6材料力学第二章轴向拉伸与压缩
材料力学(机械类)第二章 轴向拉伸与压缩
二
章
拉伸压缩与剪切
1
பைடு நூலகம்
§2-1
轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
2
拉、压的特点:
1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3
§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4
材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。
现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:
N A
F
FN
σ
10
例题2-2
A 1
45°
C
2
材料力学笔记(第二章)
材料力学(土)笔记第二章 轴向拉伸和压缩1.轴向拉伸和压缩的概念拉(压)杆:作用于等直杆上的外力(或外力的合力)的作用线与杆件轴线重合变形特征是杆将发生纵向伸长或缩短2.内力法·截面法·轴力及轴力图2.1 内力内力:由外力作用引起的、物体内相邻部分之间分布内力系的合成 在物体内部相邻部分之间的相互作用的内力,实际上是一个连续分布的内力系分布内力系的合成(力或力偶),简称内力2.2 截面法·轴力及轴力图轴力:杆件任意横截面上的内力,其作用线与杆的轴线重合,即垂直于横截面并其通过形心 规定用记号N F 表示用截面法,内力N F 的数值由平衡条件求解,已知一端外力为F由平衡方程0=∑x F ,0=-F F N得F F N =规定引起纵向伸长变形的轴力为正,称为拉力规定引起纵向缩短变形的轴力为负,称为压力截面法包含以下三个步骤①截开:在需求内力的截面处,假想地将杆分为两部分②代替:将两部分上的任意一部分留下,吧弃去部分的作用代之以作用在截开面上的内力 ③平衡:对留下的部分建立平衡方程,根据已知外力来计算在截开面上的未知力截开面上的内力对留下部分而言已属外力静力学中的力(或力偶)的可移性原理,在截面法求内力的过程中是有限制的将杆上的荷载用一个静力等效的相当力来替代,也是有所限制的轴力图:用平行于杆轴线的坐标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上轴力的数值,从而绘成表示周丽与截面位置关系的图线。
正值的轴力滑上侧,负值画下侧3.应力·拉(压)杆内的应力3.1 应力的概念应力:受力杆件某一横截面上分部内力在一点处的集度考察M 处的应力,在M 点周围取一微小的面积A ∆设A ∆面积上分布内力的合力为F ∆在面积A ∆上内力F ∆的平均集度为AF p m ∆∆=m p 称为面积A ∆上的平均应力 为表明分布内力在M 点处的集度,令微小面积A ∆无限缩小趋于零,则其极限值dAdF A F p A =∆∆=→∆0lim 即为M 点处的内力集度,称为截面m-m 上M 点处的总应力F ∆是矢量,总应力p 也是矢量,其方向一般既不与截面垂直,也不与截面相切通常将总应力p 分解为与截面垂直的法向分量σ和与截面相切的切向分量τ法向分量σ称为正应力切向分量τ称为切应力应力具有如下特征:①应力定义在受力物体的某一截面上的某一点处讨论应力必须明确是在哪一个截面上哪一点处②在某一截面上一点处的应力是矢量对于应力分量,通常规定离开截面的正应力为正,反之为负③应力的量纲为21--T ML ,应力单位为Pa1 Pa=1N/㎡,工程中常采用MPa ,1 MPa=610Pa④整个截面上各点处的应力与微面积dA 之乘积的合成,即为该截面上的内力3.2 拉压杆横截面上的应力与轴力相应的只可能是垂直于截面的正应力考察杆件受力后表面上的变形情况,由表及里地作出杆件内部变形情况的几何假设,再根据力与变形间的物理关系,得到应力在截面上的变化规律,然后再通过应力与dA 之乘积的合成即为内力的静力学关系,得到与内力表示的应力计算公式平面假设:假设原为平面的横截面在杆变形后仍为平面根据平面假设,拉杆变形后两横截面将沿杆轴线作相对平移拉杆在其任意两个横截面之间纵向线段的伸长变形是均匀的假设材料是均匀的,杆的分布内力集度由于杆纵向线段的变形相对应因而拉杆横截面上的正应力σ呈均匀分布,即各点处的正应力相等按应力与内力间的静力学关系A A d dA F AA N σσσ===⎰⎰ 即得拉杆横截面上正应力σ的计算公式AF N =σ 式中,N F 为轴力,A 为杆的横截面面积 对于轴向压缩的杆,上式同样适用这一结论实际上只在杆上离外力作用点稍远的部分才正确圣维南原理:力作用于杆端的方式的不同,只会使与杆端距离不大于杆的横向尺寸的范围内受到影响当等直杆受几个轴向外力作用时,由轴力图可求得其最大轴力max ,N F代入公式即得杆内得最大正应力为A F N max,max =σ最大轴力所在的横截面称为危险截面危险截面上正应力称为最大工作应力3.3 拉(压)杆斜截面上的应力与横截面成α角的任意斜截面k-k 上的应力用一平面沿着斜截面k-k 将杆截分为二,并研究左段杆的平衡得斜截面k-k 上的内力αF 为F F =α得到斜截面上各点处的总应力αpαααA F p =αA 是斜截面面积,αA 