辅助线构造等腰和直角三角形
北师大版八年级数学下册期末复习专题训练(三) 三角形证明中的四种辅助线作法
2.如图3-ZT-2,在△ABC中,AB=AC,点E在AC上,且AD =AE,DE的延长线与BC相交于点F.求证:DF⊥BC.
图3-ZT-2
证明:如图,过点A作AM⊥BC于点M. ∵AB=AC,∴∠BAC=2∠BAM. ∵AD=AE, ∴∠D=∠AED, ∴∠BAC=∠D+∠AED=2∠D, ∴∠BAM=∠D, ∴DF∥AM. ∵AM⊥BC,∴DF⊥BC.
3.如图3-ZT-3,在△ABC中,AB=AC,D是BC边上的中点, DE,DF分别垂直AB,AC于点E,F.求证:DE=DFD是BC边上的中点, ∴AD平分∠BAC. ∵DE,DF分别垂直AB,AC于点E,F, ∴DE=DF.
作法二 构造直角三角形(等腰三角形)
5.如图3-ZT-5,点E在△ABC的AC边的延长线上,点D在AB 边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰 三角形.
图3-ZT-5
证明:如图,过点D作DG∥AE交BC于点G, ∴∠GDF=∠CEF. 在△GDF和△CEF中, ∵∠GDF=∠CEF,DF=EF,∠DFG=∠EFC, ∴△GDF≌△CEF(ASA),∴DG=CE. 又∵BD=CE,∴BD=DG,∴∠DBG=∠DGB. ∵DG∥AC,∴∠DGB=∠ACB,∴∠ABC=∠ACB, ∴AB=AC,∴△ABC是等腰三角形.
7.如图3-ZT-7所示,在四边形ABCD中,E是边BC的中点,F 是边CD的中点,且AE⊥BC,AF⊥CD. (1)求证:AB=AD; (2)若∠BCD=114°,求∠BAD的度数.
图3-ZT-7
解:(1)证明:如图,连接AC. ∵E是边BC的中点,AE⊥BC,∴AB=AC. 同理可得AD=AC,∴AB=AD. (2)如图.∵AB=AC,AD=AC, ∴∠B=∠1,∠D=∠2, ∴∠B+∠D=∠1+∠2,即∠B+∠D=∠BCD. ∵∠BAD+(∠B+∠D)+∠BCD=360°,∠BCD=114°, ∴∠BAD=360°-114°-114°=132°.
等腰三角形证明以及辅助线做法
巧用“两线合一”构建且证明等腰三角形问题学习了等腰三角形的三线合一后,笔者认为,可以根据学生的实际情况,补充“三线合一”的逆命题的教学,因为这种逆命题虽然不能作为定理用,但它在解题中非常常见的。
掌握了它,可以为我们解题增加一种重要思路。
它有以下几种形式:①一边上的高与这边上的中线重合的三角形是等腰三角形.(线段垂直平分线的性质)②一边上的高与这边所对角的平分线重合的三角形是等腰三角形.③一边上的中线与这边所对角的平分线重合的三角形是等腰三角形.因此,三角形“一边上的高、这边上的中线及这边所对角的平分线”三线中“两线合一”就能证明它是等腰三角形.为了便于记忆,笔者简言之:两线合一,必等腰。
本文重点利用该逆命题作为一种思路正确地添加辅助线,构建等腰三角形且证明之来解决问题。
一、我们先来证明“三线合一”性质的逆命题三种情形的正确性:证明①:已知:如图1,△ABC中,AD是BC边上的中线,又是BC边上的高。
求证:△ABC是等腰三角形。
分析:AD就是BC边上的垂直平分线,利用线段垂直平分线的性质,可以推出AB=AC,所以△ABC是等腰三角形。
具体证明过程略。
证明②:已知:如图1,△ABC中,AD是∠BAC的角平分线,AD是BC边上的高。
求证:△ABC是等腰三角形。
分析:利用ASA的方法来证明△ABD≌△ACD,由此推出AB=AC得出△ABC是等腰三角形。
具体证明过程略。
证明③:已知:如图2,△ABC中,AD是∠BAC的角平分线, AD是BC边上的中线。
求证:△ABC是等腰三角形。
方法一:分析:要证△ABC是等腰三角形就是要证AB=AC,直接通过证明这两条线段所在的三角形全等不行,那就换种思路,经验告诉我们,在有中点的几何证明题中常用的添辅助线的方法是“倍长中线法”(即通过延长三角形的中线使之加倍,以便构造出全等三角形来解决问题的方法),即延长AD到E点,使DE=AD,由此问题就解决了。
证明:如图2,延长AD到E点,使DE=AD,连接BE在△ADC和△EDB中AD = DE∠ADC=∠EDBCD=BD∴△ADC≌△EDB∴AC=BE,∠CAD=∠BED∵AD是∠BAC的角平分线∴∠BAD=∠CAD∴∠BED=∠BAD∴AB=BE又∵AC=BE∴AB=AC∴△ABC是等腰三角形。
例析如何添加辅助线构造等腰三角形
解法探究2023年3月下半月㊀㊀㊀例析如何添加辅助线构造等腰三角形◉甘肃省平凉市崆峒区广成学校㊀周义武㊀㊀摘要:等腰三角形作为初中数学几何部分的重要知识点,不仅对解决几何问题具有重要作用,而且也是历年中考数学命题的热点,特别是如何添加辅助线构造等腰三角形,是对初中生数学思维能力的考查.基于此,本文在介绍等腰三角形性质的基础上,借助两道例题分析如何添加辅助线构造等腰三角形.关键词:等腰三角形;辅助线;构造;角平分线;倍角1引言等腰三角形的性质和判定是历年数学中考的必考点,然而学生在遇到几何题时难以发现或构造等腰三角形,继而无法利用其性质和判定解决问题[1].基于这种情况,同时又考虑到构造等腰三角形是解决初中数学几何问题的重要方法,本文中就如何添加辅助线构造等腰三角形进行研究和分析,以供参考.2理论基础通过对那些需要构造等腰三角形才能解决的初中几何题进行分析后不难看出,添加辅助线构造等腰三角形的理论基础主要来自两个方面:首先,等腰三角形的性质.构造等腰三角形主要是构造出两条相等的边或两个相等的角,这是因为等腰三角形具有 等边对等角 的性质[2].另外, 三线合一 也是突破该类问题思维瓶颈的一个知识点.其次,等腰三角形的判定.要构造等腰三角形,需要根据等腰三角形的判定方法判断构造出的三角形是否为等腰三角形,只有这样才能进一步使用等腰三角形的性质解决问题.当然,在解决这类问题时,还需要结合其它几何知识.例如,证明或求解的过程中可能会利用全等三角形等,那么全等三角形等知识点也是添加辅助线的重要启发.3例题分析笔者结合相关研究内容以及一线教学经验,认为添加辅助线构造等腰三角形可从以下两个方面出发.3.1根据倍角关系作辅助线在几何题中,如果出现了倍角关系,那么极有可能需要构造出等腰三角形进行分析解答.因为等腰三角形具有 等边对等角 的性质,所以顶角的邻补角等于底角的两倍.如例题1.图1例1㊀如图1所示,在әA B C 中,øA B C =2øC ,A D 是øB AC 的平分线.求证:A C =A B +B D .分析:本题已知条件中出现了倍角关系,抓住这一关系延长C B 构造出等腰三角形A B E ,然后利用三角形的外角性质和øA B C =2øC 得到øE =øC ,进而得到等腰三角形A E C .最后,通过等腰三角形的性质实现了A B 与E B ,A E 与A C 的转换.当然也可延长A B 构造等腰三角形,借助全等三角形实现边的转换.所以,本题有两种不同的解题方法.证法一:如图2所示,延长C B ,使得B E =A B ,连接A E .图2ȵB E =A B ,ʑøE =øE A B .ʑøA B C =øE +øE A B =2øE .又ȵøA B C =2øC ,ʑøE =øC .ʑA E =A C .ȵA D 平分øB A C ,ʑøB A D =øC A D .ʑøE A D =øB A E +øB A D=øC +øC A D =øB D A .ʑE A =E D .又E D =E B +B D ,E B =A B ,A C =A E ,ʑA C =A B +B D .证法二:如图3所示,延长A B ,使得B M =B D ,连接MD .68Copyright ©博看网. All Rights Reserved.2023年3月下半月㊀解法探究㊀㊀㊀㊀图3ȵB M =B D ,ʑøM =øB DM .ʑøA B C =øM +øB DM =2øM .又ȵøA B C =2øC ,ʑøM =øC .ȵA D 平分øB A C ,ʑøB A D =øC A D .又A D =A D ,ʑәAMD ɸәA C D (A A S ).ʑA C =AM =A B +B M =A B +B D .总结与反思:当一个三角形中出现了一个角是另一个角的两倍时,往往可以借助构造等腰三角形转化倍角关系.3.2延长边利用三线合一 作辅助线 三线合一 作为等腰三角形的重要性质,在解题时大有用处,在作辅助线构造等腰三角形时亦是如此.如例题2.图4例2㊀如图4所示,在әA B C中,A B =A C ,øB A C =90ʎ,B D 平分øA B C ,C D ʅB D ,B D 与A C 相交于点F .求证:B F =2C D .分析:本题中的已知条件比较多,分析后发现在不作辅助线的情况下解出此题非常困难.所以,可根据 B D 平分øA B C 延长B A ,C D ,结合 三线合一 得到等腰三角形.最后,借助三角形全等实现边的转换,达到求证目的.图5证明:延长B A ,C D 交于点E ,如图5所示.ȵB D 平分øA B C ,C D ʅB D ,ʑB C =B E ,C D =E D .ʑC E =2C D .ȵøB A C =90ʎ,øB F A =øC F D ,ʑøA B F =øA C E .又ȵA B =A C ,ʑәA B F ɸәA C E (A S A ).ʑB F =C E .ʑB F =2C D .总结与反思:如果遇到了与角平分线垂直的线段,那么将这条线段延长与角的另一边相交就可以构造出等腰三角形.值得一提的是,这种方法通常会运用全等三角形,一是为了实现边的转换,二是与 三线合一 搭配使用.4要点说明很多初中几何问题解题时都需要作出相应的辅助线,而有技巧地作出所需的辅助线,是高效㊁巧妙解决数学问题的前提.本文中通过两道例题介绍了两种利用辅助线构造等腰三角形的方法,也是平时训练中常见的方法.在使用这两种方法构造等腰三角形时,需注意以下几个要点:首先,注重化归思想的培养和利用.在本文两道例题中,均使用了化归思想.由此可见,这类问题对化归思想的依赖程度非常高,对尚未有化归思想或不会运用化归思想的学生形成了巨大考验.因此,教师在日常教学过程中,要注重学生化归思想的培养[3].笔者认为,教师可从边转化㊁角度转化方面开始简单的训练,在充分理解 三线合一 角平分线 垂直平分线 内容的前提下发挥其作用,为作辅助线构造等腰三角形奠定丰富的理论基础.其次,注重发散思维的培养.在例1中,采用了两种不同的方法,且两种方法之间存在一定联系.对于әA B D 而言,可以延长的边有三条,但是分析后发现有利于解题的线段延长共有两种情况,即延长D B 或A B .如此一来,就形成了两种不同的解题方法.那么如何由延长D B 联想到延长A B ,这就是学生发散思维的体现.笔者建议,教师在教学过程中,引导学生延长某一线段时,可从延长方向上激发学生的思维.5结语总之,利用作辅助线的方法构造出等腰三角形是解决几何类问题常用的方法[4].无论是学生平时训练,还是教师日常教学,可以将该内容形成专题,进行更充分的探讨与学习.这对教师的深入研究和学生的深入学习都非常有意义.参考文献:[1]陈霄剑.学生为什么这么快就知道添加辅助线由等腰三角形性质定理证明的教学片断而引发的思考[J ].中小学数学(初中版),2014(10):51G52.[2]王键.深入等腰三角形,探究辅助线添加 对等腰三角形辅助线添加技巧的探讨[J ].数学教学通讯,2020(29):70G71,80.[3]胡宁.纵有千条妙计必有一定之规 构造等腰直角三角形解题例谈[J ].学生之友(中考月刊),2012(Z 1):7G8.[4]张文国.例说等腰三角形的辅助线的几种作法[J ].科教导刊:电子版,2018(17):1.Z78Copyright ©博看网. All Rights Reserved.。
专题——三角形中常见的辅助线
三角形中常见的辅助线的作法一、斜边中线模型构成:Rt △ABC,∠ACB=090,D 为AB 边的中点 目的:找等量关系,或2倍(1/2)的关系。
结果:AD=CD=BD例 1 已知:△ABC 中,∠A=060,CE ⊥AB,BD ⊥AC 求证:DE=12BC例2、如图,直角三角形ABC 中,∠C=90 ,M 是AB 中点,AM=AN ,MN//AC 求证:MN=AC 例3已知:△ABC 中,CE ⊥AB,BD ⊥AC ,M,N 分别为BC,DE 的中点 求证:MN ⊥ED例4如图,在△ABC 中,∠B=2∠C ,AD ⊥BC 与D,M 为BC 边的中点,AB=10cm,则MD 长为多少?例5如图 ,Rt △ABC 中,∠C=090,CD 平分∠C ,E 为AB 中点,PE ⊥AB,交CD 延长线于P,那么∠PAC+∠PBC 的大小是多少?ADCMABDEC213N CE D B A MN CD BA MNMBCA等腰三角形底边的中线例1、如图所示,在ABC 中,AB=2AC ,AD 平分∠BAC 且AD=BD ,求证:CD ⊥AC例2如图所示,等腰直角三角形ABC ,∠BAC=90︒,点D 是BC 的中点 二、“三线合一”模型“角平分线”+垂线→等腰三角形”构成:OC 为∠A0B 的角平分线,BC ⊥OC 于C 点 目的:构造等腰三角形结果: ⑴[边]:BC=AC,OA=OB →OC 为△OAB 的中线⑵[角]:∠3=∠4,∠ACO=090→ OC 为△ABO 的高线 ⑶[全等]:△ACO ≌△BCO例 1 已知:AD 是△ABC 的∠A 的平分线,CD ⊥AD 于D,BE ⊥AD 于AD 的延长线于E,M 是BC 边上的中点。
