初一升初二暑假数学教材

合集下载

初一升初二数学暑假补习资料华很贵的20个财富2

初一升初二数学暑假补习资料华很贵的20个财富2

第一节平方根[情景引入]【知识要点】1、平方根一般地,如果一个数x的平方等于a,即ax=2,那么这个数x就叫做a的平方根(也叫做二次方根)。

①一个正数有两个平方根,它们互为相反数;②0只有一个平方根是0;③负数没有平方根。

2、算术平方根一般地,如果一个正数x的平方等于a,即ax=2,那么这个正数x就叫做a的算术平方根,记为“a”,读作“根号a”。

特别地,我们规定0的算术平方根是0,即00=。

3、开平方求一个数a的平方根的运算叫做开平方,其中a叫做被开方数,a必须为非负数,即a有意义的条件是a≥0。

4、开平方及平方的关系:互为逆运算。

5、a(a≥0)的非负性,即一个非负数的算术平方根仍为非负数。

6、形如()()⎩⎨⎧<-≥==2aaaaaa【典型例题】例1-1、求下列各数的算术平方根、平方根。

①259; ②64; ④0.09; ⑤49151; ⑥0。

例1-2、求下列各数的算术平方根、平方根: ①3625; ③0.0036; ④2563; ⑤81; 例2、填空:(1)23= ; (2)()231-= ; (5)210= ; (6)()2101-= ; (9)对于任意数x ,2x = ; 例3、求适合下列各式中未知数的值: (1)()0064252<=-x x (2)()4912=+x(3)()()3252100-=--x (4)13=x例4、已知355+-+-=x x y ;求x+y 的值。

例5、已知()02132=++-+-z y x ,求xyz 的值。

例6、x 为何值时,x x +-1有意义。

例7、已知12-a 的平方根是3±,13-+b a 的平方根是4±,求b a 2+的平方根。

例8、小明家最近刚购买一套新房,他要在客厅铺花岗岩地面,客厅面积为232m ,他要用50块正方形的花岗岩。

请你帮助小明计算一下,他在购买多少米的花岗岩地砖? 【随堂练习】 一、选择题:1.一个数的平方根是它本身,那么这个数是( )。

北师版数学初一升初二暑假衔接教材

北师版数学初一升初二暑假衔接教材

第一讲、三角形总复习基础知识1. 三角形的内角和定理与三角形的外角和定理;2. 三角形中三边之间的关系定理及其推论;3. 全等三角形的性质与判定;4. 特殊三角形的性质与判定(如等腰三角形);5. 直角三角形的性质与判定。

三角形一章在平面几何中占有十分重要的地位。

从知识上来看,许多内容应用十分广泛,可以解决一些简单的实际问题;从证题方法来看,全等三角形的知识,为我们提供了一个及为方便的工具,通过证明全等,解决证明两条线段相等,两个角相等,从而解决平行、垂直等问题。

因此,它揭示了研究封闭图形的一般方法,为以后的学习提供了研究的工具。

因此,在学习中我们应该多总结,多归纳,使知识更加系统化,解题方法更加规范,从而提高我们的解题能力。

例题精讲一、三角形内角和定理的应用【例1】如图1,已知∆A B C 中,∠=︒⊥B A C A D B C 90,于D ,E 是AD 上一点。

求证:∠>∠B E D C二、三角形三边关系的应用【例2】已知:如图,在∆A B C中,AB>AC ,AM 是BC 边的中线。

求证:()A M A B A C >-12。

三、角平分线定理的应用【例3】如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC 。

求证:AM 平分DAB 。

四、全等三角形的应用1、构造全等三角形解决问题【例4】已知如图,△ABC是边长为1的等边三角形,△BDC是顶角(∠BDC)为120°的等腰三角形,以D为顶点作一个60°的角,它的两边分别交AB于M,交AC于N,连结MN。

求证:∆A M N的周长等于2。

2、“全等三角形”在综合题中的应用【例5】如图,已知:点C是∠FAE的平分线AC上一点,CE⊥AE,CF⊥AF,E、F为垂足。

点B在AE的延长线上,点D在AF上。

若AB=21,AD=9,BC=DC=10。

求AC的长。

五、中考点拨【例6】如图,在∆A B C中,已知∠B和∠C的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为【】A. 9B. 8C. 7D. 6六、题型展示【例7】已知:如图,∆A B C 中,AB =AC ,∠ACB =90°,D 是AC 上一点,AE 垂直BD 的延长线于E ,AE BD =12。

