、抛物线中利用等腰直角三角形构造全等

合集下载

2021-2022学年福建省南平市浦城县中考三模数学试题含解析

2021-2022学年福建省南平市浦城县中考三模数学试题含解析

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.12.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手 1 2 3 4 5 6 7 8 9 10 时间(min) 129 136 140 145 146 148 154 158 165 175由此所得的以下推断不正确...的是()A.这组样本数据的平均数超过130B.这组样本数据的中位数是147C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好3.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是()A .15,0.125B .15,0.25C .30,0.125D .30,0.254.在一个不透明的袋子中装有除颜色外其余均相同的m 个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表: 摸球试验次数 100 1000 5000 10000 50000 100000 摸出黑球次数46487250650082499650007根据列表,可以估计出 m 的值是( ) A .5B .10C .15D .205.若分式方程1x aa x -=+无解,则a 的值为( ) A .0B .-1C .0或-1D .1或-16.下列各组数中,互为相反数的是( ) A .﹣2 与2B .2与2C .3与13D .3与37.如图,半⊙O 的半径为2,点P 是⊙O 直径AB 延长线上的一点,PT 切⊙O 于点T ,M 是OP 的中点,射线TM 与半⊙O 交于点C .若∠P =20°,则图中阴影部分的面积为( )A .1+3πB .1+6π C .2sin20°+29πD .23π 8.下列算式的运算结果正确的是( ) A .m 3•m 2=m 6 B .m 5÷m 3=m 2(m≠0)C .(m ﹣2)3=m ﹣5D .m 4﹣m 2=m 29.如图,在△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,错误的结论是( ).A .AD AEDB EC= B .AB ACAD AE= C .AC ECAB DB= D .AD DEDB BC= 10.如果2a b -=,那么22b a a ba a-+÷的值为( ) A .1B .2C .1-D .2-二、填空题(共7小题,每小题3分,满分21分)11.小明用一个半径为30cm 且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm .12.如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B ,C 重合),∠ADE=∠B=∠α,DE 交AB 于点E ,且tan ∠α=,有以下的结论:①△ADE ∽△ACD ;②当CD=9时,△ACD 与△DBE 全等;③△BDE 为直角三角形时,BD 为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).13.正多边形的一个外角是60°,边长是2,则这个正多边形的面积为___________ .14.如图,在扇形OAB 中,∠O =60°,OA =43,四边形OECF 是扇形OAB 中最大的菱形,其中点E ,C ,F 分别在OA ,AB ,OB 上,则图中阴影部分的面积为__________.15.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______. 16.如图,AB 是圆O 的直径,弦CD ⊥AB ,∠BCD=30°,CD=4,则S 阴影=_____.17.如图,▱ABCD 中,AC ⊥CD ,以C 为圆心,CA 为半径作圆弧交BC 于E ,交CD 的延长线于点F ,以AC 上一点O 为圆心OA 为半径的圆与BC 相切于点M ,交AD 于点N .若AC=9cm ,OA=3cm ,则图中阴影部分的面积为_____cm 1.三、解答题(共7小题,满分69分)18.(10分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数). 19.(5分)在平面直角坐标系中,O 为原点,点A (8,0)、点B (0,4),点C 、D 分别是边OA 、AB 的中点.将△ACD 绕点A 顺时针方向旋转,得△AC ′D ′,记旋转角为α.(I )如图①,连接BD ′,当BD ′∥OA 时,求点D ′的坐标; (II )如图②,当α=60°时,求点C ′的坐标;(III )当点B ,D ′,C ′共线时,求点C ′的坐标(直接写出结果即可).20.(8分)一次函数()y kx b k 0=+≠的图象经过点()A 11-,和点()B 15,,求一次函数的解析式.21.(10分)如图1,抛物线y =ax 2+bx ﹣2与x 轴交于点A (﹣1,0),B (4,0)两点,与y 轴交于点C ,经过点B 的直线交y 轴于点E (0,2). (1)求该抛物线的解析式;(2)如图2,过点A 作BE 的平行线交抛物线于另一点D ,点P 是抛物线上位于线段AD 下方的一个动点,连结PA ,EA ,ED ,PD ,求四边形EAPD 面积的最大值;(3)如图3,连结AC ,将△AOC 绕点O 逆时针方向旋转,记旋转中的三角形为△A ′OC ′,在旋转过程中,直线OC ′与直线BE 交于点Q ,若△BOQ 为等腰三角形,请直接写出点Q 的坐标.22.(10分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1.B 布袋中有三个完全相同的小球,分别标有数字﹣1,﹣1和﹣2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(1)求点Q落在直线y=﹣x﹣1上的概率.23.(12分)已知y是x的函数,自变量x的取值范围是0x≠的全体实数,如表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出2x=时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:.24.(14分)(1)|﹣327(2018﹣π)0-(15)-1(2)先化简,再求值:(2xx x +﹣1)÷22121xx x-++,其中x的值从不等式组23241xx-≤⎧⎨-⎩<的整数解中选取.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.2、C【解析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.3、D【解析】分析:根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.详解:由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,又∵被调查学生总数为120人,∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.综上所述,选项D中数据正确.故选D.点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.4、B【解析】由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.【详解】解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,故选择B.【点睛】本题考查了概率公式的应用.5、D【解析】试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,当1-a=0时,即a=1,整式方程无解,当x+1=0,即x=-1时,分式方程无解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故选D.点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.6、A【解析】根据只有符号不同的两数互为相反数,可直接判断.【详解】-2与2互为相反数,故正确;2与2相等,符号相同,故不是相反数;3与13互为倒数,故不正确;3与3相同,故不是相反数.故选:A.【点睛】此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.7、A【解析】连接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足为H,则CH=1,于是,S阴影=S△AOC+S扇形OCB,代入可得结论.【详解】连接OT、OC,∵PT切⊙O于点T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中点,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH ⊥AP ,垂足为H ,则CH=12OC=1, S 阴影=S △AOC +S 扇形OCB =12OA•CH+2302360π⨯=1+3π,故选A. 【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系. 8、B 【解析】直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案. 【详解】A 、m 3•m 2=m 5,故此选项错误;B 、m 5÷m 3=m 2(m≠0),故此选项正确;C 、(m -2)3=m -6,故此选项错误;D 、m 4-m 2,无法计算,故此选项错误; 故选:B . 【点睛】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键. 9、D 【解析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论. 【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得:AD AE DB EC =,AB ACAD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误; 故选D . 【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质. 10、D【解析】先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案. 【详解】22()()=b a a b b a b a b a a a baa a -++-÷⨯=-+ 2ab -=()2b a a b ∴-=--=-故选:D . 【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.二、填空题(共7小题,每小题3分,满分21分) 11、20 【解析】先求出半径为30cm 且圆心角为240°的扇形纸片的弧长,再利用底面周长=展开图的弧长可得. 【详解】24030180π⨯=40π.设这个圆锥形纸帽的底面半径为r . 根据题意,得40π=2πr , 解得r=20cm . 故答案是:20. 【点睛】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值. 12、②③. 【解析】试题解析:①∵∠ADE=∠B ,∠DAE=∠BAD , ∴△ADE ∽△ABD ; 故①错误;②作AG ⊥BC 于G ,∵∠ADE=∠B=α,tan∠α=,∴,∴,∴cosα=,∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD与△DBE中,,∴△ACD≌△BDE(ASA).故②正确;③当∠BED=90°时,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=,AB=15,∴∴BD=1.当∠BDE=90°时,易证△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=,AC=15,∴cosC=,∴CD=.∵BC=24,∴BD=24-=即当△DCE为直角三角形时,BD=1或.故③正确;④易证得△BDE∽△CAD,由②可知BC=24,设CD=y,BE=x,∴,∴,整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤,∴0<BE≤.故④错误.故正确的结论为:②③.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.13、3【解析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解.【详解】正多边形的边数是:360°÷60°=6. 正六边形的边长为2cm ,由于正六边形可分成六个全等的等边三角形,且等边三角形的边长与正六边形的边长相等, 所以正六边形的面积2216sin 602=63cm 2=⨯⨯︒⨯. 故答案是:63【点睛】本题考查了正多边形的外角和以及正多边形的计算,正六边形可分成六个全等的等边三角形,转化为等边三角形的计算.14、8π﹣3【解析】连接EF 、OC 交于点H ,根据正切的概念求出FH ,根据菱形的面积公式求出菱形FOEC 的面积,根据扇形面积公式求出扇形OAB 的面积,计算即可.【详解】连接EF 、OC 交于点H ,则3∴FH=OH×tan30°=2,∴菱形FOEC 的面积=12×33 扇形OAB 的面积=(26043360π⨯=8π,则阴影部分的面积为8π﹣83,故答案为8π﹣83.【点睛】本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键.15、8【解析】解:设边数为n,由题意得,180(n-2)=360 3解得n=8.所以这个多边形的边数是8.16、【解析】根据垂径定理求得然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.【详解】如图,假设线段CD、AB交于点E,∵AB是O的直径,弦CD⊥AB,∴又∵∴∴∴S 阴影=S 扇形ODB −S △DOE +S △BEC故答案为:.【点睛】考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.17、11π﹣6334. 【解析】阴影部分的面积=扇形ECF 的面积-△ACD 的面积-△OCM 的面积-扇形AOM 的面积-弓形AN 的面积.【详解】解:连接OM ,ON .∴OM =3,OC =6,∴30ACM ∠=, ∴33CD AB ==,∴扇形ECF 的面积2120π927π360⋅==; △ACD 的面积2732AC CD =⨯÷= 扇形AOM 的面积2120π33π360⋅==; 弓形AN 的面积2120π31393333π36022⋅=-⨯⨯=-△OCM 的面积132=⨯⨯= ∴阴影部分的面积=扇形ECF 的面积−△ACD 的面积−△OCM 的面积−扇形AOM 的面积−弓形AN 的面积2(21π.4=-故答案为21π4-. 【点睛】考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键.三、解答题(共7小题,满分69分)18、(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.【解析】(1)若设甲服装的成本为x 元,则乙服装的成本为(500-x )元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.【详解】(1)设甲服装的成本为x 元,则乙服装的成本为(500-x )元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x )-500=67,解得:x=300,500-x=1.答:甲服装的成本为300元、乙服装的成本为1元.(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y ,则 22001y 242()+=, 解得:1y =0.1=10%,2y =-2.1(不合题意,舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调∴再次上调价格为:242×(1+10%)=266.2(元)∵商场仍按9折出售,设定价为a元时0.9a-266.2>0解得:a>2662295.8 9故定价至少为296元时,乙服装才可获得利润.考点:一元二次方程的应用,不等式的应用,打折销售问题19、(I)(10,4)或(6,4)(II)C′(6,23)(III)①C′(8,4)②C′(245,﹣125)【解析】(I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;(II)如图②,当α=60°时,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解决问题;(III)分两种情形分别求解即可解决问题;【详解】解:(I)如图①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴当OB∥AC′,四边形OBC′A是平行四边形,∵∠AOB=90°,∴四边形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共线,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=12OB=2,∴D′(10,4),根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.综上所述,满足条件的点D坐标(10,4)或(6,4).(II)如图②,当α=60°时,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=23,∴OK=6,∴C′(6,23).(III)①如图③中,当B、C′、D′共线时,由(Ⅰ)可知,C′(8,4).②如图④中,当B、C′、D′共线时,BD′交OA于F,易证△BOF≌△AC′F,∴OF=FC′,设OF=FC′=x ,在Rt △ABC′中,BC′=22AB AC -'=8,在RT △BOF 中,OB=4,OF=x ,BF=8﹣x ,∴(8﹣x )2=42+x 2,解得x=3,∴OF=F C′=3,BF=5,作C′K ⊥OA 于K , ∵OB ∥KC′,∴KC OB '=FK OF =FC BF', ∴4KC '=3FK =35, ∴KC′=125,KF=95, ∴OK=245, ∴C′(245,﹣125). 【点睛】本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.20、y=2x+1.【解析】直接把点A (﹣1,1),B (1,5)代入一次函数y =kx +b (k ≠0),求出k 、b 的值即可.【详解】∵一次函数y =kx +b (k ≠0)的图象经过点A (﹣1,1)和点B (1,5),∴15k b k b -+=⎧⎨+=⎩,解得:23k b =⎧⎨=⎩. 故一次函数的解析式为y =2x +1.【点睛】本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.21、(1)y=12x 2﹣32x ﹣2;(2)9;(3)Q 坐标为(﹣121655,)或(4﹣55,)或(2,1)或(4+5,﹣5). 【解析】试题分析:()1把点()()1040A B -,,,代入抛物线22y ax bx =+-,求出,a b 的值即可.()2先用待定系数法求出直线BE 的解析式,进而求得直线AD 的解析式,设11,22G m m ⎛⎫-- ⎪⎝⎭,则213,222P m m m ⎛⎫-- ⎪⎝⎭,表示出PG ,用配方法求出它的最大值, 联立方程2132221122y x xy x ⎧=--⎪⎪⎨⎪=--⎪⎩,求出点D 的坐标,ADP S最大值=12D A PG x x ⨯⨯-,进而计算四边形EAPD 面积的最大值;()3分两种情况进行讨论即可.试题解析:(1)∵()()1040A B -,,,在抛物线22y ax bx =+-上,∴2016420,a b a b --=⎧⎨+-=⎩ 解得123.2a b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴抛物线的解析式为213222y x x .=--(2)过点P 作PG x ⊥轴交AD 于点G ,∵()()4002B E ,,,,∴直线BE 的解析式为122y x =-+, ∵AD ∥BE ,设直线AD 的解析式为12y x b =-+, 代入()10A ,-,可得12b =-, ∴直线AD 的解析式为1122y x ,=-- 设11,22G m m ⎛⎫-- ⎪⎝⎭,则213,222P m m m ⎛⎫-- ⎪⎝⎭, 则()221113*********PG m m m m ⎛⎫⎛⎫=-----=--+ ⎪ ⎪⎝⎭⎝⎭, ∴当x =1时,PG 的值最大,最大值为2, 由2132221122y x x y x ⎧=--⎪⎪⎨⎪=--⎪⎩, 解得10,x y =-⎧⎨=⎩ 或32.x y =⎧⎨=-⎩ ∴()3,2D -,∴ADP S 最大值=1124422D A PG x x ⨯⨯-=⨯⨯=, 15252ADB S =⨯⨯=, ∵AD ∥BE ,∴5ADE ADB S S ==,∴S 四边形APDE 最大=S △ADP 最大+459ADB S .=+=(3)①如图3﹣1中,当OQ OB =时,作OT BE ⊥于T .∵42OB OE ==,, ∴4525525OE OB BE OT BE ⋅====, ∴855BT TQ == ∴1655BQ = 可得1216,55Q ⎛⎫- ⎪⎝⎭; ②如图3﹣2中,当1BO BQ =时,185454.Q ⎛⎝⎭, 当22OQ BQ =时,()221Q ,,当3BO BQ =时,Q 385454.⎛ ⎝⎭ 综上所述,满足条件点点Q 坐标为1216,55⎛⎫- ⎪⎝⎭或85454,⎛ ⎝⎭或()21,或85454.⎛+ ⎝⎭22、 (1)见解析;(1)13【解析】试题分析:先用列表法写出点Q 的所有可能坐标,再根据概率公式求解即可.(1)由题意得1 1(1)共有6种等可能情况,符合条件的有1种P (点Q 在直线y=−x−1上)=13. 考点:概率公式点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.23、(1)32;(2)见解析;(3)72;(4)当01x <<时,y 随x 的增大而减小. 【解析】(1)根据表中x ,y 的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(3)在所画的函数图象上找出自变量为7所对应的函数值即可;(4)利用函数图象的图象求解.【详解】解:(1)当自变量是﹣2时,函数值是32; 故答案为:32. (2)该函数的图象如图所示;(3)当2x =时所对应的点 如图所示,且72m =; 故答案为:72; (4)函数的性质:当01x <<时,y 随x 的增大而减小.故答案为:当01x <<时,y 随x 的增大而减小.【点睛】本题考查了函数值,函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.24、(13(1)-1【解析】(1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可;(1)把括号里通分,把22121x x x -++的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可.【详解】(1)原式=1+3×3﹣5 3﹣5 31;(1)原式=()()()()()2211111x x x x x x x x x x ⎡⎤+-+-÷⎢⎥+++⎢⎥⎣⎦=()2111x x x x x --÷++ =111x x x x -++- =﹣1x x -,解不等式组23241xx-≤⎧⎨-<⎩得:-1≤x52<则不等式组的整数解为﹣1、0、1、1,∵x(x+1)≠0且x﹣1≠0,∴x≠0且x≠±1,∴x=1,则原式=﹣221-=﹣1.【点睛】本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件.。