求证:ME=MD例2已知:△ABC 为等腰直角三角形,∠A=090,∠1=∠2,CE ⊥BE求证:BD=2CE例3 已知:△ABC 中,CE 平分∠ACB ,且AE ⊥CE,∠AED+∠CAE=1800(∠3+∠4=1800)求证:DE ∥BC例4 已知:在△ABC 的两边AB 、AC 上分别取BD=CE ,F 、G 分别为DE 、BC 的中点,∠A 的平分线AT 交BC 于T 求证:FG ∥AT4321C BAO 654321MGFE D CB A 4321FE D BA54321F EDCBA MK N L FE DA例5、如图,AB=AE ,∠ABC=∠AED ,BC=ED ,点F 是CD 的中点 (1)求证:AF ⊥CD(2)在你连接BE 后,还能得出什么新结论?三、三角形中位线模型构成:△ABC 中,D 为AB 边中点目的:找中位线,构造:①2倍关系②相似三角形结果:①DE ∥BC,DE=12BC ②△ADE ∽△ABC例1 已知:在△ABC 中,AB=AC,AD ⊥BC 于D,DE ⊥AC 于E,F 为DE 中点 求证:AF ⊥BE例2 已知 BD 、CE 为△ABC 的角平分线,AF ⊥CE 于F,AG ⊥CE 于F,AG ⊥BD 于G求证:①FG ∥BC ② FG=12(AB+AC-BC)例3 已知 ,如图在ABCD 中,P 为CD 中点,AP 延长线交BC 延长线于E,PQ ∥CE 交DE 于Q求证:PQ=12BC例4 已知:梯形ABCD 中,AB=DC,AC ⊥BD,E 、F 为腰上中点,DL ⊥BC,M 为DL 与EF 的交点 求证:EF=DLA BCD E GFED HCB A4321G F N ME CD B AL MK HFEDCBAQ PED CBAOF DC BA108054321ECBAD例 5 已知:锐角△ABC 中,以AB 、AC 为斜边向外作等腰直角△ADB ,△AEC,M 为 BC 中点,连结DM 、ME四“补长截短”模型(1) 截长法: 构成:线段a,b,c目的:确定一线段,找令一线段的等量关系结果:→ a-b '=c ⇒a=b+c , b=b ' (2)补短法: 构成:线段a,b,c目的:构造一等长线段,再找等量关系结果:c=c ',b+c '=a ⇒a=b+c例1 已知:△ABC 中,AD 平分∠BAC求:(1)若∠B=2∠C,则AB+BD=AC (2) 若AB+BD=AC,则∠B=2∠C例2:在ABC 中,∠C=2∠B ,AD ⊥BCY 于D ,求证BD=AC+CD例3如图所示,等腰直角ABC 中,∠BAC=90︒过点A 做直线DE ,BD ⊥DE 于D ,CE ⊥DE 于E ,求证:DE=BD+CE例4已知:等腰△ABC 中,AB=AC, ∠A=0108,BD 平分∠ABC求证:BC=AB+DC7654321MG F EDCBAc ab c4321E BDCACD B ACBEDA54321GMFE D CB A例6、已知如图所示,在ABC 中,AB=AC ∠A=100︒,BD 平分∠ABC 交AC 于D求证:BC=AD+BD例 7 已知:在正方形ABCD 中,M 是CD 的中点,E 是CD 上一点,且∠BAE=2∠DAM求证:AE=BC+CE例 8已知:在正方形ABCD 中,E 为BC 上任一点,∠EAD 的平分线交DC 于F 求证:BE+DF=AE构造等边三角形、等腰三角形例9、如图,已知∠ABD=∠ACD=60︒∠ADB=90︒-12∠BDC 且∠BAC=20︒求:∠ACB 的度数。
102条作几何辅助线的规律,以后再也不怕了!
102条作几何辅助线的规律,以后再也不怕了!几何中,同学们最头疼的就是做辅助线了,所以,今天数姐整理了做辅助线的102条规律,从此,再也不怕了!规律1.如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条.规律2.平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分.规律3.如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条.规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.规律5.有公共端点的n条射线所构成的交点的个数一共有n(n-1)个.规律6.如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个.规律7.如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角.规律8.平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个.规律9.互为邻补角的两个角平分线所成的角的度数为90°.规律10.平面上有n条直线相交,最多交点的个数为n(n-1)个.规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.规律13.已知AB∥DE,如图⑴~⑹,规律如下:规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半.规律15.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题.规律16.三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半.规律17.三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半.规律18.三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半.规律19.从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形.规律22.有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.规律23.在三角形中有中线时,常加倍延长中线构造全等三角形.规律24.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:①a>b②a±b = c③a±b = c±d规律25.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
(完整)等腰三角形时常用的辅助线作法
有等腰三角形时常用的辅助线⑴作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BD⊥AC于D,求证:∠BAC = 2∠DBC⑵有底边中点时,常作底边中线例:已知,如图,△ABC中,AB = AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE = DF⑶将腰延长一倍,构造直角三角形解题例:已知,如图,△ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EF⊥BC⑷常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在△ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F求证:DF = EF⑸常过一腰上的某一已知点做底的平行线例:已知,如图,△ABC中,AB =AC,F在AC上,E在BA延长线上,且AE = AF,连结DE求证:EF⊥BC⑹常将等腰三角形转化成特殊的等腰三角形---—--等边三角形例:已知,如图,△ABC中,AB = AC,∠BAC = 80o,P为形内一点,若∠PBC = 10o,∠PCB = 30o求∠PAB的度数。
有等腰三角形时常用的辅助线⑴作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BD⊥AC于D,求证:∠BAC = 2∠DBC证明:(方法一)作∠BAC的平分线AE,交BC于E,则∠1 = ∠2 = 12∠BAC又∵AB = AC∴AE⊥BC∴∠2+∠ACB = 90o∵BD⊥AC∴∠DBC+∠ACB = 90o∴∠2 = ∠DBC∴∠BAC = 2∠DBC(方法二)过A作AE⊥BC于E(过程略)(方法三)取BC中点E,连结AE(过程略)⑵有底边中点时,常作底边中线例:已知,如图,△ABC中,AB = AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE = DF21EDC BA证明:连结AD.∵D 为BC 中点, ∴BD = CD又∵AB =AC ∴AD 平分∠BAC ∵DE ⊥AB ,DF ⊥AC ∴DE = DF⑶将腰延长一倍,构造直角三角形解题例:已知,如图,△ABC 中,AB = AC,在BA 延长线和AC 上各取一点E 、F ,使AE = AF , 求证:EF ⊥BC证明:延长BE 到N ,使AN = AB ,连结CN ,则AB = AN = AC∴∠B = ∠ACB, ∠ACN = ∠ANC ∵∠B +∠ACB +∠ACN +∠ANC = 180o∴2∠BCA +2∠ACN = 180o ∴∠BCA +∠ACN = 90o 即∠BCN = 90o ∴NC ⊥BC ∵AE = AF ∴∠AEF = ∠AFE又∵∠BAC = ∠AEF +∠AFE ∠BAC = ∠ACN +∠ANC ∴∠BAC =2∠AEF = 2∠ANC ∴∠AEF = ∠ANCF E DCBAN FE CBA∴EF ∥NC ∴EF ⊥BC⑷常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在△ABC 中,AB = AC,D 在AB 上,E 在AC 延长线上,且BD = CE ,连结DE 交BC 于F 求证:DF = EF证明:(证法一)过D 作DN ∥AE ,交BC 于N ,则∠DNB = ∠ACB,∠NDE = ∠E ,∵AB = AC, ∴∠B = ∠ACB ∴∠B =∠DNB ∴BD = DN 又∵BD = CE ∴DN = EC在△DNF 和△ECF 中 ∠1 = ∠2 ∠NDF =∠E DN = EC ∴△DNF ≌△ECF ∴DF = EF(证法二)过E 作EM ∥AB 交BC 延长线于M ,则∠EMB =∠B(过程略)⑸常过一腰上的某一已知点做底的平行线21NFED C BA21MFED CBA例:已知,如图,△ABC 中,AB =AC ,E 在AC 上,D 在BA 延长线上,且AD = AE ,连结DE求证:DE ⊥BC证明:(证法一)过点E 作EF ∥BC 交AB 于F ,则∠AFE =∠B ∠AEF =∠C ∵AB = AC ∴∠B =∠C ∴∠AFE =∠AEF ∵AD = AE∴∠AED =∠ADE又∵∠AFE +∠AEF +∠AED +∠ADE = 180o ∴2∠AEF +2∠AED = 90o 即∠FED = 90o∴DE ⊥FE 又∵EF ∥BC ∴DE ⊥BC(证法二)过点D 作DN ∥BC 交CA 的延长线于N,(过程略) (证法三)过点A 作AM ∥BC 交DE 于M ,(过程略)⑹常将等腰三角形转化成特殊的等腰三角形————--等边三角形例:已知,如图,△ABC 中,AB = AC,∠BAC = 80o ,P为形内一点,若∠PBC = 10o ∠PCB = 30o 求∠PAB 的度数. 解法一:以AB 为一边作等边三角形,连结CE则∠BAE =∠ABE = 60oN M FE D CBA PECBAAE = AB = BE∵AB = AC∴AE = AC ∠ABC =∠ACB ∴∠AEC =∠ACE∵∠EAC =∠BAC-∠BAE= 80o-60o = 20o∴∠ACE = 12(180o-∠EAC)= 80o∵∠ACB= 12(180o-∠BAC)= 50o∴∠BCE =∠ACE-∠ACB= 80o-50o = 30o∵∠PCB = 30o∴∠PCB = ∠BCE∵∠ABC =∠ACB = 50o, ∠ABE = 60o∴∠EBC =∠ABE-∠ABC = 60o-50o =10o ∵∠PBC = 10o∴∠PBC = ∠EBC在△PBC和△EBC中∠PBC = ∠EBCBC = BC∠PCB = ∠BCE∴△PBC≌△EBC∴BP = BE∵AB = BE∴AB = BP∴∠BAP =∠BPA∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o∴∠PAB = 12(180o-∠ABP)= 70o解法二:以AC为一边作等边三角形,证法同一。
解题技巧专题:利用等腰三角形的'三线合一'作辅助线与构造等腰三角形的解题技巧(6类热点题型讲练)解析
第05讲解题技巧专题:利用等腰三角形的'三线合一'作辅助线与构造等腰三角形的解题技巧(6类热点题型讲练)目录【考点一等腰三角形中底边有中点时,连中线】 (1)【考点二等腰三角形中底边无中点时,作高】 (6)【考点三利用平行线+角平分线构造等腰三角形】 (12)【考点四过腰或底作平行线构造等腰(边)三角形】 (15)【考点五巧用“角平分线+垂线合一”构造等腰三角形】 (24)【考点六利用倍角关系构造新等腰三角形】 (28)【考点一等腰三角形中底边有中点时,连中线】例题:(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,120BAC ∠=︒,AB AC =,D 为BC 的中点,DE AC ⊥于E .(1)求EDC ∠的度数;(2)若2AE =,求CE 的长.【答案】(1)60︒(2)6【分析】本题考查了等腰三角形的“三线合一”,含30︒角的直角三角形的性质等知识,(1)连接AD ,根据等腰三角形的“三线合一”即可作答;(2)根据含30︒角的直角三角形的性质即可作答.【详解】(1)连接AD ,∵AB AC =,120BAC ∠=︒,∴AD BC ⊥,AD 平分BAC ∠,∴1602∠=∠=︒DAC BAC ,ADC ∠1.(2023上·北京·八年级期末)如图,在ABC 中,AB AC =,D 是BC 的中点,过A 作EF BC ∥,且AE AF =.求证:(1)DE DF =;(2)BG CH =.【答案】(1)见解析(2)见解析【分析】(1)连接AD ,利用等腰三角形“三线合一"的性质得AD BC ⊥,再利用平行线的性质得90DAF ADB ∠=∠=︒,从而说明AD 垂直平分EF ,则有DE DF =;(2)利用等角的余角相等EDB FDC ∠=∠,再利用ASA 证明BDG CDH ≌,从而证明结论.【详解】(1)证明:连接AD ,ABAC =,点D 为BC 的中点,∴AD BC ⊥,∴90ADB ∠=︒,EF BC ∥,∴90DAF ADB ∠=∠=︒,∴AD EF ⊥,AE AF =,∴AD 垂直平分EF ,∴DE DF =;(2),,DE DF DA EF =⊥ ,EAD FAD ∴∠=∠,ADB ADC ∠=∠ ,EDB FDC ∴∠=∠,AB AC =,B C ∴∠=∠在BDG 和CDH △中,,B C BD CD BDG CDH ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA),BDG CDH ∴△≌△.BG CH ∴=【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定与性质,线段垂直平分线的性质,余角的性质,熟练掌握等腰三角形“三线合一"的性质是解题的关键.2.(2023上·辽宁葫芦岛·八年级统考期末)如图,在ABC 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,D 为线段CE 的中点,且BE AC =.