高中数学选修2-1:知识讲解_抛物线及其标准方程_提高
高中数学选修2-1抛物线知识点与典例精析
高中数学选修2-1抛物线知识点与典例精析知识点一抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)距离________的点的轨迹叫做抛物线.点F叫做抛物线的________,直线l叫做抛物线的________.知识点二抛物线的标准方程与几何性质O(0,0)规律与方法:解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.例1已知点P是抛物线y2=2x上的一个动点,则点P到点A(0,2)的距离与点P 到该抛物线的准线的距离之和的最小值为()A.172B.3C.5D.92例2(2015年10月学考)设抛物线y2=2px(p>0)的焦点为F,若F到直线y=3 x的距离为3,则p等于()A.2B.4C.23D.43例3(2016年10月学考)已知抛物线y2=2px过点A(1,2),则p=________,准线方程是________________.例4已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(4,-22),则它的标准方程为________.例5已知动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切,则动圆圆心M的轨迹方程为________.例6已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于A、B两点,且|AB|=52p,求AB所在直线的方程.例7 过抛物线y 2=2x 的顶点作互相垂直的两条弦OA ,OB . (1)求AB 的中点的轨迹方程; (2)求证:直线AB 过定点.一、选择题1.抛物线y =2x 2的焦点坐标是( ) A .(12,0) B .(14,0) C .(0,18)D .(0,14)2.已知抛物线y =4x 2上一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1716B .1516C .78D .03.已知抛物线y =ax 2的准线方程是y =2,则a 的值为( ) A .-18B .18C .8D .-84.从抛物线y 2=4x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△MPF 的面积为( ) A .5B .10C .20D.155.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上的一点,则△ABP 的面积为( ) A .18B .24C .36D .486.若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( ) A .(0,0)B .(12,1)C .(1,2)D .(2,2)7.已知抛物线C 的顶点在坐标原点,准线方程为x =-1,直线l 与抛物线C 相交于A ,B 两点.若线段AB 的中点为(2,1),则直线l 的方程为( ) A .y =2x -3 B .y =-2x +5 C .y =-x +3D .y =x -18.设抛物线C :y 2=16x ,斜率为m 的直线l 与C 交于A ,B 两点,且OA ⊥OB ,O 为坐标原点,则直线l 恒过定点( ) A .(8,0) B .(4,0) C .(16,0) D .(6,0)二、填空题9.若点P 到点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是__________.10.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =________. 11.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为________. 12.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |=________. 三、解答题13.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证: (1)y 1y 2=-p 2,x 1x 2=p 24;(2)1|AF |+1|BF |为定值;(3)以AB 为直径的圆与抛物线的准线相切.答案精析知识条目排查知识点一相等焦点准线题型分类示例例1A如图,由抛物线定义知|P A|+|PQ|=|P A|+|PF|,则所求距离之和的最小值转化为求|P A|+|PF|的最小值,则当A、P、F三点共线时,|P A|+|PF|取得最小值.又A(0,2),F(12,0),∴(|P A|+|PF|)min=|AF|=(0-12)2+(2-0)2=172.]例2B由抛物线y2=2px(p>0)的焦点为F(p2,0).F到直线y=3x的距离为3,可得|3p2|(3)2+(-1)2=3,解得p=4,故选B.]例32x=-1例4y2=2x解析由题意可知抛物线的焦点在x轴上,设方程为y2=2px(p>0)或y2=-2px(p>0).若方程为y 2=2px (p >0),则8=2p ×4,得p =1,故方程为y 2=2x ;若方程为y 2=-2px (p >0),则8=-2p ×4,得p =-1,不符合条件,故不成立. 所以抛物线的标准方程为y 2=2x . 例5 x 2=-12y解析 设动圆圆心M (x ,y ),半径为r ,根据题意可得⎩⎨⎧y <2,r =|y -2|,x 2+(y +3)2=1+r ,解得x 2=-12y .例6 解 方法一 焦点F (p2,0),设A (x 1,y 1)、B (x 2,y 2),若AB ⊥Ox , 则|AB |=2p <52p ,∴直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p2),k ≠0. 由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px消去x ,整理得ky 2-2py -kp 2=0.由根与系数的关系得,y 1+y 2=2pk ,y 1y 2=-p 2. ∴|AB |=(x 1-x 2)2+(y 1-y 2)2 =(1+1k 2)·(y 1-y 2)2 =1+1k2·(y 1+y 2)2-4y 1y 2 =2p (1+1k 2)=52p ,解得k =±2.∴AB 所在直线方程为y =2(x -p 2)或y =-2(x -p2). 方法二如图所示,抛物线y 2=2px (p >0)的准线为x =-p2,A (x 1,y 1),B (x 2,y 2), 设A ,B 到准线的距离分别为d A ,d B ,由抛物线的定义知, |AF |=d A =x 1+p 2,|BF |=d B =x 2+p2, 于是|AB |=x 1+x 2+p =52p ,x 1+x 2=32p .当x 1=x 2时,|AB |=2p <52p , ∴直线AB 与Ox 不垂直. 设直线AB 的方程为y =k (x -p2). 由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px ,得k 2x 2-p (k 2+2)x +14k 2p 2=0,x 1+x 2=p (k 2+2)k 2=32p ,解得k =±2,∴直线AB 的方程为y =2(x -p 2)或y =-2(x -p2).例7 (1)解 设直线OA 的方程为y =kx ,则直线OB 的方程为y =-1k x . 联立直线OA 与抛物线的方程知,点A 的坐标为(2k 2,2k ), 联立直线OB 与抛物线的方程知,点B 的坐标为(2k 2,-2k ),则AB 的中点M 的坐标为(1k 2+k 2,1k -k ),故点M 的轨迹方程为x =y 2+2.(2)证明 由(1)可知k AB =-k -1kk 2-1k 2=-1k -1k=-k k 2-1,则直线AB 的方程为y -(1k -k ) =-k k 2-1x -(1k 2+k 2)],整理,得y =-kk 2-1(x -2).所以直线经过定点(2,0). 考点专项训练1.C 抛物线y =2x 2的标准形式为x 2=12y , ∴p =14,则p 2=18, ∴焦点坐标是(0,18).]2.B 抛物线y =4x 2的标准形式为x 2=14y , ∴其准线方程为y =-116, 设点M 的纵坐标是y 0,由抛物线的定义,得y 0+116=1, ∴y 0=1516.] 3.A4.B 设P (x 0,y 0),依题意可知抛物线准线方程为x =-1, ∴x 0=5-1=4,∴|y 0|=4×4=4, ∴△MPF 的面积为12×5×4=10.]5.C 不妨设抛物线方程为y 2=2px (p >0),依题意,l ⊥x 轴,且焦点F (p2,0), ∵当x =p2时,|y |=p ,∴|AB |=2p =12,∴p =6, 又点P 到直线AB 的距离为p 2+p2=p =6, 故S △ABP =12|AB |·p =12×12×6=36.]6.D 由题意得F (12,0),准线方程为x =-12. 设点M 在准线x =-12上的射影为P , 则M 到准线的距离为d =|PM |,则由抛物线的定义得|MA |+|MF |=|MA |+|PM |,故当P 、A 、M 三点共线时,|MF |+|MA |取得最小值为|AP |=3-(-12)=72. 把y =2代入抛物线y 2=2x ,得x =2,故点M 的坐标是(2,2).] 7.A ∵抛物线C 的顶点在坐标原点,准线方程为x =-1, ∴-p2=-1,∴p =2, ∴抛物线的方程为y 2=4x . 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧y 21=4x 1,y 22=4x 2,两式相减得 (y 1+y 2)(y 1-y 2)=4(x 1-x 2),∴直线AB 的斜率k =y 1-y 2x 1-x 2=4y 1+y 2=42=2,从而直线AB 的方程为y -1=2(x -2),即y =2x -3.]8.C 设直线l :x =my +b (b ≠0),代入抛物线y 2=16x ,可得y 2-16my -16b =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=16m ,y 1y 2=-16b , ∴x 1x 2=(my 1+b )(my 2+b )=b 2, ∵OA ⊥OB ,∴x 1x 2+y 1y 2=0, 可得b 2-16b =0,∵b ≠0,∴b =16,∴直线l :x =my +16, ∴直线l 过定点(16,0).] 9.y 2=16x解析 点P 到点F 的距离与到x =-4的距离相等,由抛物线定义,知点P 轨迹为抛物线,设y 2=2px ,由p2=4,知p =8.10.1或0解析 由⎩⎨⎧y =kx +2,y 2=8x ,得ky 2-8y +16=0,若k =0,则y =2;若k ≠0,则Δ=0,即64-64k =0,解得k =1.因此若直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =0或k =1. 11.(18,±24)解析 设抛物线上点的坐标为(x ,±x ),此点到准线的距离为x +14,到顶点的距离为x 2+(x )2,由题意有x +14=x 2+(x )2,∴x =18, ∴此点坐标为(18,±24). 12.8 解析如图所示,直线AF 的方程为y =-3(x -2),与准线方程x =-2联立得A (-2,43).设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6, ∴|PF |=x 0+2=8.13.证明 (1)由已知得抛物线焦点坐标为(p2,0). 由题意可设直线方程为x =my +p2,代入y 2=2px , 得y 2=2p (my +p2),即y 2-2pmy -p 2=0.(*)因为y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2.因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2,所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.(2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24.因为x 1x 2=p 24,x 1+x 2=|AB |-p ,代入上式,得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p (定值).(3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则|MN |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |. 所以以AB 为直径的圆与抛物线的准线相切.。
高中数学选修2-1-抛物线的方程及性质
抛物线的方程及性质知识集结知识元抛物线的定义知识讲解1.抛物线的定义【概念】抛物线是指平面内到一个定点和一条定直线l距离相等的点的轨迹.他有许多表示方法,比如参数表示,标准方程表示等等.它在几何光学和力学中有重要的用处.抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线.抛物线在合适的坐标变换下,也可看成二次函数图象.【标准方程】①y2=2px,当p>0时,为右开口的抛物线;当p<0时,为左开口抛物线;②x2=2py,当p>0时,为开口向上的抛物线,当p<0时,为开口向下的抛物线.【性质】我们以y2=2px(p>0)为例:①焦点为(,0);②准线方程为:x=﹣;③离心率为e=1.④通径为2p(过焦点并垂直于x轴的弦);⑤抛物线上的点到准线和到焦点的距离相等.【实例解析】例1:点P是抛物线y2=x上的动点,点Q的坐标为(3,0),则|PQ|的最小值为解:∵点P是抛物线y2=x上的动点,∴设P(x,),∵点Q的坐标为(3,0),∴|PQ|===,∴当x=,即P()时,|PQ|取最小值.故答案为:.这个例题其实是一个求最值的问题,一般的解题思路就是把他转化为求一个未知数的最值,需要注意的是一定要明确这个未知数的定义域,后面的工作就是求函数的最值了.例2:已知点P是抛物线y2=4x上的一个动点,点P到点(0,3)的距离与点P到该抛物线的准线的距离之和的最小值是.解:如图所示,设此抛物线的焦点为F(1,0),准线l:x=﹣1.过点P作PM⊥l,垂足为M.则|PM|=|PF|.设Q(0,3),因此当F、P、Q三点共线时,|PF|+|PQ|取得最小值.∴(|PF|+|PQ|)min=|QF|==.即|PM|+|PQ|的最小值为.故答案为:.这是个经典的例题,解题的关键是用到了抛物线的定义:到准线的距离等于到焦点的距离,然后再根据几何里面的两点之间线段最短的特征求出p点.这个题很有参考价值,我希望看了这个例题的同学能把这个题记下了,并拓展到椭圆和双曲线上面去.【考点分析】抛物线是初中高中阶段重要的一个知识点,高中主要是增加了焦点、准线还有定义,这也提示我们这将是它的一个重点,所以在学习的时候要多多理会它的含义,并能够灵活运用.例题精讲抛物线的定义例1.'已知动圆过定点F(2,0),且与直线x=-2相切,求动圆圆心C的轨迹.'例2.'平面内哪些点到直线l:x=-2和到点P(2,0)距离之比小于1.'例3.'点M到点F(3,0)的距离等于它到直线x=-3的距离,点M运动的轨迹是什么图形?你能写出它的方程吗?能画出草图吗?'抛物线的标准方程知识讲解1.抛物线的标准方程【知识点的认识】抛物线的标准方程的四种种形式:(1)y 2=2px ,焦点在x 轴上,焦点坐标为F(,0),(p 可为正负)(2)x 2=2py ,焦点在y 轴上,焦点坐标为F (0,),(p 可为正负)四种形式相同点:形状、大小相同;四种形式不同点:位置不同;焦点坐标不同.下面以两种形式做简单的介绍:标准方程y 2=2px (p >0),焦点在x 轴上x 2=2py (p >0),焦点在y 轴上图形顶点(0,0)(0,0)对称轴x 轴焦点在x 轴长上y 轴焦点在y 轴长上焦点(,0)(0,)焦距无无离心率e =1e =1准线x =﹣y =﹣例题精讲抛物线的标准方程例1.'已知Q(1,1)是抛物线x2=2py(p>0)上一点,过抛物线焦点F作一条直线l与抛物线交于不同两点A,B.在点A处作抛物线的切线l1,在点B处作抛物线的切线l2,直线l1、l2交于P 点.(Ⅰ)求p的值及焦点F的坐标;(Ⅱ)求证PA⊥PB.'例2.'根据下列条件求抛物线的标准方程:(1)已知抛物线的焦点坐标是F(0,-2);(2)焦点在x轴负半轴上,焦点到准线的距离是5。