专题 全等三角形六种基本模型(学生版)

专题  全等三角形六种基本模型(学生版)

专题全等三角形六种基本模型通用的解题思路:模型一:一线三等角模型一线三等角指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。

或叫“K字模型”。

三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。

一般类型:基本类型:同侧“一线三等角”异侧“一线三等角”模型二:手拉手模型--旋转型全等一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;题型三:倍长中线模型构造全等三角形倍长中线是指加倍延长中线,使所延长部分与中线相等,往往需要连接相应的顶点,则对应角对应边都对应相等。

常用于构造全等三角形。

中线倍长法多用于构造全等三角形和证明边之间的关系(通常用“SAS”证明) (注:一般都是原题已经有中线时用)。

三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等在△ABC中AD是BC边中线延长AD到E,使DE=AD,连接BE作CF⊥AD于F,作BE⊥AD的延长线于E连接BE延长MD到N,使DN=MD,连接CD题型四:平行线+线段中点构造全等模型题型五:等腰三角形中的半角模型过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

2021-2022陕西中考数学复习课件——第三单元第21课时 抛物线与三角形全等、相似(含位似)

2021-2022陕西中考数学复习课件——第三单元第21课时 抛物线与三角形全等、相似(含位似)

c 6
c 6
∴抛物线L的表达式为y=-x2-5x-6;(2分)
第2题图
第21课时 抛物线与三角形全等、相似(含位似)
(2)点P在抛物线L′上,且位于第一象限,过点P作PD⊥y轴,垂足为D.若 △POD与△AOB相似,求符合条件的点P的坐标.
(2)∵点A、B在L′上的对应点分别为A′(3,0)、B′(0,6), ∴设抛物线L′的表达式y=x2+bx+6. 将A′(3,0)代入y=x2+bx+6,得b=-5. ∴抛物线L′的表达式为y=x2-5x+6.(4分) ∵A(-3,0),B(0,-6), ∴AO=3,OB=6.
第21课时 抛物线与三角形全等、相似(含位似)
对接中考 1. (2020陕西24题10分)如图,抛物线y=x2+bx+c经过点(3,12)和(-2,-3),与
两坐标轴的交点分别为A,B,C,它的对称轴为直线l.
第1题图
第21课时 抛物线与三角形全等、相似(含位似)
(1)求该抛物线的表达式;
解:(1)由题意,12 9 3b c 解得 b 2
数学
第21课时 抛物线与三角形全等、相似(含位似)
第21课时 抛物线与三角形全等、相似 (含位似)
第21课时 抛物线与三角形全等、相似(含位似)
小题破方法
1.如图,在△ABC中,∠B=90°,点M为直线l外一点,连接MC,∠ACM=90°,
在直线l上找一点P,使得△MCP与△ABC相似,请在图中作图画出所有符合要求
第2题图
第21课时 抛物线与三角形全等、相似(含位似)
设P(m,m2-5m+6)(m>0).
∵PD⊥y轴,
∴点D的坐标为(0,m2-5m+6).
∴PD=m,OD=m2-5m+6.

抛物线中的等腰三角形问题

抛物线中的等腰三角形问题

抛物线中的等腰三角形问题
在数学中,抛物线广泛被研究和探讨。

而抛物线中的等腰
三角形问题是其中一个经典的问题。

抛物线是一个二次方程的图像,具有对称性质。

而等腰三
角形是指三边长度相等的三角形。

那么,抛物线中是否存在等腰三角形呢?
答案是肯定的。

事实上,抛物线上的任何一点都可以构成
一个等腰三角形。

这是因为抛物线的性质决定了在对称位置上的两个点关于焦点的距离相等,从而满足等腰三角形的定义。

具体来说,我们可以选择抛物线上的一个点P,并且连接P 点与抛物线的焦点F。

然后,从P点向下垂直引一条垂线,与
抛物线的切线交于点Q。

这样,三角形PFQ就是一个等腰三
角形,因为PF和QF的长度相等。

值得注意的是,抛物线上的每个点都可以成为等腰三角形
的顶点,因此存在无数个等腰三角形。

抛物线中的等腰三角形问题不仅有理论上的意义,而且在
实际应用中也有一定的应用。

例如,在物体抛出运动中,抛物线的形状对于确定物体的落点和轨迹起到重要作用。

对于特定起始条件,等腰三角形在抛物线上能够提供更多的信息。

总结而言,抛物线中存在无数个等腰三角形,这是由抛物
线的对称性质所决定的。

这个问题不仅仅是数学理论上的问题,也有着实际应用中的意义。

通过研究抛物线中的等腰三角形,我们可以更深入地了解抛物线的性质和特点。

抛物线与直角三角形结合的解题方法

抛物线与直角三角形结合的解题方法

抛物线与直角三角形结合的解题方法在数学中,抛物线和直角三角形是两个常见且重要的概念。

它们在解决实际问题和理论推导中都扮演着重要的角色。

本文将探讨如何将抛物线与直角三角形结合起来,以更全面地解决一些数学问题。

一、基本概念1. 抛物线抛物线是一种特殊的曲线,其定义可以是平面内到定点和一条定直线的距离相等的点的轨迹。

抛物线在物理学、工程学和数学等领域都有着广泛的应用。

2. 直角三角形直角三角形是一种特殊的三角形,其中包含一个90度的直角。

直角三角形的性质和定理在几何学中具有重要意义,也是解决三角函数和特殊角度问题的基础。

二、抛物线与直角三角形的关系在实际问题中,抛物线与直角三角形常常会相互联系,特别是在物体的抛体运动和轨迹分析中。

当我们需要分析一个抛体运动的轨迹时,通常会涉及到抛物线的方程和直角三角形的性质。

当我们需要求解一个物体从抛出到落地的时间、速度和位置等问题时,我们可以通过解析几何的方法,将抛物线的轨迹和直角三角形的性质结合起来,从而得到更加全面和深入的解答。

三、抛物线与直角三角形结合的解题方法1. 利用抛物线方程构建直角三角形在解决与抛物线和直角三角形相关的问题时,可以先利用抛物线的方程构建出相关的直角三角形。

当我们需要分析抛体运动的轨迹时,可以通过抛物线的方程构建出相关的直角三角形,从而推导出物体的运动规律和轨迹特性。

2. 利用直角三角形的性质求解抛物线方程另一种常见的方法是利用直角三角形的性质来求解抛物线的方程。

在一些特殊的问题中,可以通过构建直角三角形、利用三角函数和三角恒等式等方法,从而简化抛物线方程的求解过程,使问题得到更加清晰和简化的解答。

四、个人观点和总结在数学问题的解决过程中,抛物线与直角三角形的结合是一种常见且有效的方法。

通过将抛物线的特性和方程与直角三角形的性质相结合,不仅可以更全面地理解和分析问题,也可以从不同角度和方法解决问题,使解题过程更灵活和丰富。

抛物线与直角三角形的结合在解决实际问题和理论推导中具有重要的意义。

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。

等腰直角三角形地全等问题

等腰直角三角形地全等问题

等腰直角三角形中的全等问题在证明三角形全等时,我们常常遇到图形中有等腰直角三角形,由于等腰直角三角形有一组直角边相等,恰恰可以为我们证明三角形全等提供必要的条件,现举几例说明。

2、已知:在等腰直角△ABC中,∠BAC=90 °,AB=AC,过点A作直线FG,过点B做BD ⊥FG于D,过点C 做CE ⊥FG于E,求证:DE=BD-CE分析:题中有几个直角,往往可以得到许多角互余,所以有一些角相等,题中有AB=AC,我们可以得到AB 与AC所在的三角形(△ABD与△CAE)全等,则BD=AE,AD=CE,结论及可证明。

证明(略)结论:一组直角边相等,思路1:可以观察两边是否在一个三角形中,若在,即这个三角形是等腰三角形思路2:若不在一个三角形中,往往可得到其所在的两个三角形有一组对应边相等,为证三角形全等奠定条件。

练习:3、在等腰直角△ABC中,∠BAC=90 °,AB=AC,BD平分∠ABC,过点C做BD的垂线CE,垂足为E,求证:CE=1/2 BD提示:可通过角平分线构建全等形,即延长CE 交BA 的延长线于F,则△BEF 与△BEC 全等,所以CF=2CE,只需证明CF=BD 即可,即证明△ABD 与△ACF 全等。

4、在等腰直角△ABC 中, ∠BAC=90 °,AB=AC,点D 为AC 的中点,AF ⊥BD 于G,过点C 做CE ∥AB,交AF 的延长线于点E,求证:EF=DF提示:要证明结论成立,需证明EF 与DF 所在的两个三角形△CFD 与△CFE 全等即可。

关键差一组边或一组角相等,有题中条件,很容易可证明△ABD 与△CAE 全等,可为证明△CFD 与△CFE 全等提供帮助。

5、如图,△ACD 和△AEB 都是等腰直角三角形,∠EAB=∠CAD=90°,求证:(1)EC=BD (2)EC ⊥BD (3)BD EC S EBCD •=21四边形 (4)S △ADE =S △ABC 6、已知:在等腰直角△ABC 中, ∠BAC=90 °,AB=AC,E 为AC 上一点,CD ⊥BE 于D,连接AD,若AD=2,CD=3,求BD 的长。

抛物线过定点问题的讨论几何图形全等变换探究

抛物线过定点问题的讨论几何图形全等变换探究

按一 定 的 方法 ( 平移 、 翻转 、 旋 转等 ) , 把 个 图形 变 成 另 一个 图形 叫 做 图形 变 换 . 若变 换 前 后 的 图形 全 等 , 即只 改 变 图形 的位 置 , 而 不 改 变 其 形状 大 小 的图 形变 换 叫做全 等变 换 . 全 等 变换 可 为研 究几 何 图形 、 证 明 几 何试 题带 来许 多方 便 . 1 . 轴对 称 变换法

. ‘
E 为A 中点 . A E = 1 AB = 4

・ . .
D E : 、 / 8 2 + 4 2 : 4 N / -  ̄ - ,
故E F + B F  ̄最 小值 为4 、 / 了.
AA B D = 3 0 o , B D= B A, 求证: AD = C D.
分析 : 由于 等腰直 角 三角 形可 看成 是 一条 对角 线将 正方形 分割 而得 的 一半 , 所 以有 关等腰 直 角三 角形 的 问题 常 见翻折 成正 方形 而使 问题得 以解 决. 证 明: 作 出点A关 于B C 的对 称 点 , 连 结 曰 、 A C 、 D, 则A C 为正 方形.
是 D的 中点 , Ⅳ是B C的中 点 , 延 长B A、 N M相 交于 点
Q, 延长C D与N M相交于 点P . 求证/ _ B Q N = C P N 。
分析 :因 为 / _B Q N与 / Ⅳ 所在 的两三 角形 不 全等, 要证它们相等, 可 通 过平 行 移 动 把 它 们移 到 同一个三 角 形 中去 , 因为 已知 、 N分别 是 两边 的 中 点, 我们 可 以考虑 用三 角形 中位线 定理 来添 辅助 线. 证明: 连 结 C, 取A C 的 中点 , 再连  ̄ d J F M、 F N,