(1)求证:AD BC ⊥.(2)若90BAC ∠=︒,2DC =,求BD 的长.【答案】(1)见解析(2)6【分析】(1)连接AE ,根据线段垂直平分线的性质得到BE AE =,证明AE AC =,根据等腰三角形的三线合一证明结论;(2)证明AEC △为等边三角形,根据等边三角形的性质解答即可.【详解】(1)证明:连接AE ,EF 是AB 的垂直平分线,BE AE ∴=,BE AC = ,AE AC ∴=,AEC ∴ 是等腰三角形,D 为线段CE 的中点,AD BC ∴⊥;(2)解:BE AE = ,EAB B ∴∠=∠,2AEC EAB B B ∴∠=∠+∠=∠,AE AC = ,AEC C ∴∠=∠,2C B ∴∠=∠,90BAC ∠=︒ ,60C ∴∠=︒,AEC ∴ 为等边三角形,2DC ED ==,24AE EC BE DC ∴====,426BD BE ED ∴=+=+=.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质、等边三角形的判定和性质,掌握等腰三角形的三线合一是解题的关键.3.(2023上·全国·八年级专题练习)如图,已知ABC 中,AB AC =,90BAC ∠=︒,点D 为BC 的中点,点E 、F 分别在直线AB AC 、上运动,且始终保持AE CF =.(1)如图①,若点E F 、分别在线段AB AC 、上,DE 与DF 相等且DE 与DF 垂直吗?请说明理由;(2)如图②,若点E F 、分别在线段AB CA 、的延长线上,(1)中的结论是否依然成立?说明理由.【答案】(1)DE DF =且DE DF ⊥,见解析(2)成立,见解析【分析】(1)先利用等腰直角三角形的性质得到45BAD DAC B C ∠=∠=∠=∠=︒和AD BD DC ==,再证明AED CFD SAS ≌(),利用全等三角形的性质即可求解;(2)利用等腰直角三角形的性质得到45BAD DAC B C ∠=∠=∠=∠=︒和AD BD DC ==,再证明AED CFD SAS ≌(),利用全等三角形的性质即可求解.【详解】(1)DE DF =且DE DF ⊥,理由是:如图①,连接AD ,∵90BAC ∠=︒,AB AC =,D 为BC 中点,∴45BAD DAC B C ∠=∠=∠=∠=︒,∴AD BD DC ==,在AED △和CFD △中,AE CF EAD DAC AD DC =⎧⎪∠=∠⎨⎪=⎩∴AED CFD SAS ≌(),∴DE DF =,ADE CDF ∠=∠,又∵90CDF ADF ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.(2)若点E F 、分别在线段AB ,CA 的延长线上,(1)中的结论依然成立,如图②,连接AD ,理由如下:∵AB AC =,90BAC ∠=︒,点D 为BC 的中点,∴45BAD DAC B C ∠=∠=∠=∠=︒,∴AD BD DC ==,在AED △和CFD △中,AE CF EAD DAC AD DC =⎧⎪∠=∠⎨⎪=⎩∴AED CFD SAS ≌();∴DE DF ADE CDF =∠=∠,,又∵90CDF ADF ∠-∠=︒,∴90ADE ADF ∠-∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.【点睛】本题考查了等腰直角三角形的性质和全等三角形的判定与性质,解题关键是正确作出辅助线构造全等三角形.【考点二等腰三角形中底边无中点时,作高】例题:(2023上·福建厦门·八年级厦门一中校考期中)如图,已知60AOB ∠=︒,点P 在边OA 上,12OP =,点M N 、在边OB 上,PM PN =,若5OM =,求MN 的长.【答案】2【分析】本题考查了等腰三角形的性质、含角形的性质可得CM 练掌握等腰三角形的三线合一以及直角三角形中PM PN = ,PC ⊥CM CN ∴=,在OPC 中,PCO ∠162OC OP ∴==,5OM = ,1.(2023上·河南省直辖县级单位·八年级校联考期末)在ABC 中,点,D E 是边BC 上的两点.(1)如图1,若AB AC =,AD AE =.求证:BD CE =;(2)如图2,若90BAC ∠=︒,BA BD =,设B x ∠=︒,CAD y ∠=︒.(2)①猜想:2x y =,理由是:∵BA BD =,B x ∠=︒,∴(11802BAD BDA ∠=∠=︒-∠∵90BAC ∠=︒,CAD y ∠=︒,∴90BAD CAD ∠+∠=︒,即90整理得:2x y =;(1)如图1,当点E 与点C 重合时,AD 与CB '的位置关系是表示)(2)如图2,当点E 与点C 不重合时,连接DE .①用等式表示BAC ∠与DAE ∠之间的数量关系,并证明;②用等式表示线段BE ,CD ,DE 之间的数量关系,并证明.则90AMC ADC ∠∠=︒=∵AB AC =,∴1122CM BM BC ===在ACD 与ACM △中,∵AB AC =,∴B ACB ∠=∠,∵ACB ACB '∠=∠,∴B ACB ACD '∠=∠=∠【考点三利用平行线+角平分线构造等腰三角形】例题:(2024上·北京西城·八年级校考期中)如图,在ABC 中,BD 平分ABC ∠,DE CB ∥,F 是BD 的中点.(1)求证:BDE 是等腰三角形(2)若50ABC ∠=︒,求DEF ∠的度数.【答案】(1)见解析(2)65︒【分析】本题考查了等腰三角形的判定与性质,熟记相关定理内容是解题关键.(1)由角平分线的定义得EBD CBD ∠=∠,由DE CB ∥得EDB CBD ∠=∠即可求证;(2)先求出EDB ∠,根据“三线合一”得EF BD ⊥,即可求解.【详解】(1)证明:∵BD 平分ABC ∠,∴EBD CBD ∠=∠,∵DE CB ∥,是等腰三角形;(1)如图1,求证:CDE∠交AC于E,(2)如图2,若DE平分ADC的长.【答案】(1)见解析(2)4【分析】本题考查角平分线、平行线的性质以及直角三角形的边角关系,掌握角平分线的定义,平行线的性质是解决问题的关键.∠=∠(1)根据角平分线的定义得出BCD(1)当53BE CF ==,,则EF =___________;(2)当BE CF >时,若CO 是ACB ∠的外角平分线,如图2,它仍然和∠作EF BC ∥,交AB 于E ,交AC 于F ,试判断EF BE ,,CF 之间的关系,并说明理由.【答案】(1)8(2)EF BE CF =-,见解析∴∠EOB =∠OBC ,∠FOC =∠OCB ,∵ABC ∠和ACB ∠的平分线交于点O ,∴∠EBO =∠OBC ,∠FCO =∠BCO ,∴∠EBO =∠EOB ,∠FCO =∠FOC ,∴53BE OE OF CF ====,,∴8EF EO FO =+=,故答案为:8;(2)EF BE CF =-,理由如下:∵BO 平分ABC ∠,∴ABO OBC ∠=∠,∵EO BC ∥,∴EOB OBC ∠=∠,∴ABO EOB ∠=∠,∴BE EO =,同理可得FO CF =,∴EF EO FO BE CF =-=-.【考点四过腰或底作平行线构造等腰(边)三角形】例题:(2023上·吉林通化·八年级统考期末)如图,ABC 是等边三角形,点D 在AC 上,点E 在BC 的延长线上,且BD DE =.(1)若点D 是AC 的中点,如图1,则线段AD 与CE 的数量关系是__________;(2)若点D 不是AC 的中点,如图2,试判断AD 与CE 的数量关系,并证明你的结论;(提示:过点D 作DF BC ∥,交AB 于点F )(3)若点D 在线段AC 的延长线上,(2)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.【答案】(1)AD CE =,理由见解析(2)AD CE =,理由见解析(3)成立,理由见解析【分析】本题考查全等三角形判定与性质,平行线性质,等腰三角形性质,等边三角形性质与判定.(1)求出E CDE ∠=∠,推出CD CE =,根据等腰三角形性质求出AD DC =,即可得出答案;(2)过D 作DF BC ∥,交AB 于F ,证明BFD DCE ≌,推出DF CE =,证ADF △是等边三角形,推出AD DF =,即可得出答案;(3)过点D 作DP BC ∥,交AB 的延长线于点P ,证明BPD DCE ≌,得到PD CE =,即可得到AD CE =.【详解】(1)解:AD CE =,理由如下:ABC 是等边三角形,60,ABC ACB AB AC BC ∴∠=∠=== .∵点D 为AC 中点,30,DBC AD DC ∴∠== ,BD DE = ,30E DBC ∴∠=∠= ,ACB E CDE ∠=∠+∠ ,30CDE E ∴∠=∠= ,CD CE ∴=,又AD DC = ,AD CE ∴=.故答案为:AD CE =;(2)解:AD CE =,理由如下:如图,过点D 作DF BC ∥,交AB 于点F ,则60ADF ACB ∠=∠= ,60A ∠= ,AFD ∴ 是等边三角形,,60AD DF AF AFD ∴==∠= ,18060120BFD DCE ∴∠=∠=-= ,D F B C ∥ ,FDB DBE E ∴∠=∠=∠,在BFD △和DCE △中,FDB E BFD DCE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,BFD DCE ∴ ≌()AAS ,DF CE ∴=,又AD DF = ,AD CE ∴=;(3)解:结论仍成立,理由如下:如图,过点D 作DP BC ∥,交AB 的延长线于点P ,则60,60ABC APD ACB ADP ∠=∠=∠=∠= ,60A ∠= ,APD ∴ 是等边三角形,AP PD AD ∴==,ACB DCE ∠=∠ ,DCE ACB P ∴∠=∠=∠,DP BC ∥ ,PDB CBD ∴∠=∠,DB DE = ,DBC DEC ∴∠=∠,PDB DEC ∴∠=∠,在BPD △和DCE △中,PDB CED P DCE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,BPD DCE ∴ ≌()AAS ,PD CE ∴=,又AD PD = ,AD CE ∴=.【变式训练】(1)如图1,当点E 运动到线段AB 的中点,点D 在线段(2)如图2,当点E 在线段AB 上运动,点D 在线段说明理由.【答案】(1)12∵EF BC ∥,∴60AFE ACB ∠=∠=︒120,EFC AFE ∴∠=︒∠EF EA∴=∵60ABC ∠=︒,(1)【感知】如图1,当点E为AB的中点时,则线段(2)【类比】如图2,当点E为AB边上任意一点时,∥,交AC于点F.示如下:过点E作EF BC(3)【拓展】在等边三角形ABC中,点E在直线(2)AE DB =,理由如下:过点E 作EF BC ∥,交AC 于点F ,则AEF ABC AFE ACB ∠=∠∠=∠,,FEC ECD ∠=∠,∵ABC 是等边三角形,∴60AB AC A ABC ACB =∠=∠=∠=︒,,∴60120AEF AFE A DBE ∠=∠=∠=︒∠=︒,,∴AEF △为等边三角形,120EFC ∠=︒,∴AE EF =,∵ED EC =,∴D ECD ∠=∠,∴D FEC ∠=∠,在DBE 和EFC 中,DBE EFC D FEC ED EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS DBE EFC ≌,∴DB EF =,∴AE DB =;(3)过点E 作EF BC ∥,交AC 于点F ,如图3所示:同(2)得:AEF △是等边三角形,()AAS DBE EFC ≌,∴33AE EF DB EF ====,,∵2BC =,∴235CD BC DB =+=+=.故答案为:5.【点睛】本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.(1)求证:2AP AQ AB +=(2)求证:PD DQ =;(3)如图,过点P 作PE ⊥出这个长度;如果变化,请说明理由.【答案】(1)见解析(2)见解析(3)ED 为定值5,理由见解析【分析】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,平行线的性质,线段的和差,准确作出辅助线找出全等三角形是解题关键.(1)利用P 、Q 的移动速度相同,得到CQ PB ∴=,AB AC = ,2AP AQ AB PB AC CQ AB ∴+=-++=;(2)如图,过点P 作PF AC ∥,交BC 于点F ,PF AC ∥,,PFB ACB DPF DQC ∴∠=∠∠=∠,AB AC = ,B ACB ∴∠=∠,B PFB ∴∠=∠,BP PF ∴=,由(1)得BP CQ =,PF CQ ∴=,在PFD 与QCD 中,PDF QDC DPF DQC PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS PFD QCD ∴ ≌,PD DQ ∴=;(3)解:ED 为定值5,理由如下:如图,过点P 作PF AC ∥,交BC 于点F ,由(2)得:PB PF =,【考点五巧用“角平分线+垂线合一”构造等腰三角形】例题:如图,在ABC 中,AD 平分BAC ∠,E 是BC 的中点,过点E 作FG AD ⊥交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF AG =;(2)BF CG =.【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明AHF AHG ≌ ,即可得出AF AG =;(2)过点C 作CM AB ∥交FG 于点M ,由AHF AHG ≌ 可得AFH G ∠=∠,根据平行线的性质得出CMG AFH ∠=∠,可得CMG G ∠=∠,进而得出CM CG =,再根据据ASA 证明BEF CEM ≌ ,得出BF CM =,等量代换即可得到BF CG =.【详解】(1)证明:∵AD 平分BAC ∠,∴FAH GAH ∠=∠,∵FG AH ⊥,∴90AHF AHG ∠=∠=︒,在AHF △和AHG 中,FAH GAH AH AH AHF AHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AHF AHG ≌ ,∴AF AG =;(2)证明:过点C 作CM AB ∥交FG 于点M ,∵AHF AHG ≌ ,∴AFH G ∠=∠,∵CM AB ∥,∴CMG AFH ∠=∠,∴CMG G ∠=∠,∴CM CG =,∵E 是BC 的中点,∴BE CE =,∵CM AB ∥,∴B ECM ∠=∠,在BEF △和CEM 中,B ECM BE CE BEF CEM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA BEF CEM ≌ ,∴BF CM =,∴BF CG =.