高一数学人教版选修2-1《抛物线及其标准方程》教案
一、教课目的(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要修业生进一步娴熟掌握分析几何的基本思想方法,提升剖析、对照、归纳、转变等方面的能力.(三)学科浸透点经过一个简单实验引入抛物线的定义,能够对学生进行理论根源于实践的辩证唯心主义思想教育.二、教材剖析1.要点:抛物线的定义和标准方程.(解决方法:经过一个简单实验与椭圆、双曲线的定义对比较引入抛物线的定义;经过一些例题加深对标准方程的认识. )2.难点:抛物线的标准方程的推导.(解决方法:由三种成立坐标系的方法中选出一种最正确方法,防止了硬性规定坐标系. )3.疑点:抛物线的定义中需要加上“定点 F 不在定直线 l 上”的限制.(解决方法:向学生加以说明.)三、活动设计发问、回首、实验、解说、演板、归纳表格.四、教课过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今日我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.请大家思虑两个问题:问题 1:同学们对抛物线已有了哪些认识?在物理中,抛物线被以为是抛射物体的运转轨道;在数学中,抛物线是二次函数的图象?问题 2:在二次函数中研究的抛物线有什么特色?在二次函数中研究的抛物线,它的对称轴是平行于y 轴、张口向上或张口向下两种情况.指引学生进一步思虑:假如抛物线的对称轴不平行于y 轴,那么就不可以作为二次函数的图象来研究了.今日,我们打破函数研究中这个限制,从更一般意义上来研究抛物线.(二)抛物线的定义1.回首平面内与一个定点 F 的距离和一条定直线 l 的距离的比是常数 e 的轨迹,当 0 <e<1 时是椭圆,当 e>1 时是双曲线,那么当 e=1 时,它又是什么曲线?2.简单实验如图 2-29 ,把一根直尺固定在绘图板内直线l 的地点上,一块三角板的一条直角边紧靠直尺的边沿;把一条绳索的一端固定于三角板另一条直角边上的点 A,截取绳索的长等于 A 到直线 l 的距离 AC,并且把绳索另一端固定在图板上的一点F;用一支铅笔扣着绳索,紧靠着三角板的这条直角边把绳索绷紧,而后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.频频演示后,请同学们来归纳抛物线的定义,教师总结.3.定义这样,能够把抛物线的定义归纳成:平面内与必定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线 ( 定点 F 不在定直线 l 上 ) .定点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线.(三)抛物线的标准方程设定点 F 到定直线 l 的距离为 p(p 为已知数且大于 0) .下边,我们来求抛物线的方程.如何选择直角坐标系,才能使所得的方程取较简单的形式呢?让学生谈论一下,教师巡视,启迪指导,最后简单小结成立直角坐标系的几种方案:方案 1:( 由第一组同学达成,请一优等生演板.)以 l 为 y 轴,过点 F 与直线 l 垂直的直线为 x 轴成立直角坐标系 ( 图 2-30).设定点F(p,0),动点M的坐标为(x,y),过M作MD⊥y轴于D,抛物线的会合为: p={M||MF|=|MD|} .化简后得: y2=2px-p 2(p >0) .方案 2:( 由第二组同学达成,请一优等生演板)以定点 F 为原点,平行 l 的直线为 y 轴成立直角坐标系 ( 图 2-31) .设动点 M 的坐标为 (x , y) ,且设直线 l 的方程为 x=-p ,定点 F(0 , 0) ,过 M作 MD⊥l 于 D,抛物线的会合为:p={M||MF|=|MD|}.化简得: y2=2px+p2(p >0) .方案 3:( 由第三、四组同学达成,请一优等生演板.)取过焦点 F 且垂直于准线 l 的直线为 x 轴, x 轴与 l 交于 K,以线段 KF的垂直均分线为 y 轴,成立直角坐标系 ( 图 2-32) .抛物线上的点M(x,y) 到 l 的距离为 d,抛物线是会合p={M||MF|=d} .化简后得: y2=2px(p > 0) .比较所得的各个方程,应当选择哪些方程作为抛物线的标准方程呢?指引学生剖析出:方案 3 中得出的方程作为抛物线的标准方程.这是因为这个方程不单拥有较简的形式,而方程中的系数有明确的几何意义:一次项系数是焦点到准线距离的 2 倍.因为焦点和准线在座标系下的不一样散布状况,抛物线的标准方程有四种情况( 列表如下) :将上表画在小黑板上,解说时出示小黑板,并讲清为何会出现四种不一样的情况,四种情况中 P>0;并指出图形的地点特色和方程的形式应联合起来记忆.即:当对称轴为 x 轴时,方程等号右端为± 2px,相应地左端为 y2;当对称轴为 y 轴时,方程等号的右端为± 2py,相应地左端为 x2.同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号.(四)四种标准方程的应用例题: (1) 已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;(2)已知抛物线的焦点坐标是 F(0 , -2) ,求它的标准方程.方程是 x2=-8y .练习:依据以下所给条件,写出抛物线的标准方程:(1)焦点是 F(3 ,0) ;(3)焦点到准线的距离是 2.由三名学生演板,教师予以校正.答案是: (1)y 2=12x;(2)y 2=-x ;(3)y 2=4x,y2=-4x ,x2=4y,x2=-4y .这时,教师小结一下:因为抛物线的标准方程有四种形式,且每一种形式中都只含一个系数 p,所以只需给出确立 p 的一个条件,就能够求出抛物线的标准方程.当抛物线的焦点坐标或准线方程给定此后,它的标准方程就独一确立了;若抛物线的焦点坐标或准线方程没有给定,则所求的标准方程就会有多解.(五)小结本次课主要介绍了抛物线的定义,推导出抛物线的四种标准方程形式,并加以运用.五、部署作业到准线的距离是多少?点M的横坐标是多少?2.求以下抛物线的焦点坐标和准线方程:(1)x 2=2y;(2)4x2+3y=0;(3)2y 2+5x=0;(4)y2-6x=0.3.依据以下条件,求抛物线的方程,并描点画出图形:(1)极点在原点,对称轴是 x 轴,并且极点与焦点的距离等于 6;(2)极点在原点,对称轴是 y 轴,并经过点 p(-6 ,-3) .4.求焦点在直线3x-4y-12=0 上的抛物线的标准方程.作业答案:3.(1)y2=24x,y2=-2x(2)x 2=-12y(图略)4.分别令x=0,y=0得两个焦点F1(0,-3),F2(4,0),进而可得抛物线方程为 x2=-12y 或 y2=16x六、板书设计一、教课目的(一)知识教课点使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.(二)能力训练点从抛物线的标准方程出发,推导抛物线的性质,进而培育学生剖析、归纳、推理等能力.(三)学科浸透点使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系观点的理解,这样才能解决抛物线中的弦、最值等问题.二、教材剖析1.要点:抛物线的几何性质及初步运用.(解决方法:指引学生类比椭圆、双曲线的几何性质得出.)2.难点:抛物线的几何性质的应用.(解决方法:经过几个典型例题的解说,使学生掌握几何性质的应用.) 3.疑点:抛物线的焦半径和焦点弦长公式.(解决方法:指引学生证明并加以记忆.)三、活动设计发问、填表、解说、演板、口答.四、教课过程(一)复习1.抛物线的定义是什么?请一起学回答.应为:“平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线.”2.抛物线的标准方程是什么?再请一起学回答.应为:抛物线的标准方程是y2=2px (p > 0) ,y2=-2px(p >0) ,x2=2py(p >0) 和 x2=-2py(p >0) .下边我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p > 0) 出发来研究它的几何性质.(二)几何性质如何由抛物线的标准方程确立它的几何性质?以y2=2px(p >0) 为例,用小黑板给出下表,请学生对照、研究和填写.填写完成后,再向学生提出问题:和椭圆、双曲线的几何性质对比,抛物线的几何性质有什么特色?学生和教师共同小结:(1)抛物线只位于半个坐标平面内,固然它也能够无穷延长,但是没有渐近线.(2)抛物线只有一条对称轴,这条对称轴垂直于抛物线的准线或与极点和焦点的连线重合,抛物线没有中心.(3)抛物线只有一个极点,它是焦点和焦点在准线上射影的中点.(4)抛物线的离心率要联系椭圆、双曲线的第二定义,并和抛物线的定义作比较.其结果是应规定抛物线的离心率为 1.注意:这样不单引入了抛物线离心率的观点,并且把圆锥曲线作为点的轨迹一致起来了.(三)应用举例为了加深对抛物线的几何性质的认识,掌握描点法绘图的基本方法,给出以下例1.例 1 已知抛物线对于 x 轴对称,它的极点在座标原点,并且经过点解:因为抛物线对于x 轴对称,它的极点在座标原点,并且经过点程是 y2=4x.后一部分由学生演板,检查一放学生对用描点法绘图的基本方法掌握状况.第一象限内的几个点的坐标,得:(2)描点作图描点画出抛物线在第一象限内的一部分,再利用对称性,就能够画出抛物线的另一部分( 如图 2-33) .例 2已知抛物线的极点在原点,对称轴是x 轴,抛物线上的点 M(-3 ,m)到焦点的距离等于 5,求抛物线的方程和 m的值.解法一:由焦半径关系,设抛物线方程为y =-2px(p >0) ,则准线方2因为抛物线上的点M(-3, m)到焦点的距离 |MF| 与到准线的距离得 p=4.所以,所求抛物线方程为y2=-8x .又点 M(-3 ,m)在此抛物线上,故m2=-8(-3) .解法二:由题设列两个方程,可求得p 和 m.由学生演板.由题意在抛物线上且 |MF|=5 ,故本例小结:(1)解法一运用了抛物线的重要性质:抛物线上任一点到焦点的距离 ( 即此点的焦半径 ) 等于此点到准线的距离.可得焦半径公式:设 P(x 0,这个性质在解决很多相关焦点的弦的问题中常常用到,所以一定娴熟掌握.(2)由焦半径不难得出焦点弦长公式:设 AB是过抛物线焦点的一条弦 ( 焦点弦 ) ,若 A(x 1,y1) 、B(x 2,y2) 则有 |AB|=x 1+x2+p.特别地:当 AB⊥x 轴,抛物线的通径 |AB|=2p( 详见课本习题 ) .例 3 过抛物线 y2=2px(p >0) 的焦点 F 的一条直线与这抛物线订交于 A、B 两点,且 A(x 1,y1) 、B(x 2,y2)( 图 2-34) .证明:(1) 当AB与x轴不垂直时,设AB方程为:此方程的两根y1、y2分别是 A、 B 两点的纵坐标,则有y1y2=-p 2.或 y1=-p ,y2=p,故 y1y2=-p 2.综合上述有y1y2=-p 2又∵ A (x 1,y1) 、B(x 2,y2) 是抛物线上的两点,本例小结:(1)波及直线与圆锥曲线订交时,常把直线与圆锥曲线方程联立,消去一个变量,获得对于另一变量的一元二次方程,而后用韦达定理求解,这是解决这种问题的一种常用方法.(2)本例命题 1 是课本习题中结论,要修业生记忆.(四)练习1.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=6,求 |AB| 的值.由学生练习后口答.由焦半径公式得:|AB|=x 1+x2+p=82.证明:与抛物线的轴平行的直线和抛物线只有一个交点.请一起学演板,其余同学练习,教师巡视.证明:可设抛物线方程故抛物线 y2=2px 与平行于其轴的直线只有一个交点.(五)全课小结1.抛物线的几何性质;2.抛物线的应用.五、部署作业1.在抛物线y2=12x 上,乞降焦点的距离等于9 的点的坐标.2.有一正三角形的两个极点在抛物线y2=2px上,另一极点在原点,求这个三角形的边长.3.图2-35是抛物线拱桥的表示图,当水面在l 时,拱顶高水面2m,水面宽4m,水降落 11m后,水面宽多少?4.求证:以抛物线的焦点弦为直径的圆,必与抛物线的准线相切.作业答案:3.成立直角坐标系,设拱桥的抛物线方程为x2=-2py ,可得抛物线4.由抛物线的定义不难证明六、板书设计你曾落的泪,最都会成阳光,照亮脚下的路。
高中数学选修2-1新教学案:2.4.1抛物线及其标准方程(1)