与横截面面积关心为ααcos /A A =代入可得ασααcos cos 0==A F p 其中AF =0σ即拉杆在横截面(0=α)上的正应力 总应力αp 是矢量,分解成两个分量:沿截面法线方向的正应力和沿截面切线方向的切应力 分别用ασ,ατ表示两个分量可以表示为ασασαα20cos cos ==p ασαταα2sin 2sin 0==p 其中角度α以横截面外向法线至斜截面外向法线为逆时针转向时为正,反之为负①当0=α时,0σσα=是ασ中的最大值,即通过拉杆内某点的横截面上的正应力,是通过该点的所有不同方位截面上正应力中的最大值②当o 45=α时,20στα=是ατ中的最大值,即与横截面呈45°的斜截面上的切应力,是拉杆所有不同方位截面上切应力中的最大值单元体:在拉杆表面任意一点A 处用横截面、纵截面及表面平行的面貌截取一各边长均为无穷小的正六面体应力状态:通过一点的所有不同方位截面上应力的全部情况单轴应力状态:在研究的拉杆中,一点处的应力状态由其横截面上的正应力0σ即可完全确定4.拉(压)杆的变形·胡克定律设拉杆原长为l ,承受一对轴向拉力F 的作用而伸长后,其长度增为1l则杆的纵向伸长为l l l -=∆1杆件变形程度可以每单位长度的纵向伸长(l l /∆)来表示线应变:每单位长度的伸长(或缩短),用ε表示拉杆的纵向线应变为ll ∆=ε 拉杆的纵向伸长l ∆为正,压杆的纵向缩短l ∆为负 研究一点处的线应变,可围绕该点取一个很小的正六面体设所取正六面体沿x 轴方向AB 边的原长为x ∆变形后其长度的改变量为x δ∆对于非均匀变形比值x x ∆∆/δ为AB 边的平均线应变当x ∆无限趋于零时,其极限值称为A 点处沿x 轴方向的线应变dxd x x x x x δδε=∆∆=→∆0lim拉杆在纵向变形的同时将有横向变形设拉杆为圆杆,原始直径为d ,受力变形后缩小为1d则其横向变形为d d d -=∆1在均匀变形情况下,拉杆的横向线应变为dd ∆='ε 拉杆的横向线应变为负,即与其纵向线应变的正负号相反拉(压)杆的变形量与其所受力之间的关系与材料性能有关,只能通过实验来获得 当杆内应力不超过材料的某一极限值(比例极限)时杆的伸长l ∆与其所受外力F 、杆的原长l 成正比,与其横截面面积A 成反比AFl l ∝∆ 引进比例常数E ,则 EAFl l =∆ 由于N F F =,上式改写为 EAl F l N =∆ 此关系称为胡克定律,式子中比例常数E 称为弹性模量,其量纲为21--TML ,单位为PaE 的数值随材料而异,其值表征材料抵抗弹性变形的能力EA 称为杆的拉伸(压缩)刚度对于相等且受力相同的拉杆,其拉伸刚度越大拉杆变形越小将上述公式改写成 AF E l l N ⨯=∆1 可得胡克定律的另一种表达方式 E σε=它不仅适用于拉(压)杆,而且还可以更普遍地用于所有的单轴应力状态称其为单轴应力状态下的胡克定律对于横向线应变'ε,实验结果指出当拉(压)杆的应力不超过材料的比例极限时,它与纵向线应变ε的绝对值之比为一常数 此比值称为横向变形因数或泊松比,通常用υ表示,即εευ'= υ是量纲为一的量,其数值随材料而异,也是通过实验测定的纵向线应变与横向线应变的正负号恒相反,故有υεε-='Eσυε-=' 一点处横向线应变与该点处得纵向正应力成正比,但正负号相反例题2-5计算结点A 的位移为计算位移A ∆,假想地将两杆在A 点处拆开,并沿两杆轴线分别增加长度1l ∆和2l ∆ 分别以B 、C 为圆心,以两杆伸长后长度1BA ,2CA 为半径作园,交点''A 为A 点新位置3.拉(压)杆内的应变能应变能:伴随着弹性变形的增减而改变的能量在弹性体的变形过程中,积蓄在弹性体内的应变能εV 在数值上等于外力做功WW V =ε上式称为弹性体的功能原理,应变能εV 的单位为J (1 J=1 N ·m )推导拉杆应变能计算公式在静荷载F 的作用下,杆伸长l ∆力对该位移所作的功等于F 与l ∆关系图线下的面积弹性变形范围内F 与l ∆成线性关系,可得F 所做的功W 为l F W ∆=21 积蓄在杆内的应变能为 2222222121l lEA EA l F EA l F l F l F V N N ∆===∆=∆=ε 由于拉杆各横截面上所有点处的应力均相同故杆的单位体积内所积蓄的应变能就等于杆的应变能εV 除以体积V应变能密度:单位体积内的应变能,用εv 表示σεεε2121=∆==Al l F V V v 公式表明应变能密度可以视作正应力σ在其相应的线应变ε上作的功 2222εσεE E v == 应变能的单位为J/m ³只适用于应力与应变成线性关系的先弹性范围内能量法:利用应变能的概念可以解决与结构或构件的弹性变形有关的问题例题2-6εV P A =∆216.材料在拉伸和压缩时的力学性能6.1 材料的拉伸和压缩试验标距:圆截面标准试样的工作段长度l标准比例d l 10=和d l 5=万能试验机:使试样发生变形(伸长或缩短)并测定试样抗力变形仪:将微小变形放大,测量试样变形6.2 低碳钢试样的拉伸图及其力学性能低碳钢是工程上最广泛使用的材料拉伸图:横坐标表示试样工作段的伸长量l ∆,纵坐标表示试样承受的荷载F低碳钢在整个拉伸试验过程中其工作段伸长量与荷载间的关系大致可分为四个阶段 ①弹性阶段:试样变形时完全弹性的,全部卸除载荷后,试样将恢复原长低碳钢在此阶段内,其伸长量与荷载之间成正比,即胡克定律表达式②屈服阶段:试样的伸长量急剧地增加,而荷载读数在很小范围内波动屈服:试样的荷载在很小的范围内波动,而其变形却不断增大的现象屈服阶段出现的变形,是不可恢复的塑性变形滑移线:试样经过抛光,则在试样表面将可看到大约与轴线成45°方向的条纹,是由材料沿试样的最大切应力面发生滑移而引起的③强化阶段:试样经过屈服阶段后,若要使其继续伸长,由于材料在塑性变形过程中不断发生强化,因而试样中的抗力不断增长。
