)
G(u, v) F (u, v) H (u, v)
F (u, v) G(u, v) / H (u, v) f ( x, y) F 1[G(u, v) / H (u, v)]
医学图像处理—图像的复原
29
©广东药学院医药信息工程学院图像处理教研室
逆滤波
1 令P(u, v) , 它是H (u, v)之逆, H (u, v) 代表恢复滤波器的转移 函数。
©广东药学院医药信息工程学院图像处理教研室
医学图像处理—图像的复原
25
©广东药学院医药信息工程学院图像处理教研室
医学图像处理—图像的复原
26
©广东药学院医药信息工程学院图像处理教研室
因为不同原因产生的噪音的分布是不同,可以通 过分析图片中噪音的分布得到产生这些噪音的参 数,然后进行逆运算进行图像复原。 eg:维纳滤波要知道噪声的谱密度 约束最小平方滤波要知道噪声的方差
补充:图像的几何变换
医学图像处理—图像的复原
38
©广东药学院医药信息工程学院图像处理教研室
图像的几何变换
图像的几何变换包括了图像的形状变换和图像的位 置变换。
图像的形状变换是指图像的放大、缩小与错切。 图像的位置变换是指图像的平移、镜像与旋转。 图像的仿射变换描述。 图像的几何变换不改变像素的 值,只改变像素的位置。 医学图像处理—图像的复原
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
5.3.1 均值滤波器
算术均值滤波器
最简单的均值滤波器。令Sxy表示中心在点(x,y)、窗 口尺寸为m×n的矩形子图坐标集合,g(x,y)为污染 图像。则复原图像 fˆ 在点(x,y)处的值为区域Sxy内像 素的算术平均值:
ˆ ( x, y) 1 f S g (s, t) mn ( s ,t ) xy
21
5.3.2 统计排序滤波器
回顾:什么是统计排序滤波器?
本节介绍四类统计排序滤波器: 中值滤波器 最大和最小值滤波器 中点滤波器 阿尔法修剪均值滤波器
22
5.3.2 统计排序滤波器
中值滤波器 当前像素位置的新灰度值为邻域中像素的 灰度中值:
ˆ f ( x, y) median{g (s, t )}
若b a, 灰度值b将显示为一个亮点, a的值将显示为一个暗点. 若Pa或Pb为零, 则脉冲噪声称为单极脉冲. 若Pa或Pb均不为零, 尤其是近似相等时, 脉冲噪声值类似于随机 分布在图像上的胡椒和盐粉细粒.
10
5.2 噪声模型
例5.1:样本噪声图 像和它们的直方图
11
高斯
瑞利
伽马
指数
均匀
椒盐
g ( x, y) f [ x x0 (t ), y y0 (t )]dt
0
35
T
5.6.3 建模法估计退化函数
( s ,t )S xy
尤其适合于脉冲噪声(即冲击噪声或椒盐噪 声)的处理(无论单极或双极)
23
5.3.2 统计排序滤波器
对噪声图像多次应用中值滤波器 (a)由概率Pa=Pb=0.1的椒盐 噪声污染的图像 (b) 用尺寸为3×3的中值滤波 器处理的结果 (c) 用该滤波器处理(b)的结果 (d) 用相同的滤波器处理(c)的 结果 经过多次处理,逐渐消除 噪声;但多次应用中值滤 波器,会使图像模糊
运动模糊: 在拍摄时由于场景中物体与镜头发生相对 运动产生的模糊。
最简单情况: 整个场景与镜头发生匀速平行相对运动。
34
5.6.3 建模法估计退化函数
假设在快门按下后 t 时刻,原始图像f(x,y)在 水平和垂直方向上的位移为x0(t)和y0(t)。在成 像平面上的(x, y)处,其总曝光量等于在快门 打开时间内每一时刻瞬时曝光量的累积(即积 分),假设曝光时间为T,则
24
5.3.2 统计排序滤波器
最大值滤波器 当前像素位置的新灰度值为邻域中像素的 灰度最大值:
ˆ f ( x, y) max {g (s, t )}
( s ,t )S xy
寻找图像中最亮点 消除“胡椒”噪声
25
5.3.2 统计排序滤波器
最小值滤波器 当前像素位置的新灰度值为邻域中像素的 灰度最小值:
ˆ f ( x, y ) mn
( s ,t )S xy
1 g ( s, t )
调和均值滤波器对“盐”噪声效果较好,但不适合 处 理“椒”噪声。对其他噪声如高斯噪声也有较好的 效 果。
16
5.3.1 均值滤波器
反调和均值滤波器
ˆ f ( x, y )
( s ,t )S xy
g ( s, t )Q1 g ( s, t ) Q
( s ,t )S xy
其中Q为滤波器的阶数。该滤波器适合减少甚至消 除椒盐噪声。但注意它不能同时消除“椒”和“盐” 噪 当Q值为正数时,滤波器用于消除"椒"噪声; 声。 当Q值为负数时,滤波器用于消除"盐"噪声;
当Q=0时,反调和均值滤波器退化为算术均值滤波器; 当Q=-1时,反调和均值滤波器退化为谐波均值滤波器.