2022年七年级升八年级数学 暑期衔接班讲义 第十五讲 等腰直角三角形 新人教版

2022年七年级升八年级数学 暑期衔接班讲义 第十五讲 等腰直角三角形 新人教版

DACBD A M EC B DA M CB 第十五讲:等腰直角三角形如图,在等腰Rt △ABC 中,AB=AC ,∠BAC=90°,AD ⊥BC 于点D. 根本性质:1.边:AB=AC ,DA=DB=DC=12BC ; 2.角:∠BAC=∠ADB=∠ADC=90°; ∠B=∠C=∠BAD=∠CAD=45°;3.形:等腰Rt △ABC ,等腰Rt △ABD ,等腰Rt △ACD.第一局部【能力提高】一、如图,M 为等腰Rt △ABC 斜边BC 的中点,D 为AB 上一点,ME ⊥MD 交直线AC 于点E.〔1〕求证:MD=ME ;其它结论:①AD+AE=AB ;②BD+CE=AB ;③△MDE 为等腰直角三角形;④12ABCADME S S四.〔2〕如图,假设D 为AB 反向延长线上一点,其它条件不变, 请完成图形并探究〔1〕中的结论.二、如图,点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE=CA .〔1〕求证:DE 平分∠BDC;〔2〕假设点M 在DE 上,且DC=DM ,求证:ME=BD .DAE C B A NM P E CB D E AC B图1三、如图,M 为等腰Rt △ABC 直角边AC 的中点,AE ⊥BD 交BC 于点E ,连结DE. 〔1〕求证:①∠ADB=∠CDE ;②AE+DE=BD ;〔2〕如图2,假设AM=CN ,AE ⊥BM 交BC 于点E ,BM 、EN 交于点P.求证:①∠AMB=∠CNE ;②AE+PE=BP.四、如图1,在等腰Rt △ABC 中,D 为直线BC 上一点,过点D 作AD 的垂线DE ,过点B 作AB的垂线BE.〔1〕求证:AD=DE ;E B D A C C A D B E图2图3CA DB EEBDA CCADBE 图4图5图6〔2〕拓展变化一:图形的演变〔纵深演变〕如图2和图3中,当D 分别在BC 的延长线或反向延长线上时,求证:AD=DE ;〔3〕拓展变化二:条件的演变〔横向演变〕如图4,图5,图6中,等腰Rt △ABC 中,D 为直线BC 上一点,以AD 为腰作等腰Rt △ADE ,连接BE ,求证AB ⊥BE.A CPA CPA CP第二局部【综合运用】五、〔1〕如图,等腰Rt △ABC 中,AC=BC ,∠ACB=90°,P 为△ABC 形外一点,∠APB=90°,求证:∠APC=∠BPC=45°;〔2〕如图,等腰Rt △ABC 中,AC=BC ,∠ACB=90°,P 为△ABC 形外一点,∠APC=45°,求证:∠APB=90°;〔3〕如图,等腰Rt △ABC 中,AC=BC ,∠ACB=90°,P 为△ABC 形外一点,CP 平分∠APB ,求证:∠APB=90°〔∠APC=∠BPC=45°〕;ACP ACPACHP B〔4〕如图,在Rt△ABC中,∠ACB=90°,P为△ABC形外的一点,∠APC=∠BPC=45°,求证:AC=BC;〔5〕如图,在等腰△ABC中,AC=BC,P为△ABC形外的任一点,且∠APC=∠BPC=45°,求证:∠ACB=90°;〔6〕如图,在〔1〕~〔5〕的条件下,过C作CH⊥AP于点H.求证:①PA+PB=2PH;②PA-PB=2AH;ACHPDACBEODACBM EN〔7〕如图,当P点、C点在直线AB的同侧,类同〔1〕~〔6〕的条件、结论,进行探究.六、如图,以任意△ABC的两边AB、AC为腰作两个等腰Rt△ABD和等腰Rt△ACE,连接BE、CD交于点O.〔1〕求证:BE=CD;〔2〕求∠BOC的度数;〔3〕连接AO,求证:AO平分∠DOE;〔4〕M、N分别为CD、BE的中点,判断△AMN的形状,并证明你的结论.。

(完整版)初高中数学衔接教材(已整理)

(完整版)初高中数学衔接教材(已整理)

