四年级数学归一问题与归总问题.(优选)

合集下载

应用题讲解(典型应用题)-归一和归总问题

应用题讲解(典型应用题)-归一和归总问题

例2 小华每天读24页书,12天读完了《红岩》一书。小明每 天读36页书,几天可以读完《红岩》?
(1)《红岩》这本书总共多少页? 24×12=288(页)
(2)小明几天可以读完《红岩》? 288÷36=8(天) 列成综合算式 24×12÷36=8(天) 答:小明8天可以读完《红岩》。
例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消 费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10 千克,这批蔬菜可以吃多少天?
公倍数和公因列数车问过题桥问题
典型应用题
(1)归一问题:
【含义】 在解题时,先求出一份是多少(即单一量), 然后以单一量为标准,求出所要求的数量。这类应用 题叫做归一问题。
【数量关系】 总量÷份数=1份数量
另一总量÷(总量÷份数)=所求份数 1份数量×所占份数=所求几份的数量
5
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
小学应用题讲解
小学应用题分类 1、整数与小数应用题
小学数学 应用题
2、分数与百分数应用题 3、比和比例问题
4、列方程解应用题
整数与 小数
应用题
一般 应用题
简单应用题 复合应用题 小数计算的应用题
归一、归总问题 年龄问题
和差、和倍、差倍、倍比问题
典型 应用题
植树问题
行程问题
相遇问题 追及问题 流水问题
(1)这批蔬菜共有多少千克? 50×30=1500(千克)
(2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天) 列成综合算式 50×30÷(50+10)=1500÷60=25(天)
答:这批蔬菜可以吃25天
【数量关系】 1份数量×份数=总量 总量÷1份数量=份数

四年级奥数归一与归总

四年级奥数归一与归总
• 所谓的总量,是指总路程,总产量、工作总量,物品的总 价等等。
• 。例如:3本练习本36元,一本练习本多少元?就是归一问 题;
• 例如:一台机器每小时加工零件12个,5小时加工多少个零 件?就是归总问题。
例1 某玩具厂30天内要做布偶12000件,由于技
术革新,每天比原计划多做了200件。实际多少
专题三 归一与归总
• 要计算几本练习本卖多少钱,就必须先知 道每本练习本卖多少钱。
• 要计算几个人几天干多少工作,就必须先 知道每人每天干多少工作。
• 这种归结为求一个单位数量的问题,叫作 归一问题。
• 想一想:从归一问题的上想,什么样的问题叫归总问题呢 ?
• 归一问题是要求 小青家有个书架共5层,每层放36本书,现
在要空出一层放碟片,把这些书放入4层中,每
层比原来多放多少本书?
• (1)本题的总量是什么?有什么变化? • (2)什么发生了变化? • (3)求比原来多放了多少本,就要先求出什么? • (4)怎样求出现在每一层的本数? • 36×5=180(本) • 180÷4=45(本) • 45—36=9(本) • 答:每层比原来多放9本书。
习题2 如果买6个书包和3盒水彩笔需要294元, 而如果买2个书包和3盒水彩笔只需要154元。求 一个书包和一盒水彩笔各多少钱?
习题1 工厂运来一堆煤,如果每天烧煤1500千 克,6天就能烧完。如果每天烧1000千克,可以 多烧几天?
习题2 某车间计划20人每天工作8小时,8天完 成一批订货,后来要提前交货,改由32人工作, 限4天完成。每天需工作几小时?
习题1 甲、乙、丙三人在春游时买了8个面包, 平分着吃。丙没有带钱,所以甲付了5个面包的 钱,乙付了3个面包的钱。第二天,丙带来了他 应付的3元2解钱。问:甲、乙各应收回多少钱?

四年级归一、归总、和差、差倍问题

四年级归一、归总、和差、差倍问题

四年级归一、归总、和差、差倍问题四年级:归一、归总问题数量关系:1份数量*份数=总量题型一:归一问题例:修路队要修一条长2000米长的公路,前五天修了1000米,这样计算,修完这条路一共要多少天?练习1:一辆大卡车5天可以拉100吨沙子,现在有2700吨沙子,这辆车几天拉完?练习2:某工厂有150吨煤,前5天烧了30吨,这样计算,剩下的煤还可以烧几天?题型二:归一,求单一量例:15头牛8天赤青草840千克,这样计算,3150千克青草可供30头牛吃多少天?练习1:15匹马4天吃660千克青草,这样计算,饲养场运进1760千克青草,可供20匹马吃几天?练习2:一个运输队开展节油活动,3辆车5天一共可以节约45千克汽油。