选修2—1 2.4.1抛物线及其标准方程 (学案)(第1课时)【知识要点】 抛物线的定义及其标准方程. 【学习要求】1.了解抛物线的实际背景,感受抛物线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出抛物线模型的过程,掌握抛物线的定义,准确推导出抛物线的标准方程.【预习提纲】(根据以下提纲,预习教材第64 页~第66页)1. 我们学过的二次函数221,2y x y x ==的图象是 . 抛物线2y x =上的点到点10,4⎛⎫ ⎪⎝⎭和直线14y =-的距离的大小关系是 . 抛物线212y x =上的点到点10,2⎛⎫⎪⎝⎭和直线12y =-的距离的大小关系是 . 上面两个事实说明了什么问题 .2.抛物线、抛物线的焦点、抛物线的准线:平面内与 和 距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的 直线l 叫做抛物线的 .3.根据求曲线方程的步骤,你能想到几种不同的建系方法?能分别推导出对应的方程吗? 取经过点F 且垂直于直线l 的直线为轴,垂足为K ,并使原点与线段KF 的中点重合,建立直角坐标系xoy ,设(0)KF p p =>,那么焦点F 的坐标为 ,准线l 的方程为 ,推导出的抛物线方程为 .4.根据抛物线的方程,填写下面的表格: 标准方程图形 焦点坐标 准线方程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->【基础练习】1.根据下列条件写出抛物线的标准方程: (1) 焦点是()3,0F ; (2) 准线方程式是14x =-; (3) 焦点到准线的距离是2.2.求下列抛物线的焦点坐标和准线方程:(1) 220y x =; (2) 212x y =; (3) 2250;y x += (4) 280x y += . 【典型例题】例1 求下列抛物线的焦点坐标和准线方程:(1) 24x y =; (2) 235y x =;变式1:求抛物线2y ax =的焦点坐标和准线方程.例2 抛物线的焦点在直线20x y -+=上,则抛物线的标准方程为 ( ) (A) 2244x y y x =-=和 (B) 2244x y y x ==-和 (C) 2288x y y x ==-和 (D) 2288x y y x =-=和 变式2:求焦点在直线240x y --=上的抛物线的标准方程. 例3 抛物线216x y =上的点P 到焦点的距离等于8,求点P 的坐标.变式3:在抛物线22y px =上,横坐标为4的点,到焦点的距离为5,则p 的值为 ( ) (A)12(B) 1 (C) 2 (D) 41. 已知抛物线的焦点为(1,0),则抛物线的标准方程 ( ). (A )22y x = (B )22y x =- (C )24y x = (D )24y x =- 2. 抛物线214y x =的焦点坐标为 ( ). (A )(0,116) (B )(116,0) (C )(0,1) (D )(1,0)3.已知抛物线的准线方程是2x =,则抛物线的标准方程( ).(A) 28y x = (B) 28y x =-(C) 28x y = (D) 28x y =-4.抛物线22y x =上到焦点的距离等于6的点的坐标是 . 5. 抛物线2x ay =的准线方程是2x =,则a 的值为 ( ).(A)18 (B) 8 (C) 18- (D) -86.抛物线24x y =-上的一点M 到焦点的距离为1,则点M 的纵坐标是( ).(A) 1716-(B) 1516- (C) 78- (D) 07.已知抛物线22(0)y px p =>上有一点(4,)M y ,它到焦点F 的距离为5,则(OFM O ∆为坐标原点)的面积 .8.已知圆222230x y x y +-+-=经过抛物线22(0)y px p =>的焦点,则p 的值 为 .9.经过点(3,-2)的抛物线的标准方程 .10.抛物线的焦点在y 轴上,点A (m,-2)在抛物线上,且AF =3,求抛物线的标准方程. 11.已知圆222230x y x y +-++=与抛物线22(0)y px p =->的准线相切,则抛物线的方程为 .28y x =上,且动圆恒与直线1. 一动圆的圆心在抛物线20x +=相切,则动圆比过定点 ( ).(A )(4,0) (B )(2,0) (C )(0,2) (D )(0,-2)2.抛物线28(0)y px p =>上一点M 到焦点的距离为a ,则点M 到y 轴的距离为 .选修2—1 2.4.1抛物线及其标准方程 (教案)(第一课时)【教学目标】: 引导从具体情境中抽象出抛物线模型的过程,掌握抛物线的定义,准确推导出抛物线的标准方程.【重点】 :对抛物线定义的理解及抛物线方程的推导. 【难点】 :掌握抛物线的标准方程.【预习提纲】(根据以下提纲,预习教材第64 页~第66页)1. 我们学过的二次函数221,2y x y x ==的图象是抛物线. 抛物线2y x =上的点到点10,4⎛⎫ ⎪⎝⎭和直线14y =-的距离的大小关系是相等. 抛物线212y x =上的点到点10,2⎛⎫⎪⎝⎭和直线12y =-的距离的大小关系是相等. 上面两个事实说明了什么问题抛物线上的点到一个定点和一条定直线的距离相等.2.抛物线、抛物线的焦点、抛物线的准线:平面内与定点和定直线距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点直线l 叫做抛物线的准线.3.根据求曲线方程的步骤,你能想到几种不同的建系方法?能分别推导出对应的方程吗? 取经过点F 且垂直于直线l 的直线为轴,垂足为K ,并使原点与线段KF 的中点重合,建立直角坐标系xoy ,设(0)KF p p =>,那么焦点F 的坐标为,0)p(2,准线l 的方程为px=-2,推导出的抛物线方程为2px =2y .4.根据抛物线的方程,填写下面的表格: 标准方程 图形焦点坐标 准线方程22(0)y px p =>(,0)2p2p x =-22(0)y px p =->(,0)2p -2p x =22(0)x py p =>(0,)2p2p y =-22(0)x pyp =->(0,)2p -2p y =【基础练习】1.根据下列条件写出抛物线的标准方程: (1) 焦点是()3,0F ; (2) 准线方程式是14x =-; (3) 焦点到准线的距离是2.解: (1) 212y x =; (2) 2y x =; (3) 22224,4,4,4y x y x x y x y ==-==-. 2.求下列抛物线的焦点坐标和准线方程:(1) 220y x =; (2) 212x y =; (3) 2250;y x += (4) 280x y += .解: (1) 焦点坐标F (5,0),准线方程x=-5 ;(2) 11焦点坐标F (0,),准线方程y=-88 ;(3) 55焦点坐标F (-,0),准线方程x=88;(4) 焦点坐标F (0,-2),准线方程y=2 . 【典型例题】例1 求下列抛物线的焦点坐标和准线方程:(1) 24x y =; (2) 235y x =;【审题要津】 抛物线的方程不是标准方程,可先把平方项的系数比到另一边,然后根据四种不同形式的标准方程写出焦点坐标和准线方程.解: (1)由24x y =得: 214x y =,由12,4p = 18p ∴= ,所以焦点为1(0,)16,准线方程为116y =-; (2)由235y x =得: 253y x =,552,36p p =∴=,所以交点坐标为5(,0)12,准线方程为 512x =-. 【方法总结】求抛物线的焦点坐标和准线方程,关键是把方程化成标准形式. 变式1:求抛物线2y ax =的焦点坐标和准线方程.解: 由2y ax =得: 21111,02,0)24x y a p p a a a a=>==∴当时,焦点为(,准线方程为14y a =-;210a x y a ⎛⎫<=-- ⎪⎝⎭当时,方程为,112,,2p p a a =-=-∴焦点为 1(0),4a 1,准线方程为y=-4a. 例2 抛物线的焦点在直线20x y -+=上,则抛物线的标准方程为 ( C ) (A) 2244x y y x =-=和 (B) 2244x y y x ==-和 (C) 2288x y y x ==-和 (D) 2288x y y x =-=和【审题要津】因为抛物线的焦点在坐标轴上,又在直线20x y -+=上,所以抛物线的焦点为直线20x y -+=与坐标轴的焦点.解: 直线20x y -+=与两坐标轴的交点分别为(-2,0),(0,2).当(-2,0)为焦点时,抛物线的标准方程为28y x =-.当(0,2)为焦点时, 抛物线的标准方程为28x y = .【方法总结】知道了抛物线的焦点,则可求p ,求抛物线标准方程可直接代入标准方程. 变式2:求焦点在直线240x y --=上的抛物线的标准方程.解:直线240x y --=与坐标轴的交点为(4,0),(0,-2).当焦点为(4,0)时,抛物线标准方程为216y x =;当焦点为(0,-2)时, 抛物线标准方程为28x y =-.例3 抛物线216x y =上的点P 到焦点的距离等于8,求点P 的坐标.【审题要津】根据给出的抛物线方程,求出抛物线的准线,由P 到焦点的距离等于8,知P 到准线的距离也是8,可求出P 点的纵坐标,代入抛物线方程,可求P .解: 由2168,p p ==∴得抛物线的准线为y=-4 ,设点P 的坐标为00(,)P x y ,则2000048,4,4168y y y x y x +=∴====±把代入得:,(8,0),(8,0).P ∴-【方法总结】借助于抛物线定义转化距离是解决此类问题常用的方法.变式3:在抛物线22y px =上,横坐标为4的点,到焦点的距离为5,则p 的值为 ( C ) (A)12(B) 1 (C) 2 (D) 41. 已知抛物线的焦点为(1,0),则抛物线的标准方程 ( C ). (A )22y x = (B )22y x =- (C )24y x = (D )24y x =- 2. 抛物线214y x =的焦点坐标为 ( C ). (A )(0,116) (B )(116,0) (C )(0,1) (D )(1,0)3.已知抛物线的准线方程是2x =,则抛物线的标准方程( B ).(A) 28y x = (B) 28y x =-(C) 28x y = (D) 28x y =-4.抛物线22y x =上到焦点的距离等于6的点的坐标是1111(,11),(,11)22-. 5. 抛物线2x ay =的准线方程是2x =,则a 的值为 ( C ).(A)18 (B) 8 (C) 18- (D) -86.抛物线24x y =-上的一点M 到焦点的距离为1,则点M 的纵坐标是( B ).(A) 1716-(B) 1516- (C) 78- (D) 07.已知抛物线22(0)y px p =>上有一点(4,)M y ,它到焦点F 的距离为5,则(OFM O ∆为坐标原点)的面积2.8.已知圆222230x y x y +-+-=经过抛物线22(0)y px p =>的焦点,则p 的值 为6.9.经过点(3,-2)的抛物线的标准方程223290y x x y =+=或.10.抛物线的焦点在y 轴上,点A (m,-2)在抛物线上,且AF =3,求抛物线的标准方程. 解:由题意可设抛物线标准方程为22(0)x py p =->,由AF =3知1,22pp =∴=, 所以抛物线标准方程为24x y =- .11.已知圆222230x y x y +-++=与抛物线22(0)y px p =->的准线相切,则抛物线的方程为28y x =- .1. 一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则动圆比过定点( B ).(A )(4,0) (B )(2,0) (C )(0,2) (D )(0,-2)2.抛物线28(0)y px p =>上一点M 到焦点的距离为a ,则点M 到y 轴的距离为2a p - .。
最新人教版高中数学选修2-1第二章《抛物线及其标准方程》教材梳理
疱丁巧解牛知识·巧学一、抛物线1.抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫抛物线.点F 叫抛物线的焦点,直线l 叫做抛物线的准线.(1)定义的“双向运用”,即:一方面,符合定义的条件的动点轨迹为抛物线;另一方面,抛物线上点有定义中条件的性质.(2)两个定义的综合运用是解决有些抛物线问题的捷径.(3)求抛物线方程时,若由已知条件可知曲线是抛物线,一般用待定系数法;若由已知条件可知曲线的动点的规律,一般用轨迹法.2.抛物线的方程(1)抛物线的标准方程(a >b >0)①y 2=2px(p >0);②y 2=-2px(p >0);③x 2=2py(p >0);④x 2=-2py(p >0).抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p 等于焦点到抛物线顶点的距离.二次函数y=ax 2(a≠0)方程满足抛物线的定义,所以它的图象是抛物线,它的焦点坐标为(2a ,0),准线方程x=2p . (2)中心在(x 0,y 0)的抛物线方程(a >b >0)利用平面向量的平移可得到上述标准方程中对应的形式,如顶点在(x 0,y 0)有对称轴为y=y 0,开口向右的抛物线方程为(y-y 0)2=2p(x-x 0)(p >0).要点提示 在求抛物线的方程的时候一定要考虑焦点在哪个轴上,开口方向两个方面.此外,因为抛物线有四个标准方程,确定了焦点在哪个轴上和开口方向,这个抛物线的方程大致形状也就确定了.问题·探究问题1 抛物线在现实生活中有哪些应用?探究:抛物线在现实生活中的应用很广泛,我们熟悉的汽车前灯,太阳灶,有的大桥也设计成抛物线形状,抛物线最重要的应用还是在物理学上,根据抛物线的运行轨迹,人们把它运用到了军事上的大炮、导弹.问题2 学习抛物线方程,要注意些什么?探究:抛物线的标准方程有四个,在学习它们的时候一定要注意区分,焦点在x 轴上两个,焦点在y 轴上两个,焦点坐标与准线方程都于一次项的系数有关,抛物线的方程在确定了焦点位置和一次项的系数,抛物线的形状也就确定了下来.典题·热题例1 已知点M (3,2),F 为抛物线y 2=2x 的焦点,点p 在该抛物线上移动,当|PM|+|PF|取最小值时,点P 的坐标为______________________.思路分析:本题若建立目标函数来求|PM|+|PF|的最小值是困难的,若巧妙地利用抛物线定义,结合图形则问题不难解决.解:如右图所示,由定义知|PF|=|PE|,故|PM|+|PF|=|PF|+|PM|≥|ME|≥|MN|=213.取等号时,M,P,E 三点共线,∴P 点纵坐标为2,代入方程,求出其横坐标为2,所以P 点坐标为(2,2).方法归纳 由抛物线的定义可知,抛物线上的点到焦点的距离等于它到准线的距离.要重视定义在解题中的应用,灵活地进行抛物线上的点到焦点距离与到准线距离的相互转换. 例2 求过点(-3,2)的抛物线的标准方程,并求对应抛物线的准线方程.思路分析:从方程形式看,求抛物线的标准方程仅需确定一个待定系数p ;从实际分析,一般需确定p 和确定开口方向两个条件,否则,应展开相应的讨论.解:(1)设所求的抛物线方程为y 2=-2px 或x 2=2py (p >0),∵过点(-3,2),∴4=-2p (-3)或9=2p·2.∴p=32或p=49. ∴所求的抛物线方程为y 2=x 34-或x 2=y 29.前者的准线方程是x=31,后者的准线方程是y=89-. 误区警示 这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.