2022-2023学年浙江省宁波镇海区六校联考九年级数学第一学期期末教学质量检测模拟试题含解析

2022-2023学年浙江省宁波镇海区六校联考九年级数学第一学期期末教学质量检测模拟试题含解析

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.下列式子中表示y 是x 的反比例函数的是( )A .24y x =-B .25y x =C .21y x =D .13y x = 2.某盏路灯照射的空间可以看成如图所示的圆锥,它的高8AO =米,底面半径6OB =米,则圆锥的侧面积是多少平方米(结果保留π). ( )A .60πB .50πC .47.5πD .45.5π3.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB 上的一点,43=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或64.一元二次方程x 2-8x -1=0配方后为( )A .(x -4)2=17B .(x +4)2=15C .(x +4)2=17D .(x -4)2=17或(x +4)2=175.如图,在平面直角坐标系中,已知点A 的坐标是(0,2),点P 是曲线(0)k y x x=>上的一个动点,作PB x ⊥轴于点B ,当点P 的橫坐标逐渐减小时,四边形OAPB 的面积将会( )A.逐渐增大B.不变C.逐渐减小D.先减小后增大6.如图放置的几何体的左视图是()A.B.C.D.7.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣12,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有()A.1个B.3个C.4个D.5个8.如图,在△ABC中,点D,E 分别在边AB,AC 上,且13AE ADAB AC==,则S△ADE:S四边形BCED 的值为()A.13B.1:3C.1:8D.1:99.如图,已知10AB=,E是AB的中点,且矩形ABDC与矩形ACFE相似,则AC长为()A.5 B.52C.42D.610.抛物线y=2x2,y=﹣2x2,y=2x2+1共有的性质是()A.开口向上B.对称轴都是y轴C.都有最高点D.顶点都是原点二、填空题(每小题3分,共24分)11.在直径为4cm的⊙O中,长度为23cm的弦BC所对的圆周角的度数为____________. 12.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.13.如图,点M是反比例函数2yx()图象上任意一点,AB⊥y轴于B,点C是x轴上的动点,则△ABC的面积为______.14.如图,在矩形ABCD中,AB=4,BC=8,将矩形沿对角线BD折叠,使点C落在点E处,BE交AD于点F,则BF的长为________.15.将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_____个圆点.16.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ABC的面积为_______________________ 17.如图,矩形ABCD中,AB=1,AD2.以A为圆心,AD的长为半径做弧交BC边于点E,则图中DE的弧长是_______.18.某水果公司以1.1元/千克的成本价购进10000kg苹果.公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分数据如下:苹果损坏的频率mn0.106 0.097 0.101 0.098 0.099 0.101估计这批苹果损坏的概率为______精确到0.1),据此,若公司希望这批苹果能获得利润13000元,则销售时(去掉损坏的苹果)售价应至少定为______元/千克.三、解答题(共66分)19.(10分)如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:=OE•OF.20.(6分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为32,AC=2,求sin B的值.21.(6分)爱好数学的甲、乙两个同学做了一个数字游戏:拿出三张正面写有数字﹣1,0,1且背面完全相同的卡片,将这三张卡片背面朝上洗匀后,甲先随机抽取一张,将所得数字作为p的值,然后将卡片放回并洗匀,乙再从这三张卡片中随机抽取一张,将所得数字作为q值,两次结果记为(,)p q.(1)请你帮他们用树状图或列表法表示(,)p q所有可能出现的结果;(2)求满足关于x 的方程20x px q ++=没有实数根的概率.22.(8分)如图,射线MN 表示一艘轮船的航行路线,从M 到N 的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,A 处到M 处的距离为200海里.(1)求点A 到航线MN 的距离.(2)在航线MN 上有一点B .且23MAB ∠=︒,若轮船沿的速度为50海里/时,求轮船从M 处到B 处所用时间为多少小时.(参考数据:tan 230.424,tan370.754,3 1.732︒≈︒≈≈)23.(8分)如图,点C 在以AB 为直径的圆上,D 在线段AB 的延长线上,且CA=CD ,BC=BD .(1)求证:CD 与⊙O 相切;(2)若AB=8,求图中阴影部分的面积.24.(8分)元旦游园活动中,小文,小美,小红三位同学正在搬各自的椅子准备进行“抢凳子”游戏,看见李老师来了,小文立即邀请李老师参加,游戏规则如下:将三位同学的椅子背靠背放在教室中央,四人围着椅子绕圈行走,在行走过程中裁判员随机喊停,听到“停”后四人迅速抢坐在一张椅子上,没有抢坐到椅子的人淘汰,不能进入下一轮游戏. (1)下列事件是必然事件的是 .A .李老师被淘汰B .小文抢坐到自己带来的椅子C .小红抢坐到小亮带来的椅子D .有两位同学可以进入下一轮游戏(2)如果李老师没有抢坐到任何一张椅子,三位同学都抢坐到了椅子但都没有抢坐到自己带来的椅子(记为事件A ),求出事件A 的概率,请用树状图法或列表法加以说明.25.(10分)“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加小时,求m 的值.26.(10分)如图,AD 、A ′D ′分别是△ABC 和△A ′B ′C ′的中线,且AB BD AD A B B D A D ==''''''.判断△ABC 和△A ′B ′C ′是否相似,并说明理由.参考答案一、选择题(每小题3分,共30分)1、D【解析】根据反比例函数的定义逐项分析即可.【详解】A. 24y x =-是一次函数,故不符合题意;B. 25y x =二次函数,故不符合题意;C. 21y x =不是反比例函数,故不符合题意; D. 13y x =是反比例函数,符合题意; 故选D.【点睛】本题考查了反比例函数的定义,一般地,形如k y x=(k 为常数,k ≠0)的函数叫做反比例函数.2、A【分析】根据勾股定理求得AB ,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=12lr ,求得答案即可. 【详解】解:∵AO=8米,OB=6米,∴AB=10米,∴圆锥的底面周长=2×π×6=12π米,∴S 扇形=12lr=12×12π×10=60π(米2). 故选:A .【点睛】本题考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,熟知圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.3、D【分析】分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN AC AC CB =,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =1,BC =8,∴CMB CAB CAN ∠>∠>∠,AB=10,CAN CAB ∴∠≠∠, 设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽,∴CN AC AC CB =, ∴3668k =, 32k ∴=, 6BM ∴=.②当CAN MCB ∠=∠时,如图2中,过点M 作MH CB ⊥,可得BMH BAC ∆∆∽,∴BM MH BH BA AC BC ==, ∴41068k MH BH ==, 125MH k ∴=,165BH k =, 1685CH k ∴=-, MCB CAN ∠=∠,90CHM ACN ∠=∠=︒,ACN CHM ∴∆∆∽, ∴CN MH AC CH=, ∴123516685k k k =-, 1k ∴=,4BM ∴=.综上所述,4BM =或1.故选:D .【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.4、A【解析】x 2-8x -1=0,移项,得x 2-8x =1,配方,得x 2-8x +42=1+42,即(x -4)2=17.故选A.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.5、C【分析】设点P 的坐标,表示出四边形OAPB 的面积,由反比例函数k 是定值,当点P 的横坐标逐渐减小时,四边形OAPB 的面积逐渐减小.【详解】点A(0,2),则OA=2, 设点k P x x ⎛⎫ ⎪⎝⎭,,则k OB x PB x==,, ()AOBP 1112222k S OA PB OB x k x x ⎛⎫=+=+=+ ⎪⎝⎭四边形,∵k 为定值,∴随着点P 的横坐标x 的逐渐减小时,四边形AONP 的面积逐渐减小故选:C .【点睛】考查反比例函数k 的几何意义,用点的坐标表示出四边形的面积是解决问题的关键.6、C【分析】左视图可得一个正方形,上半部分有条看不到的线,用虚线表示.【详解】解:左视图可得一个正方形,上半部分有条看不到的线,用虚线表示.故选C .【点睛】本题考查简单组合体的三视图.7、B【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-2b a=1,即b=-4a ,变形为4a+b=0,所以(1)正确; 由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(1)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+1c=7a+11a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+1c <0,故(3)不正确;根据图像可知当x <1时,y 随x 增大而增大,当x >1时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 1)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 1,故(4)不正确;根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 1,且x 1<x 1,则x 1<﹣1<x 1,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 1+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 1﹣4ac >0时,抛物线与x 轴有1个交点;△=b 1﹣4ac=0时,抛物线与x 轴有1个交点;△=b 1﹣4ac <0时,抛物线与x 轴没有交点. 8、C【分析】易证△ADE ∽△ABC ,然后根据相似三角形面积的比等于相似比的平方,继而求得S △ADE :S 四边形BCED 的值. 【详解】∵13AE AD AB AC ==,∠A =∠A ,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:9,∴S△ADE:S四边形BCED=1:8,故选C.【点睛】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.9、B【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:∵矩形ABDC与矩形ACFE相似,∴AE AC AC AB=,∵10AB=,E是AB的中点,∴AE=5∴510AC AC=,解得,,故选B.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.10、B【详解】(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=2x2+1开口向上,对称轴为y轴,有最低点,顶点为(0,1).故选B.二、填空题(每小题3分,共24分)11、60°或120°【分析】如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出∠OCF的大小,进而求出∠BOC的大小,再由圆周角定理可求出∠D、∠E大小,进而得到弦BC所对的圆周角.【详解】解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为∠D或∠E,如下图所示,作OF⊥BC,由垂径定理可知,F为BC的中点,∴CF=BF=12BC=3cm,又直径为4cm,∴OC=2cm,在Rt△AOC中,cos∠OCF=32CFOC,∴∠OCF=30°,∵OC=OB,∴∠OCF=∠OBF=30°,∴∠COB=120°,∴∠D=12∠COB=60°,又圆内接四边形的对角互补,∴∠E=120°,则弦BC所对的圆周角为60°或120°.故答案为:60°或120°.【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键.12、2 3【详解】画树状图得:∵共有6种等可能的结果,甲、乙二人相邻的有4种情况,∴甲、乙二人相邻的概率是:4263=. 13、1 【解析】解:设A 的坐标是(m ,n ),则mn =2,则AB =m ,△ABC 的AB 边上的高等于n ,则△ABC 的面积=12mn =1.故答案为1. 点睛:本题主要考查了反比例函数的系数k 的几何意义,△ABC 的面积=12|k |,本知识点是中考的重要考点,同学们应高度关注.14、5【解析】由翻折的性质可以知道EBD CBD ∠=∠,由矩形的性质可以知道: AD BC ∥,从而得到DBC ADB ∠=∠,于是EBD ADB ∠=∠,故此BF=DF,在AFB ∆中利用勾股定理可求得BF 的长.【详解】由折叠的性质知,CD=ED,BE=BC.四边形ABCD 是矩形,在ABF ∆和EDF ∆中,090BAF DEF AFB EFD AB ED∠=∠=∠=∠=⎧⎪⎨⎪⎩, ()ABF EDF AAS ∴∆≅∆,BF DF ∴=;设BF=x,则DF=x,AF=8-x,在Rt AFB ∆中,可得: 222BF AB AF =+,即()22248x x =+-,计算得出:x=5,故BF 的长为5.因此,本题正确答案是:5【点睛】本题考查了折叠的性质折叠前后两图形全等,即对应线段相等,对应角相等,也考查了勾股定理,矩形的性质. 15、1【分析】观察图形可知,每个图形中圆点的个数为序号数的平方加上序号数+1,依此可求第n 个图有多少个圆点.【详解】解:由图形可知,第1个图形有12+1+1=3个圆点;第2个图形有22+2+1=7个圆点;第3个图形有32+3+1=13个圆点;第4个图形有42+4+1=21个圆点;…则第n 个图有(n 2+n +1)个圆点;所以第20个图形有202+20+1=1个圆点.故答案为:1.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.16、3【分析】根据解析式求出A 、B 、C 三点的坐标,即△ABC 的底和高求出,然后根据公式求面积.【详解】根据题意可得:A 点的坐标为(1,0),B 点的坐标为(3,0),C 点的坐标为(0,3),则AB=2,所以三角形的面积=2×3÷2=3. 考点:二次函数与x 轴、y 轴的交点.17【分析】根据题意可得,则可以求出sin∠AEB,可以判断出可判断出∠AEB=45°,进一步求解∠DAE=∠AEB=45°,代入弧长得到计算公式可得出弧DE 的长度.【详解】解:∵AD 半径画弧交BC 边于点E ,∴,又∵AB=1,∴sin2AB AEB AE ∠=== ∴∠AEB=45°,∵四边形ABCD 是矩形∴AD ∥BC∴∠DAE=∠AEB=45°,故可得弧DC 的长度为=452180π⋅⋅=4π,故答案为:4π. 【点睛】 此题考查了弧长的计算公式,解答本题的关键是求出∠DAE 的度数,要求我们熟练掌握弧长的计算公式及解直角三角形的知识.18、0.2 3【分析】根据利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.2左右,由此可估计苹果的损坏概率为0.2;根据概率计算出完好苹果的质量为20000×0.9=9000千克,设每千克苹果的销售价为x元,然后根据“售价=进价+利润”列方程解答.【详解】解:根据表中的损坏的频率,当实验次数的增多时,苹果损坏的频率越来越稳定在0.2左右,所以苹果的损坏概率为0.2.根据估计的概率可以知道,在20000千克苹果中完好苹果的质量为20000×0.9=9000千克.设每千克苹果的销售价为x元,则应有9000x=2.2×20000+23000,解得x=3.答:出售苹果时每千克大约定价为3元可获利润23000元.故答案为:0.2,3.【点睛】本题考查了利用频率估计概率:用到的知识点为:频率=所求情况数与总情况数之比.得到售价的等量关系是解决(2)的关键.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由EC∥AB,∠EDA=∠ABF,可证得∠DAB=∠ABF,即可证得AD∥BC,则得四边形ABCD 为平行四边形;(2)由EC∥AB,可得OA OBOE OD=,由AD∥BC,可得OB OFOD OA=,等量代换得出OA OFOE OA=,即2OA=OE•OF.试题解析:(1)∵EC∥AB,∴∠EDA=∠DAB,∵∠EDA=∠ABF,∴∠DAB=∠ABF,∴AD∥BC,∵DC∥AB,∴四边形ABCD为平行四边形;(2)∵EC∥AB,∴△OAB∽△OED,∴OA OBOE OD=,∵AD∥BC,∴△OBF∽△ODA,∴OB OFOD OA=,∴OA OFOE OA=,∴2OA=OE•OF.考点:相似三角形的判定与性质;平行四边形的判定与性质.20、2 3【解析】试题分析:求角的三角函数值,可以转化为求直角三角形边的比,连接DC.根据同弧所对的圆周角相等,就可以转化为:求直角三角形的锐角的三角函数值的问题.试题解析:解:连接DC.∵AD是直径,∴∠ACD=90°.∵∠B=∠D,∴sin B=sin D=ACAD=23.点睛:综合运用了圆周角定理及其推论.注意求一个角的锐角三角函数时,能够根据条件把角转化到一个直角三角形中.21、(1)见解析(2)13【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得满足关于x 的方程20x px q ++=没有实数解的有:(-1,1),(0,1),(1,1),再利用概率公式即可求得答案.【详解】(1)画树状图得:则共有9种等可能的结果;(2)方程20x px q ++=没有实数解,即△=p 2−4q<0,由(1)可得:满足△=p 2−4q<0的有:(−1,1),(0,1),(1,1),∴满足关于x 的方程x2+px+q=0没有实数解的概率为:31=93【点睛】此题考查列表法与树状图法,根的判别式,掌握运算法则是解题关键22、(1)100海里(2)约为1.956小时【分析】(1)过A 作AH ⊥MN 于H .由方向角的定义可知∠QMB=30°,∠QMA=60°,那么∠NMA=∠QMA-∠QMB=30°.解直角△AMH 中,得出AH=12AM ,问题得解; (2)先根据直角三角形两锐角互余求出∠HAM=60°,由∠MAB=15°,得出∠HAB=∠HAM-∠MAB=45°,那么△AHB 是等腰直角三角形,求出BH=AH 距离,然后根据时间=路程÷速度即可求解.【详解】解:(1)如图,过A 作AH MN ⊥于H .∵30,60QMB QMA ∠=︒∠=︒,∴30NMA QMA QMB ∠=∠-∠=︒在直角AMH 中,∵90AHM ∠=︒,30AMH ∠=︒,200AM =海里, ∴11002AH AM ==海里. 答:点A 到航线MN 的距离为100海里.(2)在直角AMH 中,90,30AHM AMH ∠=︒∠=︒,由(1)可知1003MH =,∵23MAB ∠=︒∴602337,BH BAN tan BAH AH∠=︒-︒=︒∠=, ∴100310037173.275.497.8BM MH BH tan =-=-⋅︒≈-=,∴轮船从M 处到B 处所用时间约为97.850 1.956÷=小时.答:轮船从M 处到B 处所用时间约为1.956小时.【点睛】本题考查了解直角三角形的应用-方向角问题,含30°角的直角三角形的性质,等腰直角三角形的判定与性质,直角三角形两锐角互余的性质,准确作出辅助线构造直角三角形是解题的关键.23、(1)见解析; (2)8833π 【分析】(1)连接OC ,由圆周角定理得出∠ACB=90°,即∠ACO+∠BCO=90°,由等腰三角形的性质得出∠A=∠D=∠BCD ,∠ACO=∠A ,得出∠ACO=∠BCD ,证出∠DCO=90°,则CD ⊥OC ,即可得出结论;(2)证明OB=OC=BC ,得出∠BOC=60°,∠D=30°,由直角三角形的性质得出33面积=△OCD 的面积-扇形OBC 的面积,代入数据计算即可.【详解】证明:连接OC ,如图所示:∵AB是⊙O的直径,∴∠ACB=90°,即∠ACO+∠BCO=90°,∵CA=CD,BC=BD,∴∠A=∠D=∠BCD,又∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCD,∴∠BCD+∠BCO=∠ACO+∠BCO=90°,即∠DCO=90°,∴CD⊥OC,∵OC是⊙O的半径,∴CD与⊙O相切;(2)解:∵AB=8,∴OC=OB=4,由(1)得:∠A=∠D=∠BCD,∴∠OBC=∠BCD+∠D=2∠D,∵∠BOC=2∠A,∴∠BOC=∠OBC,∴OC=BC,∵OB=OC,∴OB=OC=BC,∴∠BOC=60°,∵∠OCD=90°,∴∠D=90°-60°=30°,∴33∴图中阴影部分的面积=△OCD的面积-扇形OBC的面积=12×4×32604360π383π.【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的判定与性质、等边三角形的判定与性质、含30°角的直角三角形的性质、扇形面积公式、三角形面积公式等知识;熟练掌握切线的判定和圆周角定理是解题的关键.24、(1)D;(2)图见解析,1 3【分析】(1)根据随机事件、必然事件和不可能事件的定义求解可得;(2)根据题意画出树状图列出所有等可能结果,再根据概率公式求解可得.【详解】解:(1)A、王老师被淘汰是随机事件;B、小明抢坐到自己带来的椅子是随机事件;C、小红抢坐到小亮带来的椅子是随机事件;D、共有3张椅子,四人中只有1位老师,所以一定有2位同学能进入下一轮游戏;故是必然事件.故选:D;(2)解:设小文,小美,小红三位同学带来的椅子依次排列为a、b、c,画树状图如下由树状图可知,所有等可能结果共有6种,其中第4种、第5种结果符合题意,∴P(A)=21 63 =.【点睛】此题考查了概率和用树状图法与列表法求概率.树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.25、(2)2600;(2)2.【分析】(2)利用“从重庆到上海比原铁路全程缩短了32千米,列车设计运行时速比原铁路设计运行时速提高了l2千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用26小时”,分别得出等式组成方程组求出即可;(2)根据题意得出:进而求出即可.【详解】试题解析:(2)设原时速为xkm/h,通车后里程为ykm,则有:,解得:,答:渝利铁路通车后,重庆到上海的列车设计运行里程是2600千米;(2)由题意可得出:, 解得:,(不合题意舍去),答:m 的值为2.考点:2.一元二次方程的应用;二元一次方程组的应用.26、△ABC ∽△A 'B 'C ',理由见解析【分析】由题意知,根据相似三角形的判定定理:三边对应成比例的两个三角形相似,可证得△ABD ∽△A 'B 'D ',进而可得∠B =∠B ',再根据两边对应成比例及其夹角相等的两个三角形相似,即可得△ABC ∽△A 'B 'C '.【详解】△ABC ∽△A 'B 'C ', 理由:∵==''''''AB BD AD A B B D A D ∴△ABD ∽△A 'B 'D ',∴∠B =∠B ',∵AD 、A 'D '分别是△ABC 和△A 'B 'C '的中线 ∴12BD BC =,1''''2B D BC =, ∴12==1''''''2BC AB BC A B B C B C , 在△ABC 和△A 'B 'C '中 ∵=''''AB BC A B B C ,且∠B =∠B ' ∴△ABC ∽△A 'B 'C '.【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定定理:三边对应成比例的两个三角形相似;两边对应成比例及其夹角相等的两个三角形相似.。

