圆的面积课件公开课ppt报告.ppt
合集下载
圆的面积课件ppt
换算错误
进行单位换算时,应遵循正确的换算 关系。例如,1米等于100厘米,而不 是10厘米或1000厘米。
误区二:混淆直径与半径概念
概念不清
应明确半径是圆的任意一点到圆心的距离,而直径是通过圆心且两端都在圆上的线段。半径是直径的一半。
应用错误
在计算圆的面积时,应使用半径而不是直径。若题目给出的是直径,应将其除以2得到半径后再进行计算。
多边形内切圆与外接圆面积关系推导
正多边形情况
对于正多边形,其内切圆半径r与外接圆半径R之比为r:R=1:2,进而可推导出正多边形 内切圆面积与外接圆面积之比为πr²:πR²=1:4。
一般多边形情况
对于一般多边形,由于其各边长度和角度不均等,内切圆半径r与外接圆半径R之比不具 有固定值。但可以通过计算多边形各顶点到内切圆圆心的距离平均值来估算内切圆半径
圆的面积计算公式推导
• 推导过程:假设圆的半径为r,将圆划分为无数个小的扇形,每个扇形的面积近似于一个三角形。三角形的底为圆的周长( 2πr),高为半径(r)。因此,圆的面积可以表示为无数个三角形面积之和,即S=πr²。
CHAPTER 02
圆的面积计算方法详解
直接法计算圆的面积
01
02
03
公式推导
求解组合图形的面积
当需要求解由圆和其他图形组合而成的复杂图形的面积时,可以通过圆的面积 公式来求解。
圆的面积在物理学中的应用
计算物体的转动惯量
在物理学中,转动惯量是一个物体对于旋转运动的惯性大小 的度量,而圆的面积公式可以用于计算某些形状物体的转动 惯量。
计算电磁场的能量
在电磁学中,电磁场的能量密度与场的分布有关,而场的分 布又与某些几何形状的面积有关,因此圆的面积公式也被用 于计算电磁场的能量。
进行单位换算时,应遵循正确的换算 关系。例如,1米等于100厘米,而不 是10厘米或1000厘米。
误区二:混淆直径与半径概念
概念不清
应明确半径是圆的任意一点到圆心的距离,而直径是通过圆心且两端都在圆上的线段。半径是直径的一半。
应用错误
在计算圆的面积时,应使用半径而不是直径。若题目给出的是直径,应将其除以2得到半径后再进行计算。
多边形内切圆与外接圆面积关系推导
正多边形情况
对于正多边形,其内切圆半径r与外接圆半径R之比为r:R=1:2,进而可推导出正多边形 内切圆面积与外接圆面积之比为πr²:πR²=1:4。
一般多边形情况
对于一般多边形,由于其各边长度和角度不均等,内切圆半径r与外接圆半径R之比不具 有固定值。但可以通过计算多边形各顶点到内切圆圆心的距离平均值来估算内切圆半径
圆的面积计算公式推导
• 推导过程:假设圆的半径为r,将圆划分为无数个小的扇形,每个扇形的面积近似于一个三角形。三角形的底为圆的周长( 2πr),高为半径(r)。因此,圆的面积可以表示为无数个三角形面积之和,即S=πr²。
CHAPTER 02
圆的面积计算方法详解
直接法计算圆的面积
01
02
03
公式推导
求解组合图形的面积
当需要求解由圆和其他图形组合而成的复杂图形的面积时,可以通过圆的面积 公式来求解。
圆的面积在物理学中的应用
计算物体的转动惯量
在物理学中,转动惯量是一个物体对于旋转运动的惯性大小 的度量,而圆的面积公式可以用于计算某些形状物体的转动 惯量。
计算电磁场的能量
在电磁学中,电磁场的能量密度与场的分布有关,而场的分 布又与某些几何形状的面积有关,因此圆的面积公式也被用 于计算电磁场的能量。
圆的面积一ppt课件
圆的面积计算公式推导
圆的半径
从圆心到圆边的距离,通常用 字母r表示。
圆的周长
指围绕圆边一周的长度,通常 用字母C表示。
圆的周长与半径关系
C=2πr,其中π是圆周率,约等 于3.14159。
圆的面积与半径关系
A=πr²,即面积等于半径的平 方乘以圆周率。
圆的面积计算公式应用
计算已知半径的圆面积
只需将半径代入公式A=πr²即可求出 面积。