5 材料力学第二章 轴向拉伸和压缩
16锰钢
合金钢 铸铁 混凝土 石灰岩 木材(顺纹)
196-216
186-216 59-162 15-35 41 10-12
0.25-0.30
0.25-0.30 0.23-0.27 0.16-0.18 0.16-0.34
橡胶
0.0078
0.47
25
材料力学
§2-5
轴向拉伸时材料的机械性能
一、试验条件及试验仪器
P BC段:N 2 3 P
1
3P + P
AB段:N
3
2 P
+
–
12
2P
三、横截面上的应力
问题提出: P P (一)应力的概念 P P
度量横截面 上分布内力 的集度
1.定义:作用在单位面积上的内力值。 2.应力的单位是: Pa KPa MPa GPa
3.应力:a:垂直截面的应力--正应力σ 拉应力为正,压应力为负。
※E为弹性模量,是衡量材料抵抗弹 性变形能力的一个指标。“EA”称 为杆的抗拉压刚度。
l E Sl S E E l l EA A
胡克定律:
=Eε
23
四、横向变形
d d 1 d 0
泊松比(或横向变形系数)
d d 1 d 0 相对变形: ' d0 d0
e
DE段:颈缩阶段。
• 材料的分类:根据试件断裂时的残余相对变形率将材料分类: 延伸率(δ )>5% 塑性变形:低碳钢,铜,塑料,纤维。 延伸率(δ )<5% 脆性变形:混凝土,石块,玻璃钢,陶瓷, 玻璃,铸铁。 • 冷作硬化:材料经过屈服而进入强化阶段后卸载,再加载时,弹 性极限明显增加,弹性范围明显扩大,承载能力增大的现象。 • 强度指标:对塑性材料,在拉断之前在残余变形0.2 %(产生 0.2%塑性应变)时对应的应力为这种材料的名义屈服应力,用 0.2表示 ,即此类材料的失效应力。 锰钢、镍钢、铜等 • 脆性材料拉伸的机械性能特点: 1.断裂残余相对变形率δ <5% 0.2 or s max b 2.弹性变形基本延伸到破坏 3.拉伸强度极限比塑性材料小的多 4.b是脆性材料唯一的强度指标
材料力学课件第二章 轴向拉伸和压缩
2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。
材料力学第2章轴向拉伸与压缩
图2.5
(2)物理关系
根据物理学知识,当变形为弹性变形时,变形和力成正比。因为各“纤维” 的正应变ε 相同,而各“纤维”的线应变只能由正应力ζ 引起,故可推知横
截面上各点处的正应力相同,即在横截面上,各点处的正应力ζ 为均匀分布
,如图2.6所示。
图2.6
(3)静力学关系 由静力学求合力的方法,可得
α
和沿斜截面的切应力
,如图2.8(d)所示,即得
从式(2.4)可以看出,ζ
α
和α 都是α 的函数。所以斜截面的方位不同,截 , 即横截面上的正应力是所有截
面上的应力也就不同。当α =0时,
面上正应力中的最大值。当α =45°时,α 达到最大值,且
可见,在与杆件轴线成45°的斜截面上,切应力为最大值,最大切应力在数 值上等于最大正应力的1/2。 关于切应力的符号,规定如下:截面外法线顺时针转90°后,其方向和切应 力相同时,该切应力为正值,如图2.9(a)所示;逆时针转90°后,其方向和 切应力相同时,该切应力为负值,如图2.9(b)所示。
同理,可求得BC段内任一横截面上的轴力(见图2.4(d))为
在求CD段内任一横截面上的轴力时,由于截开后右段杆比左段杆受力简单, 所以宜取右段杆为研究对象(见图2.4(e)),通过平衡方程可求得
结果为负,说明N3的实际方向与假设方向相反。 同理,DE段内任一横截面上的轴力为
依据前述绘制轴力图的规则,所作的轴力图如图2.4(f)所示。显然,最大轴 力发生在BC段内,其值为50 kN。
由此可得杆的横截面上任一点处正应力的计算公式为
对于承受轴向压缩的杆,式(2.3)同样适用。但值得注意的是:细长杆受压
时容易被压弯,属于稳定性问题,将在第11章中讨论,式(2.3)适用于压杆 未被压弯的情况。关于正应力的符号,与轴力相同,即拉应力为正,压应力
材料力学《第二章》轴向拉伸与压缩
c'
杆受压时同样分析,可得同样结果。 由式可知: 1. FN s ,A s; 2. s 与FN符号相同,拉应力为正,压应力为负。
说明:所得结果经实验证明是准确的,因此平面假设符合实际 情况。
上海交通大学
注意: 1. 公式仅适用于轴向拉压情况; 2. 公式不适用于外力作用区域附近部分。
在外力作用区域附近,s 并不均布,而是由外力的作用情况而定。
k
F
将 pa 沿斜截面的垂直方向和平行 F 方向分解:
k
pa
pa
s0 s a pa cosa (1 + cos 2a ) 2 s0 t a pa sin a s 0 cosa sin a sin 2a 2