【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】1.如图:(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP 平分MON ∠.点A 为OM 上一点,过点AC OP ⊥,垂足为C ,延长AC 交ON 于点B ,可根据证明AOC BOC ≌△△,则AO 点C 为AB 的中点).(2)【类比解答】如图2,在ABC 中,CD 平分ACB ∠,AE CD ⊥于E ,若63EAC ∠=︒,37B ∠=︒,通过上述构造全等的办法,可求得DAE ∠=.(3)【拓展延伸】如图3,ABC 中,AB AC =,90BAC ∠=︒,CD 平分ACB ∠,BE CD ⊥,垂足E 在CD 究BE 和CD 的数量关系,并证明你的结论.(4)【实际应用】如图4是一块肥沃的三角形土地,其中AC 边与灌渠相邻,李伯伯想在这块地中划出一块直角三角形土地进行水稻试验,故进行如下操作:①用量角器取ACB ∠的角平分线CD ;②过点A 作AD 13BC =,10AC =,ABC 面积为20,则划出的ACD 的面积是多少?请直接写出答案.【答案】(1)ASA(2)26︒(3)12BE CD =,证明见解析100【考点六利用倍角关系构造新等腰三角形】例题:(2023上·河南信阳·八年级统考期中)阅读材料:截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一长边相等,解答下列问题:如图1,在ABC 中,交BC 于点D ,AD 平分BAC ∠,且2B C ∠=∠.(1)为了证明结论“AB BD AC +=”,小亮在AC 上截取AE ,使得AE AB =,解答了这个问题,请按照小亮的思路写证明过程;(2)如图2,在四边形ABCD 中,已知58BAD ∠=︒,109D ∠=︒,42ACD ∠=︒,80ACB ∠=︒,10AD =,CE AB ⊥3EB =,求AB 的长.【答案】(1)见解析(2)16【分析】本题考查了全等三角形的判定与性质,等腰三角形的判定及性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.(1)在AC 上截取AE ,使得AE AB =,连接DE ,根据角平分线的定义可得BAD DAC ∠=∠,再利用SAS 证明ABD AED ≌,从而可得B AED ∠=∠,BD DE =,进而可得2AED C ∠=∠,然后利用三角形的外角性质可得AED C EDC ∠=∠+∠,从而可得C EDC ∠=∠,进而可得DE CE =,再根据等量代换可得BD EC =,最后利用线段的和差关系进行计算,即可解答;(2)在AE 上截取AF AD =,连接CD ,先利用三角形内角和定理可得29DAC ∠=︒,从而可得29DAC FAC ∠=∠=︒,再利用SAS 证明DAC FAC ≌,从而可得109AFC D ∠=∠=︒,进而可得71CFE ∠=︒,然后利用三角形内角和定理可得71B CFE ∠=∠=︒,从而可得CF BC =,再利用等腰三角形的三线合一性质可得26BF BE ==,最后利用线段的和差关系进行计算,即可解答.【详解】(1)解:证明:在AC 上截取AE ,使得AE AB =,∵AD 平分BAC ∠,∴BAD DAC ∠=∠,∵AD AD =,∴()SAS ABD AED ≌,∴B AED ∠=∠,BD DE =,∵2B C ∠=∠,∴2AED C ∠=∠,∵AED ∠是DEC 的一个外角,∴AED C EDC ∠=∠+∠,∴C EDC ∠=∠,∴DE CE =,∴BD EC =,∵AE EC AC +=,∴AB BD AC +=;(2)在AE 上截取AF AD =,连接CF ,∵109D ∠=︒,42ACD ∠=︒,∴18029DAC D ACD ∠=︒-∠-∠=︒,∵58BAD ∠=︒,∴29FAC BAD DAC ∠=∠-∠=︒,∴29DAC FAC ∠=∠=︒,∵AC AC =,∴()SAS DAC FAC ≌,∴109AFC D ∠=∠=︒,∴18071CFE AFC ∠=︒-∠=︒,∵80ACB ∠=︒,29FAC ∠=︒,∴18071B ACB FAC ∠=︒-∠-∠=︒,∴B CFE ∠=∠,∴CF BC =,∵CE AB ⊥,∴26BF BE ==,∴10616AB AF BF =+=+=,∴AB 的长为16.【变式训练】1.在Rt ABC 中,90BAC ∠=︒,点D 在边BC 上,AB AD =,点E 在线段BD 上,3BAE EAD ∠=∠.(1)如图1,若点D 与点C 重合,则AEB ∠=______︒;(2)如图2,若点D 与点C 不重合,试说明C ∠与EAD ∠的数量关系;(3)在(1)的情况下,试判断BE ,CD 与AC 的数量关系,并说明你的理由.【答案】(1)67.5(2)2C EAD∠=∠(3)BE CD AC +=,理由见解析【分析】(1)根据等腰直角三角形的性质得到45D ∠=︒,根据题意求出EAD ∠,根据三角形的外角性质计算,得到答案;(2)根据直角三角形的两锐角互余得到90B C ∠=︒-∠,根据等腰三角形的性质、三角形内角和定理得到2BAD C ∠=∠,进而证明结论;(3)在BD 上截取BF DE =,连接AF ,证明ABF △≌ADE V ,根据求等三角形的性质得到BAF DAE ∠=∠,根据三角形的外角性质得到CAF CFA ∠=∠,得到AC CF =,进而得出结论.【详解】(1)解:在Rt BAD 中,90BAD ∠=︒,AB AD =,则45D ∠=︒,90BAD ∠=︒Q ,3BAE EAD ∠=∠,22.5EAD ∴∠=︒,67.5AEB EAD D ∴∠=∠+∠=︒,故答案为:67.5;(2)解:2C EAD ∠=∠,理由如下:90BAC ∠=︒ ,90B C ∴∠=︒-∠,AB AD = ,则BE BF EF DE EF DF =+=+=,BE CD DF CD CF ∴+=+=,在ABF △和ADE V 中,AB AD B ADE BF DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ADE △(1)写出图1中与BAC ∠相等的角,BAC ∠=______(2)如图1,若GFC FGE ∠=∠,在图中找出与AG (3)如图2,若2,3HC CE ==,求BC 的长度.【答案】(1)AGF∠(2)AG CE =,证明见解析(3)72MGN AGF BAC∠=∠=∠,∠=∠,则N BAC∴∠=∠,N MGNMG MN∴=,∠=∠=∠+∠FGE BEG BEG2∴∠=∠,BEG GME∴=,MG GE,=AC GE∴=,MN AC。
常见辅助线添法和证明方法
【常见辅助线添法和证明方法】:一、常见辅助线的添线方法和作用:1、【中垂线】:①直接条件:看见中垂线 连接线段两端,构造等腰三角形。
②间接条件:看见折叠 连接对应点所得到的线段,被折痕(中垂线)垂直平分,转到①③间接条件:看见等腰三角形顶角平分线 先利用三线合一说明垂直平分,再转到①,寻找其他等腰三角形,然后进行证明和计算。
2、【角平分线】:①直接条件:看见角平分线 过角平分线上一点作两边的垂线段,得相等线段。
②间接条件:看见折叠 折痕就是角平分线,转到①③间接条件:看见等腰+平行 先证明角平分线,再转到①④间接条件: 作一点关于某条直线的对称点 连接直线上一点与这两个点(不共线的情况),直线平分这个角,再进行证明和计算。
⑤角平分线+全等:∵ AD 平分∠BAC 注意:还可以探索AC 、AB 、FB 的关系 DE ⊥AB ,DF ⊥AC (一定要写) AC - AB =(AE + EC )-(AF - FB ) ∴ DE = DF (注意书写,反之,类似) = EC + FB = 2FB 在Rt △DBF 和Rt △DCE 中(注意对应点)∴ DCE Rt DBF Rt ∆≅∆(HL )(注意理由)⑥根据三角形中,三条角平分线交于一点的结论,如果在一个三角形中出现两条角平分线,那么连接交点和第三个顶点所得到的线段,一定平分该三角形中第三个内角。
3、【高线】:①看见角平分线 + 一边上的高 立即想到作另一边上的高,证垂线段相等,反之亦然。
②看见等腰三角形 立即想到作底边上的高,构造直角三角形,利用勾股定理完成计算,同时,可以把两腰相等的条件转化为底边被平分的结论,多用于压轴题中t 的计算。
③看见45°角 立即想到作高,构造等腰直角三角形,利用直角边:斜边=1: 完成计算。
④看见30°角 立即想到作高,构造直角三角形,利用30°角所对的直角边是斜边的一半斜边完成计算。
解题技巧专题:利用等腰三角形的“三线合一”作辅助线压轴题三种模型全攻略(解析版)
解题技巧专题:利用等腰三角形的'三线合一'作辅助线压轴题三种模型全攻略【考点导航】目录【典型例题】【类型一等腰三角形中底边有中点时,连中线】【类型二等腰三角形中底边无中点时,作高线】【类型三巧用“角平分线+垂线合一”构造等腰三角形】【典型例题】【类型一等腰三角形中底边有中点时,连中线】1如图,在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,过D 作直线DE 交直线AB 与E ,过D 作直线DF ⊥DE ,并交直线AC 与F .(1)若E点在线段AB 上(非端点),则线段DE 与DF 的数量关系是;(2)若E 点在线段AB 的延长线上,请你作图(用黑色水笔),此时线段DE 与DF 的数量关系是,请说明理由.【答案】(1)DE =DF(2)图见解析,DE =DF ,理由见解析【分析】(1)连接AD ,先根据等腰直角三角形的性质可得AD =BD =CD ,∠B =∠DAF =45°,AD ⊥BC ,再根据垂直的定义、等量代换可得∠BDE =∠ADF ,然后根据三角形全等的判定证出△BDE ≅△ADF ,根据全等三角形的性质即可得出结论;(2)分①当点E 在线段AB 的延长线上,且在BC 的下方时,②当点E 在线段AB 的延长线上,且在BC 的上方时两种情况,参考(1)的思路,根据三角形全等的判定与性质即可得出结论.【详解】(1)解:如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =BD =CD ,∠B =∠DAF =45°,AD ⊥BC ,∴∠BDE +∠ADE =90°,∵DF ⊥DE ,∴∠ADF+∠ADE =90°,∴∠BDE =∠ADF ,在△BDE 和△ADF 中,∠B =∠DAFBD =AD ∠BDE =∠ADF,∴△BDE ≅△ADF ASA ,∴DE =DF ,故答案为:DE =DF .(2)解:DE =DF ,理由如下:①如图,当点E 在线段AB 的延长线上,且在BC 的下方时,如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =BD ,∠ABD =∠DAC =45°,AD ⊥BC ,∴∠DBE =∠DAF =135°,∠ADF +∠BDF =90°,∵DF ⊥DE ,∴∠BDE +∠BDF =90°,∴∠BDE =∠ADF ,在△BDE 和△ADF 中,∠DBE =∠DAFBD =AD ∠BDE =∠ADF,∴△BDE ≅△ADF ASA ,∴DE =DF ;②如图,当点E 在线段AB 的延长线上,且在BC 的上方时,如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =CD ,∠ACD =∠DAB =45°,AD ⊥BC ,∴∠DCF =∠DAE =135°,∠ADE +∠CDE =90°,∵DF ⊥DE ,∴∠CDF +∠CDE =90°,∴∠ADE =∠CDF ,在△ADE 和△CDF 中,∠DAE =∠DCFAD =CD ∠ADE =∠CDF,∴△ADE ≅△CDF ASA ,∴DE =DF ;综上,线段DE 与DF 的数量关系是DE =DF ,故答案为:DE =DF .【点睛】本题考查了等腰直角三角形的性质、三角形全等的判定与性质等知识点,通过作辅助线,构造全等三角形是解题关键.【变式训练】1如图,在等腰直角三角形ABC 中,∠C =90°,AC =a ,点E 为边AC 上任意一点,点D 为AB 的中点,过点D 作DF ⊥DE 交BC 于点F .求证:CE +CF为定值.【答案】证明见解析【分析】连接CD ,证明△CDE ≌△BDF ,得CE =BF ,进一步证明CE +CF =BC =AC =a ,从而得到结论.【详解】证明:连接CD ,如图,∵△ABC 是等腰直角三角形,且D 为AB 的中点,∴CD ⊥AB ,CD 平分∠ACB ,AD =BD =CD∴∠DCA =∠DCB =∠DBC =45°又DE ⊥DF∴∠EDC +∠FDC =90°而∠FDC +∠FDB =90°∴∠EDC =∠FDB在△CDE 和△BDF 中,∠DCE =∠DBFCD =CD∠EDC =∠BDF∴△CDE ≌△BDF∴CE =BF∵BC =AC =a ∴CE +CF =BE +CF =BC =AC =a ,故:CE +CF 为定值.【点睛】此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质,证明CE =BF 是解答此题的关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC ,点P 是斜边AB 的中点,点D ,E 分别在边AC ,BC 上,连接PD ,PE ,若PD ⊥PE.(1)求证:PD =PE ;(2)若点D ,E 分别在边AC ,CB 的延长线上,如图2,其他条件不变,(1)中的结论是否成立?并加以证明;(3)在(1)或(2)的条件下,△PBE 是否能成为等腰三角形?若能,请直接写出∠PEB 的度数(不用说理);若不能,请说明理由.【答案】(1)见解析(2)成立,见解析(3)能成为等腰三角形,此时∠PEB 的度数为22.5°或67.5°或90°或45°【分析】(1)连接PC ,根据等腰直角三角形的性质可得∠DCP =45°=∠B ,从而得到CP =BP ,再由PD ⊥PE ,可得∠DPC =∠EPB ,可证得△DPC ≌△EPB ,即可求证;(2)连接PC ,根据等腰直角三角形的性质可得∠ECP =45°=∠ABC =∠A =∠ACP ,从而得到CP =AP ,再由∵PD ⊥PE ,CP ⊥AB ,可得∠APD =∠CPE ,可证得△APD ≌△CPE ,即可;(3)根据等腰三角形的性质,分四种情况讨论,即可求解.