04
详细描述:通过具体例题,演示如何使用公式计算圆环的面积,并解 释结果。
圆弧的面积计算
总结词:基础计算方法 总结词:应用实例
详细描述:通过将圆弧划分为若干个小扇形,计算每个 扇形的面积,然后求和得到圆弧面积。
详细描述:通过具体例题,演示如何使用该方法计算圆 弧的面积,并解释结果。
04
圆的面积与其他几何量的关系
建筑学中的应用
在建筑设计中,圆形的设计元素可 以增加建筑的视觉效果和美感。
天文学中的应用
天体运动轨迹通常是圆形或椭圆形 的,研究天文学需要用到圆的知识 。
02
圆的面积计算公式
圆的面积定义
圆的面积
指圆所占平面的大小,通常用字 母A表示。
面积单位
常用的面积单位有平方米、平方 厘米等,根据圆的大小选择合适 的单位。
01
02
03
04
总结词:基础计算方法
详细描述:通过使用圆的半径 ,采用公式πr²计算圆的面积
。
总结词:应用实例
ห้องสมุดไป่ตู้
详细描述:通过具体例题,演 示如何使用公式计算圆的面积
,并解释结果。
圆环的面积计算
01
总结词:基础计算方法
圆的面积ppt教学课件共31张ppt
重点与难点解析
针对推导过程中的重点和难点进行深 入剖析,帮助学生更好地理解和掌握 。
公式记忆技巧分享
公式记忆方法
介绍一些有效的记忆方法 ,如联想记忆、口诀记忆 等,帮助学生快速记住圆 的面积公式。
公式应用技巧
分享在实际应用中如何灵 活运用圆的面积公式,提 高解题效率和准确性。
公式记忆的意义
强调记住公式并非目的, 而是为了更好地应用公式 解决实际问题。
思考题二
若将一个圆分成n个相等的小扇形 ,然后将这些小扇形重新组合成 一个近似于矩形的图形,试推导 圆的面积公式。
THANKS
感谢观看
使用测量工具测量每个内
02
切圆的半径,并通过公式
计算面积。
分析比较不同形状内切圆
04
面积的关系,并尝试总结
规律。
创意拼图活动:用圆形创造美丽图案
准备多个大小、颜色不同 的圆形纸片。
让学生们自由发挥想象力 ,使用这些圆形纸片拼出 各种美丽的图案。
可以拼出动物、植物、建 筑物等各种形状,也可以 创作出抽象的艺术作品。
特点
圆是到定点的距离等于定长的所有点组成的图形,具有 对称性和均匀性。
圆心、半径、直径关系
01 圆心
圆的中心,通常用字母O表示。
02 半径
从圆心到圆上任一点的线段,通常用字母r表示。
03 直径
通过圆心且两端点在圆上的线段,是圆中最长的 弦,通常用字母d表示,且d=2r。
圆周角与圆心角关系
01 圆周角
03
典型例题分析与解答
已知半径求面积问题
例题1
已知圆的半径为3厘米,求圆的面积。
注意事项
计算过程中要注意pi r^2$,将 半径代入公式进行计算。
《圆的面积例》课件(共15张PPT)
圆中有方:S=S圆-S正或 S=1.
=(cm²)
的面积是多少平方 小路的面积的多少平方米?
右图(外圆内方):3.
中国建筑中经常能见到“外方内圆”和“外圆内方”的设计。
米? 求出正方形和圆之间部分的面积,就是求什么?
一个圆形花坛的半径是20米,在花坛的外边修一条宽1米的环形小路。 一个圆的周长是,求它的面积?
答:外面的圆与内部的正方形之间的面积 约是cm²。
方中有圆:S=S正-S圆或S=0.86r² 圆中有方:S=S圆-S正或 S=1.14r²
课本72页9题、73页10、11、12题
谢谢大家!
圆的面积(例题3)
记忆宝库
1、圆的面积计算公式?写出计算公式。
S圆=πr²
2、怎样求圆环的面积?写出计算公式。
S圆环=π(R2-r²)
1. 一个圆形茶几面的半径是0.3m ,它的面 积是多少平方米?
2. 一个圆的周长是,求它的面积?
3. 一个圆形花坛的半径是20米,在花坛的外边修
一条宽1米的环形小路。小路的面积的多少平方米?
(5)阴影部分的面积:
-(m²)
回顾与反思
如果两个圆的半径都是r,结果又是怎样的?