图像复原
图像退化/复原过程的模型 噪声模型 仅噪声存在情况下的空间滤波复原 逆滤波 最小均方误差滤波(维纳滤波) 几何变换
4
5.1 图像退化/复原过程的模型
退化过程:退化函数 H 和加性噪声η(x, y)联合作 用于原始图像 f(x, y)产生退化图像 g(x, y)。 复原过程:给定退化图像g(x, y) ,以及关于退化 函数 H 和加性噪声η(x, y)的一些知识,获得原始 ˆ 图像f(x, y)的一个估计 f ( x, y) 。
(a)
(b)
(c)
(d)
30
(e)
(f)
5.3.2 统计排序滤波器
习题5.1-5.5:下图中的白条为7个像素宽210个像素高,白条 之间的间隔为17个像素。分别用中值滤波器、最大值滤波 器、最小值滤波器和中点滤波器对该图进行处理,结果会是 怎样?
31
5.6.3 建模法估计退化函数
根据退化原理建立数学模型。
ˆ f ( x, y) min {g (s, t )}
( s ,t )S xy
寻找图像中最暗点 消除“盐”噪声
26
5.3.2 统计排序滤波器
最大值滤波器可以去除”胡椒”噪声,但 会从黑色物体边缘移除一些黑色像素. 最小值滤波器可以去除”盐”噪声,但会 从亮色物体边缘移除一些白色像素.
图5.8(a)
17
5.3.1 均值滤波器
(a) 以0.1的概率被”胡椒” 噪声污染的图像 (b) 以0.1的概率被”盐” 噪声污染的图像 (c) 用3×3大小、阶数为 1.5的反调和滤波器滤波 的结果 (d) 用Q=-1.5滤波(b)的结果
反调和均值滤 波器对处理椒 盐噪声的效果
18
5.3.1 均值滤波器
在反调和滤波中错误地选择符号的结果 (a) 原图像 (b) 用3×3 的大小和Q=-1.5的反调和滤波器滤波的结果 (c) 用Q=1.5滤波的结果
数字图像处理
Digital Image Processing
第五章 图像复原
电子科技大学中山学院计算机工程系 邹昆
Email:cszoukun@
图像复原与图像增强的区别
和图像增强一样,图像复原的最终目标是 改善图像的质量。尽管二者有交叉,但图 像增强很大程度上是一个主观的过程,而 图像复原多半是客观的过程。 图像复原试图利用退化现象的先验知识来 重建或恢复图像。 图像复原一般先对退化过程建模,然后应 用其相反的过程来恢复出原始图像。
这两个公式是本章大部分内容的基础。
6
5.2 噪声模型
数字图像的噪声主要来源于图像的获取(数 字化过程)和传输过程。
噪声的空域和频域特性: 空域:假设噪声值与空间坐标和像素值无关 频域:考察噪声的频谱,如白噪声的频谱是 一个常量。
7
5.2 噪声模型
高斯噪声
高斯随机变量z的PDF为:
1 ( z u ) 2 / 2 2 p( z ) e 2
14
5.3.1 均值滤波器
(a) 电路板的X射线图像 (b) 由加性高斯噪声污染 的图像 (c) 用3×3算术均值滤波器 滤波的结果 (d) 用3×3的几何均值滤波 器滤波的结果
算术均值和几何 均值都能衰减噪 声,但比较而言, 几何均值滤波器 模糊程度较弱.