F
a k sa
a
可知:sa 、ta的大小和方向随 a 的改变而改变。
ta
pa
上海交通大学
得 FN4 = F4 = 10 kN (拉)
A F1 FN
1
B F2
2
C
3
D F4
FN1 = 5 kN 5 kN + B
1
F3 FN2 = –15 kN
2
FN3 = 10 kN 10 kN + C D x
3
A
三、 轴力图 –15 kN
在杆件中间部分有外力作用时,杆件不同段上的轴力不同。 可用轴力图来形象地表示轴力随横截面位置的变化情况。 横轴 x:杆横截面位置;纵轴 FN:杆横截面上的轴力。 正值轴力 (拉)绘在横轴 上方,负值轴力 (压)绘在横轴下方。
变形特点:杆件产生沿轴线方向的伸长或缩短,同时伴随横 向尺寸的变化(减小或增大)。
轴向拉伸:两端受拉力作用,杆的变形是轴向伸长,横向减小。
材料力学 第2章轴向拉伸与压缩
A
FN128.3kN FN220kN
1
(2)计算各杆件的应力。
C
45°
2
B
s AB
FN 1 A1
28.3103
202
M
Pa90MPa
4
F
FN 1
F N 2 45°
y
Bx
s BC
FN 2 A2
21052103MPa89MPa
F
§2.4 材料在拉伸和压缩时的力学性能
22
5 圣维南原理
s FN A
(2-1)
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作
用点附近的区域。因为作用点附近横截面上的应力分布是非
均匀的。随着加载方式的不同。这点附近的应力分布方式就
会发生变化。 理论和实践研究表明:
不同的加力方式,只对力作
用点附近区域的应力分布有
显著影响,而在距力作用点
力学性能:指材料从开始受力至断裂的全部过程中,所表 现出的有关变形和破坏的特性和规律。
材料力学性能一般由试验测定,以数据的形式表达。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(缓慢地加载);
2、标准试件:常用d=10mm,l=100 mm的试件
d
l
l =10d 或 l = 5d
36
b点是弹性阶段的最高点.
σe—
oa段为直线段,材料满足 胡克定律
sE
sp
E
se sp
s
f ab
Etana s
O
f′h
反映材料抵抗弹
性变形的能力.
40
材料力学--轴向拉伸和压缩
2、轴力图的作法:以平行于杆轴线的横坐标(称为基
线)表示横截面的位置;以垂直于杆轴线方向的纵坐
标表示相应横截面上的轴力值,绘制各横截面上的轴 FN
力变化曲线。
x
§2-2 轴力、轴力图
三、轴力图
FN
3、轴力图的作图步骤:
x
①先画基线(横坐标x轴),基线‖轴线;
②画纵坐标,正、负轴力各绘在基线的一侧;
③标注正负号、各控制截面处 、单位及图形名称。
FN
4、作轴力图的注意事项: ①基线一定平行于杆的轴线,轴力图与原图上下截面对齐; ②正负分绘两侧, “拉在上,压在下”,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④整个轴力图比例一致。
50kN 50kN 50kN
第二章 轴向拉伸和压缩
第二章
轴向拉伸和压缩
第二章 轴向拉伸和压缩
§2 — 1 概述
§2 — 2 轴力 轴力图
目
§2 — 3 拉(压)杆截面上的应力
§2 — 4 拉(压)杆的变形 胡克定律 泊松比
录
§2 — 5 材料在拉伸与压缩时的力学性质
§2 — 6 拉(压)杆的强度计算
§2 — 7 拉(压)杆超静定问题
FN
作轴力图的注意事项: ①多力作用时要分段求解,一律先假定为正方向,优先考虑直接法; ②基线‖轴线,正负分绘两侧, “拉在上,压在下”,比例一致,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④阴影线一定垂直于基线,阴影线可画可不画。
§ 2-3拉(压)杆截面上的应力
§2 — 8 连接件的实用计算
§2-1 概述 §2-1 概述
——轴向拉伸或压缩,简称为拉伸或压缩,是最简单也是做基本的变形。
材料力学第二章-轴向拉伸与压缩
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
材料力学第二章 轴向拉伸和压缩
2、计算各杆轴向变形
C
l 2 =1m a =170mm
B'
B2
F
l1 0.48mm
3、由变形的几何条件确定B点的位移 分别以A为圆心,AB1为半径,C为圆 心,CB1为半径画弧,相较于B’点,
B"
小变形条件,可以用切线代替弧线。
材料力学
第2章 轴向拉伸和压缩
FN FN ( x)
轴力方程
即为轴力图。
即:FN随x的变化规律
以x为横坐标,以FN为纵坐标,绘制FN F( )的关系图线, N x
FN
正的轴力画在x轴的上侧,负的画在下侧.
x
材料力学
第2章 轴向拉伸和压缩
例题1
等值杆受力如图所示,试作其轴力图
F =25kN F 4=55kN 4 1=40kN F
纵向线 即: 原长相同
变形相同
横截面上各点的纵向线应变相等
c
拉压杆变形几何方程.
反映了截面上各点变形之间的几何关系.