左图(外方内圆):(2r)²-3.14×r²=4r²-3.14r²=0.86r²
1 右图(外圆内方):3.14r²-( ×2 2r ×r) ×2
=3.14 r ²-2r²
=1.14r²
当r=1时,和前面的面 积完全一致。
=3.
同学们见过这种图案吗?
外方内圆
外圆内方
中国建筑中经常能见到“外方内圆”和“外圆内方”
的设计。上图中的两个圆半径都是1m,你能求出正方形
和圆之间部分的面积吗?
《圆的面积》PPT课件
人教版小学数学六年级第十一册
2米
在长满青草的草地
上一匹马被主人用一根 两米长的绳子栓在一棵 树,这匹马最多能吃到 多少青草?
提问:(1)圆的面积指的是什么?(2) 我们是怎么样测量计算这个圆的面积?如 果这个圆的半径是r,你能猜出它的面积是 多少?
× 的面积是12.56平方厘米。 ()
3、判断对错:
(2)两个圆的周长相等,面
积也一定相等。
√
()
3、判断对:
(3)圆的半径越大,圆所占 的面积也越大。 ( )
√
3、判断对错:
(4)圆的半径扩大3倍,它
× 的面积扩大6倍。 ( )
4、思考题:
已知半圆中三角形ABC的高是 5厘米,面积是30平方厘米, 半圆的直径是多少?求阴影 部分面积。
1、求下面各圆的面积。 (口头列式)
3.14×12
3.14×(4÷2)2
2、一个雷达屏幕的直径 是40厘米,它的面积是 多少平方厘米?
半径:40÷2=20(厘米) 面积: 3.14×202
=3.14×400 =1256(平方厘米)
答:它的面积是1256平方厘米。
3、判断对错:
(1)直径是2厘米的圆,它
例1
圆形花坛的直径是20m,它的 面积是多少平方米?
20÷2=10(m)
3.14×102 =3.14×100 = 314(m2)
答:它的面积是314平方米。
2米
在长满青草的草地
上一匹马被主人用一根 两米长的绳子栓在一棵 树,这匹马最多能吃到 多少青草?
做一做:
根据下面所给的条件,求圆 的面积。 (1)半径2分米 (2)直径10厘米
r
长方形的面积 = 长 × 宽 长等于圆周长的一半
2米
在长满青草的草地
上一匹马被主人用一根 两米长的绳子栓在一棵 树,这匹马最多能吃到 多少青草?
提问:(1)圆的面积指的是什么?(2) 我们是怎么样测量计算这个圆的面积?如 果这个圆的半径是r,你能猜出它的面积是 多少?
× 的面积是12.56平方厘米。 ()
3、判断对错:
(2)两个圆的周长相等,面
积也一定相等。
√
()
3、判断对:
(3)圆的半径越大,圆所占 的面积也越大。 ( )
√
3、判断对错:
(4)圆的半径扩大3倍,它
× 的面积扩大6倍。 ( )
4、思考题:
已知半圆中三角形ABC的高是 5厘米,面积是30平方厘米, 半圆的直径是多少?求阴影 部分面积。
1、求下面各圆的面积。 (口头列式)
3.14×12
3.14×(4÷2)2
2、一个雷达屏幕的直径 是40厘米,它的面积是 多少平方厘米?
半径:40÷2=20(厘米) 面积: 3.14×202
=3.14×400 =1256(平方厘米)
答:它的面积是1256平方厘米。
3、判断对错:
(1)直径是2厘米的圆,它
例1
圆形花坛的直径是20m,它的 面积是多少平方米?
20÷2=10(m)
3.14×102 =3.14×100 = 314(m2)
答:它的面积是314平方米。
2米
在长满青草的草地
上一匹马被主人用一根 两米长的绳子栓在一棵 树,这匹马最多能吃到 多少青草?