2023学年二轮复习解答题专题三十五:抛物线上有关等腰直角三角形问题的探究(原卷版)

2023学年二轮复习解答题专题三十五:抛物线上有关等腰直角三角形问题的探究(原卷版)

2023学年二轮复习解答题专题三十五:抛物线上有关等腰直角三角形问题的探究典例分析例1 (2022枣庄中考)(12分)如图①,已知抛物线L :y =x 2+bx +c 的图象经过点A (0,3),B (1,0),过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当△OPE 面积最大时,求出P 点坐标;(3)将抛物线L 向上平移h 个单位长度,使平移后所得抛物线的顶点落在△OAE 内(包括△OAE 的边界),求h 的取值范围;(4)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P ,使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.专题过关1. (2022吉林中考)如图,在平面直角坐标系中,抛物线2y x bx c =++(b ,c 是常数)经过点(1,0)A ,点(0,3)B .点P 在此抛物线上,其横坐标为m .(1)求此抛物线的解析式;(2)当点P 在x 轴上方时,结合图象,直接写出m 的取值范围;(3)若此抛物线在点P 左侧部分(包括点P )的最低点的纵坐标为2m -.①求m 值;②以PA 为边作等腰直角三角形PAQ ,当点Q 在此抛物线的对称轴上时,直接写出点Q 的坐标.2. (2022陕师大附中三模)如图,在平面直角坐标系中,抛物线M 的表达式为y =﹣12x 2+2x ,与x 轴交于O 、A 两点,顶点为点B .(1)求证:△OAB 为等腰直角三角形:(2)已知点P 在y 轴上,且OP =1,点C 在第一象限,△ABC 为等腰直角三角形,将抛物线M 进行平移,使其对称轴经过点C ,请问平移后的抛物线能否经过点P ?如果能,求出平移方式;如果不能,说明理由.3.(2022西安高新一中三模)已知抛物线L :y =x 2﹣4x +2,其顶点为C .(1)求点C 的坐标;(2)若M 为抛物线L 上一点,抛物线L 关于点M 所在直线x =m 对称的抛物线为L ',点C 的对应点为C ',在抛物线L 上是否存在点M ,使得△CMC ′为等腰直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.的4.(2022山西一模) 如图,在平面直角坐标系中,抛物线2y x bx c =-++的图象与坐标轴相交于A ,B ,C 三点,其中A 点坐标为(3,0),B 点坐标为(1,0)-,连接AC ,BC .动点P 从A 点出发,在线段AC 个单位长度向点C 做匀速运动;同时,动点Q 从B 点出发,在段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)b =________,c =________;(2)在P ,Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少?(3)在线段AC 上方的抛物线上是否存在点M ,使MPQ V 是以点P 为直角顶点的等腰直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.5. (2022运城二模)如图,已知抛物线28y ax bx =+-与x 轴交于点(2,0)A -,(8,0)B 两点,与y 轴交于点C ,点P 是直线BC 下方抛物线上一动点,过点P 作直线PE y ∥轴,交直线BC 于点D ,交x 轴于点F ,以PD 为斜边,在PD 的右侧作等腰直角V PDF .(1)求抛物线的表达式,并直接写出直线BC 的表达式;(2)设点P 的横坐标为m (03m <<),在点P 运动的过程中,当等腰直角V PDF 的面积为9时,请求出m 的值;(3)连接AC ,该抛物线上是否存在一点M ,使ACO BCM ABC ÐÐ=Ð+,若存在,请直接写出所有符合条件的点M 的坐标,若不存在,请说明理由.6. (2022太原二模)综合与探究:如图,已知直线1233y x =-+和抛物线253y x bx c =-++相交于点()1,1A -和点20,3B æöç÷èø,与x 轴相交于点C .(1)求抛物线的函数表达式和点C 的坐标;(2)已知点D 的坐标为()0,1-,判断ACD △的形状,并说明理由;(3)试探究在抛物线上是否存在点P ,使得ACP △为等腰直角三角形,若存在,求出点P 的坐标;若不存在,请说明理由.7.(2021怀化中考)(14分)如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =2,OB =4,OC =8,抛物线的对称轴与直线BC 交于点M ,与x 轴交于点N .(1)求抛物线的解析式;(2)若点P 是对称轴上的一个动点,是否存在以P 、C 、M 为顶点的三角形与△MNB 相似?若存在,求出点P 的坐标,若不存在,请说明理由;(3)D 为CO 的中点,一个动点G 从D 点出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .要使动点G 走过的路程最短,请找出点E 、F 的位置,写出坐标,并求出最短路程.(4)点Q 是抛物线上位于x 轴上方的一点,点R 在x 轴上,是否存在以点Q 为直角顶点的等腰Rt △CQR ?若存在,求出点Q 的坐标,若不存在,请说明理由.8. (2021广安中考)如图,在平面直角坐标系中,抛物线2y x bx c =-++的图象与坐标轴相交于A 、B 、C 三点,其中A 点坐标为()3,0,B 点坐标为()1,0-,连接AC 、BC .动点P 从点A 出发,在线段AC 个单位长度向点C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)求b 、c 的值;(2)在P 、Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少?(3)在线段AC 上方的抛物线上是否存在点M ,使MPQ V 是以点P 为直角顶点的等腰直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.9. (2021张家界中考)如图,已知二次函数2y ax bx c =++的图象经过点(2,3)C -且与x 轴交于原点及点(8,0)B .(1)求二次函数的表达式;(2)求顶点A 的坐标及直线AB 的表达式;(3)判断ABO V 的形状,试说明理由;(4)若点P 为O e 上的动点,且O e 的半径为,一动点E 从点A 出发,以每秒2个单位长度的速度沿线段AP 匀速运动到点P ,再以每秒1个单位长度的速度沿线段PB 匀速运动到点B 后停止运动,求点E 的运动时间t 的最小值.10 .(2021上海中考)已知抛物线2y ax c(a 0)=+¹经过点P(3,0)、Q(1,4).(1)求抛物线的解析式;(2)若点A 在直线PQ 上,过点A 作AB ⊥x 轴于点B ,以AB 为斜边在其左侧作等腰直角三角形ABC ,①当Q 与A 重合时,求C 到抛物线对称轴的距离;②若C 落在抛物线上,求C 的坐标.11.(2021衡阳中考)(12分)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)…都是“雁点”.(1)求函数y =图象上的“雁点”坐标;(2)若抛物线y =ax 2+5x +c 上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当a >1时.①求c 的取值范围;②求∠EMN 的度数;(3)如图,抛物线y =﹣x 2+2x +3与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线y=﹣x2+2x+3上一点,连接BP,以点P为直角顶点,构造等腰Rt△BPC,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.12.(2021随州中考)(12分)在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A (﹣1,0)和点B,与y轴交于点C,顶点D的坐标为(1,﹣4).(1)直接写出抛物线的解析式;(2)如图1,若点P在抛物线上且满足∠PCB=∠CBD,求点P的坐标;(3)如图2,M是直线BC上一个动点,过点M作MN⊥x轴交抛物线于点N,Q是直线AC上一个动点,当△QMN为等腰直角三角形时,直接写出此时点M及其对应点Q 的坐标.13.(2021黄石中考)(12分)抛物线y=ax2﹣2bx+b(a≠0)与y轴相交于点C(0,﹣3),且抛物线的对称轴为x=3,D为对称轴与x轴的交点.(1)求抛物线的解析式;(2)在x轴上方且平行于x轴的直线与抛物线从左到右依次交于E、F两点,若△DEF 是等腰直角三角形,求△DEF的面积;(3)若P(3,t)是对称轴上一定点,Q是抛物线上的动点,求PQ的最小值(用含t的代数式表示).。

22.C专题 巧用等腰直角三角形构造全等

22.C专题  巧用等腰直角三角形构造全等

专题 巧用等腰直角三角形构造全等方法技巧:遇到等腰直角三角形时,常可过斜边的两端点向过直角顶点的直线作垂线构造全等三角形.基本图形:如图,若AB =AC ,AB ⊥AC ,则可过斜边的两端点B 、C 向过A 点的直线作垂线构造△ABD ≌△CAE .在坐标系中,过顶点A 的直线常为x 轴或y 轴.01.如图,△ABC 中,AB =BC ,AB ⊥BC ,B (0,2),C (-2,2),求点A 的坐标.【解答】:解:作CM ⊥y 轴于M ,△AOB ≌△BCM ,A (-4,0).点评:过A 、C 向过B 点的y 轴作垂线,构造△AOB ≌△BCM .02. 如图,四边形ABCE 中,AB =BC ,AB ⊥BC ,CE ⊥AE ,BD ⊥AE 于D .求证:BD -CE =A D .【解答】:证法一:作CM ⊥BD 于M ,△BCM ≌△AB D .证法二:过B 作直线l ∥AE ,作AF ⊥l 于F ,CG ⊥l 于G ,△AFB ≌△BG C . 点评:过A 、C 向过B 点的直线BD 作垂线,构造△BCM ≌△AB D .A BCDEA B D E AB C DE03. 如图,△ABC 中,AB =AC ,∠BAC =90°,D 为BC 上一点,过D 作DE ⊥AD ,且DE =AD ,连BE ,求∠DBE 的度数.【解答】:解法一:作AM ⊥BC 于M ,作EN ⊥BC 于N ,△AMD ≌△DNE .AM =DN =BM ,DM =EN =BN ,∴∠DBE =45°.解法二:过D 作DF ⊥BD 交BA 的延长线于F ,△ADF ≌△EDB , ∠DBE=∠F =45°.点评:过A 、E 向过D 点的直线BC 作垂线,构造△AMD ≌△DNE .04. 如图,OA =OB ,OA ⊥OB ,∠ASO =135°,求证:AS ⊥BS .【解答】:证法一:作BM ⊥OS 于M ,作AN ⊥OS 于N ,△BOM ≌△OAN .AN =SN =OM ,ON =BM =MS ,∴∠BSO =45°,∴AS ⊥BS .证法二:作OE ⊥OS 交AS 的延长线于E ,△OAE ≌△OSB , ∠A =∠B ,∴∠ASB =∠AOB =90°.点评:过A 、B 向过O 点的直线OS 作垂线,构造△BOM ≌△OAN . AB SO AB C M ND E ABC D E A BC D E MA B S O MN。

专题04 “一线三垂直”模型及其变形的应用(知识解读)-备战2023年中考数学《重难点解读专项训练

专题04  “一线三垂直”模型及其变形的应用(知识解读)-备战2023年中考数学《重难点解读专项训练

专题04 “一线三垂直”模型及其变形的应用(知识解读)【专题说明】一线三垂直问题,通常问题中有一线段绕某一点旋转90°,或者问题中有矩形或正方形的情况下考虑,作辅助线,构造全等三角形形或相似三角形,建立数量关系使问题得到解决。

【方法技巧】模型1 “全等型”一线三垂直模型如图一,∠D=∠BCA=∠E=90°,BC=AC 。

结论:Rt △BDC ≌Rt △CEA图1 应用:(1)通过证明全等实现边角关系的转化,便于解决对应的几何问题; (2)平面直角坐标系中有直角求点的坐标,可以考虑作辅助线构造“三垂直”作辅助线的程序:过直角顶点再直角外部作水平线或竖直线,过另外两个顶点向上述直线作垂线段,即可得到“三垂直”模型。

如下图所示模型2 “相似型”一线三垂直模型如图2,ABD ADE C B ∆⇒∠=∠=∠∽DCE ∆(一线三直角)CDEBA应用:(1)“相似型”三垂直基本应用(2)平面直角坐标系中构造“相似型”三垂直。