这样计算,这个运输队30天节约2160千克汽油,这个运输队共有多少辆汽车?练习3:(归总)工厂用一批纸张装订练习本,如每本40页,可装订30本,如每本25页,可装订多少本?练习4:商店卖出4箱保温瓶,每箱20个,每个15元,现在用卖保温瓶的钱去买6包洗衣粉,每箱100包,每包洗衣粉多少元?题型三:先算总量,在求单位量例:王老师上班每分钟走80米,15分钟能到学校,如他想提前3分钟到达学校,那王老师每分钟要比原来多走多少米?练习1:一辆汽车从甲地开往乙地,每小时行60千米,预计4小时可以到达,如果要提前1小时到达,每小时要比原来惰性多少千米?练习2:用一批纸装订练习本,每本30页,可以订600本,如每本多订10页,这些纸可以订多少本?题型四:例:一个工程队计划用30个人20天修好一条长6000米的公路,实际工作时增加了20个人,且每个人每天比计划多修2米,实际用多少天修完这条路?例2:修一条长1800米的路,计划45人用20天完成,如在增加15个人,可提前几天完成?练习1:一辆汽车每天行6小时,3天可行810千米。

如果每小时比原来多行5千米,每天行8小时,这辆汽车几天可以行4000千米?练习2:3台织布机4小时能织布144米,要在5小时内再多织180米,要增加几台同样的织布机?题型五:例:货物公司用6辆卡车3次可运货108吨,3辆货车8次运货120吨,现在用2辆卡车和3辆货车同时运12次,可以运货多少吨?练习1:甲乙了两个打字员4小时共打字3200个,现两人同时工作,在相同时间内甲打字2765个,乙打字2835个,甲打字6小时,乙打字10小时,可他们共打字多少个?练习2:学校锅炉房运来550吨煤,用4辆大卡车5次运煤160吨,用3辆小卡车8次运煤72吨,如用1辆大卡车和一辆小卡车同时运,要几次?和差问题数量关系:大数=(和+差)/2 小数=(和-差)/2例1:甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?例2:长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形面积。

四年级数学归一问题和归总问题

四年级数学归一问题和归总问题

四年级数学归一与归总应用题知识要点:1、归一问题:日常生活中要计算几个足球多少钱,就必须先知道每个足球的单价是多少钱;要计算几个人几天所做的工作总量,就必须先知道每人每天所做的工作量等等,一系列的这种应用题,归结为一个单位数量的问题叫归一问题。

2、归总问题:与归一问题对应的是归总问题,归一问题是要求出“单一量”,而归总问题是要求出“总量”。

所谓总量是指:总路程,总产量,工作总量,物品的总价等等,这种先求“总量”的应用题叫归总问题。

3、主要的数量关系式:单价×数量=总价总价÷单价=数量总价÷数量=单价工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间速度×时间=路程路程÷速度=时间路程÷时间=速度典型例题:例1、小红买了5支圆珠笔共付15元,现在她要退回去2支圆珠笔,售货员应找回多少元?例2、某工厂用9个工人4天能够做360个机器零件,照这样计算,12个人6天能够做多少个同样的机器零件?例3、6辆卡车4次能够运货96吨,2辆汽车8次能够运货48吨,现在用3辆卡车和1辆汽车同时运15次,能够运货多少吨?例4、假设买4个书包和6盒水彩笔需190元,而假设买2个书包和6盒水彩笔需要140元,求一个书包和一盒水彩笔的单价各是多少元?例5、小明上学每分钟走50米,12分钟到学校,假设他想提前4分钟到达学校,则小明每分钟比原来多行多少米?例6、修一条公路,原计划80人,用100天完成,现在这批工人工作30天后,又增加了20人,问剩下的部分再做多少天能够完成任务?例7、有一段公路,预计用30人每天工作8小时,18天能够修完。

后来要求加快速度,每天增加6个人,并且修路时间每天增加4小时,那么能够提前几天修完这条公路?课堂练习:1、一台磨面机5小时可磨玉米250千克,照这样计算,磨1750千克的玉米,需要几小时?2、百货商店卖出4箱暖瓶,每箱20个,每个15元,现在用卖暖瓶的钱能够去买6箱洗衣粉,每箱100包,每包洗衣粉多少元?3、一本书,原来预计共印180页,每页25行,每行30个字,后来改用小号字,每行36个字,每页能排30行。