15
5.3.1 均值滤波器
调和均值滤波器
大气扰动引起模糊的退化模型:
H (u, v) e
k (u2 v2 )5/6
32
5.6.3 建模法估计退化函数
大气扰动模型示例 (a) (b) (c) (d) 可忽略的扰动 剧烈扰动,k=0.0025 中等扰动,k=0.001 轻微扰动,k=0.00025
33
5.6.3 建模法估计退化函数
图5.8(b) (a)用大小为3×3的最 大值滤波器对图5.8(a) 滤波的结果 (b)用同样大小的最小 值滤波器对图5.8(b)滤 波的结果
27
5.3.2 统计排序滤波器
中点滤波器 当前像素位置的新灰度值为邻域内像素最 大值和最小值的平均值:
ˆ ( x, y) 1 max {g ( s, t )} min {g ( s, t )} f ( s ,t )S xy 2 ( s ,t )S xy
19
5.3.1 均值滤波器
结论: 算术和几何均值滤波器(尤其后者)适合处 理高斯噪声。 反调和均值滤波器适合脉冲噪声,但缺点 是必须知道噪声是暗噪声还是亮噪声,以 便正确选择Q的符号,否则后果严重。且 其不能同时消除“椒”和“盐”噪声。
20
5.3.1 均值滤波器
习题5.1-5.5:下图中的白条为7个像素宽210个像素高,白条 之间的间隔为17个像素。分别用算术均值滤波器、几何均值 滤波器、反调和均值滤波器(Q = 1和Q = -1两种情况)对该图 进行处理,结果会是怎样?
5.3 仅有噪声存在时的空域滤波复原
当一幅图像中唯一存在的退化是噪声 时,(5.1.1)式和(5.1.2)式变成: g(x,y) = f(x,y) +η(x,y) (5.3-1) 和 G(u,v) = F(u,v) + N(u,v) (5.3-2)
当只有加性噪声存在时,使用空域滤波法。 此时图像增强和复原基本上是等同的。除 了介绍一些新的滤波器外,执行所有滤波 器的机制与3.5节讨论的完全一样。
1 p( z ) b a 0
a z b 其他
概率密度的均值和方差由下式给定 : ab 2 2 2 (b a ) = 12
9
5.2 噪声模型
脉冲(椒盐)噪声
(双极)脉冲噪声的PDF为:
Pa p ( z ) Pb 0
za z b 其他
1 S gr (s, t ) mn d ( s ,t ) xy
d的取值范围:[0, mn - 1] 当d = 0时,退变为算术均值滤波器 当d = mn - 1时,退变为中值滤波器 作用:适合高斯和椒盐混合噪声。 Why?
5.3.1 均值滤波器
算术均值滤波器
最简单的均值滤波器。令Sxy表示中心在点(x,y)、窗 口尺寸为m×n的矩形子图坐标集合,g(x,y)为污染 图像。则复原图像 fˆ 在点(x,y)处的值为区域Sxy内像 素的算术平均值:
ˆ ( x, y) 1 f S g (s, t) mn ( s ,t ) xy
21
5.3.2 统计排序滤波器
回顾:什么是统计排序滤波器?
本节介绍四类统计排序滤波器: 中值滤波器 最大和最小值滤波器 中点滤波器 阿尔法修剪均值滤波器
22
5.3.2 统计排序滤波器
中值滤波器 当前像素位置的新灰度值为邻域中像素的 灰度中值:
ˆ f ( x, y) median{g (s, t )}
若b a, 灰度值b将显示为一个亮点, a的值将显示为一个暗点. 若Pa或Pb为零, 则脉冲噪声称为单极脉冲. 若Pa或Pb均不为零, 尤其是近似相等时, 脉冲噪声值类似于随机 分布在图像上的胡椒和盐粉细粒.