材料力学
第2章 轴向拉伸和压缩
§2-2 横截面上的正应力 应力分布规律 找变形规律 研究思路: 试验观察 综合几何方面、物理方面、静力学方面推导应力计算公式
一、几何方面
F
a' b'
材料力学
第2章 轴向拉伸和压缩
第二章 轴向拉伸和压缩
材料力学
第2章 轴向拉伸和压缩
• • • • • •
本章主要内容 轴力及轴力图 横截面上的应力 拉压杆的变形、胡克定律 强度计算 材料的力学性质
材料力学
第2章 轴向拉伸和压缩
§2-1 概述 一、工程实际中的轴向拉压杆
材料力学第2章+轴向拉伸与压缩
第二章 轴向拉伸和压缩
§2-3应力·拉(压)杆内的应力
1. 应力的概念
若考察受力杆截面上M点处
应力:指受力杆件某一横 截面上一点处的内力集度 (内力分布的密集程度)
应力,可在M点周围取一很
小面积ΔA,设 ΔA面积上分 布内力的合力为ΔF,则 ΔA
上内力平均集度为:
F M A
26
Pm = F/A
Pm即A上的平均应力
第二章 轴向拉伸和压缩
若将力F由自内端A至杆B点处(图d),则其AB段内任一横 截面上的轴力都将等于零(图e).而BC段内任一横截面n-n上的 轴力仍等于F(图f),保持不变。
FN = 0
14
§2-2内力·截面法·轴力及轴力图 2.截面法、轴力
第二章 轴向拉伸和压缩
原因:这是因为集中力F由自由端A移至B点 后,改变了杆件AB段的变形。而并不改变BC 段的变形
第二步、绘制轴力图
第二章 轴向拉伸和压缩
FN kN
10
FN图kN
25
_
x
10
20
第二章 轴向拉伸和压缩
§2-2内力·截面法·轴力及轴力图
例2.2
30kN
A
30kN
作图示杆件的轴力图,并指出| FN |max
1
2
90kN
60kN
1
B
2
解:1、计算杆件各段的轴力。
C
AB 段
1
2
x FN1
FN2
1
2
60kN
第二章 轴向拉伸和压缩
§2-2内力·截面法·轴力及轴力图 2.截面法、轴力
注意:静力学中的力(或力偶)的可移性原理,在用截面法 求内力的过程中是有限制的。如图a所示拉杆在自由端A承 受集中力F,由截面法可得,杆任一横截面m—m或n—n” 上的轴力FN、均等于F(图b,c)。
材料力学轴向拉伸和压缩
故不同截面的变形不同。
x 截面处沿x方向的纵向平均线应变为 x x
第二章 轴向拉伸和压缩
fl
f(xx)
f
x
l
x
x
fx
沿杆长均匀分布
轴力图
微段的分离体
的荷载集度为 f
x截面处沿x方向的纵向线应变为
x
limx x0 x
dx
dx
一般情况下,杆沿x方向的总变形 l 0lx dx
线应变的正负规定:伸长时为正,缩短时为负。
第二章 轴向拉伸和压缩
推论:斜截面上各点处轴向分布内力的集度相同,即斜截 面上各点处的总应力p相等。
斜截面上的总应力:
pF A A/c Fo sF Aco ss0co s
式中,s 0
F A
为拉(压)杆横截面上( =0)的正应力。
第二章 轴向拉伸和压缩
斜截面上的正应力(normal stress)和切应力(shearing stress):
3. 圣维南(Saint-Venant)原理:“力作用于杆端方式的不 同,只会使与杆端距离不大于杆的横向尺寸的范围内受到影 响”。
第二章 轴向拉伸和压缩
例题2-2 试求此正方 形砖柱由于荷载引起的横 截面上的最大工作应力。 已知F = 50 kN。
第二章 轴向拉伸和压缩
解:Ⅰ段柱横截面上的正应力
为此: 1. 观察等直杆表面上相邻两条横向线在杆受拉(压)后
的相对位移:两横向线仍为直线,仍相互平行,且仍垂直 于杆的轴线。
2. 设想横向线为杆的横截面与杆的表面的交线。平 截面假设——原为平面的横截面在杆变形后仍为平面,对 于拉(压)杆且仍相互平行,仍垂直于轴线。
第二章 轴向拉伸和压缩
3. 推论:拉(压)杆受力后任意两个横截面之间纵向线段 的伸长(缩短)变形是均匀的。根据对材料的均匀、连续假设 进一步推知,拉(压)杆横截面上的内力均匀分布,亦即横截
材料力学轴向拉伸与压缩
第二章 轴向拉伸与压缩 2.2 杆旳变形
F
1.纵向变形 (1)纵向变形 (2) 纵向应变
b h
l l1
Δl l1 l
Δl
l
h1
F