例3 求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切.思路分析:可设抛物线方程为y 2=2px(p >0).如右图所示,只须证明2||AB =|MM 1|,则以AB 为直径的圆,必与抛物线准线相切.证明:作AA 1⊥l 于A 1,BB 1⊥l 于B 1.M 为AB 中点,作MM 1⊥l 于M 1,则由抛物线的定义,可知|AA 1|=|AF|,|BB 1|=|BF|.在直角梯形BB 1A 1A 中:|MM 1|=21(|AA 1|+|BB 1|)=21(|AF|+|BF|)=21|AB|. ∴|MM 1|=21|AB|.故以AB 为直径的圆,必与抛物线的准线相切. 方法归纳 类似有:以椭圆焦点弦为直径的圆与相对应的准线相离,以双曲线焦点弦为直径的圆与相应的准线相交.例4 如右图所示,直线l 1和l 2相交于点1M ,l 1⊥l 2,点N ∈l 1,以A 、B 为端点的曲线段C上任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM|=17,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C 的方程.思路分析:由题意所求曲线段是抛物线的一部分,求曲线方程需建立适当的直角坐标系,设出抛物线方程,由条件求出待定系数即可,求出曲线方程后要标注x 、y 的取值范围. 解:如图以直线l 1为x 轴,线段MN 的垂直平分线为y 轴,建立直角坐标系,由条件可知,曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段.其中A 、B 分别为曲线段C 的端点. 设曲线段C 的方程为y 2=2px (p>0)(x A ≤x≤x B ,y>0),其中x A 、x B 为A 、B 的横坐标,p=|MN|,所以M (2p -,0)、N (2p ,0). 由|AM|=17,|AN|=3,得(x A +2p )2+2px A =17, ① (x A -2p )2+2px A =9. ② ①②联立解得x A =p4,代入①式,并由p>0, 解得⎩⎨⎧==1,4A x p 或⎩⎨⎧==.2,2Ax p 因为△AMN 为锐角三角形,所以A x p >2. 故舍去⎩⎨⎧==.2,2A x p 所以⎩⎨⎧==.1,4Ax p 由点B 在曲线段C 上,得x B =|BN|-2p =4. 综上,曲线段C 的方程为y 2=8x (1≤x≤4,y>0).。
最新人教版高中数学选修2-1第二章《抛物线及其标准方程》知识导学
2.4 抛物线2.4.1 抛物线及其标准方程第一课时课标解读1.了解抛物线的实际背景,感受抛物线在刻画现实世界和解决实际问题中的作用.2.经历从具体情境中抽象出抛物线模型的过程,掌握其定义、标准方程及几何图形. 学会思考1.把一根直尺固定在图板上直线l 的位置,把一块三角尺的一条直角边紧靠着直尺的边缘,再把一条细绳的一端固定在三角尺的另一条直角边的一点A ,取绳长等于点A 到直角顶点C 的长(即点A 到直线l 的距离),并且把绳子的另一端固定在图板上的一点F .用铅笔尖扣着绳子,使点A 到笔尖的一段绳子紧靠着三角尺,然后将三角尺沿着直尺上下滑动,笔尖就在图板上描出了一条曲线.请问此曲线上任意一点到定点F 的距离与到l 的距离有何关系?此曲线为何曲线?2.抛物线的标准方程y 2=2px (p >0)中,p 具有一定的几何意义,它表示__________________. 答案:1.相等,抛物线.2.抛物线的焦点到准线的距离自学导引1.平面内与一个定点F 和一条定直线l 的距离_________的点的轨迹叫做抛物线点F 叫做抛物线的_________,直线l 叫做抛物线的_________.2.方程y 2=±2px ,x 2=±2py (p >0)叫做抛物线的_________方程.3.抛物线y 2=2px (p >0)的焦点坐标是_________,它的准线方程是_________,它的开口方向_________.4.抛物线y 2=-2px (p >0)的焦点坐标是_________,它的准线方程是________,它的开口方向 ________.5.抛物线x 2=2py (p >0)的焦点坐标是_________,它的准线方程是_________,它的开口方向_________.6.抛物线x 2=-2py (p >0)的焦点坐标是_________,它的准线方程是_________,它的开口方向_________.答案:1.相等 焦点 准线2.标准3.(2p ,0) 2p x -= 向右 4.(2p -,0) 2p x = 向左 5.(0,2p ) 2p y -= 向上 6.(0,2p -) 2p y = 向下典例启示知识点1求抛物线的标准方程【例1】 分别求满足下列条件的抛物线的标准方程.(1)过点(3,-4);(2)焦点在直线x +3y +15=0上.解:(1)∵点(3,-4)在第四象限,∴抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0).把点(3,-4)的坐标分别代入y 2=2px 和x 2=-2p 1y ,得(-4)2=2p ·3,32=-2p 1·(-4), 即3162=p ,4219=p . ∴所求抛物线的方程为x y 3162=或y x 492-=. (2)令x=0,得y=-5;令y=0,得x=-15.∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为y 2=-60x 或x 2=-20y .启示:求抛物线的标准方程需要:(1)求p ;(2)判断焦点所在坐标轴的位置.【例2】 分别求适合下列条件的抛物线方程.(1)顶点在原点,以坐标轴为对称轴,且过点A (2,3);(2)顶点在原点,以坐标轴为对称轴,焦点到准线的距离为25. 解:(1)由题意,方程可设为y 2=mx 或x 2=ny ,将点A (2,3)的坐标代入,得32=m •2或22=n •3,∴29=m 或34=n . ∴所求的抛物线方程为x y 292=或y x 342=. (2)由焦点到准线的距离为25,可知25=p , ∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .启示:(1)抛物线的标准方程有四种形式,主要看其焦点位置或开口方向.(2)抛物线的标准方程只有一个参数p ,即焦点到准线的距离,常称为焦参数.知识点2抛物线定义及标准方程的应用【例3】 已知抛物线的焦点为(3,3),准线为x 轴,求抛物线的方程解:设M (x ,y )为抛物线上的任意一点, 则由抛物线的定义,得||)3()3(22y y x =-+-. 平方整理,得3612+-=x x y 为所求抛物线的方程. 启示:当抛物线不在标准位置时,只有利用其定义来求方程.【例4】 平面上动点P 到定点F (1,0)的距离比P 到y 轴的距离大1,求动点P 的轨迹方程.解法一:设P 点的坐标为(x ,y ),则有1||)1(22+=+-x y x ,两边平方并化简得y 2=2x +2|x |.∴⎩⎨⎧<≥=,0,0,0,42x x x y 即点P 的轨迹方程为y 2=4x (x ≥0)或y=0(x <0).解法二:由题意,动点P 到定点F (1,0)的距离比到y 轴的距离大1,由于点F (1,0)到y 轴的距离为1,故当x <0时,直线y=0上的点适合条件;当x ≥0时,原命题等价于点P 到点F (1,0)与到直线x=-1的距离相等,故点P 在以F 为焦点,x=-1为准线的抛物线上,其轨迹方程为y 2=4x .故所求动点P 的轨迹方程为y 2=4x (x ≥0)或y=0(x <0).启示:求动点的轨迹方程时,可用定义法列等量关系,化简求解;也可判断后,用类似于公式法的待定系数法求解,但要判断准确,注意挖掘题目中的隐含条件,防止重、漏解.随堂训练1.已知抛物线过点(-11,13),则抛物线的标准方程是( ) A.x y 221692= B.x y 111692-= C.x y 111692-=或y x 131212= D.y x 131212-= 解析:∵点(-11,13)在第二象限,∴抛物线的张口向左或向上.当抛物线的张口向左时,设抛物线的方程为y 2=-2px ,把点 (-11,13)的坐标代入方程得 132=-2p ·(-11),∴111692=p . ∴抛物线的标准方程为x y 111692-=. 当抛物线的张口向上时,设抛物线的方程为x 2=2p 1y ,把点(-11,13)的坐标代入得(-11)2=2p ·13, ∴131212=p . ∴抛物线的方程为y x 131212=. 答案:C2.已知抛物线的准线方程是x=-7,则抛物线的标准方程是( )A.x 2=-28yB.y 2=28xC.y 2=-28xD.x 2=28y解析:∵72=p , ∴p =14.∵抛物线的焦点在x 轴上,∴抛物线的方程是y 2=28x .答案:B3.已知抛物线的焦点在直线3x -y +36=0上,则抛物线的标准方程是( )A.x 2=72yB.x 2=144yC.y 2=-48xD.x 2=144y 或y 2=-48x解析:令x =0得y =36,令y =0得x =-12,∴抛物线的焦点为(0,36)或(-12,0).答案:D4.抛物线y 2=-4px (p >0)的焦点为F ,准线为l ,则p 表示( )A.F 到l 的距离B.F 到y 轴的距离C.F 点的横坐标D.F 到l 的距离的41 解析:在抛物线的标准方程y 2=-2px (p >0)中,p 是焦点到准线的距离,2p 是焦点到y 轴的距离或y 轴与准线间的距离,所以在抛物线方程y 2=-4px (p >0)中,p 为焦点到y 轴或y 轴与准线间的距离.答案:B5.已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p 的值为( )A.4B.3C.2D.1解析:抛物线的焦点为(2p ,0), 由5)03()22(22=-+--p ,得p =4. 答案:A6.若点P 到定点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是( )A.y 2=-16xB.y 2=-32xC.y 2=16xD.y 2=16x 或y=0(x <0)解析:∵点F (4,0)在直线x +5=0的右侧,且P 点到点F (4,0)的距离比它到直线x +5=0的距离小1,∴点P 到F (4,0)的距离与到直线x +4=0的距离相等,故点P 的轨迹为抛物线,且顶点在原点,开口向右,p =8,故P 点的轨迹方程为y 2=16x .答案:C。
高二数学选修2-1 抛物线的简单几何性质
高二数学选修2-1抛物线的简单几何性质【基础知识精讲】抛物线的几何性质、图形、标准方程列表如下: 图形标准 方程 y 2=2px(p >0)y 2=-2px(p >0)x 2=2py(p >0)x 2=-2py(p >0)焦点 坐标 (2p,0) (-2p,0) (0,2p ) (0,-2p ) 准线 方程 x=-2px=2p y=-2py=2p X 围x ≥0x ≤0 y ≥0 y ≤0 对称轴 x 轴 x 轴 y 轴 y 轴 顶点(0,0)(0,0) (0,0) (0,0) 离心率 e=1 e=1e=1e=1焦半径 |PF |=x 0+2p |PF |=2p -x 0 |PF |=2p +y 0 |PF |=2p -y 0 参数p 的几何 意义参数p 表示焦点到准线的距离,p 越大,开口越阔.本节学习要求:1.抛物线方程的确定,先由几何性质确定抛物线的标准方程,再用待定系数法求其方程.2.解决有抛物线的弦中点问题及弦长问题与椭圆、双曲线一样,利用弦长公式、韦达定理、中点坐标公式及判别式解决.3.抛物线中有关轨迹与证明问题也与前面内容一样.常用方法有轨迹法、代入法、定义法.参数法等.证明的方法是解析法.通过学习本节内容,更进一步培养我们学习数学的兴趣,培养良好的思维品质.运用数形结合的思想方法解决问题,提高分析问题和解决的能力.【重点难点解析】1.抛物线的几何性质和椭圆、双曲线比较起来,差别较大,它的离心率等于1;它只有一个焦点、一个顶点、一条对称轴、一条准线;它没有中心.通常称抛物线为无心圆锥曲线,而称椭圆和双曲线为有心圆锥曲线.应熟练掌握抛物线的四种标准方程.本节重点是抛物线的简单几何性质,难点是几何性质的灵活应用.例1 已知抛物线顶点在原点,对称轴为x 轴,抛物线上的点(x 0,-8)到焦点的距离等于17,求抛物线方程.分析 设方程为y 2=2px(p >0)或y 2=-2px(p >0)则 x 0+2p =17或2p-x 0=17 即 x 0=17-2p 或x 0=2p-17将(17-2p ,-8)代入y 2=2px解得 p=2或p=32 将(2p -17,-8)代入y 2=-2px 解得 p=2或p=32∴所求抛物线方程为y 2=±4x 或y 2=±64x.例2 求抛物线y 2=4x 中斜率为2的平行弦中点的轨迹方程.分析 本例可设平行弦的纵截距为参数、运用判别式及韦达定理、中点坐标公式来求,也可设点参数运用点差法求解.设AB 是抛物线中斜率为2的平行弦中任一条弦,A(x 1,y 1),B(x 2,y 2)AB 中点M(x,y)由⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=--=+=+==2224421212121222121x x y y yy y x x x x y xy 得:y=1 代入y 2=4x 得x=41 ∴轨迹方程为y=1(x >41)例3 设点A 和B 为抛物线y 2=4px(p >0)上原点以外的两个动点.已知OA ⊥OB ,OM ⊥AB 于M ,求点M 的轨迹方程,并说明表示什么曲线.分析 设A(4pt 21,4pt 1),B(4pt 22,4pt 2),OA 、OB 的斜率分别为k OA 、k OB 则 k OA =11t ,k OB =21t由OA ⊥OB ,得 k OA ·k OB =211t t =-1⇒t 1t 2=-1① ∵点A 在AB 上,得直线AB 的方程为 y-4pt 1=211t t + (x-4pt 21)② 由OM ⊥AB ,得直线OM 方程为 y=-(t 1+t 2)x ③设点M(x,y),则x,y 满足②③两式 将②化为:y(t 1+t 2)=x+4pt 1t 2=x-4p ④ 由③×④得:x 2+y 2-4px=0 ∵A 、B 是原点以外的两点 ∴x ≠0∴点M 的轨迹是以(2p,0)为圆心,以2p 为半径的圆(去掉原点).【难题巧解点拨】例1 已知抛物线y 2=2px 上两点A 、B ,BC ⊥x 轴交抛物线于C ,AC 交x 轴于E ,BA 延长交x 轴于D ,求证:O 为DE 中点.分析 只需证出D 、E 两点的横坐标互为相反数即可,设A(2pt 21,2pt 1),B(2pt 22,2pt 2)则 C(2pt 22,-2pt 2) AC :y-2pt 1=211t t -(x-2pt 21) 令y=0,得x D =2pt 1t 2 BA :y-2pt 1=211t t + (x-2pt 21) 令y=0,得x E =-2pt 1t 2 ∴x D +x E =0即O 为DE 中点.