10
5.2 噪声模型
例5.1:样本噪声图 像和它们的直方图
11
高斯
瑞利
伽马
指数
均匀
椒盐
g ( x, y) f [ x x0 (t ), y y0 (t )]dt
0
35
T
5.6.3 建模法估计退化函数
( s ,t )S xy
尤其适合于脉冲噪声(即冲击噪声或椒盐噪 声)的处理(无论单极或双极)
23
5.3.2 统计排序滤波器
对噪声图像多次应用中值滤波器 (a)由概率Pa=Pb=0.1的椒盐 噪声污染的图像 (b) 用尺寸为3×3的中值滤波 器处理的结果 (c) 用该滤波器处理(b)的结果 (d) 用相同的滤波器处理(c)的 结果 经过多次处理,逐渐消除 噪声;但多次应用中值滤 波器,会使图像模糊
运动模糊: 在拍摄时由于场景中物体与镜头发生相对 运动产生的模糊。
最简单情况: 整个场景与镜头发生匀速平行相对运动。
34
5.6.3 建模法估计退化函数
假设在快门按下后 t 时刻,原始图像f(x,y)在 水平和垂直方向上的位移为x0(t)和y0(t)。在成 像平面上的(x, y)处,其总曝光量等于在快门 打开时间内每一时刻瞬时曝光量的累积(即积 分),假设曝光时间为T,则
24
5.3.2 统计排序滤波器
最大值滤波器 当前像素位置的新灰度值为邻域中像素的 灰度最大值:
ˆ f ( x, y) max {g (s, t )}
( s ,t )S xy
寻找图像中最亮点 消除“胡椒”噪声
25
5.3.2 统计排序滤波器
最小值滤波器 当前像素位置的新灰度值为邻域中像素的 灰度最小值:
ˆ f ( x, y ) mn
( s ,t )S xy
1 g ( s, t )
调和均值滤波器对“盐”噪声效果较好,但不适合 处 理“椒”噪声。对其他噪声如高斯噪声也有较好的 效 果。
16
5.3.1 均值滤波器
反调和均值滤波器
ˆ f ( x, y )
( s ,t )S xy
g ( s, t )Q1 g ( s, t ) Q
( s ,t )S xy
其中Q为滤波器的阶数。该滤波器适合减少甚至消 除椒盐噪声。但注意它不能同时消除“椒”和“盐” 噪 当Q值为正数时,滤波器用于消除"椒"噪声; 声。 当Q值为负数时,滤波器用于消除"盐"噪声;
当Q=0时,反调和均值滤波器退化为算术均值滤波器; 当Q=-1时,反调和均值滤波器退化为谐波均值滤波器.
图像复原
图像退化/复原过程的模型 噪声模型 仅噪声存在情况下的空间滤波复原 逆滤波 最小均方误差滤波(维纳滤波) 几何变换
4
5.1 图像退化/复原过程的模型
退化过程:退化函数 H 和加性噪声η(x, y)联合作 用于原始图像 f(x, y)产生退化图像 g(x, y)。 复原过程:给定退化图像g(x, y) ,以及关于退化 函数 H 和加性噪声η(x, y)的一些知识,获得原始 ˆ 图像f(x, y)的一个估计 f ( x, y) 。
(a)
(b)
(c)
(d)
30
(e)
(f)
5.3.2 统计排序滤波器
习题5.1-5.5:下图中的白条为7个像素宽210个像素高,白条 之间的间隔为17个像素。分别用中值滤波器、最大值滤波 器、最小值滤波器和中点滤波器对该图进行处理,结果会是 怎样?
31
5.6.3 建模法估计退化函数
根据退化原理建立数学模型。
ˆ f ( x, y) min {g (s, t )}
( s ,t )S xy
寻找图像中最暗点 消除“盐”噪声
26
5.3.2 统计排序滤波器
最大值滤波器可以去除”胡椒”噪声,但 会从黑色物体边缘移除一些黑色像素. 最小值滤波器可以去除”盐”噪声,但会 从亮色物体边缘移除一些白色像素.