做一做:
根据下面所给的条件,求圆 的面积。 (1)半径2分米 (2)直径10厘米
r
长方形的面积 = 长 × 宽 长等于圆周长的一半
《圆的面积》ppt说课课件
详细描述
设计一些综合性的题目,如结合圆的周长和面积的知识,或 者将圆的面积与其他数学知识(如比例、百分比等)结合起 来,让学生能够综合运用数学知识解决实际问题。
05 本课总结与回顾
本课知识点总结
圆的面积计算公式
S = πr²,其中S代表圆的面积,r代表圆的半径。
圆的面积与半径的关系
圆的面积随着半径的增大而增大,与半径的长度成正比。
解释圆面积与圆的半径和直径的关系,以及圆面积与圆 周长的关系。
回顾圆的性质和定义
圆的性质
回顾圆的性质,如圆心到圆上任 一点的距离相等、圆是中心对称 图形等。
圆的定义
强调圆的定义,即平面内到定点 (圆心)的距离等于定长(半径 )的点的轨迹。
引出本课学习目标
掌握圆面积的计算公式
通过本课学习,学生应能熟练掌握圆 面积的计算公式,并能运用公式解决 实际问题。
解决实际问题
计算体育场、广场等圆形场地的面积
01
结合实际情况,将圆形场地近似为多个小矩形或小三角形,再
例如计算球体、圆柱体的表面积,可以利用圆的面积公式进行
估算。
解决与圆相关的组合图形问题
03
将圆与其他几何图形结合,例如圆与三角形、圆与正方形等,
利用圆的面积公式进行求解。
圆的面积与直径的关系
圆的面积与直径的平方成正比,即直径扩大或缩小若干倍,圆的面 积也扩大或缩小相同的倍数。
学习方法总结
01
02
03
动手操作
通过剪切、拼接等操作, 直观感受圆的面积与长方 形面积的关系,从而推导 出圆的面积计算公式。
观察与思考
观察圆的面积与半径的关 系,思考如何利用圆的半 径计算其面积。
总结词
设计一些综合性的题目,如结合圆的周长和面积的知识,或 者将圆的面积与其他数学知识(如比例、百分比等)结合起 来,让学生能够综合运用数学知识解决实际问题。
05 本课总结与回顾
本课知识点总结
圆的面积计算公式
S = πr²,其中S代表圆的面积,r代表圆的半径。
圆的面积与半径的关系
圆的面积随着半径的增大而增大,与半径的长度成正比。
解释圆面积与圆的半径和直径的关系,以及圆面积与圆 周长的关系。
回顾圆的性质和定义
圆的性质
回顾圆的性质,如圆心到圆上任 一点的距离相等、圆是中心对称 图形等。
圆的定义
强调圆的定义,即平面内到定点 (圆心)的距离等于定长(半径 )的点的轨迹。
引出本课学习目标
掌握圆面积的计算公式
通过本课学习,学生应能熟练掌握圆 面积的计算公式,并能运用公式解决 实际问题。
解决实际问题
计算体育场、广场等圆形场地的面积
01
结合实际情况,将圆形场地近似为多个小矩形或小三角形,再
例如计算球体、圆柱体的表面积,可以利用圆的面积公式进行
估算。
解决与圆相关的组合图形问题
03
将圆与其他几何图形结合,例如圆与三角形、圆与正方形等,
利用圆的面积公式进行求解。
圆的面积与直径的关系
圆的面积与直径的平方成正比,即直径扩大或缩小若干倍,圆的面 积也扩大或缩小相同的倍数。
学习方法总结
01
02
03
动手操作
通过剪切、拼接等操作, 直观感受圆的面积与长方 形面积的关系,从而推导 出圆的面积计算公式。
观察与思考
观察圆的面积与半径的关 系,思考如何利用圆的半 径计算其面积。
总结词
人教版六年级数学上册圆的面积课件(27张ppt)
圆面积定义
面积公式推导
实践应用
记 忆 宝 库
面积指的是什么?
圆所占平面的大小叫做圆的面积。
返回
记 忆 宝 库
你还记得三角形、梯形 面积的推导过程吗?
记 忆 宝 库
你还记得三角形、梯形 面积的推导过程吗?
猜一猜:圆的面积和什么有关?
将圆分成若干等分
34 56
2
7
1
8
16
9
15
10
14 13 12 11
1 神州五号飞船实际降落范围有 多大?
S = πr2
3.14×52 =3.14×25 =78.5(平方千米) 答:神州五号飞船实际的降落范围 是78.5平方千米。
例3 神州五号飞船实际降落范围比 预定范围小了多少平方千米?