目录第一章数与式1.1数与式的运算1.1.1 1.1.2 1.1.3 1.1.4绝对值乘法公式二次根式分式1.2分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2 二次函数2.2.1二次函数y二ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆3.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幕定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)1.1数与式的运算1.1.1 .绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a| 0, a 0,a, a 0.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:|a b表示在数轴上,数a和数b之间的距离.例1解不等式:|x 1 x 3 >4.解法一:由x 1 0 ,得x 1 ;由x 3 0,得x 3 ;①若x 1,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得X V0,又x v 1 ,二x v 0;②若1 x 2,不等式可变为(x 1) (x 3) 4 ,即1> 4,二不存在满足条件的x;③若x 3,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得x>4.又x>3二x>4.综上所述,原不等式的解为x V0, 或x>4.解法二:如图1. 1- 1, x 1表示x轴上坐标为x的点P到坐标为1的点A之间的距离|RA|,即|RA| = |x- 1|; |x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|= |x- 3|.所以,不等式x 1 x 3 >4的几何意义即为|RA| + |PB|> 4.由|AB|= 2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x V0,或x>4.P 丄CL A 丄BLDL---- x0134x V|x-3||x- 1|图1. 1-12.2练 1. 2.3. 习 填空: (1) 若 x (2) 如果|a b 选择题: 下 )(A )(C )化简: 5,贝y x= 5,且a _若x 则b =4,贝y x= _____ ;若 1 c 2,则 C =若a 若a|x — 5|—|2X — 13| (x >5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式: (1) 平方差公式 (a b)(a b) a 2 b 2 ; (2) 完全平方公式 (a b)2 a 2 2ab b 2.我们还可以通过证明得到下列一些乘法公式:b , b ,则 a b (B) (D) 若a b ,贝S a 若a b ,则a解法 :原式= (x 2 1) (x 21)2 x 2 = (x 2 1)(x4 2x1)= 6x 1 .解法 *■.原式=(x 1)(x 2 x 2 1)(x 1)(x x 1)=(x 3 1)(x 3 1)= 6 x 1 .例2 已知a b c 4 , ab bc ac 4,求 a 2 b 2 c 2 的值解: 2 a .2 2b c (a b c)2 2(ab bc ac) 8 . 练 习1. 填空: (1) 1 2 a 1.2 b ( 4 b ;a)( );9 4 2 3(2) (4 m)2 16m 24m ( );(3 ) (a 2b c)2 a 2 4b 2 c 2 ( ). 1). 选择题:有兴趣的同学可以自己去证明. 例 1 计算:(x 1)(x 1)( x 2x 1)(x 2 x (1 )x 2 Imx k平方式,(1) 立方和公式 (a b)(a 2 ab b 2) 3 a .3 b ; (2) 立方差公式 (a b)(a 2 ab b 2) 3 a 3b ;(3) 三数和平方公式 (a b c)2 a 2 b 2 2 c 2(ab bc(4) 两数和立方公式 (a b)3 a 3 3a 2b 3ab 2 b 3;(5) 两数差立方公式 (a b)3 a 3 3a 2b3ab 2 b 3 .ac);对上面列出的五个公式,(A) m2(B) - m2(C) - m2(D)丄m24 3 16((2 ) 不论a , b为何实数,a2 b2 2a 4b 8 的值((A )总是正数(B )总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如,a(a 0)的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如3a「a?—b 2b , . a^b2等是无理式,而.2x2彳x 1 , x2、2x y , ■■ a2等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为—有理化因式,例如J2与.2 , 3'、a 与,-. 3 .6 与方.6 , 2-. 3 3',2 与 2.3 3-2,等等. 一般地,ax与x , a、、x b. y与a、、x b y , a、、x b与a、、x b互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式. ab(a 0,b 0);而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2 .二次根式-a2的意义a, a 0, aa, a 0.例1将下歹J式子化为最简一次根式:(1) 両; (2) VOb(a0);(3) J4x6y(x 0).解:(1) ^A2b2顶;(2) Ja2b a 7b aVb(a 0);(3) 』4x6y 2 x^/y 2X3TT(X0).例2计算:暑(3 73).解法- -.73 (33 V3初中升高中数学教材变化分析解法二:解:=-3 (3 . 3)(3 . 3)(3、、3)=3^3 39 3=3(、、3 1)6=.3 12.3 (3、、3)=—3 V3试比较下列各组数的大小: (1) ..12 '.