b1
第二章 轴向拉伸与压缩
b
F
h
l l1
2.横向变形
h1
F
b1
(1)横向变形 (2)横向应变 3.泊松比
b b1 b
b1 b Δb
bb
A d 2 FN 4 [ ]
由此可得链环旳圆钢直径为
d
4F [ ]
4 12.5 103 3.14 45106
m=18.8mm
第二章 轴向拉伸与压缩
[例6]如图a所示,构造涉及钢杆1和铜杆2,A、B、C处为铰链连接。 在节点A悬挂一种G=20kN旳重物。钢杆AB旳横截面面A1=75 mm2, 铜杆旳横截面面积为A2=150 mm2 。材料旳许用应力分别为 ,
GB/T 228-2023 金属材料室温拉伸试验措施
原则拉伸试样:
标距: 试样工作段旳原始长度
要求标距: l 10 d 或者
l 5d
第二章 轴向拉伸与压缩
试验设备 (1)微机控制电子万能
试验机 (2)游标卡尺
第二章 轴向拉伸与压缩
试验设备
液压式
电子式
第二章 轴向拉伸与压缩
拉伸试验
第二章 轴向拉伸与压缩
第二章 轴向拉伸与压缩
应力非均布区 应力均布区 应力非均布区
圣维南原理
力作用于杆端旳分 布方式,只影响杆端 局部范围旳应力分布, 影响区约距杆端 1~2 倍杆旳横向尺寸。
端镶入底座,横向变形 受阻,杆应力非均匀分布。
材料力学 第02章 轴向拉伸和压缩及连接件的强度计算
弹屈 性服 阶阶 段段
强 化 阶 段
颈 缩 阶 段
33/113
2.3 材料在拉伸或压缩时的力学性能 2.3.1 低碳钢Q235拉伸时的力学性能-弹性阶段
Oa段应力与应变成正比
s Ee
s
b a
弹性模量E是直线Oa的斜率 Q235 E≈200GPa
直线部分的最高点a所对应的应力称为 比例极限,sp Oa段材料处于线弹性阶段
(2) 杆AB段上与杆轴线夹45°角(逆时针方向)斜截面上的正应力 和切应力。
A 1 300 mm B 500 kN 300 mm 2 C 3 300 kN 400 mm
26/113
D
200 kN
2.2 拉压杆截面上的内力和应力 【例2-3】解
A 1 300 mm B 500 kN 300 mm 2 C
内力相同,
但是常识告诉我们,
F F
直径细的拉杆更容易破坏。
求得各个截面上的轴力后,并不能直接判断杆件是否具有足 够的强度。必须用横截面上的应力来度量杆件的受力程度。 用横截面上的应力来度量杆件的受力程度。
18/113
2.2 拉压杆截面上的内力和应力 2.2.2 1 拉压杆横截面上的应力
a
F
c
c' d'
F4
D
FN4
F
x
0 FN4 F4 0
FN4 20 kN 拉
16/113
同一位置处左右侧截面上的内力分量具有相同的正负号
2.2 拉压杆截面上的内力和应力 【例】解
1
FR A F1
F1=40kN,F2=55kN,F3=25kN,F4=20kN
2
F2 B
第2章 轴向拉伸与压缩
2.5.5 塑性材料和脆性材料的主要区别
(5) 塑性材料承受动载荷的能力强,脆性材料承 受动荷载的能力很差,所以承受动载荷作用的构 件多由塑性材料制做。
2.5.5 塑性材料和脆性材料的主要区别
对于脆性材料,当应力达到其强度极限σb 时, 构件会断裂而破坏;对于塑性材料,当应力达到 屈服极限σs时,将产生显著的塑性变形,常会 使构件不能正常工作。
2.5.2 低碳钢拉伸时的力学性能
OB:弹性阶段__弹性极限σe BC:屈服阶段__屈服极限σs CD:强化阶段__强度极限σb DE:颈缩阶段
2.5.2 低碳钢拉伸时的力学性能
OB:弹性阶段---弹性极限σe OA:线性阶段---比例极限σP
σ=Eε 胡克定律
E: 弹性模量 σe≈σP
伸长率
Fbs
Fbs
Fbs
实际挤压面
挤压应力:
2.8.2 挤压和挤压强度计算
smaxBiblioteka dFbs(a)
smax
(b)
t
(b)
ssj bs
(c) (c)
挤压面 计算挤压面积 =dt
两种材料的极限应力分别是? 许用应力=?
2.6 拉压杆的变形
2.6 拉压杆的变形
例: 已知等截面直杆横截面面积A=500mm2,弹性模量 E=200GPa,试计算杆件总变形量。
6KN
8KN 5KN
3KN
1m
2m
1.5m
ΔL=?