【详解】(1)明∶连接PC,∵∠ACB =90°,AC =BC ,∴∠A =∠B =45°,∵P 为斜边AB 的中点,∴CP ⊥AB ,∴∠DCP =45°=∠B ,∴CP =BP ,∵PD ⊥PE ,∴∠DPC +∠CPE =∠CPE +∠EPB =90°,∴∠DPC =∠EPB ,在△DPC 和△EPB 中,∠DCP =∠BPC =PB ∠DPC =∠EPB,∴△DPC ≌△EPB ASA ,∴PD =PE ;(2)解:PD =PE 仍成立,理由如下:连接CP,∵∠C =90°,AC =BC ,∴∠A =∠ABC =45°,∵P 为斜边AB 的中点,∴CP ⊥AB ,∴∠ECP =45°=∠ABC =∠A =∠ACP ,∴CP =AP ,又∵PD ⊥PE ,CP ⊥AB ,∴∠DPE =∠CPA =90°,∴∠DPE +∠CPD =∠CPA +∠CPD ,∴∠APD =∠CPE ,在△APD 和△CPE 中,∠PAD =∠PCEPC =PA ∠APD =∠CPE,∴△APD ≌△CPE ASA ,∴PD =PE ;(3)解:△PBE 能成为等腰三角形,①当BE =BP ,点E 在CB 的延长线上时,则∠E =∠BPE ,又∵∠E +∠BPE =∠ABC =45°,∴∠PEB =22.5°;②当BE =BP ,点E 在CB 上时,则∠PEB =∠BPE =12180°-45° =67.5°;③当EP =EB 时,则∠B =∠BPE =45°,∴∠PEB =180°-∠B -∠BPE =90°;④当EP =PB ,点E 和C 重合,∴∠PEB =∠B =45°;综上所述,△PBE 能成为等腰三角形,∠PEB 的度数为22.5°或67.5°或90°或45°.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的性质,全等三角形的判定和性质,利用分类讨论思想解答是解题的关键.3在Rt△ABC中,AC=BC,∠ACB=90°,点O为AB的中点.(1)若∠EOF=90°,两边分别交AC,BC于E,F两点.①如图1,当点E,F分别在边AC和BC上时,求证:OE=OF;②如图2,当点E,F分别在AC和CB的延长线上时,连接EF,若OE=6,则S△EOF=.(2)如图3,若∠EOF=45°,两边分别交边AC于E,交BC的延长线于F,连接EF,若CF=3,EF=5,试求AE的长.【答案】(1)①见解析;②18(2)2【分析】(1)①由“ASA”可证△AOE≌△COF,可得OE=OF;②由“ASA”可证△COE≌△BOF,可得OE=OF=6,即可求解;(2)由“ASA”可证△COF≌△AOH,可得CF=AH=3,OF=OH,由“SAS”可证△EOF≌△EOH.,可得EF=EH=5,即可求解.【详解】(1)①证明:如图1,连接OC,∵AC=BC,∠ACB=90°,∴∠=∠B=45°.∵点O为AB的中点,∴∠AOC=∠EOF=90°,∴△AOC和△BOC是等腰直角三角形,∴AO=CO=BO,∴∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF;②解:如图2,连接OC,同理可证:AO=CO=BO,∠ABC=∠ACO=45°,∴∠OCE=∠OBF=135°,∵∠AOC=∠EOF=90°,∴∠COE=∠BOF,∴△COE≌△BOF(ASA),∴OE=OF=6,×OE⋅OF=18,∴SΔEOF=12故答案为:18;(2)解:如图3,连接CO,过点O作HO⊥FO,交CA的延长线于点H,∵AC=BC,∠ACB=90°,点O为AB的中点,∴AO=CO=B0,∠AOC=∠FOH=90°,∠BAC=∠BCO=45°,∴.∠COF=∠AOH,∠OCF=∠OAH=135°,∴△COF≌△AOH(ASA),∴CF=AH=3,OF=OH,∵∠EOF=45°,∠FOH=90°,∴∠EOF=∠EOH=45°,又∵OF=OH,EO=EO,∴△EOF≌△EOH(SAS),∴EF=EH=5,∴.AE=EH-AH=2.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.【类型二等腰三角形中底边无中点时,作高线】1如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.(1)如图1,求证:BD=CE;(2)如图2,当AD=CD时,过点C作CM⊥AD于点M,如果DM=2,求CD-BD的值.【答案】(1)见解析(2)4【分析】(1)过A作AH⊥BC于点H,根据三线合一可得:BH=CH,DH=EH,即可证明;(2)过A作AH⊥BC于点H,易证△AHD≌△CMD,可得MD=DH,即可求解.【详解】(1)证明:如图过A作AH⊥BC于点H,∵AB=AC,AH⊥BC,∴BH=CH,∵AD=AE,∴DH=EH,∴BD=CE;(2)解:过A作AH⊥BC于点H,在△AHD 和△CMD 中,∠CDM =∠ADH∠CMD =∠AHD =90°CD =AD∴△AHD ≌△CMD AAS ,∴DH =MD ,∴CD -BD =CH +DH -BH -DH =2DH =2MD =4.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质“三线合一”,熟练掌握全等三角形的判定方法是解题的关键.【变式训练】1如图,△ADB 与△BCA 均为等腰三角形,AD =AB =CB ,且∠ABC =90°,E 为DB 延长线上一点,∠DAB =2∠EAC.(1)若∠EAC =20°,求∠CBE 的度数;(2)求证:AE ⊥EC ;(3)若BE =a ,AE =b ,CE =c ,求△ABC 的面积(用含a ,b ,c 的式子表示).【答案】(1)20°(2)见解析(3)12a 2+12bc 【分析】(1)先,是等腰三角形性质与三角形内角和定理求出∠D =∠DBA =70°,即可由∠CBE =180°-∠DBA -∠ABC 求解;(2)过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,证明△BAF ≌△CBG AAS ,得出AF =BG ,BF =CG ,进而求得∠AEF =∠ACB =45°,∠CEG =∠AEF =45°,即可得出∠AEC =90°,从而得出结论;(3)由(2)可知CG =BF ,AF =EF ,从而有CG =BF =EF -BE =AF -BE ,再根据S △ABC =S △AEB +S △AEC -S △BEC ,则有S △ABC =12BE ⋅AF +12AE ⋅EC -12BE ⋅CG =12BE AF -CG +12AE ⋅EC =12BE ⋅BE +12AE ⋅EC ,即可求解.【详解】(1)解:∵∠EAC =20°,∠DAB =2∠EAC ,∴∠BAD =40°,∵AD =AB ,∴∠D =∠DBA =12180°-∠BAD =12180°-40° =70°,又∵∠ABC =90°,∴∠CBE =180°-70°-90°=20°.(2)证明:过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,∴∠AFB =∠ABC =∠CGB =90°,又∵AD =AB =CB ,∴∠BAC =∠ACB =45°,∠FAB =12∠DAB =∠CAE ,∵∠FAB +∠FBA =∠FBA +∠CBG =90°,∴∠FAB =∠CBG =∠CAE ,∴在△BAF 和△CBG 中,∠BAF =∠CBG∠AFB =∠CGB AB =BC,∴△BAF ≌△CBG AAS ,∴AF =BG ,BF =CG ,∵∠CBG =∠CAE ,设AE 、BC 交于点O ,则∠AEF =180°-∠CBG -∠BOE∠ACB =180°-∠CAE -∠AOC又∠BOE =∠AOC ,∴∠AEF =∠ACB =45°,∴AF =EF =BG ,BF =CG ,∴BF =EG =CG ,∴∠CEG =∠AEF =45°,∴∠AEC =90°,∴AE ⊥EC .(3)解:由(2)可知CG =BF ,AF =EF ,∴CG =BF =EF -BE =AF -BE ,∵S △ABC =S △AEB +S △AEC -S △BEC ,∴S △ABC =12BE ⋅AF +12AE ⋅EC -12BE ⋅CG .=12BE AF -CG +12AE ⋅EC =12BE ⋅BE +12AE ⋅EC =12a 2+12bc .【点睛】本题考查等腰三角形的性质与判定,等腰直角三角形的性质,三角形内角和,三角形外角性质,全等三角形的判定与性质,三角形面积,属三角形综合题目,难度适中.2已知OP 平分∠MON ,如图1所示,点B 在射线OP 上,过点B 作BA ⊥OM 于点A ,在射线ON 上取一点C ,使得BC =BO .(1)若线段OA =3cm ,求线段OC 的长;(2)如图2,点D 是线段OA 上一点,作∠DBE ,使得∠DBE =∠ABO ,∠DBE 的另一边交ON 于点E ,连接DE .①∠OBC =2∠DBE 是否成立,请说明理由;②请判断三条线段CE ,OD ,DE 的数量关系,并说明理由.【答案】(1)6cm(2)①∠OBC =2∠DBE 成立,理由见解析;②CE =OD +DE ,理由见解析【分析】(1)如图所示,过点B作BH⊥OC于H,由三线合一定理得到OC=2OH,由角平分线的定义得到∠BOA=∠BOH,进一步证明△BAO≌△BHO,得到OH=OA=3cm,则OC=2OH=6cm;(2)①如图所示,过点B作BH⊥OC于H,由三线合一定理得到∠OBC=2∠OBH,同(1)可得△BAO≌△BHO,则∠OBH=∠OBA,由∠DBE=∠ABO,即可推出∠OBC=2∠OBH=2∠DBE;②如图所示,在CE上截取CQ=OD,连接BQ,先证明∠BOD=∠BCQ,进而证明△BOD≌△BCQ,得到BD=BQ,∠OBD=∠CBQ,进一步证明∠EBQ=∠EBD,从而证明△EBD≌△EBQ,得到DE=QE,由CE=CQ+QE可证明CE=OD+DE.【详解】(1)解:如图所示,过点B作BH⊥OC于H,∵BC=OB,BH⊥OC,∴OH=CH,即OC=2OH,∵OP平分∠MON,∴∠BOA=∠BOH,∵BA⊥OM,BH⊥OC,∴∠BAO=∠BHO=90°,又∵OB=OB,∴△BAO≌△BHO AAS,∴OH=OA=3cm,∴OC=2OH=6cm(2)解:①∠OBC=2∠DBE成立,理由如下:如图所示,过点B作BH⊥OC于H,∵BC=OB,BH⊥OC,∴∠OBH=∠CBH,即∠OBC=2∠OBH,同(1)可得△BAO≌△BHO,∴∠OBH=∠OBA,∵∠DBE=∠ABO,∴∠DBE=∠OBH,∴∠OBC=2∠OBH=2∠DBE;②CE=OD+DE,理由如下:如图所示,在CE上截取CQ=OD,连接BQ,∵OB=BC,∴∠BOC=∠BCO,∵△BAO≌△BHO,∴∠BOA=∠BOH,∴∠BOD=∠BCQ,∴△BOD≌△BCQ SAS,∴BD=BQ,∠OBD=∠CBQ,∠OBC,∵∠DBE=12∠OBC,∴∠OBD+∠ODE=12∴∠CBQ+∠ODE=1∠OBC,∴∠EBQ =12∠OBC ,∴∠EBQ =∠EBD ,又∵EB =EB ,∴△EBD ≌△EBQ SAS ,∴DE =QE ,∵CE =CQ +QE ,∴CE =OD +DE .【点睛】本题主要考查了全等三角形的性质与判定,三线合一定理,正确作出辅助线构造全等三角形是解题的关键.【类型三巧用“角平分线+垂线合一”构造等腰三角形】1如图,在△ABC 中,AD 平分∠BAC ,E 是BC 的中点,过点E 作FG ⊥AD 交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF =AG ;(2)BF =CG .【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明△AHF ≌△AHG ,即可得出AF =AG ;(2)过点C 作CM ∥AB 交FG 于点M ,由△AHF ≌△AHG 可得∠AFH =∠G ,根据平行线的性质得出∠CMG =∠AFH ,可得∠CMG =∠G ,进而得出CM =CG ,再根据据ASA 证明△BEF ≌△CEM ,得出BF =CM ,等量代换即可得到BF =CG .【详解】(1)证明:∵AD 平分∠BAC ,∴∠FAH =∠GAH ,∵FG ⊥AH ,∴∠AHF =∠AHG =90°,在△AHF 和△AHG 中,∠FAH =∠GAHAH =AH ∠AHF =∠AHG,∴△AHF ≌△AHG ASA,∴AF =AG ;(2)证明:过点C 作CM ∥AB 交FG 于点M ,∵△AHF ≌△AHG ,∴∠AFH =∠G ,∵CM ∥AB ,∴∠CMG =∠AFH ,∴∠CMG =∠G ,∴CM =CG ,∵E 是BC 的中点,∴BE =CE ,∵CM ∥AB ,∴∠B =∠ECM ,在△BEF 和△CEM 中,∠B =∠ECMBE =CE ∠BEF =∠CEM,∴△BEF ≌△CEM ASA ,∴BF =CM ,∴BF =CG .【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】1如图所示,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若BD =1,BC =3,求:线段AC的长.【答案】5【分析】延长BD 交AC 于点E ,由题意可推出BE =AE ,依据等角的余角相等,即可得等腰三角形BCE ,可推出BC =CE ,AE =BE =2BD ,根据BD =1,BC =3,即可求出AC 的长度.【详解】解∶延长BD 交AC 于点E ,∵∠A =∠ABD ,∴BE =AE ,∵BD ⊥CD ,∴BE ⊥CD ,∴∠BDC =∠EDC =90°,∴∠BCD +∠EBC =∠ECD +∠BEC =90°,∵CD 平分∠ACB ,∴∠BCD =∠ECD ,∴∠EBC =∠BEC ,∴BC =CE,∵BE ⊥CD ,∴BE =2BD ,∵BD =1,BC =3,∴BE =2,CE =3,∴AE =BE =2,∴AC =AE +EC =2+3=5.【点睛】本题主要考查等腰三角形的判定与性质,解题的关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.2如图,AD 为△ABC的角平分线.