作辅助线方法和模型1一样(3)平面直角坐标系中运动成直角【典例分析】【应用1 “全等型”三垂直基本应用】【典例1】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.【变式1-1】如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD等于()A.6cm B.8cm C.10cm D.4cm【变式1-2】在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l 的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE 的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.【应用2 平面直角坐标系中构造“全等型”三垂直】【典例2】已知:在平面直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点.(1)如图1,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,若OA=2,OB=4,求C点的坐标;(2)如图2,若点A的坐标为(﹣2,0),点B的坐标为(0,﹣m),点D的纵坐标为n,以B为顶点,BA为腰作等腰Rt△ABD.当B点沿y轴负半轴向下运动且其他条件都不变时,整式4m+4n﹣9的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,若OA=OB,OF⊥AB于点F,以OB为边作等边△OBM,连接AM交OF 于点N,若AN=m,ON=n,请直接写出线段AM的长.【变式2-1】如图所示,在平面直角坐标系中,等腰Rt△ABC的直角顶点C在x轴上,点A 在y轴上,若点B坐标为(6,1),则点A坐标为()A.(4,0)B.(5,0)C.(0,4)D.(0,5)【变式2-2】如图,在△PMN中,PM=PN,PM⊥PN,P(0,2),N(2,﹣2),则M的坐标是()A.(﹣2,0)B.(﹣2,0)C.(﹣2,0)D.(﹣4,0)【应用3 “相似型”三垂直基本应用】【典例3】已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:=;(2)若OP与P A的比为1:2,求边AB的长.【变式3】如图,在矩形ABCD中,E,F,G分别在AB,BC,CD上,DE⊥EF,EF⊥FG,BE=3,BF=2,FC=6,则DG的长是()A.4B.C.D.5【应用4 平面直角坐标系中构造“相似型”三垂直】【典例4】如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+2与y轴交于点A,与x轴交于点B,且OB=2OA.(1)如图1,求直线的解析式;(2)如图2,点P在第三象限的直线AB上,点C在点A上方的y轴上,连接PC、BC,PC交x轴于点N,且tan∠APC=,设点P的横坐标为t,△ABC的面积为S,求S与t的函数关系;(3)如图3,在(2)的条件下,点D在y轴的负半轴上,点E为AB的中点,连接DE、PD,AD=ON,当∠PDE=∠PCD时,求点D的坐标.【变式4】(2022•禅城区二模)如图,抛物线经过原点O,对称轴为直线x=2且与x轴交于点D,直线l:y=﹣2x﹣1与y轴交于点A,与抛物线有且只有一个公共点B,并且点B在第四象限,直线l与直线x=2交于点C.(1)连接AD,求证:AD⊥AC.(2)求抛物线的函数关系式.(3)在直线l上有一点动点P,抛物线上有一动点Q,当△PBQ是以PQ为斜边的等腰直角三角形时,直接写出此时点P的坐标.【应用5平面直角坐标系中运动成直角】【典例5】如图,已知抛物线y=﹣x2+与x轴交于点A、B,与y轴交于点C.(1)则点A的坐标为,点B的坐标为,点C的坐标为;(2)设点P(x1,y1),Q(x2,y2)(其中x1>x2)都在抛物线上,若x1+x2=1,请证明:y1>y2;(3)已知点M是线段BC上的动点,点N是线段BC上方抛物线上的动点,若∠CNM =90°,且△CMN与△OBC相似,试求此时点N的坐标.【变式5】(2022•碑林区校级四模)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c 交x轴于点A(﹣5,0),B(﹣1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,点E为抛物线C2上一点若△DOE是以DO为直角边的直角三角形,求点E的坐标.专题04 “一线三垂直”模型及其变形的应用(知识解读)【专题说明】一线三垂直问题,通常问题中有一线段绕某一点旋转90°,或者问题中有矩形或正方形的情况下考虑,作辅助线,构造全等三角形形或相似三角形,建立数量关系使问题得到解决。

2022年浙江省温州市鹿城区中考二模考试 数学 试题(学生版+解析版)

2022年浙江省温州市鹿城区中考二模考试 数学 试题(学生版+解析版)
故选:C.
【点睛】考核知识点:众数定义.牢记众数定义即可求解.
7.如图A,B,C是 上的三个点,若 ,则 等于()
A. 50°B. 80°C. 100°D. 130°
【答案】D
【解析】
【详解】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.
24.在Rt△ABC中,AB= ,BC= ,过点C作CG AB,CF平分∠ACD交射线BA于点F,D是射线CG上的一个动点,连接AD交CF于点E.
(1)求CF的长.
(2)当△ACE是等腰三角形时,求CD 长.
(3)当B关于AD的对称点B'落在CF上时,求 的值.
2022年初中毕业水平模拟检测
数学试题卷
故选:A.
【点睛】本题考查简单几何体 三视图,主视图就是从正面看该物体所得到的图形,掌握常见几何体的三视图是解题的关键.
4.为了吸引广大消费者的积极性,某公司推出一款盲盒产品(所有盲盒的外观重量等均相同).其中有常规款及隐藏款(“大隐藏”、“小隐藏”).已知每1000个盲盒中常规款有960个,“小隐藏”30个,“大隐藏”10个.现随机抽取1盒,抽取到的是“大隐藏”的概率为( )
A. B. C. D.
【答案】B
【解析】
【分析】根据概率的计算公式即可求解.
【详解】解:抽取到的是“大隐藏”的概率为 .
【点睛】本题主要考查了概率的计算公式.
5.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D的度数为( )
A.85°B.75°C.65°D.30°
【答案】B
2022年初中毕业水平模拟检测

专题:抛物线中等腰,直角三角形

专题:抛物线中等腰,直角三角形
(3)在(2)的结论
下,直线x=1上是否 存在点M,使△MPQ
为等腰三角形?若存在,
请求出所有点M的坐标;
若不存在,请说明理 由.
2.如图,抛物线y=x2-bx-5与x轴交于A、B两点(点A在 点B的左侧),与y轴交于点C,点C与点F关于抛物线的 对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1. (1)求抛物线及直线AF的解析式;
C
若存在,求出所有符合
条件的点P的坐标;若不 存在,请说明理由.
O
AD
B
x
图9
1. 已知抛物线y=ax 2+bx+c(a>0)的图象经过点B(12, 0)和C(0,-6),对称轴为直线x=2. (1)求该抛物线的解析式: (2)点D在线段AB上且AD=AC,若动点P从A出发沿线段 AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某 一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使 线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒) 和点Q的运动速度;若不存在,请说明理由;
题型1.一动点类型
C
C
C
C
自学检测2(5分钟)
如图,已知抛物线y=-1/4x2+bx+4与x轴相交于A、B两 点,与y轴相交于点C,若已知A点的坐标为A(-2,0)
((14))求在抛抛物物线线的的解对析称式轴及上它是的否对存称在轴方点程Q,;使△ACQ 为(2等)腰求三点角C的形坐?标若,存连在接,AC求、出BC符并合求条线段件B的C所Q点在坐直标线; 若的解不析存式在;,请说明理由
3
两线一圆
4.如图,已知二次函数y=ax2+2x+3的图象与x轴交 于点A、点B,与y轴交于点C,其顶点为D, tan∠OBC=1 ((14))求在点该B二的次坐函标数;的图象上是否存在点P(点P (与2点)B求、aC的不值重和合二)次,函使数得y△=aPxB2C+是2x以+3B的C为顶一点条坐直标; (角3边)的求直直角线三DC角的形解?析若式存;在,求出点P的坐标, 若不存在,请你说明理由

专题55:第12章压轴题之动态几何类-备战2021中考数学解题方法系统训练(全国通用)(解析版)

专题55:第12章压轴题之动态几何类-备战2021中考数学解题方法系统训练(全国通用)(解析版)