例2 设抛物线过定点A(0,2)且以x 轴为准线. (Ⅰ)试求抛物线顶点M 的轨迹C 的方程;(Ⅱ)如果点P(a,1)不在线段y=1(-2≤x ≤2)上,那么当a 取何值时,过P 点存在一对互相垂直的直线同时与曲线C 各有两个交点?分析 (Ⅰ)设抛物线顶点M(x,y),y >0,则其焦点为F(x,2y). 据抛物线定义有22)22(-+y x =2即 42x +(y-1)2=1(y ≠0)∴抛物线顶点M 的轨迹C 的方程是42x +(y-1)2=1(y ≠0) (Ⅱ)过P 点的直线可设为l :y-1=k(x-a).由已知P(a,1)不在曲线C 上,则⎩⎨⎧=-++-=4)1(41)(22y x a x k y 消去y ,得x 2+4k 2(x-a)2=4 即(1+4k 2)x 2-8k 2ax+4(k 2a 2-1)=0 ∴△=16[k 2(4-a 2)+1]过点P 存在一对互相垂直的直线同时与曲线C 各有两个不同的交点的充要条件是关于斜率k 的不等式组⎪⎩⎪⎨⎧>+->+-01)4(101)4(2222a ka k 有解 ∵点P 不在直线y=1(-2≤x ≤2)上,∴|a |>2,4-a 2<0.∴上不等式组可化为⎪⎩⎪⎨⎧->-<4,412222a k a k∴a 2-4<412-a 解a 2<5又|a |>2,∴2<|a |<5 即a ∈(-5,-2)∪(2,5)【命题趋势分析】本节与椭圆、双曲线的相同内容相似,都是高考的重要内容.圆锥曲线的基础知识;直线与圆锥曲线的位置关系、弦长、中点弦及弦的中点的轨迹问题;圆锥曲线中的有关最值问题等等.本章内容为高考压轴题的高频题.【典型热点考题】例1 抛物线y=x 2的弦AB 保持与圆x 2+y 2=1相切移动,求过A 、B 的抛物线的切线交点的轨迹方程.分析一 如图,设抛物线弦AB 与圆x 2+y 2=1相切于P(x 0,y 0),则过P 点的圆的切线方程为x 0x+y 0y=1.由⎩⎨⎧==+2001xy y y x x 得y 0x 2+x 0x-1=0设A 的坐标为(x 1,x 21),B(x 2,x 22),由韦达定理,得 x 1+x 2=-00y x ,x 1·x 2=-01y又过A 、B 两点的抛物线的切线方程分别为 y+x 12=2x 1x,y+x 22=2x 2x , 则两切线交点Q(x,y)是方程组⎪⎩⎪⎨⎧=+=+xx x y x x x y 22212122②①①-②得x 21-x 22=2(x 1-x 2)x. ∴ 2x=x 1+x 2=-y x ③①×x 2-②×x 1得(x 2-x 1)y+x 1x 2(x 1-x 2)=0 ∴y=x 1x 2=-1y ④ 由③、④得x 0=y x 2,y 0=-y1∵P(x 0,y 0)在圆x 2+y 2=1上, ∴(y x 2)2+(-y1)2=1 即 y 2-4x 2=1,这是双曲线.由条件知,所求轨迹是焦点在y 轴上,a=1、b=21的双曲线的下支的一部分. 分析二设抛物线的弦AB 与圆切于点P(x 0,y 0),则过P 点的圆的切线AB 的方程为 x 0x+y 0y=1①设过A 、B 两点的抛物线切线交点为Q(α,β)则AB 为抛物线的切点弦,其方程为 y+β=2αx ② 由①、②表示同一直线,于是有α20x =10-y =β1 ∴x 0=βα2 y 0=-β1 ∵P(x 0,y 0)在圆x 2+y 2=1上,∴(βα2)2+(-β1)2=1, 即β2-4α2=1,故 y 2-4x 2=1(x ∈R,y <0)例2 某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系用如图甲所示的一条折线表示;西红柿的种植成本与上市时间的关系用如图乙所示的抛物线段表示.(1)写出如图甲所示市场售价与时间的函数关系式P =f(t);写出如图乙所示种植成本与时间的函数关系式Q =g(t).(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大? (注:市场售价和种植成本的单位:元/102kg ,时间单位:天)解:(1)f(t)=⎩⎨⎧≤<-≤≤-.300200,3002,2000,300t t t tg(t)=2001 (t-150)2+100,0≤t ≤300. (2)设t 时刻的纯收益为h(t),则由题意得h(t)=f(t)-g(t),即h(t)=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-.300200,21025272001,2000,2175********t t t t t t当0≤t ≤200时,配方整理得 h(t)=-2001(t-50)2+100, 所以,当t =50时,h(t)取得区间[0,200]上的最大值100; 当200<t ≤300时,配方整理得 h(t)=-2001(t-350)2+100 所以,当t =300时,h(t)取得区间(200,300]上的最大值87.5.综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t =50,即从2月1日开始的第50天时,上市的西红柿纯收益最大.【同步达纲练习】A 级一、选择题1.若A 是定直线l 外的一定点,则过A 且与l 相切圆的圆心轨迹是( ) A.圆 B.椭圆 C.双曲线一支 D.抛物线2.抛物线y 2=10x 的焦点到准线的距离是( ) B.5D.103.已知原点为顶点,x 轴为对称轴的抛物线的焦点在直线2x-4y+11=0上,则此抛物线的方程是( )A.y 2=11xB.y 2=-11xC.y 2=22xD.y 2=-22x4.过抛物线y 2=2px(p >0)的焦点且垂直于x 轴的弦AB ,O 为抛物线顶点,则∠AOB( ) A.小于90°B.等于90° C.大于90°D.不能确定5.以抛物线y 2=2px(p >0)的焦半径|PF |为直径的圆与y 轴位置关系为( ) A.相交B.相离C.相切D.不确定 二、填空题6.圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的圆的方程是.7.若以曲线252x +162y =1的中心为顶点,左准线为准线的抛物线与已知曲线右准线交于A 、B 两点,则|AB |=.8.若顶点在原点,焦点在x 轴上的抛物线截直线y=2x+1所得的弦长为15,则此抛物线的方程是.三、解答题9.抛物线x 2=4y 的焦点为F ,过点(0,-1)作直线l 交抛物线A 、B 两点,再以AF 、BF 为邻边作平行四边形FABR ,试求动点R 的轨迹方程.10.是否存在正方形ABCD ,它的对角线AC 在直线x+y-2=0上,顶点B 、D 在抛物线y 2=4x 上?若存在,试求出正方形的边长;若不存在,试说明理由.AA 级一、选择题1.经过抛物线y 2=2px(p >0)的所有焦点弦中,弦长的最小值为( ) A.p B.2pC.4pD.不确定2.直线y=kx-2交抛物线y 2=8x 于A 、B 两点,若AB 的中点横坐标为2,则|AB |为( ) A.15B.415C.215D.423.曲线2x 2-5xy+2y 2=1( ) A.关于x 轴对称B.关于y 轴对称C.关于原点对称,但不关于y=x 对称D.关于直线y=x 对称也关于直线y=-x 对称4.若抛物线y 2=2px(p >0)的弦PQ 的中点为(x 0,y 0)(y ≠0),则弦PQ 的斜率为( ) A.-0x p B.0y p C.px -D.-px 0 5.已知抛物线y 2=2px(p >0)的焦点弦AB 的两端点坐标分别为A(x 1,y 1),B(x 2,y 2),则2121x x y y 的值一定等于( )A.4B.-4C.p 2D.-p 2二、填空题6.抛物线y 2=4x 的弦AB 垂直于x 轴,若AB 的长为43,则焦点到AB 的距离为.7.以椭圆52x +y 2=1的右焦点F 为焦点,以原点为顶点作抛物线,抛物线与椭圆的一个公共点是A ,则|AF |=.8.若△OAB 为正三角形,O 为坐标原点,A 、B 两点在抛物线y 2=2px 上,则△OAB 的周长为. 三、解答题9.抛物线y=-22x 与过点M(0,-1)的直线l 相交于A 、B 两点,O 为坐标原点,若直线OA和OB 斜率之和为1,求直线l 的方程.10.已知半圆的直径为2r ,AB 为直径,半圆外的直线l 与BA 的延长线垂直,垂足为T ,且|TA |=2a(2a <2r),半圆上有M 、N 两点,它们与直线l 的距离|MP |、|NQ |满足条件|MP |=|AM |,|NQ |=|AN |,求证:|AM |+|AN |=|AB |.【素质优化训练】 一、选择题1.过点A(0,1)且与抛物线y 2=4x 有唯一公共点的直线的条数为( ) A.1 B.2 C.3 D.42.设抛物线y=ax 2(a >0)与直线y=kx+b 相交于两点,它们的横坐标为x 1,x 2,而x 3是直线与x 轴交点的横坐标,那么x 1、x 2、x 3的关系是( )A.x 3=x 1+x 2B.x 3=11x +21x C.x 1x 2=x 2x 3+x 3x 1D.x 1x 3=x 2x 3+x 1x 2 3.当0<k <31时,关于x 的方程x 2=kx 的实根的个数是( ) A.0个 B.1个 C.2个 D.3个4.已知点A(1,2),过点(5,-2)的直线与抛物线y 2=4x 交于另外两点B 、C ,则△ABC 是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.不确定5.将直线x-2y+b=0左移1个单位,再下移2个单位后,它与抛物线y 2=4x 仅有一个公共点,则实数b 的值等于( )A.-1B.1C.7D.9 二、填空题6.抛物线y 2=-8x 被点P(-1,1)所平分的弦所在直线方程为.7.已知抛物线y 2=2x 的弦过定点(-2,0),则弦AB 中点的轨迹方程是. 8.已知过抛物线y 2=2px 的焦点F 的弦AB 被F 分成长度为m 、n 的两部分,则m 1+n1=. 三、解答题9.已知圆C 过定点A(0,p)(p >0),圆心C 在抛物线x 2=2py 上运动,若MN 为圆C 在x 轴上截得的弦,设|AM |=m,|AN |=n ,∠MAN=θ.(1)当点C 运动时,|MN |是否变化?写出并证明你的结论?(2)求m n +nm的最大值,并求取得最大值时θ的值和此时圆C 的方程.10.已知抛物线y 2=4ax(0<a <1)的焦点为F ,以A(a+4,0)为圆心,|AF |为半径在x 轴上方作半圆交抛物线于不同的两点M 和N ,设P 为线段MN 的中点,(Ⅰ)求|MF |+|NF |的值;(Ⅱ)是否存在这样的a 值,使|MF |、|PF |、|NF |成等差数列?如存在,求出a 的值,若不存在,说明理由.【生活实际运用】1.已知点P(x 0,y 0)在抛物线含焦点的区域内,求证以点P 为中点的抛物线y 2=2px(p >0)的中点弦方程为yy 0-p(x+x 0)=y 20-2px 0注:运用求中点弦的方法不难求出结论,这一结论和过抛物线y 2=2px 上点的切线方程有什么联系?若P(x 0,y 0)为非对称中心,将抛物线y 2=2px 换成椭圆22a x +22b y =1或双曲线22a x -22by =1,它们的中点弦存在的话,中点弦方程又将如何?证明你的结论.中点弦方程在高考中多以选择题、填空题的形式出现.2.公园要建造一个圆形的喷水池,在水池中央垂直于水面安装一个柱子OA ,O 恰在圆形水面中心,OA=1.25米.安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路经落下,且在过OA 的任一平面上抛物线路径如图所示,为使水流形状较为漂亮,设计成水流在到OA 距离1米处达到距水面最大高度2.25米.如果不计其它因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?分析 根据图形的对称性,设出并求出一边的抛物线的方程,便可求出水池的半径. 以OA 所在直线为y 轴,过O 点作oy 轴的垂直线ox 轴,建立直角坐标系如图依题意A(0,1.25),设右侧抛物线顶点为则B(1,2.25),抛物线与x 轴正向交点为C ,OC 即圆型水池的半径.设抛物线ABC 的方程为 (x-1)2=-2p(y-2.25) 将A(0,1.25)代入求得p=21 ∴抛物线方程为(x-1)2=-(y-2.25) 令y=0,(x-1)2=1.52,x=2.5(米)即水池的半径至少要2.5米,才能使喷出的水流不致落到池外.【知识验证实验】1.求函数y=136324+--x x x -124+-x x 的最大值.解:将函数变形为y=222)2()3(---x x -222)1(-+x x ,由几何意义知,y 可以看成在抛物线f(x)=x 2上的点P(x,x 2)到两定点A(3,2)和B(0,1)的距离之差,∵|PA |-|PB |≤|AB |,∴当P 、A 、B 三点共线,且P 在B 的左方时取等号,此时P 点为AB 与抛物线的交点,即P 为(6371-,183719-)时,y max =|AB |=10. 2.参与设计小花园的喷水池活动. 要求水流形状美观,水流不落池外.【知识探究学习】1.如图,设F 是抛物线的焦点,M 是抛物线上任意一点,MT 是抛物线在M 的切线,MN 是法线,ME 是平行于抛物线的轴的直线.求证:法线MN 必平分∠FME ,即φ1=φ2.解:取坐标系如图,这时抛物线方程为y 2=2px.(p >0),因为ME 平行x 轴(抛物线的轴),∴φ1=φ2,只要证明φ1=φ3,也就是△FMN 的两边FM 和FN 相等.设点M 的坐标为(x 0,y 0),则法线MN 的方程是y-y 0=-py 0(x-x 0),令y=0,便得到法线与x 轴的交点N 的坐标(x 0+p,0),所以|FN |=|x 0+p-2p |=x 0+2p ,又由抛物线的定义可知,|MF |=x 0+2p,∴|FN |=|FM |,由此得到φ1=φ2=φ3,若M 与顶点O 重合,则法线为x 轴,结论仍然成立.2.课本第124页阅读材料: 圆锥曲线的光学性质及其应用参考答案: 【同步达纲练习】A 级1.D2.B3.D4.C5.C6.(x-21)2+(y ±1)2=17.3100 8.y 2=12x 或y 2=-4x 9.解:设R(x,y),∵F(0,1),∴平行四边形FARB 的中心为C(2x ,21+y ),l :y=kx-1,代入抛物线方程,得x 2-4kx+4=0,设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=4k,x 1x 2=4,且△=16k 2-16>0,即|k|>1 ①,∴y 1+y 2=42221x x +=42)(21221x x x x -+=4k 2-2,∵C为AB 的中点.∴⎪⎪⎩⎪⎪⎨⎧-=+=+=+=1222122222121k y y y k x x x ⇒⎩⎨⎧-==3442k y k x 消去k 得x 2=4(y+3),由①得,|x |>4,故动点R 的轨迹方程为x 2=4(y+3)(|x |>4).10.