(1)如图1,若CE ⊥AD 于点F ,交AB 于点E ,AB =8,AC =5.则BE =.(2)如图2,若∠C =2∠B ,点E 在AB 上,且AE =AC ,AB =a ,AC =b ,求CD 的长;(用含a 、b 的式子表示)(3)如图3,BG ⊥AD ,点G 在AD 的延长线上,连接CG ,若△ACG 的面积是7,求△ABC 的面积.【答案】(1)3(2)a -b(3)14【分析】(1)利用ASA 证明△AEF ≌△ACF ,得出AE =AC =5,再利用BE =AB -AE 即可求得答案;(2)利用SAS 证明△AED ≌△ACD ,得出∠AED =∠C ,ED =CD ,由题意可得出BE =AB -AE =a -b ,再利用等角对等边证得DE =BE ,即可得出答案;(3)延长AC 、BG 交于H ,先证明△ABG ≌△AHG ,得出:BG =GH ,S △ABG =S △AHG ,利用等底等高的两个三角形面积相等可得S △CBG =S △CGH ,设S △CBG =S △CGH =x ,即可得出答案.【详解】(1)解:∵AD 平分∠BAC ,∴∠EAF =∠CAF ,∵CE ⊥AD ,∴∠AFE =∠AFC =90°,在△AEF 和△ACF 中,∠EAF =∠CAFAF =AF ∠AFE =∠AFC,∴△AEF ≌△ACF ASA ∴AE =AC =5,∵AB =8,∴BE =AB -AE =8-5=3;故答案为:3.(2)解:∵AD 平分∠BAC ,∴∠EAD =∠CAD ,在△AED 和△ACD 中,AE =AC∠EAD =∠CAD AD =AD,∴△AED ≌△ACD SAS ,∴∠AED =∠C ,ED =CD ,∵AE =AC ,AB =a ,AC =b ,∴BE =AB -AE =a -b ,在△BDE 中,∠AED =∠B +∠BDE ,∴∠C =∠B +∠BDE ,∵∠C =2∠B ,∴∠B =∠BDE ,∴DE =BE =a -b ,∴CD =a -b ;(3)解:如图,延长AC 、BG 交于H ,∵AD 平分∠BAC ,∴∠BAG =∠HAG ,∵BG ⊥AD ,∴∠AGB =∠AGH =90°,在△ABG 和△AHG 中,∠BAG =∠HAGAG =AG ∠AGB =∠AGH,∴△ABG ≌△AHG ASA ,∴BG =GH ,S △ABG =S △AHG ,∴S △CBG =S △CGH ,设S △CBG =S △CGH =x ,∵S △ACG =7,∴S △AGH =S △ACG +S △CGH =7+x ,∴S △ABG =S △AHG =7+x ,∴S △ABH =27+x =14+2x ,∴S △ABC =S △ABH -S △CBG +S △CGH =14+2x -x +x =14.【点睛】本题考查了角平分线定义,三角形面积,全等三角形的判定和性质,等腰三角形判定和性质等,熟练掌握全等三角形的判定和性质是解题关键.3△ABC 中,∠ACB =90°,AC =BC ,点D 是BC 边上的一个动点,连接AD 并延长,过点B 作BF ⊥AD 交AD 延长线于点F.(1)如图1,若AD 平分∠BAC ,AD =6,求BF 的值;(2)如图2,M 是FB 延长线上一点,连接AM ,当AD 平分∠MAC 时,试探究AC 、CD 、AM 之间的数量关系并说明理由;(3)如图3,连接CF ,①求证:∠AFC =45°;②S △BCF =354,S △ACF =21,求AF 的值.【答案】(1)3(2)AC +CD =AM ,理由见解析(3)①证明见解析;②12【分析】(1)如图,分别延长AC ,BF 交于点E .证明△ADC ≌△BEC ASA ,得到BE =AD =6,再证明△ABF ≌△AEF ,即可得到BF =EF =12BE =3;(2)如图,分别延长BF ,AC 交于点E ,由(1)可得△ACD ≌△BCE ,得CD =CE ,再证△AFM ≌△AFE 得到AM =AE ,由此可得结论;(3)如图所示,在AD 上截取AH =BF ,证明△ACH ≌△BCF ,得到CH =CF ,∠ACH =∠BCF ,进一步证明∠HCF =90°,则∠CFH =∠CHF =180°-∠HCF 2=45°;②如图所示,过点C 作CG ⊥HF 于G ,则△CGH 、△CGF 都是等腰直角三角形,可得GH =GF =GC ,由全等三角形的性质得到S △ACH =S △BCF =354则S △CHF =S △ACF -S △ACH =494,据此求出HF =7,则CG =3.5,进一步求出AH =5则AF =AH +HF =12.【详解】(1)解:如图,分别延长AC ,BF 交于点E .∵BF ⊥AD ,∴∠AFB =∠ACB=90°,又∵∠ADC =∠BDF ,∴∠DAC =∠EBC .在△ADC 和△BEC 中,∠DAC =∠EBCAC =BC∠ACD =∠BCE =90°∴△ADC ≌△BEC ASA .∴BE =AD =6;∵BF ⊥AD ,∴∠AFB =∠AFE =90°,∵AD 平分∠BAC ,∴∠BAF =∠EAF .在△ABF 和△AEF 中,∠BAF =∠EAFAF =AF∠AFB =∠AFE∴△ABF ≌△AEF ASA .∴BF =EF =12BE =3;(2)解:AC +CD =AM ,理由如下:如图所示,延长MF ,AC 交于点E .由(1)可得,△ADC ≌△BCE ,∴CD =CE .∵BF ⊥AD ,∴∠AFM =∠AFE =90°,∵AF 平分∠MAE ,∴∠MAF =∠EAF .在△AMF 和△AEF 中,∠MAF =∠EAFAF =AF∠AFM =∠AFE∴△AFM ≌△AFE ASA .∴AM =AE .∵AE =AC +CE =AC +CD .∴AC +CD =AM .(3)解:①如图所示,在AD 上截取AH =BF ,在△ACH 和△BCF 中,AH =BF∠CAH =∠CBF AC =BC,∴△ACH ≌△BCF SAS ,∴CH =CF ,∠ACH =∠BCF ,∵∠ACH +∠BCH =90°,∴∠BCF +∠BCH =90°,即∠HCF =90°,∴∠CFH =∠CHF =180°-∠HCF 2=45°;②如图所示,过点C 作CG ⊥HF 于G ,∴∠GCH =GCF =45°,∴△CGH 、△CGF 都是等腰直角三角形,∴GH =GF =GC ,∵△ACH ≌△BCF ,∴S △ACH =S △BCF =354∴S △CHF=S △ACF -S △ACH =494,∴12HF ⋅CG =494,即12HF ⋅12HF =494,∴HF =7,∴CG=3.5,∴1 2AH×3.5=354,∴AH=5,∴AF=AH+HF=12.【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,三角形内角和定理,三角形面积,等腰直角三角形的性质与判定等等,正确作出辅助线构造全等三角形是解题的关键.4(2022春·河北石家庄·八年级校考期中)(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP平分∠MON.点A为OM上一点,过点A作AC⊥OP,垂足为C,延长AC交ON于点B,可根据证明△AOC≌△BOC,则AO=BO,AC= BC(即点C为AB的中点).(2)【类比解答】如图2,在△ABC中,CD平分∠ACB,AE⊥CD于E,若∠EAC=63°,∠B=37°,通过上述构造全等的办法,可求得∠DAE=.(3)【拓展延伸】如图3,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,试探究BE和CD的数量关系,并证明你的结论.(4)【实际应用】如图4是一块肥沃的三角形土地,其中AC边与灌渠相邻,李伯伯想在这块地中划出一块直角三角形土地进行水稻试验,故进行如下操作:①用量角器取∠ACB的角平分线CD;②过点A作AD⊥CD于D.已知BC=13,AC=10,△ABC面积为20,则划出的△ACD的面积是多少?请直接写出答案.【答案】(1)ASA(2)26°(3)BE=12CD,证明见解析(4)△ACD的面积是10013【分析】(1)证△AOC≌△BOC(ASA),得AO=BO,AC=BC即可;(2)延长AE交BC于点F,由问题情境可知,AC=FC,再由等腰三角形的性质得∠EFC=∠EAC=63°,然后由三角形的外角性质即可得出结论;(3)拓展延伸延长BE、CA交于点F,证△ABF≌△ACD(ASA),得BF=CD,再由问题情境可知,BE=FE =12BF ,即可得出结论;(4)实际应用延长AD 交BC 于E ,由问题情境可知,AD =ED ,EC =AC =10,则S △ACD =S △ECD ,再由三角形面积关系得S △ACE =1013S △ABC =20013,即可得出结论.【详解】(1)解:∵OP 平分∠MON ,∴∠AOC =∠BOC ,∵AC ⊥OP ,∴∠ACO =∠BCO ,∵OC =OC ,∴△AOC ≌△BOC (ASA ),∴AO =BO ,AC =BC ,故答案为:ASA ;(2)解:如图2,延长AE 交BC 于点F ,由可知,AC =FC ,∴∠EFC =∠EAC =63°,∵∠EFC =∠B +∠DAE ,∴∠DAE =∠EFC -∠B =63°-37°=26°,故答案为:26°;(3)解:BE =12CD ,证明如下:如图3,延长BE 、CA 交于点F ,则∠BAF =180°-∠BAC =90°,∵BE ⊥CD ,∴∠BED =90°=∠BAC ,∵∠BDC =∠ABF +∠BED =∠ACD +∠BAC ,∴∠ABF =∠ACD ,又∵AB =AC ,∴△ABF ≌△ACD (ASA ),∴BF =CD ,由问题情境可知,BE =FE =12BF ,∴BE =12CD ;(4)解:如图4,延长AD 交BC 于E ,由问题情境可知,AD =ED ,EC =AC =10,∴S △ACD =S △ECD ,∵S △ABC =20,∴S △ACE =1013S △ABC =20013,∴S △ACD =12S △ACE =10013,答:△ACD 的面积是10013.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质、三角形的外角性质、角平分线定义以及三角形面积等知识,本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。
初中数学辅助线添加秘籍5、图形变换 旋转
初中数学辅助线添加秘籍5、图形变换—旋转一:如何构造旋转图形1、遇中点,旋180°,构造中心对称图形,即倍长中线。
2、遇90°,旋90°,构造垂直—等腰直角三角形、正方形。
3、遇60°,旋60°,构造等边。
口诀:边相等,就旋转。
二:倒角(旋转后,常见图形)、如图,边长为的正方形AB=AD,由图形旋转的性质可知AD=AB′,故可得出Rt△ADE≌Rt△AB′E,由直角三角形的性质可得出DE的长,再由S阴影=S正方形ABCD-S四边形ADEB′即可得出结论.解答:解:连接AE,∵∠BAB′=30°,∴∠DAB′=60°,∵四边形ABCD是正方形,∴AB=AD,∠D=∠B=90°,∵正方形AB′C′D′是正方形ABCD旋转而成,∴AD=AB′,∠B′=90°,在Rt△ADE与Rt△AB′E中,AD=AB′,AE=AE,∴Rt△ADE≌Rt△AB′E,∴∠DAE==30°,∴DE=AD?tan∠DAE=×=1,∴S四边形ADEB′=2S△ADE=2××AD×DE=,∴S阴影=S正方形ABCD-S四边形ADEB=3-.2、如图,P是正△ABC内的一点,且PA=6,PB=8,PC=10.若将△PA C绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为????,∠APB=????°.答案此题答案为:6;150°.解:连接PP′.∵△P′AB是△PAC绕点A旋转得到的,∴△P′AB≌△PAC.∵△P′AB≌△PAC,PA=6,PB=8,PC=10,∴P′A=PA=6,P′B=PC=10,∠PAC=∠P′AB.∵△ABC为正三角形,∴∠BAC=60°,∴∠PAC+∠BAP=60°.∵∠PAC=∠P′AB,∴∠P′AB+∠BAP=∠P′AP=60°.∵∠P′AP=60°,PA=P′A,∴△PAP′是等边三角形,∴PP′=PA=6,∴∠P′PA=60°.∵在△PBP′中PP′=6,PB=8,P′B=10,∴△PBP′是直角三角形,∴∠BPP′=90°,∴∠APB=∠P′PA+∠BPP′=60°+90°=150°.3、如图,P是等边△ABC内一点,∠APB、∠BPC、∠CPA的大小之比为5:6:7,则以PA、PB、PC为边的三角形三内角大小之比(从小到大)是().A.2:3:4B.3:4:5C.4:5:6D.以上结果都不对答案此题答案为:A.解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C-∠AP′P=∠APB-∠AP′P=100°-60°=40°,∠P′PC=∠APC-∠APP′=140°-60°=80°,∠PCP′=180°-(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.4、如图,为线段上一动点(不与点、重合),在同侧分别作正和正,与交于点,与交于点,与交于点,连接。
专题 等腰三角形中常用的辅助线作法(原卷版)