55第12章压轴题之动态几何类一、单项选择题1.如图,在四边形ABCD 中,//AD BC ,6AD =,16BC =,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.假设以点,,,P Q E D 为顶点的四边形是平行四边形,那么点P 运动的时间为〔 〕A .1B .72C .2或72D .1或72【答案】D【分析】要使得以P 、Q 、E 、D 为顶点的四边形是平行四边形,//AD BC ,即要使PD=EQ 即可,设点P 的运动时间为t (0≤t ≤6) 秒,分别表示出PD,EQ 的长度,根据PD=EQ 列方程求解即可.【解答】设点P 的运动时间为t (0≤t ≤6) 秒,那么AP=t ,CQ=3t ,由E 是BC 的中点可得:BE=EC=8,要使得以P 、Q 、E 、D 为顶点的四边形是平行四边形,//AD BC ,即要使PD=EQ 即可.〔1〕如图:点Q 位于点E 右侧时,PD=6-t ,CQ=3t ,EQ=8-3t ,6-t =8-3t ,t =1〔秒〕;〔2〕如图:点Q 位于点E 左侧时,PD=6-t ,CQ=3t ,EQ=3t -8,6-t =3t -8,t =72〔秒〕. 综上所述:P 的运动时间为1或72秒. 应选:D .【点评】此题主要考查平行四边形的判定方法以及一元一次方程的应用,熟记平行四边形的判定方法,根据对应边相等列方程是解题关键.2.如图,如图,在等腰ABC 中,4AB AC m ==,30B ∠=︒,点P 从点B 出发,以3/cm s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发以2cm 的速度沿B A C →→运动到点C 停止.假设BQP ∆的面积为y,运动时间为()x s ,那么以下图象中能大致反映y 与x 之间关系的是〔 〕A .B .C .D .【答案】D【分析】作AH ⊥BC 于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=12AB=2,BH=3AH=23,BC=2BH=43,利用速度公式可得点P 从B 点运动到C 需4s,Q 点运动到C 需4s,然后分0≤x ≤2和2<x ≤4两种情况进行计算,即可得到答案.【解答】解:如图,作AH ⊥BC 于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°, ∴AH=12AB=2,BH=3AH=23, ∴BC=2BH=43,∵点P 运动的速度为3cm/s,Q 点运动的速度为2cm/s,∴点P 从B 点运动到C 需4s,Q 点运动到C 需4s,当0≤x ≤2时,如图,作QD ⊥BC 于D, BQ=2x ,BP=3x ,在Rt △BDQ 中,DQ=12BQ=x , ∴213322y x x x =⋅⋅=,开口向上; 当2<x ≤4时,如图,作QE ⊥BC 于E, CQ=8-2x ,BP=3x ,在Rt △CEQ 中,∠C=∠B=30°,EQ=12CQ =()1822x -,∴()211338223222y x x x x =⋅⋅-=-+,开口向下, 综上所述,223,022323,242x x y x x x ⎧≤≤⎪⎪=⎨⎪-+<≤⎪⎩.应选:D .【点评】此题考查了动点问题的函数图象,通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数的图象与性质解决问题.3.如图,点A 〔a,1〕,B 〔b,3〕都在双曲线3y x=-上,点P,Q 分别是x 轴,y 轴上的动点,那么四边形ABQP 周长的最小值为〔 〕A .42B .62C .21022+D .82【答案】B【分析】先把A 点和B 点的坐标代入反比例函数解析式中,求出a 与b 的值,确定出A 与B 坐标,再作A 点关于x 轴的对称点D,B 点关于y 轴的对称点C,根据对称的性质得到C 点坐标为〔1,3〕,D 点坐标为〔-3,-1〕,CD 分别交x 轴、y 轴于P 点、Q 点,根据两点之间线段最短得此时四边形ABPQ 的周长最小,然后利用两点间的距离公式求解可得.【解答】解:∵点A 〔a,1〕,B 〔b,3〕都在双曲线y=-3x上,∴a×1=3b=-3,∴a=-3,b=-1,∴A〔-3,1〕,B〔-1,3〕,作A点关于x轴的对称点D〔-3,-1〕,B点关于y轴的对称点C〔1,3〕,连接CD,分别交x轴、y轴于P点、Q点,此时四边形ABPQ的周长最小,∵QB=QC,PA=PD,∴四边形ABPQ周长=AB+BQ+PQ+PA=AB+CD,∴AB=2222()()311322()(3)13142CD-++-==+++=,,∴四边形ABPQ周长最小值为22+42=62,应选:B.【点评】此题考查反比例函数的综合题,勾股定理,掌握反比例函数图象上点的坐标特征、熟练运用两点之间线段最短解决有关几何图形周长最短的问题是解题的关键.4.如图,菱形ABCD中,AB=2,∠B=120°,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,那么△APM的面积y与点P经过的路程x之间的函数关系的图象大致是〔〕A.B.C.D.【答案】B【分析】分类讨论:当0≤x≤2,如图1,作PH⊥AD于H,AP=x,根据菱形的性质得∠A=60°,AM=1,那么∠APH=30°,根据含30度的直角三角形三边的关系得到在RtAH=12x,PH=32x,然后根据三角形面积公式得y=123;当2<x≤4,如图2,作BE⊥AD于E,AP+BP=x,根据菱形的性质得∠A=60°,AM=1,AB=2,BC∥AD,那么∠ABE=30°,在Rt△ABE中,根据含30度的直角三角形三边的关系得AE=1,PH=3,然后根据三角形面积公式得y=12AM•BE=32;当4<x≤6,如图3,作PF⊥AD于F,AB+BC+PC=x,那么PD=6-x,根据菱形的性质得∠ADC=120°,那么∠DPF=30°,在Rt△DPF中,根据含30度的直角三角形三边的关系得DF=12〔6-x〕,PF=3DF=32〔6-x〕,那么利用三角形面积公式得y=12AM•PF=-34x+332,最后根据三个解析式和对应的取值范围对各选项进行判断.【解答】当点P在AB上运动时,即0≤x≤2,如图1,作PH⊥AD于H,AP=x,∵菱形ABCD中,AB=2,∠B=120°,点M是AD的中点, ∴∠A=60°,AM=1,∴∠APH=30°,在Rt△APH中,AH=12AP=12x,PH=3AH=32x,∴y=12AM•PH=12×1×32x=34x;当点P在BC上运动时,即2<x≤4,如图2,作BE⊥AD于E,AP+BP=x,∵四边形ABCD为菱形,∠B=120°, ∴∠A=60°,AM=1,AB=2,BC∥AD, ∴∠ABE=30°,在Rt△ABE中,AE=12AB=1,PH=3AE=3,∴y=12AM•BE=12×1×3=32;当点P在CD上运动时,即4<x≤6,如图3,作PF⊥AD于F,AB+BC+PC=x,那么PD=6-x, ∵菱形ABCD中,∠B=120°,∴∠ADC=120°,∴∠DPF=30°,在Rt△DPF中,DF=12DP=12〔6-x〕,3326-x〕,∴y=12AM•PF=12×1×36-x〕36-x〕333,∴△APM的面积y与点P经过的路程x之间的函数关系的图象为三段:当0≤x≤2,图象为线段,满足解析式y=34x;当2≤x≤4,图象为平行于x轴的线段,且到x轴的距离为32;当4≤x≤6,图象为线段,且满足解析式333.应选B .【点评】此题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自变量的取值范围.5.如图,在菱形ABCD 中,5AB cm =,120ADC =∠︒,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动〔到点B 为止〕,点E 的速度为1/cm s ,点F 的速度为2/cm s ,经过t 秒DEF ∆为等边三角形,那么t 的值为〔 〕A .34B .43C .32D .53 【答案】D【分析】连接BD,证出△ADE ≌△BDF,得到AE=BF,再利用AE=t,CF=2t,那么BF=BC -CF=5-2t 求出时间t 的值.【解答】解:连接BD ,∵四边形ABCD 是菱形,∠ADC =120°, ∴AB =AD ,∠ADB =12∠ADC =60°, ∴△ABD 是等边三角形,∴AD =BD ,又∵△DEF 是等边三角形,∴∠EDF =∠DEF =60°, 又∵∠ADB =60°, ∴∠ADE =∠BDF ,在△ADE和△BDF中,AD BDA DBCADE BDF=⎧⎪∠=∠⎨⎪∠=∠⎩∴△ADE≌△BDF(ASA), ∴AE=BF,∵AE=t,CF=2t,∴BF=BC−CF=5−2t,∴t=5−2t∴t=5 3 ,应选:D.【点评】此题考查全等三角形,等边三角形,菱形等知识,熟练掌握全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质为解题关键.6.:如图①,长方形ABCD中,E是边AD上一点,且AE=6cm,AB=8cm,点P从B出发,沿折线BE﹣ED﹣DC匀速运动,运动到点C停止.P的运动速度为2c m/s,运动时间为t〔s〕,△BPC的面积为y〔cm2〕,y与t的函数关系图象如图②,那么以下结论正确的有〔〕①a=7;②b=10;③当t=3s时△PCD为等腰三角形;④当t=10s时,y=12cm2A.1个B.2个C.3个D.4个【答案】B【分析】根据点P运动的速度,可以确定某时刻点P的具体位置,再结合△BPC的面积与时间t函数关系的图象,可以得到问题的解答.【解答】当P点运动到E点时,△BPC面积最大,结合函数图象可知当t=5时,△BPC面积最大为40,∴BE=5×2=10.∵12•BC•AB=40,∴BC=10.那么ED=10﹣6=4.当P点从E点到D点时,所用时间为4÷2=2s,∴a=5+2=7.故①正确;P点运动完整个过程需要时间t=〔10+4+8〕÷2=11s,即b=11,②错误;当t=3时,BP=AE=6,又BC=BE=10,∠AEB=∠EBC〔两直线平行,内错角相等〕,∴△BPC≌△EAB,∴CP=AB=8,∴CP=CD=8,∴△PCD是等腰三角形,故③正确;当t=10时,P点运动的路程为10×2=20cm,此时PC=22﹣20=2,△BPC面积为12⨯10×2=10cm2,④错误,∴正确的结论有①③.应选:B.【点评】此题考查矩形性质与函数图象的综合应用,正确理解函数图象各点意义、综合应用等腰三角形和平行线的性质是解题关键.7.如图,正方形ABCD中,点E、F、G分别为边AD、CD、BC中点,动点P从E点出发,沿E D F→→方向移动,连接PG,过G作GQ PG⊥交边AB于点Q;连接PQ,点O为PQ中点,连接AO;设BQ为x,AOQ△的面积为y;那么y与x之间函数图象大致为〔〕A.B.C.D.【答案】A【分析】分两种情况讨论,当点P 在线段ED 上移动时,证得Rt △QBG ~Rt △PEG,求得2131242y x x =-++(102x ≤≤),当点P 在线段FD 上移动时,易求得112y x =-+(112x <≤),根据图象的性质即可判断.【解答】不妨设正方形ABCD 的边长为2,那么BC=AD=AB=CD=2,AE=DF=BG=1,当点P 在线段ED 上移动时,连接EG ,如下图: ∵GQ PG ⊥, ∴∠PGQ=∠B=90︒,∴∠QGB+∠QGE =90︒,∠QGE +∠EGP =90︒,∴∠QGB=∠EGP,∴Rt △QBG ~Rt △PEG,∵BQ x =,BG=1,EG =2,∴PE=2BQ=2x ,∴AQ=AB-BQ=2x -,AP=AE+PE=12x +,∵点O 为PQ 中点,∴()()2AOQ APQ 11111312122224242y S S AQ AP x x x x ===⨯⋅=-+=-++, 取值范围是:当P 、E 重合时,由PE=2x =0,得0x =,当P 、D 重合时,由PE=2x =1,得12x =, ∴2131242y x x =-++(102x ≤≤), ∵102-<,∴图象是开口向下的在区间(102x ≤≤)r 的一段抛物线; 排除选项B 和C ; 当点P 在线段FD 上移动时,连接AP,如下图:∴AQ=AB-BQ=2x -,∵点O 为PQ 中点,∴()AOQ APQ 111112122222y S S AQ AD x x ===⨯⋅=-=-+, 取值范围是:当P 、F 重合时,1x =, ∴112y x =-+(112x <≤), ∵102-<, ∴图象是经过一、二、四象限在区间(112x <≤)的一条线段; 综上,只有A 符合题意,应选:A .【点评】此题考查了动点问题的函数图象,涉及的知识点有正方形的性质,相似三角形的判定和性质,有一定难度.8.如图ABO 的顶点分别是()3,1A ,()0,2B ,()0,0O ,点C ,D 分别为BO ,BA 的中点,连AC ,OD 交于点G ,过点A 作AP OD ⊥交OD 的延长线于点P .假设APO △绕原点O 顺时针旋转,每次旋转90︒,那么第2021次旋转结束时,点P 的坐标是〔 〕A .()2,1B .()2,2C .()1,2D .()1,1A【答案】B【分析】利用三角形的重心和等腰直角三角形的性质确定P 〔2,2〕,确定每4次一个循环,由于2021=4×55,所以第2021次旋转结束时,P 点返回原地,即可求出旋转后的点P 的坐标.【解答】∵点C,D 分别为BO,BA 的中点,∴点G 是三角形的重心,∴AG=2CG ,∵B 〔0,2〕,∴C 〔0,1〕,∵A 〔3,1〕,∴AC=3,AC ∥x 轴,∴CG=1,AG=2,∵OC=1,∴OC=CG ,∴△COG 是等腰直角三角形,∴∠CGO=45°, ∴∠AGP=45°, ∵AP ⊥OD,∴△AGP 是等腰直角三角形,∴AG 边上的高为1,∵等腰直角三角形△AGP 的斜边AG 边上的高也是中线,∴P 〔2,2〕,∵2021=4×55,∴每4次一个循环,第2021次旋转结束时,P 点返回原处,∴点P 的坐标为〔2,2〕.应选:B .【点评】此题考查了三角形重心的判定和性质,等腰直角三角形的判定和性质,坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.9.如图1,在矩形ABCD 中,动点M 从点A 出发,沿A B C -->-->方向运动,当点M 到达点C 时停止运动,过点M 作MN AM ⊥交CD 于点N ,设点M 的运动路程为,x CN y =,图2表示的是y 与x 的函数关系的大致图象,那么函数图象中a 的值为〔 〕A .12B .13C .14D .15【答案】C【分析】由图2知:AB=6,当点M 在BC 上时,画出图形根据MAB NMC ,得出比例式BM CN AB CM =,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【解答】解:由图2知:AB=6,那么CN=BM=6-x,即y=6-x ;如下图,当点M 在BC 上时,AB=6那么BM=x-6,NC=y,在矩形ABCD 中,∵MN ⊥AM,∴∠AMN=90°, ∴∠CMN+∠AMB=90°,∵∠MAB+∠AMB=90°,∴∠CMN=∠MAB,∵在△CMN和△BAM中,∠CMN=∠MAB,∠C=∠B=90°, ∴△CMN∽△BAM,∴BM CN AB CM=由二次函数图象对称性可得M在BC中点时,y=CN有最大值83,此时BM=CM=x-6∴863 66 xx-=-,∴x=10或2〔不合题意舍去〕∴BM=CM=4,∴BC=8∴a=6+8=14应选:C【点评】此题考查了二次函数动点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,此题中由图象得出E为BC中点是解题的关键.10.如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',那么OQ'的最小值为()A.455B5.523D.655【答案】B【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【解答】解:作QM ⊥x 轴于点M,Q′N ⊥x 轴于N,设Q(m ,122m -+),那么PM=1m ﹣,QM=122m -+, ∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN (AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣, ∴ON=1+PN=132m -, ∴Q′(132m -,1m ﹣), ∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5, 当m=2时,OQ′2有最小值为5,∴OQ′5应选:B .【点评】此题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键.二、填空题11.如图,O 是正方形ABCD 的外接圆,2,AB =点E 是劣弧AD 上的任意一点,连接BE ,作CF BE ⊥于点F ,连接,AF 那么当点E 从点A 出发按顺时针方向运动到点D 时,AF 长的取值范围为________________.【答案】512AF -≤≤【分析】首先根据题意可知,当点F 与点B 重合时AF 最长,AF 的最大值为2;再证实点F 的运动轨迹为以BC 为直径的'O ,通过添加辅助线连接'AO 交'O 于点M ,连接'O F ,由线段公理可知,当点F 与点M 重合时AF 最短,AF 的最小值为51-.即可得解.【解答】解:∵由题意可知,当点F 与点B 重合时AF 最长∴此时2AF AB ==,即AF 的最大值为2∵CF BE ⊥∴90CFB ∠=︒∴点F 的运动轨迹为以BC 为直径的'O ,连接'AO 交'O 于点M ,连接'O F ,如图:∵2AB =∴11'122BO BC AB === ∴在'Rt ABO 中,22''5AO AB BO =+∴''51AM AO O M =-=∴由两点之间,线段最短可知,当点F 与点M 重合时AF 最短∴AF 的最小值为51-∴512AF -≤≤.【点评】此题考查了正多边形和圆的动点问题、90︒的圆周角所对的弦为直径、勾股定理、线段公理等知识点,解题的关键是确定AF 取最大值和最小值时点F 的位置,属于中考常考题型,难度中等.12.如图,CA AB ⊥,垂足为点A ,24AB =,12AC =,射线BM AB ⊥,垂足为点B ,一动点E 从A 点出发以3厘米/秒沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED CB =,当点E 经过___秒时,DEB ∆与BCA ∆全等.【答案】0,4,12,16【分析】设点E 经过t 秒时,△DEB ≌△BCA ;由斜边ED=CB,分类讨论BE=AC 或BE=AB 或AE=0时的情况,求出t 的值即可.【解答】分情况讨论:〔1〕设点E 经过t 秒时,△DEB ≌△BCA,此时AE=3t,①当点E 在点B 的左侧时,BE=AC,∴AE=AB-BE=24-12=12,∴3t=12,∴t=4;②当点E 在点B 的右侧时,BE=AC,∴AE=AB+BE=24+12=36,∴3t=36,∴t=12;〔2〕设点E经过t秒时,△EDB≌△BCA,此时AE=3t,①当点E在点B的左侧时,BE=AB,即24-3t=24,∴t=0;②当点E在点B的右侧时,BE=AB,∴AE=AB+BE=24+24=48,∴3t=48,∴t=16.综上所述,当点E经过0秒或4秒或12秒或16秒时,△DEB与△BCA全等.故答案为:0,4,12,16.【点评】此题考查了全等三角形的性质;分类讨论各种情况下的三角形全等是解决问题的关键.13.如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC=5cm,CE=6cm,点P以2cm/s 的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从 E 开始,在线段EC上往返运动〔即沿E→C→E→C→…运动〕,当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为_____.【答案】1或115或235【分析】根据全等三角形的性质可得PC=CQ,然后分三种情况根据PC=CQ分别得出关于t的方程,解方程即得答案.【解答】解:当点P在AC上,点Q在CE上时,如图,∵以P,C,M为顶点的三角形与△QCN全等,∴PC=CQ,∴5﹣2t=6﹣3t,解得:t=1;当点P在AC上,点Q第一次从点C返回时,∵以P,C,M为顶点的三角形与△QCN全等,∴PC=CQ,∴5﹣2t=3t﹣6,解得:t=11 5;当点P在CE上,点Q第一次从E点返回时, ∵以P,C,M为顶点的三角形与△QCN全等, ∴PC=CQ,∴2t﹣5=18﹣3t,解得:t=235;综上所述:t 的值为1或115或235. 故答案为:1或115或235. 【点评】此题考查了全等三角形的应用,正确分类、灵活应用方程思想、熟练掌握全等三角形的性质是解题的关键.14.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,OA=8,点D 为对角线OB 的中点,假设反比例函数1k y x=在第一象限内的图象与矩形的边BC 交于点F,与矩形边AB 交于点E,反比例函数图象经过点D,且tan ∠BOA=12,设直线EF 的表达式为y=k 2x+b .将矩形折叠,使点O 与点F 重合,折痕与x 轴正半轴交于点H,与y 轴正半轴交于点G,直接写出线段OG 的长_______.【答案】52【分析】利用正切的定义计算出AB 得到B 点坐标为〔8,4〕,那么可得到D 〔4,2〕,然后利用待定系数法确定反比例函数表达式;利用反比例函数图象上点的坐标特征确定F 〔2,4〕,连接GF,如图,设OG =t,那么CG =4−t,利用折叠的性质得到GF =OG =t,那么利用勾股定理得到22+〔4−t 〕2=t 2,然后解方程求出t 得到OG 的长.【解答】在Rt △AOB 中,∵tan ∠BOA =AB OA =12, ∴AB =12OA =12×8=4, ∴B 点坐标为〔8,4〕,∵点D 为对角线OB 的中点,∴D 〔4,2〕,把D 〔4,2〕代入y =1k y x=,得k 1=4×2=8, ∴反比例函数表达式为8y x =;当y=4时,8x=4,解得x=2,那么F〔2,4〕,∴CF=2,连接GF,如图,设OG=t,那么CG=4−t,∵将矩形折叠,使点O与点F重合, ∴GF=OG=t,在Rt△CGF中,22+〔4−t〕2=t2,解得t=5 2 ,即OG的长为52.故答案为:52.【点评】此题考查了反比例函数的综合题:熟练掌握反比例函数图象上点的坐标特征、折叠的性质和矩形的性质;会运用待定系数法求反比例函数解析式;会运用三角函数的定义和勾股定理进行几何计算.15.如图,在矩形ABCD中,AB=6,AD=23,E是AB边上一点,AE=2,F是直线CD上一动点,将AEF沿直线EF折叠,点A的对应点为点A',当点E,A',C三点在一条直线上时,DF的长为_____.【答案】6﹣7或7【分析】利用勾股定理求出CE,再证实CF=CE即可解决问题,〔注意有两种情形〕.【解答】解:如图,由翻折可知,∠FEA=∠FEA′,∵CD ∥AB,∴∠CFE =∠AEF,∴∠CFE =∠CEF,∴CE =CF,在Rt △BCE 中,EC =22BC EB +=22(23)427+=,∴CF =CE =27,∵AB =CD =6,∴DF =CD ﹣CF =6﹣27,当点F 在DC 的延长线上时,易知EF ⊥EF′,CF =CF′=27,∴DF =CD+CF′=6+27故答案为:6﹣27或6+27.【点评】此题考查翻折变换、矩形的性质、勾股定理等知识,此题的突破点是证实△CFE 的等腰三角形,属于中考常考题型.16.如图,有一张矩形纸条ABCD ,AB =5cm ,BC =2cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.当点B '恰好落在边CD 上时,线段BM 的长为_____cm ;在点M 从点A 运动到点B 的过程中,假设边MB '与边CD 交于点E ,那么点E 相应运动的路径长为_____cm .【答案】5 352- 【分析】第一个问题证实BM =MB ′=NB ′,求出NB 即可解决问题.第二个问题,探究点E 的运动轨迹,寻找特殊位置解决问题即可.【解答】如图1中,∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM =MB ′,∴∠2=∠3,∴MB ′=NB ′,∵NB ′22B C NC '''+2221+5cm 〕,∴BM =NB ′5cm 〕. 如图2中,当点M 与A 重合时,AE =EN ,设AE =EN =xcm ,在Rt △ADE 中,那么有x 2=22+〔4﹣x 〕2,解得x =52, ∴DE =4﹣52=32〔cm 〕, 如图3中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=5﹣1﹣2=2〔cm 〕,如图4中,当点M 运动到点B ′落在CD 时,DB ′〔即DE ″〕=5﹣1545〔cm 〕,∴点E 的运动轨迹E →E ′→E ″,运动路径=EE ′+E ′B ′=2﹣32+2﹣〔45352〕〔cm 〕.故答案为5,〔352 〕.【点评】此题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.17.如图①,在菱形ABCD中,∠B=60°,M为AB的中点,动点P从点B出发,沿B→C→D的路径运动,到达点D时停止.连接MP,设点P运动的路程为x,MP2=y,假设y与x的函数图象大致如图②所示,那么菱形ABCD 的周长为____________.【答案】8【分析】先从图②分析p的运动过程中MP的变化,再从(4,7)这个点入手求解菱形的边长,再计算周长即可得到答案;【解答】解:如图1,过M 点作ME ⊥BC 与E,结合图像二得到,P 点从B 运动到E,MP 的长度一直在减小,P 点从E 运动到C,MP 的长度一直在增大,P 点从C 运动到D,MP 的长度也在增大,所以在D 点,MP 的长度最大,∴当P 运动到D 时,x=4,y=7,即:27MP = ,4BC CD +=,又∵ABCD 是菱形,∴BC=CD=2〔菱形四边相等〕,∴菱形的周长为:428⨯= ,故答案为:8.【点评】此题主要考查了菱形的性质以及从图像中获取信息得水平,掌握菱形四边相等是解题的关键; 18.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C ,以此方式,绕点O 旋转2021次得到正方形201820182018OA B C ,如果点A 的坐标为〔1,0〕,那么那么点2019B 的坐标为_____.【答案】〔2,0〕【分析】根据图形可知:点B 在以O 为圆心,以OB 为半径的圆上运动,由旋转可知:将正方形OABC 绕点O逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45°,可得对应点B 的坐标,根据规律发现是8次一循环,可得结论.【解答】∵四边形OABC 是正方形,且OA =1,∴B 〔1,1〕,连接OB,由勾股定理得:OB =22112+=,由旋转得:OB =OB 1=OB 2=OB 3= (2)∵将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45°,依次得到∠AOB =∠BOB 1=∠B 1OB 2=…=45°, ∴B 1〔0,2〕,B 2〔−1,1〕,B 3〔−2,0〕,…,发现是8次一循环,所以2021÷8=252…余3, ∴点B 2021的坐标为〔−2,0〕故答案为:〔−2,0〕.【点评】此题考查了旋转的性质:对应点到旋转中央的距离相等;对应点与旋转中央所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.19.四边形ABCD 中,45ABC ∠=︒,90C D ∠=∠=︒,含30角〔30P ∠=︒〕的直角三角板PMN 〔如图〕在图中平移,直角边MN BC ⊥,顶点M 、N 分别在边AD 、BC 上,延长NM 到点Q ,使QM PB =,假设10BC =,3CD =,那么点M 从点A 平移到点D 的过程中,点Q 的运动路径长为__________.【答案】72【分析】当点P 与B 重合时,推出△AQK 为等腰直角三角形,得出QK 的长度,当点M′与D 重合时,推出△KQ′M′为等腰直角三角形,得出KQ′的长度,根据题意分析出点Q 的运动路径为QK+KQ′,从而得出结果.【解答】解:如图当点M与A重合时,∵∠ABC=45°,∠ANB=90°,PN=3MN=3CD=33,BN=MN=3,∴此时PB=33-3,∵运动过程中,QM=PB,当点P与B重合时,点M运动到点K, 此时点Q在点K的位置,AK即AM的长等于原先PB和AQ的长,即33-3,∴△AQK为等腰直角三角形,∴QK=2AQ=36-32,当点M′与D重合时,P′B=B C-P′C=10-33=Q′M′,∵AD=BC-BN=BC-AN=BC-DC=7,KD=AD-AK=7-〔33-3〕=10-33,Q′M′=BP′=BC-P′C= BC-PN =10-33,∴△KQ′M′为等腰直角三角形,-,∴KQ′=2Q′M′=2〔10-33〕=10236当点M从点A平移到点D的过程中,点Q的运动路径长为QK+KQ′,-〕=72,∴QK+KQ′=〔36-32〕+〔10236故答案为72.【点评】此题考查平移变换、运动轨迹、解直角三角形等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.20.如图,在Rt ABC ∆中,90B ∠=︒,60A ∠=︒,4AC =,M 是AC 的中点,E 是AB 边上的一个动点,连接ME ,过M 作ME 的垂线,与BC 边交于点F .在E 从A 运动到B 的过程中,EF 的中点N 运动的路程为_______.【答案】233【分析】连接,BN MN ,做射线AN ,根据直角三角形斜边上的中线等于斜边的一半,可得BN MN =,结合条件可证ABN AMN ≅,那么BAN MAN ∠=∠,故动点N 始终在BAC ∠的平分线上,找到点N 起点与终点,求长度即可.【解答】解:如图,连接,BN MN ,做射线AN ,BEF 与MEF 都是直角三角形,且N 为斜边EF 的中点,∴12BN EF MN ==, 在Rt ABC ∆中,90B ∠=︒,9030C BAC ∠=︒-∠=︒, ∴12AB AC AM ==, 在ABN 与AMN 中,BN MN AN AN AB AM =⎧⎪=⎨⎪=⎩∴()ABN AMN SSS ≅,∴BAN MAN ∠=∠,可见点N 始终在BAC ∠的平分线上,当E 从A 出发时,如以下图,点N 运动的起点在AF 的中点,终点即为此时的F , 那么12NF AF =. 在Rt ABF ∆中,AB=2,∠FAB=30°,利用勾股定理求得AF=433 23312NF AF == 故点N 运动的路程为233. 故答案为:233. 【点评】此题是结合了含30°的直角三角形,全等三角形的判定与应用,角平分线的性质等知识点的动点问题,根据题意作出适宜的辅助线,找到动点的起点与终点是解答关键.三、解做题21.如图,在数轴上有三个点A 、B 、C ,O 是原点,满足20OA cm =,60AB cm =,BC 10cm =,动点P 从点O 出发向右以每秒1cm 的速度匀速运动;同时,动点Q 从点C 出发,在数轴上向左运动.〔1〕假设点Q 的速度为每秒0.8cm ,求P ,Q 相遇时,运动的时间.〔2〕假设Q 的运动速度为每秒3cm 时,经过多长时间P ,Q 两点相距70cm ?〔3〕当2PA PB =时,点Q 运动的位置恰好是线段AB 的三等分点,求Q 的速度.【答案】〔1〕50s ;〔2〕经过5秒和40秒时P 、Q 两点相距7Ocm ;〔3〕当点P 在A 、B 两点之间时,点Q 的运动速度为0.5/cm s 或5/6cm s ;当点P 在线段AB 的延长线上时,点Q 的运动速度为314/cm s 或514/cm s . 【分析】〔1〕 设P 、Q 相遇时,运动的时间为t ,列出方程即可解决问题;〔2〕原本P 、Q 之间距离大于70cm,那么分两种情况讨论,第一相距70cm 跟相遇后两者相距70cm,根据路程=速度×时间,即可求得,不过第二次相距70cm 时,Q 点早已到达O 点停止运动;〔3〕 PA=2PB 分两种情况,一种P 在线段AB 内,一种P 在线段AB 的延长线上,根据速度=路程÷时间,即可求得点Q 的速度.【解答】〔1〕设P 、Q 相遇时,运动的时间为t ,由题知:20601090OC OA AB BC cm =++=++=,∴当P 、Q 相遇时,OP CQ OC +=,即0.890t t +=.∴解得:50t s =,故P 、Q 相遇时的运动时间为50s .〔2〕∵9070OA AB BC cm cm ++=>,∴分两种情况,①Q 在P 的右侧时,经过时间为9070513s -=+, ②Q 在P 的左侧时,设经过时间1t ,P 、Q 两点相距70cm ,此时1:P t ,1:903Q t -,∴()1190370t t --=,解得:140t s =,综合①②得知,经过5秒和40秒时P 、Q 两点相距70cm .〔3〕2PA PB =,分两种情况,①当点P 在A 、B 两点之间时,∵2PA PB =, ∴2403PA AB cm ==, 此时运动的时间为601OA PA s += ∵点Q 运动的位置恰好是线段AB 的三等分, ∴1203BQ AB cm ==或2403BQ AB cm ==,点Q 的运动速度为0.5/60BC BQ cm s +=或5/6cm s ; ②当点P 在线段AB 的延长线上时,∵2PA PB =,∴2120PA AB cm ==, 此时运动的时间为1401OA PA s +=, ∵点Q 运动的位置恰好是线段AB 的三等分, ∴1203BQ AB cm ==或2403BQ AB cm ==, 点Q 的运动速度为3/14014BC BQ cm s +=或514/cm s ; 综合①②得知,当点P 在A 、B 两点之间时,点Q 的运动速度为0.5/cm s 或5/6cm s ; 当点P 在线段AB 的延长线上时,点Q 的运动速度为314/cm s 或514/cm s . 【点评】考查了两点间的距离和方程,解题关键是〔1〕根据关系列出方程;〔2〕PQ 相距70cm 分两种情况,第一次相距70cm 和相遇后再次相距70cm ;〔3〕当PA=2PB 时,分两种情况,一种点P 在线段AB 之间和点P 在线段AB 的延长线上.22.数轴上点A 表示的有理数为20,点B 表示的有理数为-10,点P 从点A 出发以每秒5个单位长度的速度在数轴上往左运动,到达点B 后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A 停止,设运动时间为t 〔单位:秒〕.〔1〕当t =5时,点P 表示的有理数为 .〔2〕在点P 往左运动的过程中,点P 表示的有理数为 〔用含t 的代数式表示〕.〔3〕当点P 与原点距离5个单位长度时,t 的值为 .【答案】〔1〕5-;〔2〕205t -;〔3〕3或5或8.5或13.5.【分析】〔1〕先根据运动速度和时间求出PA 的长,再根据数轴的定义即可得;〔2〕先求出在点P 往左运动的过程中,5PA t =,再根据数轴的定义即可得;〔3〕分点P 从点A 运动到点B 和点P 从点B 返回,运动到点A 两种情况,再分别求出点P 表示的有理数,然后根据数轴的定义建立绝对值方程,最后解方程即可得.【解答】〔1〕由题意得:()201030AB =--=,点P 从点A 运动到点B 所需时间为30655AB ==〔秒〕,点P 从点B 返回,运动到点A 所需时间为301522AB ==〔秒〕, 那么当56t =<时,5525PA =⨯=,因此,点P 表示的有理数为20255-=-,故答案为:5-; 〔2〕在点P 往左运动的过程中,5PA t =,那么点P 表示的有理数为205t -,故答案为:205t -;〔3〕由题意,分以下两种情况:①当点P 从点A 运动到点B,即06t ≤≤时,由〔2〕可知,点P 表示的有理数为205t -, 那么2055t -=,即2055t -=或2055t -=-,解得3t =或5t =,均符合题设;②当点P 从点B 返回,运动到点A,即615t <≤时,()26PB t =-,点P 表示的有理数为()2610222t t --=-, 那么2225t -=,即2225t -=或2225t -=-,解得13.5t =或8.5t =,均符合题设;综上,当点P 与原点距离5个单位长度时,t 的值为3或5或8.5或13.5时,故答案为:3或5或8.5或13.5.【点评】此题考查了数轴、绝对值方程、一元一次方程的应用等知识点,较难的是题〔3〕,正确分两种情况讨论,并建立方程是解题关键.23.如图,等边△ABC 的边长为8,动点M 从点B 出发,沿B →A →C →B 的方向以3的速度运动,动点N 从点C 出发,沿C →A →B →C 方向以2的速度运动.〔1〕假设动点M 、N 同时出发,经过几秒钟两点第一次相遇?〔2〕假设动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及△ABC的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.【答案】〔1〕165秒;〔2〕运动了85秒或245秒时,A、M、N、D四点能够成平行四边形,此时点D在BC上,且BD=245或325.【分析】〔1〕设经过t秒钟两点第一次相遇,然后根据点M运动的路程+点N运动的路程=AB+CA列方程求解即可;〔2〕首先根据题意画出图形:如图②,当0≤t≤83时,DM+DN=AN+CN=8;当83<t≤4时,此时A、M、N三点在同一直线上,不能构成平行四边形;4<t≤163时,MB+NC=AN+CN=8;当163<t≤8时,△BNM为等边三角形,由BN=BM可求得t的值.【解答】解:〔1〕设经过t秒钟两点第一次相遇,由题意得:3t+2t=16,解得:t=16 5,所以,经过165秒钟两点第一次相遇;〔2〕①当0≤t≤83时,点M、N、D的位置如图2所示:∵四边形ANDM为平行四边形,∴DM=AN,DM//AN.DN//AB∴∠MDB=∠C=60°,∠NDC=∠B=60°∴∠NDC=∠C.∴ND=NC。