诃禾口、、仃110 ;(1) V J2.1112 11111 1011 -101= 丽3^3 1)_ 1 = _______________ = .3 1(.3 1)C 3 1)J 2)_ 6^ _ 、石)(.12 ;11)和 2.2— 6 . .12 ,11(、石 *10)(、11 ”10) 、石;10又. .12、一 11 5^ ,10 ,••• .,12 ,11 v .11.(2).. 2运—庇 2屁苗212-46)(242+46)又 4>2 2, _• ° •号 6 + 4 > . 6 + 2 习 2,• 一2 v 2、、2—•、6..6 4化简:C.3 , 2)2004 ( -.. 3 . 2) 2005解:(、、3 , 2)2004 ( .3、、2严=,2)2004 ( -.3 ,2)2004 (-. 3= C3、、2 C3 =12004(4 2、2+ 6 ,3 11 .12 11 ' __ 1 ___ 11 '一 10 '2,2+「6’.2 ) 2004 (「3.2)5化简:2) = .3、、2 .(1) .9 4*5 ;(2)x 2解: (1)原式(2)原式={(x *).(5)2 2 2 -5 221 x••• 06 已知xx 1 ,-丄3 2 、3 2 ,y1 22(0 x 1).x7(2 V5)2 2 71 x ,所以,原式=-x密茫,求3x 2 5xy 3y 2的值.、3 <2解:「X y :3 : ;〕2 (―2)2do , 32 3 2Xy.3, 2 , 3 . 2 1,2 2 2 2…3X 5xy 3y 3(X y) 11xy 3 1011 289 .练 习1.1.4 .分式1.分式的意义 形如A 的式子,若B 中含有字母,且B 0,则称A 为分式.当MHO 时,分BB式A 具有下列性质:BA A MA A MB B M 'B B M *上述性质被称为分式的基本性质. 2.繁分式a像_^ , m n p 这样,分子或分母中又含有分式的分式叫做 繁分式. c d _2m_n P例1若空匕 A —,求常数A,B 的值.X (X 2) X X 21. 填空:1 (1)(2) (3) (4) 13若.、(5 x)(x 3)2 (X 3)、、亍,则X 的取值范围是4.24 6,54 3 .96 2. 150 若X 巨,则、厂 ''厂22. 选择题:.立3. 4.(B )1U ,求 a a 1比较大小:2— 3 _______ ; 5— 4 (填b 的值. (C )N”.(D )0X 2解:~A B• ____ _x x 2.A B 5,2A 4,(1)试证: A(x 2) Bx (A B)x 2A 5x 4 x(x 2) 解得 x(x 2) x(x 2) 2,B 1.2. 3.4.(1) (2) (2)(3) 证明:1 n 12 3证明:对任意大于 计算: 1 n(n 1) 1 1 2(其中n 是正整数);1 9 10 '的正整数n ,有二 —2 3 3 41n(n 1)解:由 1 2(3)证明:..1 1• -------n n 1. 1n(n 1)(1)可知丄L2 31 12 3 3 41 n(n 1), (其中n 是正整数)成立.n n(n 1) 1 n 1 (n 1)19 10 1 1 1 -)( )1 2 2 31 1 1 1— _ (― 一)(— n(n 1) 2 3 31又n 》2且n 是正整数,二.11, 1 1 • • LV2 3 3 4 n(n 1)2且 e >1, 2c 2 — 5ac + 2a 2_0, 解:在2c 2— 5ac + 2a 2_0两边同除以a 2,得2呂—5e + 2_ 0,• (2e — 1)(e — 2)_ 0,1• e _ 2 V 1,舍去; •- e _ 2.或 e = 2. 一定为正数,求e 的值.丄 10910_丄_ 2习填空题: 选择题: 若) (A)对任意的正整数 2x yx正数x,y 满足 x 2 n ,1n(n 2)(丄n(B)2xy ,求 54x yx的值.y(C ) 4(D)计算丄- 99 100习题1. 1 A 组1.解不等式:(1) (3) 2 .已知x y 1 , x 1 3;(2) x 3x 27 ;x 1 x 1 6 .3xy 的值. 求 x 3 y 3 3. 填空:(1) (2) (3)(2 .3)18(2若,(T 1 .2a)21,(1 a)22 , 1__ ?则a 的取值范围是1 4「51.填空:(1) a2.1.(2)若 x 2xy 2y 2已知:x 1 2,y3a 2 2 3a 5ab 2b2小0,则—xy yx y _x . y ab 2 _________________22 _ __ ---------y」y _的值.x yC 组选择题: ((A ) a b(B ) a b(C ) a b 0 (D ) b a 0( 2)计算a :等于( )(A) < ~(B ) ■- a (C )-(D ) 、、a2.解方程2(x 2丄)13(x -)1 0 .x x3.计算:-——-1 L 1.132 43 59 114.试证:对任意的正整数 n ,有1L -1 1 —<-.b 2 一 ab 、、b a若 则)a () n(n 1)(n2) 2 3 41 2 3 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解 法,另外还应了解求根法及待定系数法. 1.十字相乘法例1分解因式: (1) x 2-3x + 2;(2) x 2 + 4x —(3) x 2 (a b )xy aby 2 ; (4) xy 1 x y .解:(1)如图1. 1- 1,将二次项x 2分解成图中的两个x 的积,再将常数项 2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一 3x ,就是 x 2-3x + 2中的一次项,所以,有x 2- 3x + 2 = (x - 1)(x - 2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1. 1- 1中的两个x 用1来表示(如图1. 1-2所示).(2) 由图1. 1-3,得x 2 + 4x - 12 = (x - 2)(x + 6).(3) 由图1. 1-4,得2 2x (a b)xy aby = (x ay)(x by) x―1(4) xy 1 x y = xy + (x - y) — 1y ”1=(x - 1) (y+1)(如图 1. 1-5 所示).图 1. 1-5课堂练习一、填空题:1、把下列各式分解因式: (1) 2 x 5x 6 。