解:设存在满足题意的正方形.则BD :y=x+b,代入抛物线方程得x 2+(2b-4)x+b 2=0,∴△=(2b-4)2-4b 2=16-16b >0,∴b <1, ①,设B(x 1,y 1),D(x 2,y 2),BD 中点M(x 0,y 0),则x 1+x 2=4-2b,∴x 0=2-b,y 0=x 0+b=2,∵M 在AC 直线上,∴(2-b)+2-2=0,∴b=2与①相矛盾,故不存在满足要求的正方形.AA 级1.B2.C3.D4.B5.B6.27.95-188.123p9.解:设l :y=kx-1,代入y=-22x ,得x 2+2kx-2=0,设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-2k,x 1x 2=-2,又11x y +22x y =111x kx -+221x kx -=2k-2121x x x x +=2k-22--k =k=1,∴直线l 的方程为y=x-1. 10.证明:由|MP |=|AM |,|NQ |=|AN |知M 、N 在以l 准,A 为焦点的抛物线上,建立直角坐标系,设抛物线方程为y 2=2px ,又|TA |=2a=p,∴抛物线方程为y 2=4ax ,又圆的方程为(x-a-r)2+y 2=r 2,将两方程相减可得:x 2+2(a-r)x+a 2+2ar=0,设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=2r-2a,∴|AM |+|AN |=|PM |+|QN |=x 1+x 2+2a=2r,即|AM |+|AN |=|AB |【素质优化训练】1.C2.C3.D4.C5.C6.4x+y+3=07.y 2=x+2(在已知抛物线内部的部分) 8.2p9.解:(1)设圆心C(x 0,y 0),则x 20=2py 0,圆C 的半径|CA |=2020)(p y x -+,其方程为(x-x 0)2+(y-y 0)2=x 20+(y 0-p)2,令y=0,并将x 20=2py 0,代入,得x 2-2x 0x+x 20-p 2=0,解得x m =x 0-p,x N =x 0+p,∴|MN |=|x N -x M |=2p(定值)(2)∵m=|AM |=220)(p p x +-,n=|AN |=220)(p p x ++,∴m 2+n 2=4p 2+2x 20,m ·n=4044x p +,∴m n +n m =mn n m 22+=40422424x p x p ++=20202)(4y p p y p p ++=220)(2y p y p ++=222021y p py ++≤22,当且仅当y 0=p 时等号成立,x 0=±2p ,此时△M 为等腰直角三角形,且∠M=90°,∴∠MAN=21∠M=45°,故当θ=45°时,圆的方程为(x-2 p)2+(y-p)2=2p 2或(x+2p)2+(y-p)2=2p 210.解:(1)由已知得F(a,0),半圆为[x-(a+4)]2+y 2=16(y ≥0),设M(x 1,y 1),N(x 2,y 2),则|MF |+|NF |=x 1+x 2+2a=2(4-a)+2a=8(2)若|MF |、|PF |、|NF |成等成数列,则有2|PF |=|MF |+|NF |,另一方面,设M 、P 、N 在抛物线的准线上的射影为M ′、P ′、N ′,则在直角梯形M ′MNN ′中,P ′P 是中位线,又有2|P ′P |=|M ′M |+|N ′N |=|MF |+|FN |,因而|PF |=|P ′P |,∴P 点应在抛物线上,但P点是线段MN的中点,即P并不在抛物线上,故不存在使|MF|、|PF|、|NF|成等差数列的a值.。
高中数学选修2-1精品教案1:2.4.1 抛物线及其标准方程教学设计
2.4.1 抛物线及其标准方程教学目标:知识与技能目标使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.过程与方法目标要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.情感,态度与价值观目标(1)培养学生用对称的美学思维来体现数学的和谐美。
(2)培养学生观察,实验,探究与交流的数学活动能力。
教学重点:使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.教学难点:使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.一.复习引入回忆平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么当e=1时,它又是什么曲线?二.思考分析如图,我们在黑板上画一条直线EF,然后取一个三角板,将一条拉链AB固定在三角板的一条直角边上,并将拉链下边一半的一端固定在C点,将三角板的另一条直角边贴在直线EF上,在拉锁D处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线.问题1:画出的曲线是什么形状?提示:抛物线问题2:|DA|是点D到直线EF的距离吗?为什么?提示:是.AB是直角三角形的一条直角边.问题3:点D在移动过程中,满足什么条件?提示:|DA|=|DC|.三.抽象概括抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线.抛物线标准方程的几种形式线的焦点;一条定直线l ,即为抛物线的准线;一个定值,即点M 与点F 的距离和M 到l 的距离之比等于1.定点F 不能在直线上,否则,动点M 的轨迹就不是抛物线.2.抛物线的焦点坐标、准线方程以及开口方向取决于抛物线的标准方程形式,规律是:焦点取决于一次项,开口取决于正负号,即标准方程中,如果含的是x 的一次项,则焦点就在x 轴上,并且焦点的横坐标为2p 4(或-2p 4),相应的准线是x =-2p 4(或x =2p4);如果含的是y 的一次项,有类似的结论.3.抛物线标准方程中的参数p 的几何意义是焦点到准线的距离. 四.例题分析及练习[例1] 分别求满足下列条件的抛物线的标准方程: (1)准线方程为2y +4=0; (2)过点(3,-4);(3)焦点在直线x +3y +15=0上.[思路点拨] 确定抛物线的类型→设出标准方程→确定参数→写出方程[精解详析] (1)准线方程为2y +4=0,即y =-2,故抛物线焦点在y 轴的正半轴上,设其方程为x 2=2py (p >0).又p2=2,所以2p =8,故抛物线的标准方程为x 2=8y .(2)∵点(3,-4)在第四象限,∴设抛物线的标准方程为y 2=2px (p >0)或x 2=x -2p 1y (p 1>0).把点(3,-4)的坐标分别代入y 2=2px 和x 2=-2p 1y ,得(-4)2=2p ·3,32=-2p 1·(-4),即2p =163,2p 1=94. ∴所求抛物线的标准方程为y 2=163x 或x 2=-94y .(3)令x =0得y =-5;令y =0得x =-15. ∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为x 2=-20y 或y 2=-60x .[感悟体会] 求抛物线方程的主要方法是待定系数法,若已知抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可;若抛物线的焦点位置不确定,则要分情况讨论.另外,焦点在x 轴上的抛物线方程可统一设成y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可统一设成x 2=ay (a ≠0). 训练题组11.以双曲线x 216-y 29=1的右顶点为焦点的抛物线的标准方程为( )A .y 2=16xB .y 2=-16xC .y 2=8xD .y 2=-8x解析:由双曲线方程x 216-y 29=1,可知其焦点在x 轴上.由a 2=16,得a =4,∴该双曲线右顶点的坐标是(4,0),∴抛物线的焦点为F (4,0).设抛物线的标准方程为y 2=2px (p >0),则由p2=4,得p =8,故所求抛物线的标准方程为y 2=16x .答案:A2.已知抛物线的焦点在x 轴上,抛物线上的点M (-3,m )到焦点的距离是5. (1)求抛物线方程和m 的值; (2)求抛物线的焦点和准线方程.解:(1)法一:∵抛物线焦点在x 轴上,且过点M (-3,m ), ∴设抛物线方程为y 2=-2px (p >0),则焦点坐标F (-p2,0).由题意知⎩⎪⎨⎪⎧m 2=6p , m 2+3-p 22=5,解得⎩⎨⎧ p =4,m =26,或⎩⎨⎧p =4,m =-2 6.∴所求抛物线方程为y 2=-8x ,m =±2 6.法二:设抛物线方程为y 2=-2px (p >0),则焦点坐标F (-p 2,0),准线方程x =p2.由抛物线定义知,点M 到焦点的距离等于5,即点M 到准线的距离等于5, 则3+p2=5,∴p =4,∴抛物线方程为y 2=-8x .又点M (-3,m )在抛物线上,∴m 2=24,∴m =±26,∴所求抛物线方程为y 2=-8x ,m =±2 6. (2)∵p =4,∴抛物线的焦点坐标为(-2,0),准线方程是x =2.[例2] 已知抛物线的方程为x 2=8y ,F 是焦点,点A (-2,4).在此抛物线上求一点P ,使|PF |+|P A |的值最小.[思路点拨] 把|PF |转化为点P 到准线的距离→画出草图→数形结合 →求出点P 的坐标 [精解详析] ∵(-2)2<8×4,∴点A (-2,4)在抛物线x 2=8y 的内部.如图,设抛物线的准线为l ,过点P 作PQ ⊥l 于点Q ,过点A 作AB ⊥l 于点B .由抛物线的定义可知:|PF |+|P A |=|PQ |+|P A |≥|AQ |≥|AB |,当且仅当P ,Q ,A 三点共线时,|PF |+|P A |取得最小值,即为|AB |.此时P 的横坐标为-2,代入x 2=8y 得y P =12.故使|PF |+|P A |的值最小的抛物线上的点P 的坐标为(-2,12).[感悟体会] 利用抛物线的定义可实现抛物线上的点到焦点和到准线距离的相互转化.解此类最值、定值问题时,首先要注意抛物线定义的转化应用;其次是注意平面几何知识的应用,如两点之间线段最短,三角形中三边间的不等关系,点与直线上点的连线中垂线段最短等. 训练题组23.点P 为抛物线y 2=2px 上任一点,F 为焦点,则以PF 为直径的圆与y 轴( ) A .相交 B .相切 C .相离 D .位置由F 确定解析:如图,抛物线的焦点为F (p 2,0),M 为PF 的中点,准线是l :x =-p2.作PH ⊥l 于H ,交y 轴于Q ,那么|PF |=|PH |,且|QH |=|OF |=p2.作MN ⊥y 轴于N ,则MN 是梯形PQOF 的中位线,即|MN |=12(|OF |+|PQ |)=12|PH |=12|PF |,故以PF 为直径的圆与y 轴相切.答案:B4.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( ) A.172B .3C. 5D.92解析:由抛物线的定义可知,抛物线上的点到准线的距离等于到焦点的距离.由图可知,P 点,A (0,2)点,抛物线的焦点F (12,0)三点共线时距离之和最小.所以最小距离d =|AF |=0-122+2-02=172.答案:A[例3] 某大桥在涨水时有最大跨度的中央桥孔,已知上部呈抛物线形,跨度为20米,拱顶距水面6米,桥墩高出水面4米.现有一货船欲过此孔,该货船水下宽度不超过18米,目前吃水线上部中央船体高5米,宽16米,且该货船在现有状况下还可多装1 000吨货物,但每多装150吨货物,船体吃水线就要上升0.04米.若不考虑水下深度,问:该货船在现在状况下能否直接或设法通过该桥孔?为什么?[思路点拨] 分析题意→建立平面直角坐标系→设出抛物线标准方程→确定点的坐标求p →利用方程求值→回答实际问题[精解详析] 如图所示,以拱顶为原点,过拱顶的水平直线为x 轴,竖直直线为y 轴,建立直角坐标系.∵拱顶距水面6米,桥墩高出水面4米,∴A (10,-2).设桥孔上部抛物线方程是x 2=-2py (p >0),则102=-2p (-2),∴p =25,∴抛物线方程为x 2=-50y ,即y =-150x 2.若货船沿正中央航行,船宽16米,而当x =8时,y =-150×82=-1.28,即船体在x =±8之间通过,B (8,-1.28),此时B 点距水面6+(-1.28)=4.72(米).而船体高为5米,∴无法通行.又∵5-4.72=0.28(米),0.28÷0.04=7,150×7=1 050(吨), 所以若船通过增加货物通过桥孔,则要增加1 050吨,而船最多还能装1 000吨货物,所以货船在现有状况下不能通过桥孔.[感悟体会] 涉及桥的高度、隧道的高低等抛物线型问题,通常用抛物线的标准方程解决.建立直角坐标系后,要结合点的位置分析坐标的符号,根据实际问题中的数据准确写出点的坐标,再结合实际问题求解. 训练题组35.探照灯反光镜的纵断面是抛物线的一部分,光源在抛物线的焦点处.已知灯口直径是60 cm ,灯深40 cm ,则光源到反光镜顶点的距离是( ) A .11.25 cm B .5.625 cmC .20 cm D .10 cm解析:如图,建立直角坐标系,设抛物线方程是y 2=2px (p >0).∵A (40,30)在抛物线上,∴302=2p ×40,∴p =454,∴光源到反光镜顶点的距离为p 2=4524=458=5.625 (cm). 答案:B6.一辆卡车高3 m ,宽1.6 m ,欲通过断面为抛物线形的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m ,求使卡车通过的a 的最小整数值.解:以隧道顶点为原点,拱高所在直线为y 轴建立直角坐标系,则点B 的坐标为(a2,-a4),如图所示.设隧道所在抛物线方程为x 2=my ,则(a 2)2=m ·(-a4),∴m =-a ,即抛物线方程为x 2=-ay .将(0.8,y )代入抛物线方程,得0.82=-ay ,即y =-0.82a.欲使卡车通过隧道,应有y -(-a 4)>3,即a 4-0.82a>3.解得a >12.21或a <-0.21(舍去).∴使卡车通过的a 的最小整数值为13. 五.课堂小结与归纳1.求抛物线的标准方程时,由于其标准方程有四种形式,易混淆,解题时一定要做到数形结合,按照“定型”(确定焦点位置)→定量(参数p 的值)的程序求解.2.应用定义可以解决两类问题:①求抛物线的方程;②涉及抛物线的最值问题,通常将到焦点的距离转化为到准线的距离,充分利用直角梯形的性质解题. 六.当堂训练1.抛物线y =4x 2的焦点坐标是( ) A .(0,1) B .(1,0)C .(0,116)D .