1抛物线(二次函数)中的等腰三角形

1抛物线(二次函数)中的等腰三角形

抛物线中的等腰三角形基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对称轴上),若ABP ∆为等腰三角形,求点P 坐标。

分两大类进行讨论:(1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。

利用中点公式求出AB 的中点M ;利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ;利用中点M 与斜率k 求出AB 的垂直平分线的解析式;将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。

(2)AB 为腰时,分两类讨论:①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。

②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以AB 为半径的圆上。

所需知识点:一、 两点之间距离公式:已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-=。

二、 中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫⎝⎛++222121y y ,x x 。

三、 任意两点的斜率公式:已知两点()()2211y ,x Q ,y ,x P ,则直线PQ 的斜率: 2121x x y y k PQ --=。

典型例题:例一(深圳)如图9,抛物线2812(0)y ax ax a a =-+<与x 轴交于A 、B 两点(点A 在点B 的左侧),抛物线上另有一点C 在第一象限,满足∠ACB 为直角,且恰使△OCA ∽△OBC . (1)求线段OC 的长.(2)求该抛物线的函数关系式. (3)在x 轴上是否存在点P ,使△BCP 为等腰三角形?若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.例二 如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.例三(龙岩):已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点. (1)求抛物线的函数关系式;(2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ),请求出△CBE 的面积S 的值; (3)在抛物线上是否还存在这样的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P ;若不存在这样的点P ,请说明理由.例四:如图①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式: (任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A B ,两点,记为抛物线2l ,如图②,求抛物线2l 的函数表达式.(3)设抛物线2l 的顶点为C ,K 为y 轴上一点.若ABK ABC S S =△△,求点K 的坐标. (4)请在图③上用尺规作图的方式探究抛物线2l 上是否存在点P ,使ABP △为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明由.x 图①x 2 图②x 图③同步训练:1、(08年临沂市中考题)如图,已知抛物线与x 轴交于(1,0),(3,0)A B -两点,与y 轴交于点(0,3)C(1)求抛物线的解析式;(2)设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P ,使得PDC ∆是等腰三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由。