(已经整理)七升八暑期数学辅导(全集)

(已经整理)七升八暑期数学辅导(全集)

第一讲 与三角形有关的线段 【2 】常识点1.三角形的概念☑ 不在一条直线上的三条线段首尾按序相接构成的图形叫做三角形.构成三角形的线段叫做三角形的边,相邻双方所构成的角叫做三角形的内角,简称角,相邻双方的公共端点是三角形的极点. ☑ 三角形的表示办法三角形用符号“△”表示,极点是A,B,C 的三角形,记作“△ABC ” 三角形ABC 用符号表示为△ABC.三角形ABC 的极点C 所对的边AB 可用c 表示,极点B 所对的边AC 可用b 表示,极点A 所对的边BC 可用a表示.常识点2.三角形的三边关系【探讨】随意率性画一个△ABC,假设有一只小虫要从B 点动身,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?☑ 三角形的双方之和大于第三边,可用字母表示为a+b >c,b+c >a,a+c >b拓展:a+b >c,根据不等式的性质得c-b <a,即双方之差小于第三边. 即a-b <c <a+b (三角形的随意率性一边小于另二边和,大于另二边差)【演习1】一个三角形的双方长分离为3cm 和7cm,则此三角形的第三边的长可能是( ) A .3cmB .4cmC .7cmD .11cm【演习2】有下列长度的三条线段可否构成三角形?为什么? (1)3,5,8; (2)5,6,10; (3)5,6,7. (4)5,6,12【辨析】有三条线段a.b.c,a+b >c,扎西以为:这三条线段能构成三角形.你赞成扎西的意见吗?为什么? 【例1】用一条长为18㎝的细绳围成一个等腰三角形. (1)假如腰长是底边的2倍,那么各边的长是若干? (2)能围成有一边长为4㎝的等腰三角形吗?为什么? 【演习】1.三角形三边为3,5,3-4a,则a 的规模是.2.三角形双方长分离为25cm 和10cm,第三条边与个中一边的长相等,则第三边长为.3.等腰三角形的周长为14,个中一边长为3,则腰长为4.一个三角形周长为27cm,三边长比为2∶3∶4,则最长边比最短边长.5.等腰三角形双方为5cm 和12cm,则周长为.6.已知:等腰三角形的底边长为6cm,那么其腰长的规模是________.abc(1)CBA7.已知:一个三角形双方分离为4和7,则第三边上的中线的规模是_________. 8.下列前提中能构成三角形的是( )A.5cm, 7cm, 13cmB.3cm, 5cm, 9cmC.6cm, 9cm, 14cmD.5cm, 6cm, 11cm 9.等腰三角形的周长为16,且边长为整数,则腰与底边分离为( ) A.5,6 B.6,4 C.7,2 D.以上三种情形都有可能 11.一个三角形双方分离为3和7,第三边为偶数,第三边长为( ) A.4,6 B.4,6,8 C.6,8 D.6,8,10 11.△ABC 中,a=6x,b=8x,c=28,则x 的取值规模是( ) A.2<x <14 B.x >2 C.x <14 D.7<x <14 12.指出下列每组线段可否构成三角形图形(1)a=5,b=4,c=3 (2)a=7,b=2,c=4(3)a=6,b=6,c=12 (4)a=5,b=5,c=6 13.已知等腰三角形的双方长分离为11cm 和5cm,求它的周长.14.已知等腰三角形的底边长为8cm,一腰的中线把三角形的周长分为两部分,个中一部分比另一部分长2cm,求这个三角形的腰长.15.已知等腰三角形一边长为24cm,腰长是底边的2倍.求这个三角形的周长.16.如图,求证:AB+BC+CD+DA>AC+BD常识点3 三角形的三条主要线段三角形的高(1)界说:从三角形的一个极点向它的对边地点的直线画垂线,极点和垂足间的线段叫做三角形的高(简称三角形的高) (2)高的论述办法 ①AD 是△ABC 的高 ②AD ⊥BC,垂足为D③点D 在BC 上,且∠BDA=∠CDA=90度 【演习】画出①.②.③三个△ABC 各边的高,并解释是哪条边的高.①②③AB 边上的高是线段____ AB 边上的高是线段____ AB 边上的高是线段____ BC 边上的高是_________ BC边上的高是_________ BC 边上的高是_________ AB C A B CB ACABCDAC 边上的高是_________ AC 边上的高是_________ AC 边上的高是_________ [辨析] 高与垂线有差别吗?_____________________________________________[探讨] 画出图1中三角形ABC 三条边上的高,看看有什么发明?假如△ABC 是直角三角形.钝角三角形,上面的结论还成立吗?试着画一画【结论】________________________________________ ☑ 三角形的中线(1)界说:在三角形中,衔接一个极点和它对边中点的线段叫做三角形的中线. 三角形三条中线的交点叫做三角形的重心.【探讨2】如图,AD 为三角形ABC 的中线,△ABD 和△ACD 的面积比拟有何干系?【例2】如图,已知△ABC 的周长为16厘米,AD 是BC 边上的中线,AD=45AB,AD=4厘米,△ABD 的周长是12厘米,求△ABC 各边的长. ☑ 三角形的角等分线(1)界说:三角形的一个角的等分线与这个角的对边订交,这个角的极点和交点之间的线段叫做三角形的角等分线.[辨析]三角形的角等分线与角的等分线是一样的吗? 画出△ABC 各角的角等分线,并解释是哪角的角等分线.[探讨]不雅察画出的三条角平线,你有什么发明?_______________________________ [自我检测]如图,AD.AE.CF 分离是△ABC 的中线.角等分线和高,则: (1)BD=______=12________;(2)BC=2_______=2_______;(3)∠BAE=_______=12_______;(4)∠BAC=2_______=2_______;(5)_______=________=90常识点4 三角形的稳固性三角形的三边长一旦肯定,三角形的外形就独一肯定,这共性质叫做三角形的稳固性.四边形则不具有稳固性. 钢架桥.屋顶钢架和起重机都是应用三角形的稳固性,伸缩门则是应用四边形的不稳固性.你还能举出一些例子吗?A B C BA C FEDCBA【试一试】1.如图,AD 是△ABC 的中线,已知△ABD 比△ACD 的周长大6cm,则AB 与AC 的差为_______2.如图,D 为△ABC 中AC 边上一点,AD=1,DC=2,AB=4,E 是AB 上一点,且△ABC 的面积等于△DEC 面积的2倍,则BE 的长为( )3.若点P 是△ABC 内一点,试解释AB+AC >PB+PC【课后功课】1.AD 是△ABC 的高,可表示为,AE 是△ABC 的角等分线,可表示为,BF 是△ABC的中线,可表示为.2.如图2,AD 是△ABC 的角等分线,则∠=∠=12∠;E 在AC 上,且AE=CE,则BE 是△ABC 的;CF 是△ABC 的高,则∠=∠=900,CFAB.3.