(116,0)解析:由y =4x 2得x 2=14y ,∴抛物线焦点在y 轴正半轴上且2p =14,∴p =18,∴焦点为(0,116).答案:C 2.若抛物线y 2=2px的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4解析:由椭圆方程可知a =6,b =2,∴c =a 2-b 2=2, ∴椭圆右焦点为(2,0),∴p2=2,∴p =4.答案:D3.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ) A.34 B .1C.54 D.74解析:根据抛物线定义与梯形中位线定理,得线段AB 的中点到y 轴的距离为12(|AF |+|BF |)-14=32-14=54. 答案:C4.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=( ) A .4 3B .8C .8 3D .16解析:由抛物线的定义得|PF |=|P A |,由直线AF 的斜率为-3, 可知∠P AF =60°.△P AF 是等边三角形,∴|PF |=|AF |=4cos60°=8. 答案:B5.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为________. 解析:由抛物线方程y 2=2px (p >0),得其准线方程为x =-p2.又圆的方程为(x -3)2+y 2=16,∴圆心为(3,0),半径为4.依题意,得3-(-p2)=4,解得p =2.答案:26.右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽______米.解析:以抛物线的顶点为原点,对称轴为y 轴建立直角坐标系.设抛物线方程为x 2=-2py (p >0),则点(2,-2)在抛物线上,代入可得p =1,抛物线方程为x 2=-2y .当y =-3时,x 2=6,所以水面宽为26米. 答案:2 67.根据下列条件求抛物线的标准方程.(1)抛物线的焦点是双曲线16x 2-9y 2=144的左顶点;(2)抛物线的焦点在x 轴上,直线y =-3与抛物线交于点A ,|AF |=5. 解:(1)双曲线方程化为x 29-y 216=1,左顶点为(-3,0).由题意设抛物线方程为y 2=-2px (p >0)且-p2=-3,∴p =6,∴方程为y 2=-12x .(2)设所求焦点在x 轴上的抛物线方程为y 2=2px (p ≠0),A (m ,-3). 由抛物线定义得5=|AF |=|m +p2|.又(-3)2=2pm ,∴p =±1或p =±9,故所求抛物线方程为y 2=±2x 或y 2=±18x .8.如图所示,花坛水池中央有一喷泉,水管O ′P =1 m ,水从喷头P 喷出后呈抛物线状,先向上至最高点后落下.若最高点距水面2 m ,P 距抛物线的对称轴1 m ,则水池的直径至少应设计为多少米?(精确到1 m)解:如图所示,建立平面直角坐标系.设抛物线方程为x 2=-2py (p >0). 依题意有P ′(1,-1)在此抛物线上,代入得p =12.故得抛物线方程为x 2=-y .B 在抛物线上,将B (x ,-2)代入抛物线方程得x =2, 即|AB |=2,则|AB |+1=2+1,因此所求水池的直径为2(1+2) m ,约为5 m , 即水池的直径至少应设计为5 m.。
人教新课标版数学高二选修2-1讲义 2.4.1抛物线及其标准方程
2.4 抛物线2.4.1 抛物线及其标准方程1.掌握抛物线的定义及其标准方程.(重点、难点)2.会由抛物线方程求焦点坐标和准线方程.(易错点)[基础·初探]教材整理1抛物线的定义阅读教材P65“思考”以上部分,完成下列问题.平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做______.点F叫做抛物线的______,直线l叫做抛物线的______.【答案】抛物线焦点准线判断(正确的打“√”,错误的打“×”)(1)并非所有二次函数的图象都是抛物线.()(2)抛物线是双曲线的一支.()(3)若定点在定直线上,则到定点和定直线的距离相等的点的轨迹是一条直线.()【答案】(1)×(2)×(3)√教材整理2抛物线的标准方程阅读教材P65“思考”以下部分,完成下列问题.图形标准方程焦点坐标准线方程y 2=2px(p >0)________ ________ y 2=-2px(p >0)________ ________ x 2=2py(p >0)________ ________ x 2=-2py (p >0) ________ ________【答案】 ⎝ ⎛⎭⎪⎫p 2,0 x =-p 2 ⎝ ⎛⎭⎪⎫-p 2,0 x =p 2 ⎝ ⎛⎭⎪⎫0,p 2 y =-p 2 ⎝ ⎛⎭⎪⎫0,-p 2 y =p 21.抛物线x =4y 2的准线方程是( )A.y =12B.y =-1C.x =-116D.x =18【解析】 由x =4y 2得y 2=14x ,故准线方程为x =-116.【答案】 C2.抛物线y 2=8x 的焦点到准线的距离是( )A.1B.2C.4D.8【解析】 由y 2=8x 得p =4,即焦点到准线的距离为4.【答案】 C[小组合作型]求抛物线的标准方程(1)过点M(-6,6);(2)焦点F在直线l:3x-2y-6=0上;(3)焦点到准线的距离是4.【精彩点拨】(1)过点M(-6,6)的抛物线有几种情况?(2)所求抛物线的焦点是什么,有几种情况?(3)由焦点位置判断有几种情况?【自主解答】(1)由于点M(-6,6)在第二象限,∴过M的抛物线开口向左或开口向上.若抛物线开口向左,焦点在x轴上,设其方程为y2=-2px(p>0),将点M(-6,6)代入,可得36=-2p×(-6),∴p=3.∴抛物线的方程为y2=-6x.若抛物线开口向上,焦点在y轴上,设其方程为x2=2py(p>0),将点M(-6,6)代入可得,36=2p×6,∴p=3,∴抛物线的方程为x2=6y.综上所述,抛物线的标准方程为y2=-6x或x2=6y.(2)①∵直线l与x轴的交点为(2,0),∴抛物线的焦点是F(2,0),∴p2=2,∴p=4,∴抛物线的标准方程是y2=8x.②∵直线l与y轴的交点为(0,-3),即抛物线的焦点是F(0,-3),∴p2=3,∴p=6,∴抛物线的标准方程是x2=-12y.综上所述,所求抛物线的标准方程是y2=8x或x2=-12y.(3)焦点到准线距离p=4,焦点可在x,y轴上,故有四种情况,标准方程为y2=8x,y2=-8x,x2=8y,x2=-8y.1.用待定系数法求抛物线标准方程的步骤2.求抛物线的标准方程时需注意的三个问题(1)把握开口方向与方程间的对应关系.(2)当抛物线的类型没有确定时,可设方程为y2=mx或x2=ny,这样可以减少讨论情况的个数.(3)注意p与p2的几何意义.[再练一题]1.根据下列条件确定抛物线的标准方程.(1)关于y轴对称且过点(-1,-3);(2)过点(4,-8);(3)焦点在x-2y-4=0上.【导学号:37792079】【解】 (1)法一 设所求抛物线方程为x 2=-2py (p >0),将点(-1,-3)代入方程,得(-1)2=-2p ·(-3),解得p =16,所以所求抛物线方程为x 2=-13y .法二 由已知,抛物线的焦点在y 轴上,因此设抛物线的方程为x 2=my (m ≠0).又抛物线过点(-1,-3),所以1=m ·(-3),即m =-13,所以所求抛物线方程为x 2=-13y .(2)法一 设所求抛物线方程为y 2=2px (p >0)或x 2=-2p ′y (p ′>0),将点(4,-8)代入y 2=2px ,得p =8;将点(4,-8)代入x 2=-2p ′y ,得p ′=1.所以所求抛物线方程为y 2=16x 或x 2=-2y .法二 当焦点在x 轴上时,设抛物线的方程为y 2=nx (n ≠0),又抛物线过点(4,-8),所以64=4n ,即n =16,抛物线的方程为y 2=16x ;当焦点在y 轴上时,设抛物线的方程为x 2=my (m ≠0),又抛物线过点(4,-8),所以16=-8m ,即m =-2,抛物线的方程为x 2=-2y .综上,抛物线的标准方程为y 2=16x 或x 2=-2y .(3)由⎩⎪⎨⎪⎧ x =0,x -2y -4=0,得⎩⎪⎨⎪⎧ x =0,y =-2,由⎩⎪⎨⎪⎧ y =0,x -2y -4=0,得⎩⎪⎨⎪⎧y =0,x =4.所以所求抛物线的焦点坐标为(0,-2)或(4,0).当焦点为(0,-2)时,由p 2=2,得p =4,所以所求抛物线方程为x 2=-8y ;当焦点为(4,0)时,由p 2=4,得p =8,所以所求抛物线方程为y 2=16x .综上所述,所求抛物线方程为x2=-8y或y2=16x.抛物线定义的应用A(4,2),求|PA|+|PF|的最小值,并求出取最小值时的P点坐标.【精彩点拨】利用抛物线的定义,把|PF|转化成到准线的距离.【自主解答】如图,作PN⊥l于N(l为准线),作AB⊥l于B,则|PA|+|PF|=|PA|+|PN|≥|AB|,当且仅当P为AB与抛物线的交点时,取等号.∴(|PA|+|PF|)min=|AB|=4+1=5.此时y P=2,代入抛物线得x P=1,∴P(1,2).根据抛物线的定义,抛物线上任意一点到焦点的距离等于它到准线的距离,因此,抛物线定义的功能是可以实现点点距与点线距的相互转化,从而简化某些问题.[再练一题]2.已知点P是抛物线y2=2x上的一个动点,则点P到点A(0,2)的距离与P 到该抛物线准线的距离之和的最小值为()【导学号:37792080】A.172B.3C. 5D.92【解析】 由抛物线的定义可知,抛物线上的点到准线的距离等于到焦点的距离.由图可得,∴点P 到准线x =-12的距离d =|PF |,易知点A (0,2)在抛物线y 2=2x 的外部,连接AF ,交y 2=2x 于点P ′,欲使所求距离之和最小,只需A ,P ′,F 共线,∴其最小值为|AF |= ⎝ ⎛⎭⎪⎫0-122+(2-0)2=172. 【答案】 A与抛物线有关的轨迹问题3)2=1外切,求动圆圆心M 的轨迹方程.【精彩点拨】 (1)圆M 与直线y =2相切可以想到什么?(2)两圆外切的条件是什么?(3)点M 的条件满足抛物线定义吗?【自主解答】 设动圆圆心为M (x ,y ),半径为r ,则由题意可得M 到圆心C (0,-3)的距离与直线y =3的距离相等.由抛物线的定义可知:动圆圆心的轨迹是以C (0,-3)为焦点,以y =3为准线的一条抛物线,其方程为x2=-12y.求动点轨迹方程的方法:定义法,判断动点的轨迹是否满足抛物线的定义.若满足抛物线的定义,则可按抛物线标准方程的形式写出方程.[再练一题]3.已知动圆M经过点A(3,0),且与直线l:x=-3相切,求动圆圆心M的轨迹方程.【解】设动点M(x,y),⊙M与直线l:x=-3的切点为N,则|MA|=|MN|,即动点M到定点A和定直线l:x=-3的距离相等,∴点M的轨迹是抛物线,且以A(3,0)为焦点,以直线l:x=-3为准线,∴p2=3,∴p=6,故动圆圆心M的轨迹方程是y2=12x.[探究共研型]抛物线的实际应用探究1【提示】求解抛物线实际应用题的五个步骤:探究2如何利用抛物线定义解决实际问题?【提示】把实际问题转化为数学问题,利用抛物线的知识来解决实际问题.在建立抛物线的标准方程时,常以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系,这样可使得标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用.河上有抛物线型拱桥,当水面距拱顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露出水面上的部分高34米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?【精彩点拨】建系→设方程→解方程→求出相关量→解决问题【自主解答】如图,建立坐标系,设拱桥抛物线方程为x2=-2py(p>0),由题意,将B(4,-5)代入方程得p=85,∴抛物线方程为x2=-165y.∵当船的两侧和拱桥接触时船不能通航.设此时船面宽为AA′,则A(2,y A),由22=-165y A,得y A=-5 4.又知船露出水面上部分为34米,设水面与抛物线拱顶相距为h,则h=|y A|+34=2(米),即水面上涨到距抛物线拱顶2米时,小船不能通航.1.本题的解题关键是把实际问题转化为数学问题,利用数学模型,通过数学语言(文字、符号、图形、字母等)表达、分析、解决问题.2.以抛物线为数学模型的实例很多,如拱桥、隧道、喷泉等,应用抛物线主要体现在:(1)建立平面直角坐标系,求抛物线的方程;(2)利用已求方程求点的坐标.[再练一题]4.探照灯反射镜(如图2-4-1)的轴截面是抛物线的一部分,光源位于抛物线的焦点处.已知灯口圆的直径为60 cm ,灯深40 cm ,求抛物线的标准方程和焦点坐标.图2-4-1【解】 如图,在探照灯的轴截面所在平面内建立平面直角坐标系,使探照灯的顶点(即抛物线的顶点)与原点重合,x 轴垂直于灯口直径.设抛物线的标准方程为y 2=2px (p >0),由已知条件可得点A 的坐标是(40,30),且在抛物线上,代入方程,得:302=2p ·40,解得p =454. 故所求抛物线的标准方程为y 2=452x ,焦点坐标是⎝ ⎛⎭⎪⎫458,0.1.准线方程为y =23的抛物线的标准方程为( )A.x 2=83yB.x 2=-83yC.y 2=-83xD.y 2=83x 【解析】 由准线方程为y =23知抛物线焦点在y 轴负半轴上,且p 2=23,则p=43.故所求抛物线的标准方程为x 2=-83y .高中数学-打印版精心校对 【答案】 B2.以双曲线x 216-y 29=1的右顶点为焦点的抛物线的标准方程是________.【解析】 由双曲线x 216-y 29=1,得抛物线的焦点坐标为(4,0),故可设抛物线方程为y 2=2px (p >0),所以p 2=4,即p =8,抛物线方程为y 2=16x .【答案】 y 2=16x3.已知抛物线y 2=2px (p >0)的焦点F 1,若点A (2,-4)在抛物线上,则点A 到焦点的距离为________.【解析】 把点(2,-4)代入抛物线y 2=2px ,得16=4p ,即p =4,从而抛物线的焦点为(2,0).故点A 到焦点的距离为4.【答案】 44.若抛物线y 2=-2px (p >0)上有一点M ,其横坐标为-9,它到焦点的距离为10,求点M 的坐标.【导学号:37792081】【解】 由抛物线方程y 2=-2px (p >0),得其焦点坐标为F ⎝ ⎛⎭⎪⎫-p 2,0,准线方程为x =p 2.设点M 到准线的距离为d ,则d =|MF |=10,即p 2-(-9)=10,得p=2,故抛物线方程为y 2=-4x .由点M (-9,y )在抛物线上,得y =±6,故点M 的坐标为(-9,6)或(-9,-6).。
人教版数学高二数学选修2-1 2.4抛物线重点知识精析.