2.8 拉压杆接头的计算
2.8 拉压杆接头的计算
2.8.1 剪切和剪切强度计算
(1) 多数塑性材料在弹性变形范围内,应力与应 变成正比关系,符合胡克定律;多数脆性材料在 拉伸或压缩时σ-ε图一开始就是一条微弯曲线, 即应力与应变不成正比关系,不符合胡克定律, 但由于σ-ε曲线的曲率较小,所以在应用上假设 它们成正比关系。
材力第2章:轴向拉伸与压缩
F
F
F
F
拉杆
压杆
§2-2 轴力及轴力图 1.内力的概念
构件因反抗外力引起的变形,而在其内部各质点间引起的相 互之间的作用力,称为内力。 显然,外力越大,变形越大,因而内力也越大,但内力不可 能无止境地随外力的增大而增大,总有个限度,一旦超过了 这个限度,材料将发生破坏。因此,材料力学中,首先研究 内力的计算,然后研究内力的限度,最后进行强度计算。
B
α α
FN1
α α
FN2
FN 2 cos + FN 1 cos - F = 0
FN 2 = FN 1 = F 2 cos Fl
A
A
F
l1 = l2 =
l2
FN 2l EA
=
=
2 EA cos
Fl
A = AA =
A l 1
=
A
l2 cos
2EA cos
2
= FN A ,
=
l l
=
E
又称为单轴应力状态下的胡克定律,不仅适用于轴向拉(压)杆,可以更普遍 地用于所有的单轴应力状态。
= E 表明在材料的线弹性范围内,正应力与线应变呈正比关系。
例题 试求图示杆 AC 的轴向变形△ l 。
FN 1
B
F1
F2
C
FN 2
C
F2
分段求解:
0
90 = 0
0
90 = 0
0
在平行于杆轴线的截面上σ、τ均为零。
• 作业: P41 • •
2-1(2)(3) 2-3 2-6
§2-5 拉、压杆的变形
杆件在轴向拉压时:
材料力学第2章 轴向拉伸和压缩
(b),由静力平衡条件:
∑X = 0
N AB + N BC cos30 = 0
…(1) NBC …(2) NAB 30
y
Y =0 ∑ N BC sin 30 - P = 0
B P
x
(b)
由(2)式可得
N BC
P 2 = = = 4kN (拉) sin 30 0.5
将NBC的值代入(1),可得
6
40 106 Pa 40 MPa
杆端加载方式对正应力分布的影响
圣维南原理:若用与外力系静力等效的合力代替原力 系,则这种代替对构件内应力与应变的影响只限于原 力系作用区域附近很小的范围内。
对于杆件, 此范围相 当于横向 尺寸的 1~1.5倍。
圣维南原理:“ 力作用于杆端方式
不同,只会使与杆端距离不大于杆 的横向尺寸的范围内受影响。”
用径向截面将薄壁圆环截开,取其上半部分为分离 体,如图b所示。分布力的合力为
d FR ( pb d )sin pbd 0 2
π
FR pba 由SFy=0,得 FN 2 2
径向截面上的拉应力为
FN 1 pbd pd ( 2 10 Pa)(0.2 m) s ( ) A bd 2 2d 2(5 10-3 m)
符号规定:
正号轴力-- N的方向与截面外法线方向一致。
负号轴力-- N的方向与截面外法线方向相反。
也即:拉伸为正、压缩为负。
3.轴力图 例1:一直杆受力如图所示。试求各段中横截面上的 轴力。
6kN
A
I I I I
II B 10kN II
III D C 4kN 8kN III
6kN
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 材料的压缩图
材料压缩的应力应变图
殊声明,则均为名义应力应变图)
名义应变图(如不特
37
3. 塑性材料压缩时的应力应变图
特点: (1)屈服阶段之前,应力应变图与拉伸时σ-ع图完全重合
(2)压缩过程中,外观:圆柱状
(3)测不出极限(破坏)应力 比较: 拉伸实验:
可测出(弹性极限, 屈服极限和强度极限)
代入强度条件
材料力学
N [ ]得:
A
A N 1.4b2 1100103
[ ]
60
解得:b 115mm
取: b 115mm
得: h 1.4b 161mm
21
§2-4 轴向拉压时直杆的变形
一、拉压杆的绝对变形 △l=l1-l0 , 拉伸为正,压缩为负。
二、拉压杆的相对变形 l l1 l0
L PL EA
L P
L EA E
三、低碳钢试件的应力--应变曲线(--图)
28
阶段分析
e
DE段:颈缩阶段。
OA段:弹性阶段,外力去除 后能够完全恢复,其中含有
比例阶段。比例极限: p
弹性极限: e
AC段:屈服阶段,应力没有 什么变化,应变明显增大。 原因:剪应力引起的晶格之 间的相对滑移,试件表面明 显变暗,与轴线成45°的倾 斜花纹,有塑性变形。
变形前
a
b
c
d
受载后
P
a´
b´
P
c´
d´
试验现象:
1.原来的纵向线仍然平行,伸长一致。
2. 原来的横向线相对移动,但仍然相互平行,仍垂直纵向线。
(纵向纤维共同承担外力的作用)
假设:
1.平面截面假设:变形前的平面横截面在变形后仍然是平面横
截面。
2.内力是均匀分布的。
15
由此可知:杆件可以看成是有许多纵向纤维构成的。 当其受到轴向挤压时,自杆件表面到内部所有的纵向纤维 的变形都相等,因此,各纤维所受到的内力也完全相等。 因此,应力在横截面上的分布是均匀的,而且应该与横截 面垂直。
AB段:N3 30 30 20
–
20
轴力图要求: 1.正负号 2.数值 3.阴影线与轴线垂直
40kN R A
注:内力的大小与杆截面的 大小无关,与材料无关。
11
[ 练习 ] 直杆受力如图所示,试画出杆的轴力图。
2P
5P 2P
P
A
B
3P +
C
D
P +
E
解:
CE段:N1 P
BC段:N 2 3P
17
依强度条件可进行下列计算:
①已知【 】,A,求S, 可进行载荷设计(确定许用载荷)。 ②已知 A,S,求【 】,可合理的选材。 ③已知S, 【 】,求A,可进行截面设计。 ④已知S, 【 】, A,求构件是否安全——强度校核。
18