图5.8(a)
17
5.3.1 均值滤波器
(a) 以0.1的概率被”胡椒” 噪声污染的图像 (b) 以0.1的概率被”盐” 噪声污染的图像 (c) 用3×3大小、阶数为 1.5的反调和滤波器滤波 的结果 (d) 用Q=-1.5滤波(b)的结果
反调和均值滤 波器对处理椒 盐噪声的效果
18
5.3.1 均值滤波器
在反调和滤波中错误地选择符号的结果 (a) 原图像 (b) 用3×3 的大小和Q=-1.5的反调和滤波器滤波的结果 (c) 用Q=1.5滤波的结果
数字图像处理
Digital Image Processing
第五章 图像复原
电子科技大学中山学院计算机工程系 邹昆
Email:cszoukun@
图像复原与图像增强的区别
和图像增强一样,图像复原的最终目标是 改善图像的质量。尽管二者有交叉,但图 像增强很大程度上是一个主观的过程,而 图像复原多半是客观的过程。 图像复原试图利用退化现象的先验知识来 重建或恢复图像。 图像复原一般先对退化过程建模,然后应 用其相反的过程来恢复出原始图像。
这两个公式是本章大部分内容的基础。
6
5.2 噪声模型
数字图像的噪声主要来源于图像的获取(数 字化过程)和传输过程。
噪声的空域和频域特性: 空域:假设噪声值与空间坐标和像素值无关 频域:考察噪声的频谱,如白噪声的频谱是 一个常量。
7
5.2 噪声模型
高斯噪声
高斯随机变量z的PDF为:
1 ( z u ) 2 / 2 2 p( z ) e 2
14
5.3.1 均值滤波器
(a) 电路板的X射线图像 (b) 由加性高斯噪声污染 的图像 (c) 用3×3算术均值滤波器 滤波的结果 (d) 用3×3的几何均值滤波 器滤波的结果
算术均值和几何 均值都能衰减噪 声,但比较而言, 几何均值滤波器 模糊程度较弱.
15
5.3.1 均值滤波器
调和均值滤波器
大气扰动引起模糊的退化模型:
H (u, v) e
k (u2 v2 )5/6
32
5.6.3 建模法估计退化函数
大气扰动模型示例 (a) (b) (c) (d) 可忽略的扰动 剧烈扰动,k=0.0025 中等扰动,k=0.001 轻微扰动,k=0.00025
33
5.6.3 建模法估计退化函数
图5.8(b) (a)用大小为3×3的最 大值滤波器对图5.8(a) 滤波的结果 (b)用同样大小的最小 值滤波器对图5.8(b)滤 波的结果
27
5.3.2 统计排序滤波器
中点滤波器 当前像素位置的新灰度值为邻域内像素最 大值和最小值的平均值:
ˆ ( x, y) 1 max {g ( s, t )} min {g ( s, t )} f ( s ,t )S xy 2 ( s ,t )S xy
19
5.3.1 均值滤波器
结论: 算术和几何均值滤波器(尤其后者)适合处 理高斯噪声。 反调和均值滤波器适合脉冲噪声,但缺点 是必须知道噪声是暗噪声还是亮噪声,以 便正确选择Q的符号,否则后果严重。且 其不能同时消除“椒”和“盐”噪声。
20
5.3.1 均值滤波器
习题5.1-5.5:下图中的白条为7个像素宽210个像素高,白条 之间的间隔为17个像素。分别用算术均值滤波器、几何均值 滤波器、反调和均值滤波器(Q = 1和Q = -1两种情况)对该图 进行处理,结果会是怎样?
5.3 仅有噪声存在时的空域滤波复原
当一幅图像中唯一存在的退化是噪声 时,(5.1.1)式和(5.1.2)式变成: g(x,y) = f(x,y) +η(x,y) (5.3-1) 和 G(u,v) = F(u,v) + N(u,v) (5.3-2)
当只有加性噪声存在时,使用空域滤波法。 此时图像增强和复原基本上是等同的。除 了介绍一些新的滤波器外,执行所有滤波 器的机制与3.5节讨论的完全一样。
1 p( z ) b a 0
a z b 其他
概率密度的均值和方差由下式给定 : ab 2 2 2 (b a ) = 12
9
5.2 噪声模型
脉冲(椒盐)噪声
(双极)脉冲噪声的PDF为:
Pa p ( z ) Pb 0
za z b 其他
1 S gr (s, t ) mn d ( s ,t ) xy
d的取值范围:[0, mn - 1] 当d = 0时,退变为算术均值滤波器 当d = mn - 1时,退变为中值滤波器 作用:适合高斯和椒盐混合噪声。 Why?