归一问题与归总问题

归一问题与归总问题

归一问题与归总问题
1、小明买3本笔记本用去18元钱,那
么小明买同样7本同样笔记本得用
多少钱?
2、小明走200步是100米,他按这种走
法从家到学校走了800步,他家到
学校有多少米?
3、梅梅走100 米用了2分钟,按照这种速度步行,从家里到学校用10分钟,那么梅梅家到学校有多少米?
3、小强在操场上步行,5秒走了20米。

他按照这种速度步行:
(1)7秒钟走了多少米?
(2)走了36 米用多少秒?
4、三(3)班沿学校路一边直线栽树,两树间间隔相等,从第1棵顺着同一方向往下栽,栽到第5棵时隔第一棵20米,问:
(1)栽第7棵时隔第1棵有多少米?
(2)当隔第1棵树间隔有45米远时,这时栽第几棵树?
5、亮亮从1楼到3楼用了18秒,照这样步行上楼,从1楼到他家的7楼要用多少秒?。

【小升初】小学数学《归一、归总问题专题课程》含答案

【小升初】小学数学《归一、归总问题专题课程》含答案

14.归一、归总问题知识要点梳理一、归一问题1.归一问题来历:我国珠算除法中有一种方法,称为归除法,除数是几,就称几归;除数是8,就称为8归。

而归一的意思,就是用除法求出单一量,这就是归一的说法。

在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其他条件求出结果。

用这种解题思路解答的应用题,称为归一问题。

所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。

2.归一问题有两种基本类型如下:先求单一量再一次归一:一步求单一量归正归一:求几个单一量一是多少(乘)二次归一:两步求单一量问题反归一:先求单一量再求包含几个单一量(除)3.正、反归一问题的相同点是:第一步先求出单一量;不同点是:第二步正归一是乘法,反归一是除法。

二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是先找出“总量”,然后再根据其他条件算出所求的问题,叫归总问题。

所谓“总量”是指几小时(几天)的总工作量、几亩地上的总产量、总路程、总产量、工作总量、物品的总价等。

数量关系:1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量解题思路:先求出总数量,再根据题意得出所求的数量。

考点精讲分析典例精讲考点1 正归一问题【例1】一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?【精析】为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米单一量(一次归一)即蜗牛的速度,然后以单一量为依据按要求算出结果。

【答案】①小蜗牛每分钟爬行多少分米?12÷6=2(分米)②1小时爬几米?1小时=60分2×60=120(分米)=12(米)答:小蜗牛1小时爬行12米。

【归纳总结】一般情况下第一步先求出单一量,第二步求几个单一量是多少。

【例2】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?【精析】第一步先算1头奶牛7天产的牛奶为单一量一次归一,再算1头奶牛1天产的牛奶为单一量二次归一,最后8头奶牛15天可产牛奶多少千克。

四年级归一问题及归总问题讲解

四年级归一问题及归总问题讲解

四年级归一问题与归总问题解说在解答某些应用题时,经常需要先找出“单调量”,而后以这个“单调量”为标准,依据其余条件求出结果。

用这类解题思路解答的应用题,称为归一问题。

所谓“单调量”是指单位时间的工作量、物件的单价、单位面积的产量、单位时间所走的行程等。

例1一种钢轨,4根共重1900千克,此刻有95000千克钢,能够制造这类钢轨多少根?(消耗忽视不计)剖析:以一根钢轨的重量为单调量。

(1)一根钢轨重多少千克?1900÷4=475(千克)。

(2)95000千克能制造多少根钢轨?95000÷475=200(根)。

解:95000÷(1900÷4)=200(根)。

答:能够制造200根钢轨。

例2王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?剖析:以1头奶牛1天产的牛奶为单调量。

(1)1头奶牛1天产奶多少千克?630÷5÷7=18(千克)。

(2)8头奶牛15天可产牛奶多少千克?18×8×15=2160(千克)。

解:(630÷5÷7)×8×15=2160(千克)。

答:可产牛奶2160千克。

例3三台相同的磨面机时能够磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?1/4剖析与解:以1台磨面机1时磨的面粉为单调量。

(1)1台磨面机1时磨面粉多少千克?2400÷3÷2.5=320(千克)。

(2)8台磨面机磨25600千克面粉需要多少小时?25600÷320÷8=10(时)。

综合列式为25600÷(2400÷3÷)÷8=10(时)。

例44辆大卡车运沙土,7趟共运走沙土336吨。

此刻有沙土420吨,要求5趟运完。

问:需要增添相同的卡车多少辆?剖析与解:以1辆卡车1趟运的沙土为单调量。

小学数学“归一问题”与“归总问题”总结+解题思路+例题整理(经典应用题1收藏!)