如图3,AD 是△ABC 的中线,AE 是△ABC 的角等分线,若BD=2cm,则BC=;若∠BAC=600,则∠CAE=. 4.如图4,以AD 为高的三角形共有.5.三角形的一条高是一条……………………………( )A.直线B.垂线C.垂线段D.射线6.下列说法中,精确的是………………………………( ) A.三角形的角等分线是射线B.三角形的高总在三角形的内部C.三角形的高.中线.角等分线必定是三条不同的线段D.三角形的中线在三角形的内部 7.下列图形具有稳固性的是………………………………( )A.正方形B.梯形C.三角形D.平行四边形 8.如图8,AD ⊥BC 于D,CE ⊥AB 于E,AD.CE 交于点O,OF ⊥CE,则下列说法中精确的是………………………………………………………( ) A.OE 为△ABD 中AB 边上的高 B.OD 为△BCE 中BC 边上的高 C.AE 为△AOC 中OC 边上的高 D.OF 为△AOC 中AC 边上的高9. 如图,BD 是△ABC 的角等分线,DE ∥BC,交AB 于点E,∠A=45°,∠BDC=60°,求∠BED 的度数.CA B DEF图2 AB D EC 图3 A B ED C 图410.已知BD 是△ABC 的中线,AC 长为5cm,△ABD 与△BDC 的周长差为3cm.AB 长为3cm,求BC 的长. 11.如图11,在△ABC 中,∠ACB=900,CD 是AB 边上的高,AB=5cm,BC=4cm,AC=3cm,求(1) △ABC 的面积;(2)CD 的长.12.如图12,D 是△ABC 中BC 边上一点,DE ∥AC 交AB 于点E,若∠EDA=∠EAD,试解释,AD 是△ABC 的角等分线.第二讲 与三角形有关的角 常识点1.三角形的内角和定理:三角形的内角和等于1800.【导入】我们在小学就知道三角形内角和等于1800,这个结论是经由过程试验得到的,这个命题是不是真命题还须要证实,如何证实呢?回想我们小学做过的试验,你是如何操作的?把一个三角形的两个角剪下拼在第三个角的极点处,用量角度量出∠BCD 的度数,可得到∠A+∠B+∠ACB=1800.想一想,还可以如何拼?①剪下∠A ,按图(2)拼在一路,可得到∠A+∠B+∠ACB=1800.图2②把B ∠和C ∠剪下按图(3)拼在一路,可得到∠A+∠B+∠ACB=1800.假如把上面移动的角在图长进行转移,由图1你能想到证实三角形内角和等于1800的办法吗? 证实:已知△ABC,求证:∠A+∠B+∠C=1800..【例1】如图,C 岛在A 岛的北偏东30°偏向,B 岛在A 岛的北偏东100°偏向,C 岛在B岛的北偏西55°偏向,从C 岛看A.B 两岛的视角∠ACB 是若干度?【评论辩论】直角三角形的两锐角之和是若干度?A AA A图11A EB DC图12结论: 直角三角形的两个锐角互余.直角三角形可以用符号“Rt △”表示,直角三角形ABC 可以写成Rt △ABC. 由三角形内角和定理可得:有两个角互余的三角形是直角三角形.常识点2.三角形的外角界说:三角形的一边与另一边的延长线构成的角,叫做三角形的外角. [自我探讨] 画出图中三角形ABC 的外角1.断定图中∠1是不是△ABC 的外角:_______________2.如图,(1)∠1.∠2都是△ABC 的外角吗?________________ (2)△ABC 共有若干个外角?___________________请在图中标出△ABC 的其它外角.3.探讨题:如图,这是我们证实三角形内角和定理时画的帮助线,你能就此图解释∠ACD 与∠A.∠B 的关系吗?∵C E ∥AB, ∴∠A=_____,_____=∠2 又∠ACD=_______+________ ∴∠ACD=_______+________结论1___三角形的一个外角等于与它不相邻的两个内角的和;结论2__三角形的一个外角大于任何一个与它不相邻的内角(外角两性质)【小结】三角形每个极点处有两个外角,便在盘算三角形外角和时,每个极点处只算一个外角,外角和就是三个外角的和.外角的感化:1.已知外角和与它不相邻的两个内角中的一个,求另一个2.可证一个角等于另两个角的和3.证实两个角不相等的关系 [课后演习]1.填空:求出下列各图中∠1的度数.(1)如图,∠1=______;(2)如图,∠1=______;(3)如图,∠1=______;(1)1B AC D (3)1AB C D(4)AB C D 1(5)E AB C D 1(6)E AB CD12ABC1(2)1A B C D A(1)三角形的一个外角等于两个内角的和. ( )(2)三角形的一个外角减去它的一个不相邻的内角,等于它的另一个不相邻的内角. ( ) (3)三角形的一个外角大于与它不相邻的一个内角. ( ) 2.已知:如图,∠1=30°,∠2=50°,∠3=45°, 则(1)∠4=______°;(2)∠5=______°.3.已知:如图∠1=40°,∠2=∠3,则 (1)∠4=______°;(2)∠2=______°.4.如图,AB ∥CD,∠B=55°,∠C=40°,则 (1)∠D=______°;(2)∠1=______°.5. 如图,∠BAE,∠CBF,∠ACD 是△ABC 的三个外角,它们的和是若干? 解:因为∠BAE=∠__+∠____, ∠CBF=∠__+∠___,∠ACD=__________, 所以∠BAE+∠CBF+∠ACD=(∠__+∠___)+(________)+(___________) =2(∠1+_________)=2×180°=360°. 6.已知:如图,在△ABC 中,AD 是BC 边上的高, ∠BAC=80°,∠C=40°,则∠BAD=________°. 7.已知:如图,BD 是△ABC 的角等分线, ∠A=100°,∠C=30°,则∠ADB=________°. 8.*如图,AD.BE 分离是△ABC 的高和角等分线,∠BAC=100°,∠C=30°,则∠1=________°. 9.如图所示,D,E 分离AC,AB 边上的点,DB,EC 相 交于点F,则∠A+∠B+∠C+∠EFB=_________10.△ABC 中,∠B=∠A+100,∠C=∠B+200,求△ABC 各内角的度数11.如图所示,已知∠1=∠2,∠BAC=70度,求∠DEF 的度数.12.如图所示,在△ABC 中,∠A=70°,BO,CO 分离等分∠ABC 和∠ACB,求∠BOC 的度数.第2题图54321第4题图DCBA1第3题图4321123DE FB AC第5题图DABCABDC1E ABDC第6题第7题第9题第8题OCBA13.如图所示,在△AB C 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC 的度数.4321D CB A第三讲 多边形及其内角和一、 常识点总结11180223601332n n n n n ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎧⎨⎩⎧⎨⎩⎧⎪︒-⎪︒⎨⎪⎪-⎩由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。