[例1] 已知一圆杆受拉力P =25 K N,直径 d =14mm,许用应
cos cos2 (1 cos2 n 2
2
P
当α=0°时,正应力 最大。
当α=45°, τ剪应力最大。
当α=90 °时,剪应力为零。
αA
P
A’
α σn
Α SP
A’
31
符号:拉应力为正,压应力为负。
剪应力, 绕物体内任一点(研究对象)有顺时
为钢杆,许用应力[]=160M Pa ,求结构的最大荷载P。
d=80 解:取节点A为受力体,受力图如图(a)
B
30
A
NAB 3P NAC 2P
木杆设计:
P
N AB A1 60.3kN
P1 34.8kN
C
钢杆设计:
N AB
A
N AC P
(a)
NAC A2 1.459104 160106 23.3kN
计算杆在截开面上的未知内力(此时截开面上的内力 对所留部分而言是外力)。
7
例如: 截面法求N。
P
A
P
截开: P
A P
简图
代替:
P
N A
平衡: X 0 P N 0 P N
2. 轴力——轴向拉压杆的内力,用N 表示。
8
3. 轴力的正负规定:
N 与截面外法线同向, 为正轴力(拉力)
N
N N>0
N与截面外法线反向, 为负轴力(压力)
N
N
N<0
三、 轴力图—— N (x) 的图象表示。
意 ①反映出轴力与截面位置变化关系,较直观;
义 ②确定出最大轴力的数值 N
及其所在横截面的位置,
P
+
即确定危险截面位置,为
x
强度计算提供依据。 9
轴力图的特点:突变值 = 集中载荷
8kN
5kN
3kN
5kN +
鼓形 σ
饼状
纸状
压缩实验: 则最多测出2个 (弹性极限,屈服极限)
σDσB
ع
O
38
4. 脆性材料压缩时的机械性质
特点:(1)δ<5%
(2)压缩时的强度极限σb大大高于拉伸时的强度极限
• 冷作硬化:材料经过屈服而进入强化阶段后卸载,再加载时,弹 性极限明显增加,弹性范围明显扩大,承载能力增大的现象。
• 强度指标:对塑性材料,在拉断之前在残余变形0.2 %(产生 0.2%塑性应变)时对应的应力为这种材料的名义屈服应力,用 0.2表示 ,即此类材料的失效应力。 锰钢、镍钢、铜等
• 脆性材料拉伸的机械性能特点:
P2 11.7kN
选Pmax 11.7kN
20
[例3](设计截面)
冷镦机的曲柄滑块机构如图。
A
镦压工件时,连杆接近水平位置,
承受的镦压力P=1100kN,连杆截面
为矩形,高度h与宽度b之比为1.4,
构件的许用应力为[σ]=60MPa,试
B
确定截面尺寸。
解:连杆的横截面积为
轴力为
A hb 1.4b2 N P 1100kN
屈服极限:s
CD段:强化阶段,屈服阶 段后,晶格之间的相对滑移 到一定程度,试件又具有一 定的抵抗变形的能力。必需 继续增加应力。
强度极限: b
29
• 材料的分类:根据试件断裂时的残余相对变形率将材料分类:
延伸率(δ)>5% 塑性变形:低碳钢,铜,塑料,纤维。
延伸率(δ)<5% 脆性变形:混凝土,石块,玻璃钢,陶瓷, 玻璃,铸铁。
,所以通常叫做胡克定律。 胡克定律: =Eε
24
常用材料的E和μ值
材料名称 低碳钢 中碳钢 16锰钢 合金钢 铸铁 混凝土 石灰岩 木材(顺纹) 橡胶
E(GPa) 196-216 205 196-216 186-216 59-162 15-35 41 10-12 0.0078
μ
0.24-0.28 0.24-0.28 0.25-0.30 0.25-0.30 0.23-0.27 0.16-0.18 0.16-0.34
[]=170MPa,试校核此杆是否满足强度要求。
解:① 轴力:N = P =25KN
②应力:
max
N A
4P
πd 2
4 25103 3.14 0.0142
162MPa
③强度校核: max 162MPa 170MPa
④结论:此杆满足强度要求,能够正常工作。
19
[例2] 起重三脚架如图所示。木杆AB的许用应力[]=12M Pa, AC
不仅准确而且重要,因为“破坏”或“失效”往往从内力集
度最大处开始。
2. 应力的表示:
①平均应力:
P
M
pM
ΔP ΔA
A
②全应力(为一点处的应力):
pM
lim
Δ A0
Δ Δ
P A
dP dA
③正应力 S
A
S是作用于横截面上的力 A是横截面面积
14
(二)、拉(压)杆横截面上的应力 1. 变形规律试验及平面假设:
0.47
材料力学
25
§2-5 轴向拉伸时材料的机械性能
一、试验条件及试验仪器
1、试验条件:常温(20℃);静载(极其缓慢地加载);标准试件(圆形或矩形截面) 构件:组成机器结构或设备的基本元件。 试件:具有标准结构的检测机械性能的元件。
d0 l0
h0
d0
26
2、试验仪器:万能材料试验机
27
二、低碳钢试件的拉伸图(P-- L图)
工程力学
Engineering Mechanics
1
第二章 轴向拉伸和压缩
2
2-1 概念与实例
一、概念 轴向拉伸与压缩: 直杆在其两端沿轴线受到拉力而伸长或受到压力而缩短。
轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。
轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向 缩扩。
轴向拉伸:杆的变形是轴向伸长,横向缩短。
max
2
即直杆在受到轴向拉压时,在与横截面成45°角的斜面 上的剪应力最大,等于横截面上正应力的一半。
(a) 用抗剪能力比抗拉能力较差的材料制成的杆件(低碳 钢平版)受拉伸达屈服时,在试件表面出现的滑移线。
低碳钢轴向拉伸时在与杆轴线成 45°倾角的斜截面上。剪应力达到 最大值。故可推断,材料的屈服与最大剪应力有关。该条纹系因材 料内部晶格间沿最大剪应力方向发生相互错动所致,称为滑移线。
l0
l0
P
a′
b′
P
c′
d′
x +d x LL1 +dL
lim l 正应变,线应变。
l
22
三、拉压杆的胡克定律:在一定范围内,杆件所发生的拉压变形与