小学数学“归一问题”与“归总问题”总结+解题思路+例题整理(经典应用题1收藏!)

小学数学“归一问题”与“归总问题”总结+解题思路+例题整理一、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例3:5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解:(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

二、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

区分归一、归总问题

区分归一、归总问题

区分归一、归总问题归一问题:先求出一个单位(单个)数量,再求出总量或用包含除求份量在第二步求总量的称为正归一,一般用除乘,巧记为“分总”;求份量的称为反归一,一般用除除,巧记为“分分”标志:归一问题一般包含“照这样算、按这样速度、同等速度下”等词,抓住不变量,区分乘除法,从而判断题型。

例1:3个学生分12本书,照这样算,36本书可以分给几个学生?分析:要求出36本书分给多少人?必须先求出一个学生分多少本书。

所以第一步求出单个量:除法。

算出一个人对应4本书;第二步,36本书里包含几个4就是几个人,所以属于包含除,是典型的反归一问题。

12÷3=4(本)36÷4=9(人)答:36本书可以分给9人。

例2:3个学生分12本书,照这样算,5个学生可以分几本书?分析:要求出5个学生分几本书?必须先求出一个学生分多少本书。

所以第一步求出单个量:除法。

算出一个学生对应4本书;再求5个学生书的总量,自然是用乘法。

属于正归一问题。

12÷3=4(本)4×5=20(本)答:5个学生可以分20本书。

点题:区分正归一和反归一重点在于求完单个量后,再求总量(正归一)还是求某个包含的份量(反归一)归总问题:先求出“总量”再根据条件求其他,一般用乘除,巧记为“总分”例3:小红有一些玻璃球,5个装一袋,可以装6袋,如果改为6个装一袋可以装几袋?分析:要想求出6个装一袋可以装几袋,必须知道玻璃球总数,且无论怎么分数量装袋,总数永远不变,抓住这个“不变量”。

第二步就是对总数进行包含除,求出份数。

5×6=30(个)30÷6=5(袋)答:6个装一袋可以装5袋。

点题:在归一、归总问题教学时,学生常分不清乘除法,导致无法判断。

一般来说,求“总数、总量、总和等”常用乘法;求“份数、部分、平均分”常用除法。

这类题需要多做多想,逐步习惯这类题解题思考模式,所以在下页准备了一些典型题目,希望我们三二班的孩子可以多做多想。

四年级数学归一问题与归总问题.【甄选文档】

四年级数学归一问题与归总问题.【甄选文档】

四年级数学归一问题与归总问题.(优选)归一问题与归总问题在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。

用这种解题思路解答的应用题,称为归一问题。

所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。

例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)分析:以一根钢轨的重量为单一量。

(1)一根钢轨重多少千克?(2)95000千克能制造多少根钢轨?解:答:例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?分析:以1头奶牛1天产的牛奶为单一量。

(1)1头奶牛1天产奶多少千克?(2)8头奶牛15天可产牛奶多少千克?解:答:例3 三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?分析与解:以1台磨面机1时磨的面粉为单一量。

(1)1台磨面机1时磨面粉多少千克?(2)8台磨面机磨25600千克面粉需要多少小时?综合列式为例4 4辆大卡车运沙土,7趟共运走沙土336吨。

现在有沙土420吨,要求5趟运完。

问:需要增加同样的卡车多少辆?分析与解:以1辆卡车1趟运的沙土为单一量。

(1)1辆卡车1趟运沙土多少吨?(2)5趟运走420吨沙土需卡车多少辆?(3)需要增加多少辆卡车?综合列式为与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果。

所谓“总量”是指总路程、总产量、工作总量、物品的总价等。

例5 一项工程,8个人工作15时可以完成,如果12个人工作,那么多少小时可以完成?分析:(1)工程总量相当于1个人工作多少小时?(2)12个人完成这项工程需要多少小时?解:答:例6 一辆汽车从甲地开往乙地,每小时行60千米,5时到达。