初一升初二暑期衔接资料

初一升初二暑期衔接资料

第一讲勾股定理[情景引入]【知识要点】1、勾股定理是:直角三角形两直角边的平方和等于斜边的平方,即:222cba=+2、勾股定理逆定理:如果三角形的三边长a、b、c满足222a b c+=那么这个三角形是直角三角形。

【典型习题】例1、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A. 2cmB. 3cmC. 4cmD. 5cm例2、求下列各图字母中所代表的正方形的面积。

=AS=BS=CS=DS例3、如图,一次“台风”过后,一根旗杆被台风从离地面8.2米处吹断,倒下的旗杆的顶端落在离旗杆底部6.9米处,那么这根旗杆被吹断裂前至少有多高?例4、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2.8米9.6米例5、在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。

例6、为丰富少年儿童的业余文化生活,某社区要在如图所示的AB 所在的直线上建一图书阅览室,该社区有两所学校,所在的位置分别在点C 和点D 处。

CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB=25km ,CA=15km,DB=10km,试问:阅览室E 建在距A 点多远时,才能使它到C 、D 两所学校的距离相等?例 7、如图所示,MN 表示一条铁路,A 、B 是两个城市,它们到铁路的所在直线MN 的垂直距离分别AA1=20km,BB1=40km ,A1B1=80km.现要在铁路A1,B1=80km 。

现要在铁路A1,B1之间设一个中转站P ,使两个城市到中转站的距离之和最短。

请你设计一种方案确定P 点的位置,并求这个最短距离。

例8、“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方30米B 处,过了2秒后,测得小汽车C 与车速检测仪A 间距离为50米,这辆小汽车超速了吗?例9、如图是一个三级台阶,它的每一级的长宽和高分别为20分米、3分米、2分米,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短的路程是多少?AEBDC11图2—5—4例10、直角三角形的周长为24,斜边长为10,则其面积为_______例11、如图,一个长为10米的梯子斜靠在墙上, 梯子的顶端距地面的垂直高度为8米,梯子的顶端下滑2米后,底端也水平滑动2米吗?试说明理由。

5.初一升初二数学班第五次课

5.初一升初二数学班第五次课
给出三个条件画三角形,你能说出有几种可能的情况吗?
归纳:有四种可能.即:三内角、三条边、两边一内角、一边两内角。
在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.
问题:已知三角形△ABC你能画一个三角形与它全等吗?怎样画?
阅读教材35页探究2,完成下列问题:
五、课后作业
完成课本33页习题12.1第2,4,5,6题并预习12.2三角形全等的判定未教的课本
教师评定:
1、学生上次作业评价:○优秀○良好○一般○差○没做作业
2、学生本次上课情况评价:○优秀○良好○一般○差
教师签名:
家长签名:___________
∵__________________________
∴__________________________
∴__________________________
(3)如图,AB=AC, AD是BC边上的中线,求证:∠BAD=∠CAD
(4)完成课本37页练习1、2题
四、课堂小结:
1、“边边边”定理
2、画一个角等于已知角方法:
1、如图1,△OCA≌△OBD,C和B,A和D是对应顶点,则这两个三角形中相等的边。相等的角。
图1图2图3图4
2如图2,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其它的对应角
对应边:ABAEBE
3.已知如图3,△ABC≌△ADE,试找出对应边
对应角.
4.如图4, AB与DB,AC与DE是对应边,已知: ,求 。
解:∵∠A+∠B+∠BCA=1800( ), ( )
∴∠BCA=
∵ ( )
∴∠BED=∠BCA=( )

暑假初一升初二数学提高班教材(16讲)之欧阳体创编

暑假初一升初二数学提高班教材(16讲)之欧阳体创编

汇世纪教育(包含集团旗下高端个性化教育品牌——学远教育)创办于2004年,专业从事中小学生课外文化辅导教育,企业以“促进区域教育公平,共享优质教育资源”为使命,致力于将优质教育资源、先进教学模式、专业教学服务提供到中小县城,帮助三四线城市的中小学生获得更好的教育和发展机会。

经过多年的发展,在众多一线教育专家加盟及教育研究院成立的基础上,目前已经建立起了从小学到高中的基础教育全体系文化辅导资源库。

现提供多种类型的教学和咨询服务,包括精准1对1 、品学小课堂,精品小班和天天向上班,所授课程涵盖小学、初中、高中的文化课程。

为广大学子提供全方位的课程产品和优质贴心的服务。

汇世纪教育目前已成为湖南省美誉度颇高的教育机构之一,先后被评为“优秀课外辅导教育机构”,“十佳课外辅导机构”,“诚信办学机构”。

荣誉与责任并存,创新与发展共进,汇世纪教育将立足长远,始终坚持国家的教育改革方针,为缩小我国县级城市与一二线城市的教育资源严重不均衡的现状,为改善地区性教育水平差距不断耕耘。

初一升初二,你准备好了吗?做好衔接,快人一步!假如用一句话概括初中:那就是初一是希望,是习惯养成的关键期;初二是分化期,是同学们差距出现的时候;初三是拼搏,是同学们实现人生理想的第一次真正的奋斗。

初二是初中的一个重要时段,这一阶段你对知识的掌握程度,直接影响着你的中考成绩,学习上并没有初一那样绝对的“轻松”,面对初二的最大问题就是分化,简单概括为好的更好,差的更差。

那么为什么有的同学进入新的学年后,成绩突飞猛进,原本的差生摇身一变上了全班前几名,这到底是为什么呢?那些新学期的优等生是如何炼成的呢?其实优等生的秘密就在暑假里!新学年衔接辅导让很多差生或中等生在暑假里突飞猛进,进入陌生却早已熟悉的新学期后,他们自然早已快人一步,学习倍轻松!在初二,数学、语文、英语、物理要作为重点来安排学习,除了上课认真听讲,课后70%的精力要花在这些主课上。

初二时,每门主科都要做到出现问题立刻解决掉,因为到了初三,未解决的知识漏洞不但会影响新知识的学习,更重要的是没时间来补回前面出现的问题(初三的新知识集中在上学期学完,下学期进入复习,学习任务很繁重)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★例 6、已知 x= mn m n 3 是 m+n+3 的算术平方根,y= m2n3 m 2n 是 m+2n 的立方根,求 y-x 的立方
根.
【经典练习】姓名:
成绩:
一、填空题:
1、若 (0.5)3 =0.125,则