(苏科版)八年级上册数学《第2章轴对称图形》专题等腰三角形中常用的辅助线作法解题技巧提炼当遇到等腰三角形时,常利用“三线合一”的性质,若已知图中无此线,可将其构造出来以辅助解决问题,通常是作底边上的高,再证底边上的中线或顶角的平分线.【例题1】(2022秋•秦淮区月考)如图所示,在五边形ABCDE中,AB=AE,∠B=∠E,BC=DE,F是CD的中点,连接AF.求证:AF⊥CD.【变式1-1】如图,△ABC中,CA=CB,D在AC的延长线上,E在BC上,且CD=CE,求证:DE⊥AB.【变式1-2】(2022秋•新洲区期中)如图.△ABC中,CA=CB.D是AB的中点.∠CED=∠CFD=90°,CE=CF,求证:∠ADF=∠BDE.【变式1-3】已知:如图,△ABC中,AB=AC,CE⊥AE于E,CE=12BC,E在△ABC外,求证:∠ACE=∠B.【变式1-4】(2022秋•晋江市期中)如图,△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.【变式1-5】(2022秋•大足区期末)如图所示,△ABC中,AC=BC,点D是AB上一点,DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若∠ADE=160°,求∠DEF的度数;(2)若点D是AB的中点,求证:∠BDE=12∠ACB.【变式1-6】(2022秋•南乐县月考)如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,且BE=4.(1)求∠D的度数;(2)若BC=5,求ED的长.【变式1-7】如图,AB∥CD,∠1=∠2,AD=AB+CD.(1)求证:BE=CE;(2)求证:AE⊥DE;(3)求证:AE平分∠DAB.【例题2】如图,在△ABC 中,AB =AC ,EF 交AB 于点E ,交BC 与点D .交AC 的延长线于点F ,且BE =CF .求证:DE =DF .【变式2-1】如图,△ABC 是等边三角形,D 为AC 延长线上一点,E 是BC 延长线上一点,CE =AD ,求证:DB =DE.【变式2-2】如图,BD平分∠ABC交AC于D,点E为CD上一点,且AD=DE,EF∥BC交BD于F.求证:AB=EF.【变式2-3】如图,在△ABC中,AB=AC,在AB上取一点E,在AC的延长线上取一点F,使BE=CF,EF交BC于点G.(1)试说明EG=FG;(2)试说明AB+AC>2EG.【变式2-4】如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E 作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.【变式2-5】如图所示,等边三角形ABC的边长是6,点P在边AB上,点Q在BC的延长线上,且AP=CQ,设PQ与AC相交于点D.(1)当∠DQC=30°时,求AP的长.(2)作PE⊥AC于E,试探究DE、AE、CD三条线段之间的数量关系,并证明你的结论.【变式2-6】已知,△ABC为等边三角形,点D为AC上的一个动点,点E为BC延长线上一点,且BD=DE.(1)如图1,若点D在边AC上,猜想线段AD与CE之间的关系,并说明理由;(2)如图2,若点D在AC的延长线上,(1)中的结论是否成立,请说明理由.【变式2-7】如图,AD为△ABC的平分线,E为BC的中点,EF∥AD交BA的延长线于F,交AC于G.(1)求证:AF=AG;(2)求证:BF=CG;(3)求AB AC CG的值.【例题3】如图,△ABC 中,CA =CB ,∠ACB =108°,BD 平分∠ABC 交AC 于D ,求证:AB =AD +BC .【变式3-1】如图,△ABC 中,AB =AC ,∠A =100°,CD 平分∠ACB 交AB 于D ,E 为BC 上一点,BE =DE .求证:BC =CD +AD.解题技巧提炼对于线段和差问题,利用“截长补短法”的思想,添加辅助线,可构造等腰三角形来实现边角之间的转化.【变式3-2】如图,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延长线于点M.求证:AM=12(AB+AC).【变式3-3】如图(1),线段AD∥BC,连接AB、CD,取CD中点E,连接AE,AE平分∠BAD.(1)线段AB与AD、BC之间存在怎样的等量关系?请说明理由.(2)如果点C在AB的左侧,其他条件不变,如图(2)所示,那么(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请写出新的结论,并说明理由.【变式3-4】(2022秋•崇川区校级月考)如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.【变式3-5】在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.(1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.(2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?答: .(请在空格内填“一定成立”“不一定成立”或“一定不成立”).(3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.【例题4】阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E 是BC 的中点,点A 在DE 上,且∠BAE =∠CDE .求证:AB =CD .分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB =CD ,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE 到点F ,使EF =DE ,连接BF ;②如图2,分别过点B 、C 作BF ⊥DE ,CG ⊥DE ,垂足分别为点F ,G .(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.【变式4-2】如图,在△ABC 中,点D 是BC 的中点,点E 是AD 上一点,BE =AC .若∠C =70°,∠DAC =50°,求∠EBD的度数.解题技巧提炼当题目中已知某线段的中点时,通过倍长中点处的线段构造全等三角形,从而将题目中的相等的角或边集中到新的三角形中构成等腰三角形.【变式4-3】(2022秋•文峰区月考)如图,已知△ABC中,AD是中线,AE是△ABD的中线,BA=BD,∠BAD =∠BDA,求证:AC=2AE.【变式4-4】阅读并完成以下填空:如图1,已知:AD为△ABC的中线,求证AB+AC>2AD.证明:延长AD至E使得DE=AD.连接EC,则AE=2AD.∵AD为△ABC的中线,∴BD=CD.在△ABD和△CED中,BD=CD, , .∴△ABD≌△CED.∴AB=EC.在△ACE中,根据三角形的三边关系有AC+EC AE.而AB=EC,AE=2AD,∴AB+AC>2AD.这种添加辅助线的方法,我们称为“倍长中线法”.请利用这种方法解决下列问题:问题1:如图2,在△ABC中,AC=5,AB=13,D为BC的中点,DA⊥AC.求△ABC的面积.问题2:如图3,在△ABC中,AD是三角形的中线.点F在中线AD上,且BF=AC,连接并延长BF 交AC于点E.求证AE=EF.【变式4-5】(2023春•汉寿县期中)已知:△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,AB=BC,AD=DE,按图1放置,使点E在AB上,取CE的中点F,连接DF,BF.(1)观察发现:图1中DF,BF的数量关系是 ,位置关系是 ;(2)探究证明:将图1中的△ADE绕点A顺时针转动45°,再连接CE,取CE的中点F(如图2),问(1)中的结论是否仍然成立?请证明你的结论;(3)拓展延伸:将图1中的△ADE绕点A顺时针转动任意角度(转动角度在0°到90°之间),再连接CE的中点F(如图3),问(1)中的结论是否仍然成立?请证明你的结论.【例题5】如图,在△ABC中,∠BAC=2∠B,CD平分∠ACB交AB于D,求证:AC+AD=BC.【变式5-1】在△ABC中,AD是BC边上的高,CD=AB+BD.求证:∠B=2∠C.【变式5-2】如图,在△ABC中∠ABC=2∠C,若AD⊥BC于D,BD=4,CD=16,求AB的长.【变式5-3】(2022•南京模拟)小明在完成一道几何证明问题时,往往会思考看是否会有不同的证明方法.例如:在如图1所示的△ABC中,∠ACB=90°,点D在AB上,且BD=BC,求证:∠ABC=2∠ACD.他发现,除了方法1直接用角度计算的方法外,还可以用下面两种方法:方法2:如图2,作BE⊥CD,垂足为点E.方法3:如图3,作CF⊥AB,垂足为点F.根据阅读材料,请你从三种方法中任选一种方法,证明∠ABC=2∠ACD,并写出其证明过程.。
技巧专题技巧专题等腰三角形7种常用辅助线添加方法
技巧专题等腰三角形7种常用辅助线添加方法方法1.三线合一法例1.如图,△ABC中,AB=AC,D是BC的中点,过A点的直线EF//BC,且AE=AF.求证: DE=DF.方法2.作一腰的平行线构造等腰三角形法例2.如图,AB=AC,F 为DE的中点,求证BD=CE.例3.如图,AABC中,AB=AC,点P从点B出发沿线段BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P, Q移动的速度相同,PQ与直线BC相交于点D.(1).如图①,当点P为AB的中点时,求证: PD=QD;(2).如图②,过点P作直线BC的垂线,垂足为E,当点P,Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由.方法3.截长补短构造等腰三角形法例4.如图,在△ABC中,AB=AC, D是△ABC外一点,且∠ABD=60°,∠ACD=60°求证:BD+DC=AB例5.如图,在AABC中,∠BAC=120°, AD⊥BC于D,且AB+BD=DC,求∠C.方法4.证与底有关的线段时,通常作底的平行线例6.如图,等边△ABC中,D是边AB延长线上一点,延长BC至E点,使CE=AD, DG⊥BE 于G,求证BG=EG.方法5.加倍折半法,倍长中线法例7.如图,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.方法6.以底或腰为边作等边三角形,出三角形全等例8.如图,在△ABC中,∠ABC=∠ACB=40°,点P为三角形内一点,且∠PCA=∠PAB=20°.求∠PBC的度数方法7、将以腰为边的一个三角形绕顶角的顶点旋转例9.如图,△ABC中,点P是△ABC内一点,且∠APB>∠APC. 求证:PC> PB.课后培优练习题1.如图,在△ABC中,AB=AC, ∠A=90°,点D是BC的中点,点E、F分别在AB、AC上,且AE=CF.求证:△DEF 是等腰直角三角形.2.如图,等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于点E,判断△ADE的形状,并证明你的结论.3.如图,△ABC中,AB=AC, D为BC边的中点,过点D作DE⊥AB, DF⊥AC,垂足分别为E, F.(1)求证: DE=DF;(2)若∠A=90°,图中与DE相等的有哪些线段? (不需说明理由)4.如图,△ABC中,AC=2AB, AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证: EB⊥AB.5.如图,△ABC的面积为1cm2, AP垂直∠ABC的平分线BP于P,求△PBC的面积.6.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E、F分别在AC、BC 上,求证: DE=DF.7.如图,已知AB=AC, ∠A=108°,BD平分∠ABC交AC于D.求证: BC=AB+CD.8.如图,在△ABC中,AB=AC, AE⊥BE于点E,且BC=2BE,若∠EAB=20°,求∠BAC的度数.9.如图,△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D, CE ⊥BD. 求证: BD=2CE.10.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一一点,且PA=CQ,连PQ交AC边于D.(1).求证: PD=DQ;(2).若△ABC的边长为1,求DE的长.。
关于初中数学几何题作辅助线的方法归纳综述
随笔关于初中数学几何题作辅助线的方法归纳综述孙红振摘要:初中几何作为初中数学的一个重点难点,很多的学生都对初中数学中的几何无可奈何,但在初中数学中几何题占据着重要的地位,很多的学生对几何体都有着厌恶的心理,认为几何体特别难,也找不到解题的思路和方法[1]。
如何正确的解决几何难题,就需要找到好的思路,大多时候我们还需要使用到辅助线来帮助我们解题,只有作对一条辅助线,才能更好的解决难题。
关键词:辅助线;初中数学;几何题对于很多的初中生,一提到数学他们就头疼不已,对于数学中的几何稍微复杂一点的题目就无从下手。
初中数学分为两大模块:几何、代数,而几何也是初中数学中的重点,也是历年来考试的重点难点。
几何题都比较的灵活,一道题解题的方法也会出现多种,大多数的几何题在解答的过程中都需要应用到辅助线才能更好的解答题目,很多的学生一旦遇到需要做辅助线的题目便无从下手。
辅助线有什么作用?在几何中作辅助线的技巧是什么便是本文重点讨论和归纳的问题。
一、辅助线的作用在初中数学几何中,简单的几何题目,通常根据题意我们就能找到解题的思路和方法,但是较难的几何题通过题意,很多时候在解题中都无法找到思路和方法,甚至还会觉得题目给出的已知条件非常的散乱,没有办法让所有的已知条件相结合起来,帮助学生们更好的答题。
通常遇到这种题型都需要借助辅助线来帮助解题,只有作对了辅助线,那就相当于题目已经解答出了一半了。
几何辅助线的添加,等于在原题中添加了一个甚至多个已知条件,能够更好的帮助我们快速的找到解答的思路和方法。
某些时候,通过题目的已知条件,往往还不能找到证明方法和思路,总会缺少一个将已知和未知相联合起来的桥梁,缺少一个等量转换的关系,通常要将已知和未知相联合起来就只需要一条辅助线。
划对一条辅助线好似给迷路的人指了一条明路,原本僵硬找不到思路的题目瞬间就变得简单易懂。
二、画辅助线的技巧在做几何题之前,学生们应该先将辅助线的作用和使用方法总结归纳起来,科学合理的使用辅助线,才能将构建起解题的思路。
三角形常用辅助线
三角形常用辅助线在学习三角形的过程中,辅助线的运用是一个非常重要的解题技巧。
它能够帮助我们将复杂的三角形问题转化为更简单、更易于解决的形式。
接下来,让我们一起深入探讨三角形中常用的辅助线。
一、中线倍长法中线倍长法是解决三角形中线相关问题的常用方法。
如果一个三角形中有中线,我们可以将中线延长一倍,构造出全等三角形。
例如,在三角形 ABC 中,AD 是 BC 边上的中线。
我们延长 AD 至E,使 DE = AD,然后连接 BE。
这样就可以得到三角形 ADC 和三角形EDB 全等。
通过这种方法,我们可以将与中线相关的条件进行转化,从而解决问题。
二、截长补短法当遇到线段之间的和差关系时,截长补短法就派上用场了。
截长法是在较长的线段上截取一段等于较短的线段,然后证明剩余部分与另一条线段相等。
补短法是将较短的线段延长,使其与较长的线段相等,然后证明延长后的线段与另一条线段相等。
比如,在三角形 ABC 中,AB > AC,∠1 =∠2。