若要4时到达,则每小时需要多行多少千米?分析:从甲地到乙地的路程是一定的,以路程为总量。

第2讲 巧解归一和归总问题 -四年级数学上册 数学(苏教版)

第2讲 巧解归一和归总问题 -四年级数学上册 数学(苏教版)

第2讲巧解归一、归总题什么是归一问题?什么是归总问题呢?(1)解题时,先求出1份是多少(即单一量),然后以单一量为标准,求出所要求的数量,这类应用题叫作归一问题。

数量关系:总量÷份数=1份数量1份数量×另一份数=所求几份的数量另一总量÷(总量÷份数)=所求份数。

(2)解题时,常常先找出“总量”,然后再根据其他条件算出所求的问题,叫作归总问题。

所谓“总量”是指货物的总价、几小时(几天)的总工作量、几公顷土地的总产量、几小时行的总路程等。

数量关系:1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量。

例题1:大丰机械厂原计划一年内生产机床1800台.前3个月实际生产了480台.照这样计算,全年生产的台数超过原计划多少台?【分析】根据题意,可用480除以3计算出平均每月生产的台数,然后再乘12计算出全年实际生产的台数,最后再用实际生产的台数减去原计划生产的台数即可.÷⨯-【解答】解:4803121600=⨯-160121800=-19201800=(台)120答:全年生产的台数超过原计划120台.例题2:毛衣厂的4台编织机8小时可以编织96件毛衣.照这样计算,8台编织机5小时可编织多少件毛衣?【分析】照这样计算,意思是每台每小时的工作效率是一定,所以先求出平均每台每小时的工作效率,然后再用乘法解答即可.÷÷⨯⨯【解答】解:968485=÷⨯⨯12485=⨯⨯385=(件),120答:8台编织机5小时可编织120件毛衣.例题3:3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?(公顷是面积单位)思路分析:先求出单一量,以单一量为标准,求出所要求的数量。

先求1台拖拉机1天耕地多少公顷,用连除的方法解答,再求5台拖拉机6天耕地多少公顷,用连乘的方法解答。

规范解答:方法一:分步计算:90÷3÷3=10(公顷) 10×5×6=300(公顷)方法二:列综合算式:90÷3÷3×5×6=300(公顷)答:5台拖拉机6天耕地300公顷。

归一问题、归总问题(己出1)

归一问题、归总问题(己出1)

归一归总问题
1、某饭店要安装空调240台 已知10名工程技术人员8小时能安装空调64台 现饭店要求安装公司在12小时内装完 需要增派同样工作效率的技术人员多少名?
2、加工9600套服装 30人10天完成了3600套 又增加了20人 剩下的还需要几天完成?
3、李庄大队修水渠1800米,计划用75人12天修完,如果增加15人,几天修完?
4、某水泥厂计划24天生产1080吨水泥,由于技术改进,平均每天比原计划多生产15吨,可比计划提前几天完成?
5、4辆汽车行驶300千米需要汽油240公升.现有5辆汽车同时运货到相距800千米的地方 汽油只有1000公升 问是否够用?
6、服装厂原来做一套衣服用布3米 改进裁剪方法后 每套衣服用布2米。

原来做792套衣服的布 现在可以做多少套?
7、小华每天读24页书 12天读完了《红岩》一书。

小明每天读36页书 几天可以读完《红岩》?
8、食堂运来一批蔬菜 原计划每天吃50千克 30天慢慢消费完这批蔬菜。

后来根据大家的意见 每天比原计划多吃10千克 这批蔬菜可以吃多少天?
9、小华到文具店买笔 原计划按每支4元钱 可以买48支 结果笔的价格下调了 他用这笔钱多买了支16支 问笔的价格下调后每支多少元?
10、玩具厂生产一批电动智力玩具。

原计划每天生产120箱 28天可以完成任务 实际每天多生产了20箱 这样可以提前几天完成任务?。

归总问题和归一问题的区别

归总问题和归一问题的区别

归一问题和归总问题有什么区别?(一)归一问题和归总问题的区别:1、含义不同归一问题:先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。