重难点20 等腰直角三角形中的全等

重难点20 等腰直角三角形中的全等

重难点20 等腰直角三角形中的全等第96天同侧一线三垂直1.如图①,在等腰Rt △ABC 中,AB=BC ,点E 为BC 上一点,连接AE ,过点E 作EM AE ⊥,且AE=EM ,连接MC .(1)求证:90ACM ∠=︒;(2)如图②,若BE=3CE ,CM =32,连接AM ,求AM 的长.(1)证明:小伙伴你好,我是一线三垂直,我们又一次见面啦,这次可是我的主场哦! 如解图①,过点M 作⊥MH BC 交BC 的延长线于点H .90,90,90,90.︒︒︒︒∠=∠=∴∠+∠=∠+∠=∴∠=∠AEM ABC HEM AEB BAE AEB HEM BAE ,,∠=∠∠=∠=EBA MHE BAE HEM AE EM , (AAS)∴≅ABE EHM , ,.∴==BE HM AB EH,,=∴=BC AB BC EH ,∴=∴=BE CH CH HM , 90,︒∠=∴CHM CMH 是等腰直角三角形, 45︒∴∠=HCM ,ABC 是等腰直角三角形,45︒∴∠=ACB , 18090;︒︒∴∠=-∠-∠=ACM HCM ACB(2) 解:如解图②,过点M 作⊥MH BC 交BC 的延长线于点H .由(1)得,=HM CH ,且90︒∠=CHM ,=CM ,由勾股定理得222,3=+∴==CM CH MH CH ,又 ,3,3,1==∴==BE CH BE EC BE EC ,134∴=+=+=EH EC CH ,∴ 在 Rt EHM 中, 5==EM 90,︒∠==AEM AE EM∴AEM 为等腰直角三角形, 由勾股定理得=AM ==.第97天异侧一线三垂直2如图①,在等腰Rt △ABC 中,90ACB ∠=︒,AC=BC ,BE CE ⊥于点E , AD CE ⊥于点D . (1)求证:BCE CAD ≅;(2)猜想线段AD,DE,BE 之间的数量关系,并说明理由;(3)当CE 绕点C 旋转到如图②所示的位置时,猜想线段AD, DE,BE 之间的数量关系,并说明理由.证明:同侧不同侧,规律差不多,把握住等角 的余角相等就OK 啦.⊥BE CE 于,⊥E AD CE 于点,90︒∠=D ACB ,90,90,︒︒∴∠=∠=∠=-∠∠E ADC BCE ACD CAD 90,︒=-∠∴∠=∠ACD BCE CAD,∠=∠∠=E ADC BCE ,∠=CAD BC CA (AAS)∴≅BCE CAD (2)解:=-DE AD BE .理由 : 由(1)知:≅BCE CAD,∴==CE AD BE CD ,;∴=-=-DE CE CD AD BE (3)解:=-DE BE AD .理由 :90,90.︒︒∠=∴∠+∠=ACB ACD BCE,⊥⊥AD DE BE CE , 90,90︒︒∴∠+∠=∠=∠=ACD CAD D BEC , .∴∠=∠CAD BCE 又,(=∴≅AC BC ACD CBE AAS), ,∴==AD CE CD BE .∴=-=-DE CD CE BE AD第98天数形结合构全等3.如图,已知点A (-3,2),过点A 作AD x ⊥轴于点D ,点B 是x 轴正半轴上的一个动点,连接AB ,以AB 为斜边在AB 的上方构造等腰Rt △ABC ,连接DC . (1)当点B 的坐标为(4,0)时,点C 的坐标是 ;(2)当点B 在x 轴正半轴上运动的时候,点C 是否在一直线上运动?如果是,请求出点所在直线的解析式;如果不是,请说明理由;(3)在点B 的运动过程中,猜想DC 与DB 之间的数量关系,并证明你的结论.解:(1) (1.5,4.5);【解法提示】咦?好像毫无头绪,标题不是白起的哦,懂了吧,懂了还不快构造.全等三角形. 设点(,)C x y , 如解图,过点C 作x 轴的平行线 MN ,交DA 的延长线于点M , 过点B 作 ⊥BN MN 于点,90︒∴∠=∠=N CMA BNC , 90,90,︒︒∴∠+∠=∠=NCB CBN ACB90,.︒∴∠+∠=∴∠=∠=MCA BCN MCA NBC AC CB(AAS),,∴≅∴==CMA BNC AM CN MC NB ,即24,3-=-+=y x x y ,即3=+y x 且 2214+-=+=x y x , 解得 1.5,3 4.5,=∴=+=∴x y x 点C 的坐标是(1.5,4.5)(2)点C 在一直线上运动. 由①,知, 3=+y x , 即点C 所在直线AC 的解析式为3=+y x ;(3) 2)=+CD BD , 证明如下 : 设点(,)C x y ,由(1)可得,点 $C, D, B$ 的坐标分别为(,3)+x x , (3,0),(21,0)-+x则3)==+CD x ,2=BD112(3)(24)11,2).22⎡⎤⎫+=++∴=+∴=+⎪⎢⎥⎣⎦⎭x x CD BD CD BD即DC 与DB 的数量关系是(2)2=+CD BD .第99天中线中点难分离4.如图①,在△ABC 中,AC= BC ,90ACB ∠=︒ ,点D 为AB 边的中点,以点D 为顶点作90PDQ ∠=︒,DP , DQ 分别交直线AC,BC 于E,F 两点,分别过点E, F 作直线AB 的垂线,垂足分别为M ,N .(1)求证:EM+FN=,AC ;(2)把PDQ ∠绕点D 旋转,当点E 在线段AC 的延长线上时(如图②),则线段EM ,FN ,AC 之间满足的关系式是__._;(3)在PDQ ∠绕点D 由图①到图②的旋转的过程中,设DP 交直线BC 于点G ,连接BE ,若FG =10,AE =3CE ,求BE 的长.4.(1)证明:我就想问问,有什么数据可以证明吗? 连接CD .自己动手看看.,90,︒=∠=AC BC ACB D 为AB 边的中点,1145,,.22︒∴∠=∠=∠=⊥===ACD DCB ACB CD AB CD BD AD AB又45,.︒∠=∠=∴∠=∠A B ECD FBD90,90.︒︒∠=∴∠+∠=PDQ EDC CDF 又,90.︒⊥∴∠+∠=CD AB CDF FDB ∴∠=∠EDC FDB .,,∠=∠=∠=∠ECD FBD CD BD EDC FDB (ASA),.∴≅∴=CED BFD ED FD90,90︒︒∠+∠=∠+∠=MED EDM EDM NDF , .∴∠=∠MED NDF,,,(AAS), , 45,90,45,,︒︒︒∠=∠∠=∠=∴≅∴=∠=∠=∴∠=∠=∴=∴+=+=EMD DNF MED NDF ED DF EDM DFN MD NF A EMA AEM A AM EM EM FN AM MD AD$在Rt ACD 中, 222+=AD CD AC ,可得2=AD AC ,2∴+=EM FN AC , (2)解:-=EM FN AC ; (3)解:在整个旋转过程中,分两种情况讨论:①如解图, 当点E 在AC 的延长线上时,过点D 作⊥DH AC 于点,⊥H BC AC , 且D 为AB 的中点, ∴H 为AC 的中点,即DH 为ABC 的中位线, //∴DH BC , 且1122==DH BC AC .由3=AE EC , 设=EC x , 则3,2==-=AE x AC AE CE x , 易得==AB ,∴===AH HC CE x , 且22====AC BC EH EC x . 又 45,90︒︒∠=∠=HAD AHD∴AHD 为等腰直角三角形,同理AEM 和FNB 都为等腰直角三角形, 222+AM EM,∴=====AM EM AE x HD AH x ,,==∴EC CH x C 为HE 的中点,,90,//︒⊥∠=∴DH AC ACB CG HD ,∴CG 为EHD 的中位线,G 为ED 的中点, 1122∴==CG HD x .由(2)得到2-=EM FN AC ,-=x FN , 即==FN DM x ,∴==BF x 又10=GF3102∴=+=+=GF GB BF x x , 解得 4=x ,∴===-==EM x BM AB AM在Rt BEM 中,==BE ;(2)当点E 在线段AC 上时, 同理可得=BE .综上所述, BE 的长为.第100天巧妙利用共顶点5.【问题探究】(1)如图①,△ABC 和△CDE 均为等腰直角三角形,90ABC DCE ∠=∠=︒,且点D 在AB 边上(不与点A,B 重合),过点E 作EH CE ⊥交CB 的延长线于点H ,过点D 作 DG DC ⊥交AC 于点G,连接CH ,当点D 在边AB 上运动时,探究线段HE, HG 与DG 之间的数量关系; 【拓展应用】(2)如图②,在四边形ABCD 中,45ABC ACB ADC ∠=∠=∠=︒.若BD =9,CD =3,求AD 的长.解: (1)=+HE GH GD .天将降大任于斯人也,必先苦其心智,劳其筋骨.如解图①, 将CDG 绕点C 逆时针旋转90︒得到CEQ ,,90︒=∠=∠=CD CE CEH CDG ∴点Q 落在EH 上,由旋转的性质知,,,==∠CG CQ DG EQ DCG =∠ECQABC 是等腰直角三角形,45,45,90,45,,,,,(SAS),,;︒︒︒︒∴∠+∠=∴∠+∠=∠=∴∠=∴∠=∠=∠=∠=∴≅∴=∴=+=+DCG DCB ECQ DCB DCE HCQ HCQ HCG HC HC HCG HCQ CG CQ HCG HCQ HG HQ HE HQ QE HG DG(2) 学会画图多重要,关键时刻解大难. 如解图②, 将ABD 绕点A 逆时针旋转90︒得到ACE ,连接 DE , 则≅ABD ACE ,2229,,90,45.45,90,90,,6.︒︒︒︒︒∴===∠=∠=∴∠=∠=∴∠=∠+∠=∴==∠=∴+=∴==CE BD AD AE EAD BAC EDA ADC EDC ADC EDA DE DAE AD AE DE AD AE综合强化训练201. 已知在平面直角坐标系中, A 为x 轴负半轴上的点, B 为y 轴负半轴上的点.(1) 如图①, 以A 为顶点, AB 为腰在第三象限作等腰Rt ABC , 若2,4OA OB ==, 请求出 点C 的坐标;(2) 如图②,若点A的坐标为()-, 点B 的坐标为()0,m -, 以B 为顶点, BA 为腰作等腰Rt ABD ,点D 位于第四象限且它的纵坐标为.n 试问: 当点B 沿y 轴负半轴向下运动且其他条件都不变时,整式m n +的值是否发生变化? 若不发生变化,请求出m + n 的值;若发生变化,请说明理由;(3) 如图③,E 为x 轴负半轴上的一点,且,OB OE =OF EB ⊥于点F ,以OB 为边作等边OBM , 连接EM 交OF 于点N ,试探索:在线段,EF EN 和MN 中, 哪条线段等于EM 与 ON 的差的一半? 请你写出这个等量关系,并加以证明.图① 图② 图③第 1 题图解: ()1 过点C 作CQ x ⊥轴于点Q ,交给你了.90AOB CQA ∠∠∴==.ABC 是等腰直角三角形,,90AC AB CAB ∠∴==,90ACQ CAQ CAQ BAO ∠∠∠∠∴+=+=, ACQ BAO ∠∠∴=,,,AQC BOA CQ AO AQ BO ∴≅∴==. 2,4,2,4,6OA OB CQ AQ OQ ==∴==∴=,()6,2C ∴--;(2)两个未知数的和,想知道变化不,肯定要转换,怎么转接呢?交给你了. 整式m n +的值不发生变化.过点D 作DP OB ⊥于点P ,开始吧!90AOB BPD ∠∠∴==.ABD 是等腰直角三角形,,90,AB BD ABD ABO OBD ∠∠∠∴==+=90OBD BDP ∠∠+=,,ABO BDP AOB BPD ∠∠∴=∴≅,AO BP ∴=,()BP OB PO m n m n ∴=-=--=+,()23,0,A BP OA m n -∴==∴+=∴整式m n +的值不变为(3) ()12EN EM ON =-. 证明:这不同于以上两条辅助线. 小虎需要给点提示. 如解图,在ME 上截取MG ON =,连接 BG ,OBM 是等边三角形,,BO BM MO OBM OMB ∠∠∴==== 60BOM ∠=.,,105,130OB OE EO BM EBM ∠∠=∴===, 315,30,45EMO BEM BME ∠∠∠∠∴==∴==. ,45,OF EB EOF EOF BME ∠∠∠⊥∴=∴=.ENO BGM ∴≅.,2315,90,BG EN EBG ∠∠∠∴===∴=1.2BG EG ∴=在等腰 Rt EOB 中, OF EB ⊥,∴点F 是EB 的中点, 又90EBG ∠=,12EN EG ∴=. ()1,,2EG EM GM EN EM GM =-∴=- ()1.2EN EM ON ∴=-第1 题解图。

、抛物线中利用等腰直角三角形构造全等

、抛物线中利用等腰直角三角形构造全等

一、抛物线中利用等腰直角三角形构造全等
1.如图,抛物线n x y +=2
)1(-与x 轴交于A 、B 两点,A 在B 的左侧,与y 轴交于C (0,-3). (1)求抛物线的解析式;
(2)点P 为对称轴右侧的抛物线上一点,以BP 为斜边作等腰直角三角形,直角顶点M 正好落在对称轴上,求P 点的坐标.
2.如图,抛物线342
+-=x x y 与x 轴交于A 、B 两点,与y 轴交于点C ,连AC ,将直线AC 向右平移交抛物线于点P ,交x 轴于Q 点,且∠CPQ =135°,求直线PQ 的解析式.
3抛物线y=x2-2x-3与x轴交于A,B两点,与y轴交于点C,E在x轴下方的对称轴上,BE⊥EF,交抛物线于F,且BE=EF,求点F的坐标。

4抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴正半轴交于点C,点D为抛物线顶点,点P在X轴上,连接PC,∠PCB=∠CBD,求P点点坐标
5抛物线y=-x2+4x-3与x轴交于A,B两点,与y轴交于点C,连接AC,点P为第四象限
抛物线上一点,且∠PCB=∠ACO ,求点P 的坐标。

6.如图,抛物线42
+=ax y 与x 轴交于A ,B 两点(A 左B 右),与y 轴交于
点C ,AB =4. (1)求抛物线的解析式.
(2)CD ⊥AC ,CD =AC ,AD 交抛物线于点P , 求点P。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、抛物线中利用等腰直角三角形构造全等
1.如图,抛物线n x y +=2
)1(-与x 轴交于A 、B 两点,A 在B 的左侧,与y 轴交于C (0,-3). (1)求抛物线的解析式;
(2)点P 为对称轴右侧的抛物线上一点,以BP 为斜边作等腰直角三角形,直角顶点M 正好落在对称轴上,求P 点的坐标.
2.如图,抛物线342
+-=x x y 与x 轴交于A 、B 两点,与y 轴交于点C ,连AC ,将直线AC 向右平移交抛物线于点P ,交x 轴于Q 点,且∠CPQ =135°,求直线PQ 的解析式.
3抛物线y=x2-2x-3与x轴交于A,B两点,与y轴交于点C,E在x轴下方的对称轴上,BE⊥EF,交抛物线于F,且BE=EF,求点F的坐标。

4抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴正半轴交于点C,点D为抛物线顶点,点P在X轴上,连接PC,∠PCB=∠CBD,求P点点坐标
5抛物线y=-x2+4x-3与x轴交于A,B两点,与y轴交于点C,连接AC,点P为第四象限
抛物线上一点,且∠PCB=∠ACO ,求点P 的坐标。

6.如图,抛物线42
+=ax y 与x 轴交于A ,B 两点(A 左B 右),与y 轴交于
点C ,AB =4. (1)求抛物线的解析式.
(2)CD ⊥AC ,CD =AC ,AD 交抛物线于点P , 求点P。

相关文档
最新文档