的立方根.
2、64 的立方根是________.
3、 3 8 的立方根是________
第 2 讲 立方根

日 姓名:
【学习目标】
1. 掌握立方根的概念,并会用根号表示一个数的立方根。 2. 能够利用立方根运算与立方根之间的关系求一个数的立方根,并理解两者之间的互逆关系,同时掌握
立方根与平方根的区别。 3. 熟练掌握并熟记一些常见的数的立方数。
第 4 页 共 71 页
4. 会用立方根解决简单的实际应用问题,提高学生的应用能力。
术平方根,记作“ a ” ,读作“根号 a ”。
注意:(1)规定 0 的算术平方根为 0,即 0 0 ;
(2)负数没有算术平方根,也就是 a 有意义时, a 一定表示一个非负数;
(3) a 0 ( a 0 )。 2、平方根:如果一个数 x 的平方等于 a ,即 x 2 a ,那么这个数 x 就叫做 a 的平方根
9. 5 的立方根是 3 5 ;
10、 1 的立方根是没有意义; 216
11、 1 的立方根是 1 ;
27
3
三、选择题:
1、 8 的立方根是( )
(6)因为 1 的平方根是± 1 ,所以 1 =± 1
16
4
16 4
()
4、 1 x 2x 1 有意义,则 x 的范围___________
5、如果 a(a>0)的平方根是±m,那么( )
A.a2=±m
B.a=±m2
C. a =±m
D.± a =±m
【课后作业】
1、下列各数中没有平方根的数是(
【知识要点】
1、立方根的概念:如果一个数 x 的立方等于 a ,即 x3 =a,那么这个数 x 就叫做 a 的立方根(或叫做三次
方根)。 2、立方与立方根的关系:若有 x3=a 成立,则 a 是 x 的立方,x 就是 a 的立方根。
注:任何数均有立方根,立方根是唯一的;任何数不一定有平方根,平方根是不唯一的。 3、开立方的概念:求一个数 a 的立方根的运算叫做开立方,a 叫做被开方数。
二、判断并加以说明.
1、 1 的立方根是 1 ;
8
2
2、 5 没有立方根;
1
1
3、 的立方根是 ;
216
6
4、 2 是 8 的立方根; 9 729
5、负数没有平方根和立方根;
6、a 的三次方根是负数,a 必是负数;
7、立方根等于它本身的数只能是 0 或 1;
8、如果 x 的立方根是 2 ,那么 x 8 ;
25 49
2
(3) 7.22
(4) 22
(5) 4 25 4 36 9
(6) 4 16 9 25
例 4、当 a 2 有意义时,a 的取值范围是多少? a2
【经典练习】
1、求下列各数的算术平方根和平方根
(1)16
121
(2)
225
(3)12
第 2 页 共 71 页
(4)0.01
2、计算
(1)
初一升初二衔接课程
数学
第1讲 平方根

日 姓名:
【学习目标】
1、了解算术平方根与平方根的概念,并且会用根号表示; 2、会进行有关平方根和算术平方根的运算; 3、理解算术平方根与平方根的区别和联系,培养同学们的抽象概括能力。
【知识要点】
1、算术平方根:如果一个正数 x 的平方等于 a ,即 x 2 a ,那么这个正数 x 就叫做 a 的算
(a (a
0) 0)
a 2 a a 0
观察二者的特征,注意他们的区别与联系。
【典型例题】
例1、 求下列各数的算术平方根与平方根
(1) 52
(2)100
(3)1
(4)0
4
(5)
9
(6)7
第 1 页 共 71 页
例2、 计算
(1) 81
1
(2)
4
9
(3)-
16
例3、计算
2
(1) 64
(2)
5、要使
x 1 x2
有意义,则
x
的范围为___________
6、计算
64
(1)-
169
(2) 32 42
记一记
102 100 142 196 182 324
112 121 152 225 192202 400
132 169 17 2 289 252 625
A.-(-2)3
B.3-3
) C.a0
D.-(a2+1)
2、 a 2 等于( )
A.a
B.-a
C.±a
D.以上答案都不对
3、若正方形的边长是 a,面积为 S,那么( )
A.S 的平方根是 a
B.a 是 S 的算术平方根
C.a=± S
D.S= a
第 3 页 共 71 页
4、当 x ___________时, 1 3x 是二次根式.
(也叫二次方根)。
注意:(1)一个正数 a 必须有两个平方根,一个是 a 的算术平方根“ a ” ,另外一个是“- a ”,
读作“负根号 a ” ,它们互为相反数;
(2)0 只有一个平方根,是它本身;
(3)负数没有平方根。
3、开平方:求一个数 a 的平方根的运算。其中 a 叫做被开方数。
a2
a
a
a
注: 3 a 3 a , (3 a )3 a
4、正数的立方根是正数;0 的立方根是 0;负数的立方根是负数 注:正数的立方根大于负数的立方根,0 是介于两者之间。
【典型例题】
例 1、(1)由于 (3)3 的-27,则

的立方根。
(2)若 a3 = b 成立,则

的立方;

的立方根。
例 2、(1)2 的立方等于多少?是否有其他的数,他的立方等于 8?
16 81
2
(5) 52 (2) 0.52
(3) 6 1 4 4 49
(4) 0.25 2 1 4
3、判断 (1)-52 的平方根为-5 (2)正数的平方根有两个,它们是互为相反数 (3)0 和负数没有平方根 (4)4 是 2 的算术平方根
(5) 9 的平方根是±3
() () () ()
()
(2)-3 的立方等于多少?是否有其他的数,它的立方也是-27?
例 3、求下列各数的立方根
(1)512
(2) 3 3 8
(3)0
(4) 0.216
例 4、比较三个数的大小: 3 59 ,0, 3 6 例 5、若 a 4 b 12 =0,则 b a 的立方根是多少?
第 5 页 共 71 页
相关文档
最新文档