归总问题:先找出总数量,然后再根据其他条件算出所求的问题,叫归总问题。

2、解题思路不同归一问题:根据已知条件,先求出一个单位量的数值,在求出总量。

归总问题:根据已知条件,先求出一个总量,在求出单位量的数值。

3、运用不同四则运算归一问题是求每份是多少,用除法。

归总问题是求一共是多少,用乘法。

(二)扩展资料归一问题的分类:1、直进归一在一些实际问题中,常常要先算出一个单位的数量是多少,然后求所需求的问题。

例如:“买3支铅笔要4角8分,买同样的5支铅笔要多少钱?”这样的问题,称为归一问题。

归一问题有:(1)直进归一,如上例便是直进归一,需先求买1支铅笔要几分,再求买5支铅笔要多少钱。

列式为:48÷3×5=80(分)。

2、返回归一(逆归一)例如:“一辆汽车4小时行120千米,照这样计算,行180千米要用几小时?”先求平均1小时行多少千米,再求行180千米要几小时。

列式为:180÷(120÷4)=180÷30=6(时)。

3、两次归一例如:“2台拖拉机4天耕地32公顷,照这样计算,5台拖拉机7天耕地多少公顷?”先求1台拖拉机1天耕地多少公顷,再求5台拖拉机7天耕地多少公顷。

列式为:32÷2÷4×5×7=140(公顷)。

【小升初】小学数学《归一、归总问题专题课程》含答案

【小升初】小学数学《归一、归总问题专题课程》含答案

14.归一、归总问题知识要点梳理一、归一问题1.归一问题来历:我国珠算除法中有一种方法,称为归除法,除数是几,就称几归;除数是8,就称为8归。

而归一的意思,就是用除法求出单一量,这就是归一的说法。

在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其他条件求出结果。

用这种解题思路解答的应用题,称为归一问题。

所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。

2.归一问题有两种基本类型如下:先求单一量再一次归一:一步求单一量归正归一:求几个单一量一是多少(乘)二次归一:两步求单一量问题反归一:先求单一量再求包含几个单一量(除)3.正、反归一问题的相同点是:第一步先求出单一量;不同点是:第二步正归一是乘法,反归一是除法。

二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是先找出“总量”,然后再根据其他条件算出所求的问题,叫归总问题。

所谓“总量”是指几小时(几天)的总工作量、几亩地上的总产量、总路程、总产量、工作总量、物品的总价等。

数量关系:1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量解题思路:先求出总数量,再根据题意得出所求的数量。

考点精讲分析典例精讲考点1 正归一问题【例1】一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?【精析】为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米单一量(一次归一)即蜗牛的速度,然后以单一量为依据按要求算出结果。

【答案】①小蜗牛每分钟爬行多少分米?12÷6=2(分米)②1小时爬几米?1小时=60分2×60=120(分米)=12(米)答:小蜗牛1小时爬行12米。

【归纳总结】一般情况下第一步先求出单一量,第二步求几个单一量是多少。

【例2】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?【精析】第一步先算1头奶牛7天产的牛奶为单一量一次归一,再算1头奶牛1天产的牛奶为单一量二次归一,最后8头奶牛15天可产牛奶多少千克。

小学数学常考应用题归一问题、归总问题汇总(附例题、解题思路)

小学数学常考应用题归一问题、归总问题汇总(附例题、解题思路)

归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量.这类应用题叫做归一问题.【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量.例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元.例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷.例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次.归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题.所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等.【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量.例1服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米.原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套.例2小华每天读24页书,12天读完了《红岩》一书.小明每天读36页书,几天可以读完《红岩》?解(1)《红岩》这本书总共多少页?24×12=288(页)(2)小明几天可以读完《红岩》?288÷36=8(天)列成综合算式24×12÷36=8(天)答:小明8天可以读完《红岩》.例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜.后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克?50×30=1500(千克)(2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天)列成综合算式50×30÷(50+10)=1500÷60=25(天)答:这批蔬菜可以吃25天.。

小学数学归一、归总问题

小学数学归一、归总问题

小学数学归一、归总问题一、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量X所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例:买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解: (1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12X16=1.92(元)列成综合算式0.6÷5X16=0.12X16=1.92(元)答:需要1.92元。