10 圆环面积= 外圆面积-内圆面积 第一步求外圆面积; 第二步求内圆面积; 第三步求环形 把一个圆平均分成若干等分,然后拼在一 起,可以拼成一个近似(长方)形。长方形 的宽是圆的(半径),长是圆的( 周长)一, 半 求圆面积用公式表示( S = π)r。2
C
2
=πr
r
返回
我的收获
将圆分成若干等分
1 2 3 4C 5 6 7 8 2
1 2 34 567 8
r
16 15 14 13 12 11 10 9 16 15 14 13 12 11 10 9
分的份数越多,拼成的图形越接近长方形。 C 2
r
C 2
= πr
r
因为: 长方形面积 = 长 × 宽
所以: 圆 的 面 积 = πr × r = πr 2
(1)圆的半径扩大5倍, 圆的面积也扩大5倍。(×)
(2)半径是2厘米的圆,周长和面积相等。(×)
面积公式推导
实践应用
记 忆 宝 库
面积指的是什么?
圆所占平面的大小叫做圆的面积。
返回
记 忆 宝 库
你还记得三角形、梯形 面积的推导过程吗?
记 忆 宝 库
你还记得三角形、梯形 面积的推导过程吗?
猜一猜:圆的面积和什么有关?
将圆分成若干等分
34 56
2
7
1
8
16
9
15
10
14 13 12 11
1 神州五号飞船实际降落范围有 多大?
S = πr2
3.14×52 =3.14×25 =78.5(平方千米) 答:神州五号飞船实际的降落范围 是78.5平方千米。
例3 神州五号飞船实际降落范围比 预定范围小了多少平方千米?
10 圆环面积= 外圆面积-内圆面积 第一步求外圆面积; 第二步求内圆面积; 第三步求环形 把一个圆平均分成若干等分,然后拼在一 起,可以拼成一个近似(长方)形。长方形 的宽是圆的(半径),长是圆的( 周长)一, 半 求圆面积用公式表示( S = π)r。2
C
2
=πr
r
返回
我的收获
将圆分成若干等分
1 2 3 4C 5 6 7 8 2
1 2 34 567 8
r
16 15 14 13 12 11 10 9 16 15 14 13 12 11 10 9
分的份数越多,拼成的图形越接近长方形。 C 2
r
C 2
= πr
r
因为: 长方形面积 = 长 × 宽
所以: 圆 的 面 积 = πr × r = πr 2
(1)圆的半径扩大5倍, 圆的面积也扩大5倍。(×)
(2)半径是2厘米的圆,周长和面积相等。(×)
《圆的面积》ppt课件
半径与面积的变化规律
当半径增加或减少时,圆的面积会相应地增加或减少。
要点二
半径与面积的变化规律的应用
在几何学中,可以通过比较不同大小的圆来研究它们的面 积变化规律。
半径与面积的几何意义
半径与面积的几何意义
半径是圆上任意一点到圆心的距离,而圆的 面积则表示圆所覆盖的平面区域的大小。
半径与面积的几何意义的 应用
分割法
总结词
将圆分割成若干个近似等面积的小多边形,再求和
详细描述
将圆分割成若干个近似的等面积的小多边形,每个多边形的面 积可以近似为 (frac{1}{2} times text{底} times text{高}),然后 求和得到圆的面积。这种方法可以帮助学生理解圆的面积计算 原理。
01
圆的面积与半径的 关系
半径与面积的数值关系
1 2
圆的面积计算公式
A = πr^2,其中A表示圆的面积,r表示圆的半 径。
半径与面积的数值关系
随着半径的增大,圆的面积也相应增大;反之, 随着半径的减小,圆的面积也相应减小。
3
半径与面积的数值关系的应用
通过计算圆的面积,可以推算出圆的半径或直径。
半径与面积的变化规律
要点一
圆的面积公式应用
总结词:实例说明
详细描述:最后,我们将通过实例来说明如何应用圆的面积公式。例如,计算一个半径为5cm的圆的面积, 我们可以将半径值代入公式πr^2中,得到面积为78.5cm^2。此外,我们还可以利用圆的面积公式来解决 生活中的实际问题,如计算圆形物体的表面积、计算土地的面积等。
01
圆的面积计算方法
直接计算法
总结词
通过公式直接计算圆的面积
详细描述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这个方法叫做 “割补法”
平形四边形的面积=底×高
.精品课件.
7
这是利用“割补法”把平行四 边形转化成长方形推导出来的
转化是数学中常用的思想方 法,就是把一个新问题转化为已 经解决的问题,用已有的知识方 法生成新的知识方法,我们把它 称为 “转化思想”
.精品课件.
8Байду номын сангаас
想一想 圆的面积公式能不能通过 “割补法” 转化成
r 长.精=品课件.