要证明 BD =DC,我们可以采用截长补短法。
如果用截长法,可以在 AB 上截取 AE = AC,连接 DE,证明三角形 AED 和三角形 ACD 全等,从而得出 DE = DC,再证明 BD = DE即可。
如果用补短法,可以延长 AC 至 F,使 AF = AB,连接 DF,证明三角形 ABD 和三角形 AFD 全等,得出 BD = DF,再证明 DF = DC即可。
三、作平行线法作平行线可以利用平行线的性质来解决问题。
比如,在三角形 ABC 中,D 是 AB 上一点,要证明∠ACD =∠A+∠B。
我们可以过点C 作CE∥AB,根据两直线平行,内错角相等,同位角相等的性质,得到∠ACE =∠A,∠ECD =∠B,从而证明∠ACD =∠A +∠B。
四、作垂线法作垂线常用于构造直角三角形,利用勾股定理或三角函数来解决问题。
例如,在三角形 ABC 中,要证明某两条边的关系,可以过某一顶点作垂线,然后利用直角三角形的相关知识进行求解。
三角形常见辅助线的作法
三角形中作辅助线的常用方法举例常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.证明:(法一)将DE 两边延长分别交AB 、AC 于M 、N ,在△AMN 中,AM +AN > MD +DE +NE;(1)在△BDM 中,MB +MD >BD ; (2)在△CEN 中,CN +NE >CE ; (3)由(1)+(2)+(3)得:AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE∴AB +AC >BD +DE +EC(法二:)如图1-2, 延长BD 交 AC 于F ,延长CE 交BF 于G ,在△ABF 和△GFC 和△GDE 中有:AB +AF > BD +DG +GF (三角形两边之和大于第三边)(1)GF +FC >GE +CE (同上) (2)DG +GE >DE (同上) (3)AB C D E N M 11-图A B C D EF G 21-图由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+EC。
-人教版八年级上册 等腰三角形 做辅助线构造等腰三角形 (45°角的用法)
【板块五】45°角的用法——构造等腰直角三角形方法技巧:(1)利用45°角构造等腰直角三角形进而构造出三角形全等(旋转全等).(2)利用45°角构造等腰直角三角形进而构造出K型全等(内K或外K).(3)利用45°构造对称全等.(利用45°找八字型导角).题型一利用45°角导角【例1】如图,在Rt△AOB中,∠AOB=90°,AO=BO,C为AB上一点,D为OB上一点,OC=CD,DE⊥AB,垂足为点E,若CE=2,求AB的长.题型二利用45°角作垂线构造等腰直角三角形【例2】如图,点D为Rt△ACB外一点,∠ACB=90°,AC=BC,∠ADC=45°,求证:∠CDB=45°题型三过45°角的顶点作一边的垂线构造对称型全等【例3】如图,在Rt△ACB中,∠ACB=90°,AC=BC,点F在AB上,点F在AB上,AE⊥AB,∠ECF=45°,求证:EF=AE+FB.题型四利用45°角作高构造K型全等【例4】如图,在平面直角坐标系中,A(0,﹣3),B(﹣4,3),AB交x轴于点D.(1)求点D的坐标;(2)点C在y轴上,∠CBA=45°,求△ABC的面积.针对练习51.如图,在Rt△BAD中,AB=BD,∠ABD=90°,BC⊥AD。
垂足为点C,点E,F都在AB上,且∠ECF =45°,过点C作CT⊥CE交DB于点T.(1)求证:S四边形ECTB=S△ACB;(2)若△ACB的面积为4,AE·FB=2,求△ECF的面积.2.如图,在△AOB中,∠AOB=90°,BC平分∠ABO交AC于点C,点D、E分别在边OB、OA上,DE∥CB,∠ADE=45°,求证:AB=AE+DB.3.如图,AB=AC,∠BAC=90°,点D为BC上一点,DA=DE,∠ADE=90°,求∠DBE的度数.4.如图,已知,△ABO是等腰直角三角形,OB=OA,C,D在直线BO上,BC=OD,ON⊥AD,垂足为点N,AB,NO的延长线交于点M,连接MC,求证:∠C=∠D=180°.5.已知在平面直角坐标系中,A(0,a),B(a,0).(1)如图1,D为△AOB外一点,DM⊥x轴于点M,BD平分∠ABM,∠ADO=45°,求证:AD=OD;(2)如图2,点P为△AOB外一点,∠APO=45°,PA=6,PB=2,求四边形AOBP的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造等腰、直角三角形一、构造等腰(边)三角形:当问题中出现一点发出的二条相等线段时往往要补完整等腰(边)三角形;出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰(边)三角形。
通过构造等腰(边)三角形,应用等腰(边)三角形的性质得到一些边角相等关系,达到求证(解)的目的。
典型例题:例1.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB 的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是.例2.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.例3.如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE 至F,使EF=DE.联结BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE·CE,求证四边形ABFC是矩形.二、构造直角三角形:通过构造直角三角形,应用直角三角形的性质得到一些边角关系(勾股定理,两锐角互余,锐角三角函数),达到求证(解)的目的。
典型例题:例2.已知:在△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的25 5(即cosC=255,则AC边上的中线长是.例3.如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连结CN.若△CDN的面积与△CMN的面积比为1︰4,则MNBM的值为【】A.2 B.4 C.25D.26例4.如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=900,∠CED=450,∠DCE=900,DE=2,BE=22.求CD的长和四边形ABCD的面积.例5.某市规划局计划在一坡角为16º的斜坡AB上安装一球形雕塑,其横截面示意图如图所示.已知支架AC与斜坡AB的夹角为28º,支架BD⊥AB于点B,且AC、BD的延长线均过⊙O的圆心,AB=12m,⊙O的半径为1.5m,求雕塑最顶端到水平地面的垂直距离(结果精确到0.01m,参考数据:cos28º≈0.9,sin62º≈0.9,sin44º≈0.7,cos46º≈0.7).例6.周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)例7.如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠,点O恰好落在AB上点D处,折痕交OA于点C,求整个阴影部分的周长和面积.构造等腰、直角三角形一、构造等腰(边)三角形:当问题中出现一点发出的二条相等线段时往往要补完整等腰(边)三角形;出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰(边)三角形。
通过构造等腰(边)三角形,应用等腰(边)三角形的性质得到一些边角相等关系,达到求证(解)的目的。
典型例题:例1.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是50.【分析】利用全等三角形的判定以及垂直平分线的性质得出∠OBC=40°,以及∠OB C =∠OCB=40°,再利用翻折变换的性质得出EO=EC,∠CEF=∠FEO,进而求出即可:连接BO,∵AB=AC,AO是∠BAC的平分线,∴AO是BC的中垂线。
∴BO=CO。
∵∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,∴∠OAB=∠OAC=25°。
∵等腰△ABC中,AB=AC,∠BAC=50°,∴∠ABC=∠ACB=65°。
∴∠OBC=65°-25°=40°。
∴∠OBC=∠OCB=40°。
∵点C沿EF折叠后与点O重合,∴EO=EC,∠CEF=∠FEO。
∴∠CEF=∠FE O=(1800-2×400)÷2=50°。
例2.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.【答案】证明:(1)∵△ABC是等边三角形,∴∠ABC=60°。
∵∠EFB=60°,∴∠ABC=∠EFB。
∴EF∥DC(内错角相等,两直线平行)。
∵DC=EF,∴四边形EFCD是平行四边形。
(2)连接BE。
∵BF=EF,∠EFB=60°,∴△EFB是等边三角形。
∴EB=E F,∠EBF=60°。
∵DC=EF,∴EB=DC。
∵△ABC是等边三角形,∴∠ACB=60°,AB=AC。
∴∠EBF=∠ACB。
∴△AEB≌△ADC(SAS)。
∴AE=AD。
例3.如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE 至F,使EF=DE.联结BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE·CE,求证四边形ABFC是矩形.【答案】解:(1)证明:连接BD。
∵梯形ABCD中,AD∥BC,AB=DC,∴AC=BD,∠ACB=∠DBC∵DE⊥BC,EF=DE,∴BD=BF,∠DBC=∠FBC。
∴AC=BF,∠ACB=∠CBF。
∴AC∥BF。
∴四边形ABFC是平行四边形;(2)∵DE2=BE·CE,∴DE CEBE DE。
∵∠DEB=∠DEC=90°,∴△BDE∽△DEC。
∴∠CDE=∠DBE,∴∠BFC=∠BDC=∠BDE+∠CDE=∠BDE+∠DBE=90°。
∴四边形ABFC是矩形。
二、构造直角三角形:通过构造直角三角形,应用直角三角形的性质得到一些边角关系(勾股定理,两锐角互余,锐角三角函数),达到求证(解)的目的。
典型例题:例2.已知:在△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为255(即cosC=255),则AC边上的中线长是.【答案】85a10或510a。
【考点】解直角三角形,锐角三角函数定义,三角形中位线定理,勾股定理。
【分析】分两种情况:①△ABC为锐角三角形时,如图1,BE为AC边的中线。
作△ABC的高AD,过点E作EF⊥BC于点F。
∵在Rt△ACD中,AC=a,cosC=255,∴CD=255a,AD=5a∵在Rt△ABD中,∠ABD=45°,∴BD=AD=5a。
∴BC=BD+CD=35a∵点E是AC的中点,EF∥AD,∴EF是△ACD的中位线。
∴FC=12DC=5a,EF=12AD=5a。
∴BF=255a。
在Rt△BEF中,由勾股定理,得22222251785BE BF EF5a a=a=a51020⎛⎫⎛⎫=+=+ ⎪⎪ ⎪⎝⎭⎝⎭②△ABC为钝角三角形时,如图2,BE为AC边的中线。
作△ABC的高AD。
∵在Rt△ACD中,AC=a,cosC=255,∴CD=255a,AD=5a∵在Rt△ABD中,∠ABD=45°,∴BD=AD=55a。
∴BC= BD=55a∵点E是AC的中点,∴BE是△ACD的中位线。
∴BE=12AD=5a综上所述,AC边上的中线长是85a或5a。
例3.如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连结CN.若△CDN的面积与△CMN的面积比为1︰4,则MNBM的值为【】A.2 B.4 C.25D.26【分析】过点N作NG⊥BC于G,由四边形ABCD是矩形,易得四边形CDNG是矩形,又由折叠的性质,可得四边形AMCN是菱形,由△CDN的面积与△CMN的面积比为1:4,根据等高三角形的面积比等于对应底的比,可得DN:CM=1:4,然后设DN=x,由勾股定理可求得MN的长,从而求得答案:过点N作NG⊥BC于G,∵四边形ABCD是矩形,∴四边形CDNG是矩形,AD∥BC。
∴CD=NG,CG=DN,∠ANM=∠CMN。
由折叠的性质可得:AM=CM,∠AMN=∠CMN,∴∠ANM=∠AMN。
∴AM=AN。
∴AM=CM,∴四边形AMCN是平行四边形。
∵AM=CM,∴四边形AMCN是菱形。
∵△CDN的面积与△CMN的面积比为1:4,∴DN:CM=1:4。
设DN=x,则AN=AM=CM=CN=4x,AD=BC=5x,CG=x。
∴BM=x,GM=3x。
在Rt△CGN 中,()2222NG CN CG 4x x 15x =-=-=,在Rt△MNG 中,()()2222MN GM NG 3x 15x =26x =+=+,∴MN 26x==26BM x。
故选D 。
例4.如图,在四边形ABCD 中,对角线AC ,BD 交于点E ,∠BAC=900,∠CED=450,∠DCE=900,DE=2,BE=22.求CD 的长和四边形ABCD 的面积. 解:过点D 作DH⊥AC,∵∠CED=45°,DH⊥EC,DE=2,∴EH=DH=1。
又∵∠DCE=30°,∴D C=2,HC=3。
∵∠AEB=45°,∠BAC=90°,BE=22, ∴AB=AE=2。
∴AC=2+1+3 =3+3。
∴ABCD 11933S 233133 222+=⨯⨯++⨯⨯+=四形()()边 。
例5.某市规划局计划在一坡角为16º的斜坡AB 上安装一球形雕塑,其横截面示意图如图所示.已知支架AC 与斜坡AB 的夹角为28º,支架BD⊥AB 于点B ,且AC 、BD 的延长线均过⊙O 的圆心,AB =12m ,⊙O 的半径为1.5m ,求雕塑最顶端到水平地面的垂直距离(结果精确到0.01m ,参考数据:cos28º≈0.9,sin62º≈0.9,sin44º≈0.7,cos46º≈0.7).解:如图,过点O 作水平地面的垂线,垂足为点E 。
在Rt△AOB 中,AB cos OAB OA ∠=,即012cos28OA=, ∴01212OA 13.3330.9cos28=≈≈。