练习1、李叔叔制作8个零件需要30分钟,李叔叔2小时能制作多少个零件?2、一辆公共汽车4小时行280千米,照这样计算,7小时行多少千米?3、妈妈买5个橘子,用了25元,如果买7个同样的橘子,需要多少元?4、选果机4小时选果400斤,照这样计算,6台选果机可以选果多少斤?5、一个修路队,4天修路180米,照这样计算,7天可以修多少米?6、小明家5天吃完30千克苹果,照这样计算,8天要吃多少千克?7、小王买7本笔记本用了56元,买9本同样的笔记本需要多少元?8、买5支钢笔要90元钱,买同样的8支铅笔需要多少元?9、小王看一本童话书,3天看了54页,12天能看多少页?11、一玩具厂4小时可生产玩具524个.照这样计算,生产1572个玩具,要多少小时?12、某水泥厂计划24天完成一批任务,每天应生产45吨水泥.改进技术后,每天比原计划多生产15吨,这样提前几天完成?二、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量X份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

1、小学数学典型应用题:归一问题、归总问题、年龄问题、植树问题、相遇问题分类讲解内附答案。

1、小学数学典型应用题:归一问题、归总问题、年龄问题、植树问题、相遇问题分类讲解内附答案。

小学数学典型应用题01:归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例题1:3头牛4天吃了24千克的草料,照这样计算5头牛6天吃草_____ 千克。

例题2:5名同学8分钟制作了240张正方形纸片。

如果每人每分钟制作的数量相同,并且又来了2位同学,那么再过15分钟他们又能做 _____ 张正方形纸片?例题3:某车间用4台车床5小时生产零件600个,照这样计算,增加3台同样的车床后,如果要生产6300个零件,需要 _____ 小时完成?参考答案:(1)解:1、根据题意先算出1头牛1天吃草料的质量:24÷3÷4=2(千克)2、那么5头牛一天吃2×5=10(千克)的草料。

3、那么6天就能吃10×6=60(千克)草料。

(2)解:1、可以先算出5名同学1分钟能制作正方形纸片的数量240÷8=30(张)。

2、再算出1名同学1分钟制作的数量,30÷5=6(张)。

3、现在有5+2=7(名)同学,每人每分钟做6张,要做15分钟,那么他们能做7×6×15=630(张)正方形纸片。

(3)解:1、4台车床5小时生产零件600个,则每台车床每小时生产零件600÷4÷5=30(个)。

3、增加3台同样的车床,也就是4+3=7(台)车床,7台车床每小时生产零件7×30=210(个)。

4、如果生产6300个零件,需要6300÷210=30(小时)完成。

02:归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

归一问题与归总问题
在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。

用这种解题思路解答的应用题,称为归一问题。

所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。

例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)
分析:以一根钢轨的重量为单一量。

(1)一根钢轨重多少千克?
(2)95000千克能制造多少根钢轨?
解:
答:
例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?
分析:以1头奶牛1天产的牛奶为单一量。

(1)1头奶牛1天产奶多少千克?
(2)8头奶牛15天可产牛奶多少千克?
解:
答:
例3 三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?
分析与解:以1台磨面机1时磨的面粉为单一量。

(1)1台磨面机1时磨面粉多少千克?
(2)8台磨面机磨25600千克面粉需要多少小时?
综合列式为
例4 4辆大卡车运沙土,7趟共运走沙土336吨。

现在有沙土420吨,要求5趟运完。

问:需要增加同样的卡车多少辆?
分析与解:以1辆卡车1趟运的沙土为单一量。

(1)1辆卡车1趟运沙土多少吨?
(2)5趟运走420吨沙土需卡车多少辆?
(3)需要增加多少辆卡车?
综合列式为
与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果。

所谓“总量”是指总路程、总产量、工作总量、物品的总价等。

例5 一项工程,8个人工作15时可以完成,如果12个人工作,那么多少小时可以完成?
分析:(1)工程总量相当于1个人工作多少小时?
(2)12个人完成这项工程需要多少小时?
解:
答:
例6 一辆汽车从甲地开往乙地,每小时行60千米,5时到达。

若要4时到达,则每小时需要多行多少千米?
分析:从甲地到乙地的路程是一定的,以路程为总量。

(1)从甲地到乙地的路程是多少千米?
(2)4时到达,每小时需要行多少千米?
(3)每小时多行多少千米?
解:
答:
例7 修一条公路,原计划60人工作,80天完成。

现在工作20天后,又增加了30人,这样剩下的部分再用多少天可以完成?
分析:(1)修这条公路共需要多少个劳动日(总量)?
(2)60人工作20天后,还剩下多少劳动日?
(3)剩下的工程增加30人后还需多少天完成?
解:
答:
最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改。

相关文档
最新文档