宽= r
47
宽= r
长= r
因为: 长方形面积 = 长 × 宽
所以: 圆 的 面 积 = πr × r = πr 2
.精品课件.
48
圆的面积计算公式:
S = πr 2
.精品课件.
49
解决问题:
例1圆形草坪的直径是20米, 每平方米草皮8元,铺满 草皮需要多少钱?
思考:要计算铺满草皮共需要多少钱,已经知道了单价,还需要知 道总面积,故首先要求出草坪的.精品面课积件是. 多少,这样问题就好解决了。50
26
.精品课件.
27
.精品课件.
28
.精品课件.
29
.精品课件.
30
.精品课件.
31
.精品课件.
32
.精品课件.
33
长= 2 .r精÷品课件2=. r
34
长= 2 .r精÷品课件2=. r
35
r 长.精=品课件.
36
r 长.精=品课件.
37
r 长.精=品课件.
38
r 长.精=品课件.
第二步求内圆面积;
第三步求环形的面积;
.精品课件.
52
例2 光盘的绿色部分是一个圆环, 内圆半径是2cm,外圆半径是
6cm。圆环的面积是多少?
6cm 圆环面积= 外圆面积-内圆面积
3.14×62 - 3.14×22 3.14×(62 – 22 )
.精品课件.
53
数学城堡
加油啊!
.精品课件.
54
1、 一个圆形花坛的直径是2米, 这个花坛的面积是( 3.14m2),
.精品课件.
58
今天我学习了圆的面积。我知道了
把一个圆平均分成若干等分,然后拼在一
起,可以拼成一个近似( 长方)形。长方形
的长是圆的( 周长)的,宽一是半圆( ),所
以圆的半面径积用公式表示就是(
)。
S = πr 2
C
2
=πr
r
返回
我的收获 .精品课件.
59
例1:圆形花坛的直径是20m,它的面 积是多少平方米?
解:圆的半径:20÷2=10(m) 圆的面积:3.14×102 =3.14 ×100 =314(平方米)
答:这个圆的面积是314平方米。
.精品课件.
51
例2 光盘的绿色部分是一个圆环, 内圆半径是2cm,外圆半径是
6cm。圆环的面积是多少?
6cm 圆环面积=外圆面积-内圆面积 第一步求外圆面积;
我们已学过的图形来推导出来呢?
.精品课件.
9
分成4份
.精品课件.
10
分成4份
.精品课件.
11
分成8份
.精品课件.
12
分成8份
.精品课件.
13
分成16份
.精品课件.
14
分成16份
.精品课件.
15
分成32份
.精品课件.
16
八等分 十六等分 三十二等分 分的份数越多,
…… ……
.精品课件.
39
r 长.精=品课件.
40
r 长.精=品课件.
41
r 长.精=品课件.
42
r 长.精=品课件.
43
r 长.精=品课件.
宽= r
44
讨论完成第二个问题
②转化后长方形的长相当于圆的( 周长的一半 ),宽相 当于圆的( 半径)?
.精品课件.
46
你能用“因为……所 以……”说出圆的面 积吗?
例1 圆形草坪的直径是20 米,这个圆形草坪的占 地面积是多少平方米?
如果每平方米草 坪8元,铺满草皮 需要多少元?
.精品课件.
1
人教版六年级上册数学
圆的面积
聋七年级
余利锋 .精品课件.
2
圆所占平面的大小叫做圆的面积。
.精品课件.
3
平行四边形的面 积公式是怎样得
到的呢?
推导过程: 长方形的面积=长×宽
17
讨论完成第一个问题:
①转化的过程中它们的(形状)发生了变化,但是它们的
( 面积)不变?
思考:转化后长方形的长相当于圆的(
),
宽相当于圆的( )?
.精品课件.
18
.精品课件.
19
.精品课件.
20
.精品课件.
21
.精品课件.
22
.精品课件.
23
.精品课件.
24
.精品课件.
25
.精品课件.
2、一块边长是4分米的正方形铁板, 剪下一个最大的圆,圆的面积是 ( 12.56dm )2 。
.精品课件.
55
数学诊所
3、两个半圆一定能拼成一个圆。 (× ) 4、半径是2厘米的圆,周长和面积相等(×) 5、大圆的圆周率比小圆的圆周率大。 (× )
.精品课件.
56
说一说:
通过本节课的学习,
你有什么收获?