抛物线重点知识精析1.深刻理解抛物线的定义⑴抛物线的定义还可以叙述为:平面内与一个定点F 和一条直线l 的距离的比等于1的点的轨迹叫做抛物线.⑵定义的实质可归结为“一动三定”,一个动点..,设为M ;一个定点..F ,叫做抛物线的焦点;一条定直线...l ,叫做抛物线的准线;一个定值..,即点M 与点F 的距离和它到直线l 的距离之比等于1.⑶顶点F 不在定直线l 上,这是一个重要的隐含条件,否则动点M 的轨迹不是抛物线,而是过点F 垂直于直线l 的一条直线,比如,到点F(1,0)和直线l :x + y -1 = 0的距离相等的点的轨迹方程为x -y -1 = 0,轨迹是一条直线.2.抛物线标准方程的特点在建立抛物线的标准方程时,以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系,这样使标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用.由于选取坐标系时,设坐标轴有四种不同的方向,因此抛物线的标准方程有四种不同形式,这四种抛物线标准方程y 2=±2px (p >0)或x 2=±2py (p >0)的特点在于:等号一边是某变元的完全平方,等号另一边是另一变元的一次项,这个形式与位置特征相对应.若对称轴为x 轴时,方程中的一次项就是x 的一次项,且符号指出了抛物线的开口方向,即:开口向左时,该项取正号;开口向右时,该项取负号.若对称轴为y 轴时,方程中的一次项就是y 的一次项,且符号指出了抛物线的开口方向,即:开口向上时,该项取正号;开口向下时,该项取负号.3.动点、焦点、准线三者互化抛物线的定义中指明了抛物线上点到焦点的距离与到准线距离的等价性,因此在解题中,抛物线上的点、焦点、准线三者通常是与抛物线的定义相联系,故它们可以相互转化,这一转化在解题中有着重要的作用.4.圆锥曲线的统一定义椭圆、双曲线和抛物线还有一个相似的地方,就是它们有一个统一的定义:平面上,若一个动点到一个定点的距离与这个动点到一条定直线的距离之比等于常数e ,则这个动点的轨迹叫圆锥曲线.当0<e <1时,轨迹是椭圆;当e = 1时,轨迹是抛物线;当e >1时,轨迹是双曲线.二、几个常用结论1.关于抛物线焦点弦的几个结论设AB 为过抛物线y 2= 2px (p >0)焦点的弦,A(x 1,y 1)、B(x 2,y 2),直线AB 的倾斜角为θ,则:⑴ x 1· x 2=42p ,y 1· y 2=-p 2; ⑵|AB| =θ2sin 2p ; ⑶以AB 为直径的圆与准线相切;⑷焦点F 对A 、B 在准线上射影的张角为90°; ⑸||1FA +||1FB =p2. 2.抛物线的焦半径公式设抛物线上有一点M ,F 是抛物线的焦点,那么线段MF 叫做抛物线的焦半径.根据抛物线的定义,可以得到:⑴抛物线y2= 2px (p>0)上一点M(x0,y)的焦半径的长是|MF| = x+2p.⑵抛物线y2=-2px (p>0)上一点M(x0,y)的焦半径的长是|MF| =-x+2p.⑶抛物线x2= 2py (p>0)上一点M(x0,y)的焦半径的长是|MF| = y+2p.⑷抛物线x2= 2py (p>0)上一点M(x0,y)的焦半径的长是|MF| =-y+2p.3.直线与抛物线位置关系问题在直线与抛物线的位置关系中,由直线与抛物线方程联立可得一方程组,消元后可得到一个关于x(或y)的方程ax2+ bx + c = 0,此时直线与抛物线交点个数完全由方程组解的组数,即方程ax2+ bx + c = 0的解的个数决定.⑴当a = 0时,方程解唯一,显然直线与抛物线交点唯一,但不是相切,而是直线与抛物线对称轴平行或重合;⑵当a≠0时,∆= 0,此时直线与抛物线相切;∆<0,直线与抛物线相离;∆>0,直线与抛物线相交于两点.4.抛物线的焦半径、准线、对称轴及动点到准线距离这四条线围成一个直角梯形,在此经常借助平面几何图形的性质求解.一、抛物线的综合应用常见问题:1.求抛物线的有关特征量,并讨论其性质;①抛物线与直线的位置关系,特别是过焦点的直线;②抛物线与圆、椭圆及双曲线的位置关系;③抛物线中的最值与定值问题;④求轨迹方程及抛物线的实际应用问题.2.求抛物线方程时,若由已知条件可确定曲线是抛物线,此时一般用待定系数法.由于抛物线的标准方程有四种形式,所以先根据题设条件确定所求抛物线是哪种形式,然后列出方程求待定系数p ,就可得到抛物线的标准方程;若已知条件确定曲线的动点规律一般用轨迹法.3.抛物线标准方程中的p 表示焦点到准线的距离,若不做说明,p 一般取正值.求抛物线的标准方程,只需确定参数p ,由于标准方程有四种,所以解这类问题时,可以根据平方项、一次项的分布画一个草图,进行初步的“定位”;再根据2p 的数值来“定量”,即求出2p 的值,然后把二者结合起来即可. 4.对于抛物线y 2= 2px (p ≠0)上的点的坐标可设为(py 220,y 0),以简化运算. 5.凡涉及抛物线的弦长、弦的中点、弦的斜率问题时,要注意利用韦达定理,这样能避免求交点坐标的复杂运算.。
§2.4.1抛物线及其标准方程(选修2-1).doc
§2.4.1 抛物线及其标准方程(选修2-1)华中科技大学附属中学夏云晶教学目标:1.理解抛物线的定义,掌握抛物线的四种标准方程及其对应的图形、焦点和准线。
2.使学生进一步熟练掌握解析几何的基本思想方法,培养学生观察、联想、类比、猜测、归纳等合情推理的方法,提高学生抽象、概括、分析、综合的能力。
3.通过学生参与标准方程的推导,培养学生的自主探索精神和创新意识,培养学生运用数形结合的数学思想理解有关问题。
教学重点:抛物线的定义及标准方程教学难点:抛物线的标准方程的推导教学过程:一、创设情境引入新知大家初中学习过二次函数,知道函数y = -x2的图像是一条一一抛物线。
到4底什么是抛物线呢?抛物线上的点具有怎样的性质呢?我们知道,椭圆、双曲线和抛物线都是圆锥曲线。
椭圆上的点满足到一个定点F和一条定直线/的距离的比为定值,且定值小于1。
双曲线上的点到一个定点F和一条定直线/的距离的比为定值,且定值大于1。
(几何画板作图并演示动画)问题1:大家猜测下抛物线上的点具有怎样的性质呢?观察1:现在已知定点F (0, 1),定直线= -1, F^/o在图像上任取一点P,连接PF,并作PQ丄儿请观察,当P点在抛物线上运动时,它到定点F的距离与到定直线l:y = -\的距离之间有何关系?(几何画板演示动画)抛物线y = L x2可以看成是平面内与定点F (0, 1)和定直线/:y = -l的距' 4 ~离相等的点的轨迹。
其实我们可以验证所有抛物线上的点都具有到一个定点和一条定直线的距离相等这一性质。
反过来,具有这一性质的点的轨迹是不是抛物线呢?观察2:在平面内任取定点F和定直线几在/上取一点N,连接FN。
作FN的中垂线,过N作/的垂线,与NF的中垂线交于点M,连接MF。
由刚才的作图过程,点M满足到点F的距离和到直线/的距离相等。
让M点运动起来,它的轨迹是什么?(几何画板演示动画)二、探索研究构建方程问题2:通过刚才的讨论,你能给抛物线下一个定义吗?1.观察归纳抛物线的定义定义:平面内与一个定点F和一条定直线/的距离相等的点的轨迹叫做抛物线。
人教版【高中数学】选修2-1第二章抛物线-抛物线的标准方程讲义
案例(二)——精析精练课堂 合作 探究重点难点突破知识点一 抛物线定义平面内与一个定点F 和一条定直线()l F l ∉的距离相等的点的轨迹叫做抛物线,定点 F 为抛物线的焦点,定直线l 为抛物线的准线。
(1)定义可归结为”一动三定”:一个动点设为M ;一定点F (即焦点);一定直线l (即 准线);一定值1(即动点M 到定点F 的距离与它到定直线l 的距离之比为1)。
(2)定义中的隐含条件:焦点F 不在准线l 上。
若F 在l 上,抛物线退化为过F 且垂直于l 的一条直线。
(3)抛物线定义建立了抛物线上的点、焦点、准线三者之间的距离关系,在解题中常将抛物线上的动点到焦点距离(也称焦半径)与动点到准线距离互化,与抛物线的定义联系起来,通过这种转化使问题简单化。
知识点二 抛物线的标准方程抛物线标准方程建系特点:以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立直角坐标系,这样使标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用。
如下图所示,分别建立直角坐标系,设出()0>=p p KF ,则抛物线的标准方程如下:(1) (2)(3) (4)(1)()022>=p px y ,焦点:⎪⎭⎫ ⎝⎛0,2p ,准线2:p x l -=; (2)()022>=p py x ,焦集点:⎪⎭⎫ ⎝⎛2,0p ,准线2:p y l -=; (3)()022>-=p px y ,焦点:⎪⎭⎫ ⎝⎛-0,2p ,准线2:p x l =; (4)()022>-=p py x ,焦点:⎪⎭⎫ ⎝⎛-2,0p ,准线2:p y l =。
相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直, 垂足与焦点在对称轴上关于原点对称。
它们到原点的距离都等于一次项系数绝对值的41,即242p p =。
不同点:(1)图形关于x 轴对称时,x 为一次项,y 为二次项,方程右端为px 2±,左端为2y ;图形关于y 轴对称时,x 为二次项,y 为一次项,方程右端为py 2±,左端为2x ;(2)开口方向在x 轴(或y 轴)正向时,焦点在x 轴(或y 轴)的正半轴上,方程右端 取正号;开口在x 轴(或y 轴)负向时,焦点在x 轴(或y 轴)负半轴时,方程右端取负号。
高中数学选修2-1:知识讲解_抛物线的简单性质_基础
抛物线的简单性质编稿:张林娟责编:孙永钊【学习目标】1.知识与技能:掌握抛物线的范围、对称性、定点、焦点、准线、离心率、顶点、通径,理解2p和e的几何意义,初步学习利用方程研究曲线性质的方法.2.过程与方法:通过曲线的方程来研究曲线性质的方法,让学生体会数形结合的思想、方程思想及转化的思想在研究和解决问题中的应用.3.情感态度与价值观:通过自主探究、交流合作使学生亲身体验研究的艰辛,感受知识的发生发展过程,力求使学生获得符合时代要求的“双基”【要点梳理】要点一:抛物线标准方程2(0)2y=px p>的几何性质1.对称性观察图象,不难发现,抛物线y 2=2px (p >0)关于..x .轴对称...,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴........ 2. 范围抛物线y 2=2px (p >0)在y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标(x ,y )的横坐标满足不等式x .≥0..;当x 的值增大时,|y |也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点....(0,0).4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率.用e 表示,e .=1... 5. 通径通过抛物线的焦点且垂直于对称轴的直线被抛物线所截得的线段叫做抛物线的通径.因为通过抛物线y 2=2px (p >0)的焦点而垂直于x 轴的直线与抛物线两交点的坐标分别为,2p p ⎛⎫ ⎪⎝⎭,,2p p ⎛⎫- ⎪⎝⎭,所以抛物线的通径长为....2.p ..这就是抛物线标准方程中2p 的一种几何意义.另一方面,由通径的定义我们还可以看出,p 刻画了抛物线开口的大小,p 值越大,开口越宽;p 值越小,开口越窄.6. 焦半径抛物线上任意一点M 与抛物线焦点F 的连线段,叫做抛物线的焦半径 焦半径公式:抛物线22(0)y px p =>,0022p pPFx x =+=+; 抛物线22(0)y px p =->,0022p pPFx x =-=-; 抛物线22(0)x py p =>,0022p pPFy y =+=+; 抛物线22(0)x py p =->,0022p pPFy y =-=-. 7. 焦点弦定义:过焦点的直线割抛物线所成的相交弦.设过抛物线22(0)y px p =>焦点的直线交抛物线于A 、B 两点,设1122(,)(,)A x y B x y , 焦点弦公式:焦点弦12()AB p x x =++; 同理:若抛物线为22(0)y px p =->,则12()AB p x x =-+;若抛物线为22(0)x py p =>, 则12()AB p y y =++;若抛物线为22(0)x py p =->,则12()AB p y y =-+.有关性质:。
高中数学选修2-1精品教案2:2.4.1 抛物线及其标准方程教学设计
2.4.1 抛物线及其标准方程· oF y x lK (学生会猜想到轨迹是抛物线)3.如果曲线是抛物线,只要适当建立平面直角坐标系,就可以得到形如c bx ax y ++=2()0≠a 的轨迹方程,是否真是这样呢?(在学生思考的基础上引导学生先求出点M 的轨迹方程。
)4.如何建立坐标系求点M 的轨迹方程?(师生探讨建立不同方案,以下面方案为例进行推导)解:取经过点F 且垂直于直线l 的直线为y 轴,垂足为K ,并使原点与线段KF 的中点重合,建立平面直角坐标系。
令()0>=p p KF 则⎪⎭⎫ ⎝⎛2,0p F ,直线l :2p y -=,设动点()y x M ,,点M 到直线l 的距离为d ,则d MF = 即2222p y p y x +=⎪⎭⎫ ⎝⎛-+化简得()022>=p py x 注意到方程可化为:()0212>=p x py ,与我们初中所学的二次函数的解析式形式一致。
可见点M 的轨迹是顶点为(),00,开口向上的抛物线。
可见平面内到一个定点F 的距离和一条定直线l 的距离的比是常数1的点的轨迹(或平面内到一个定点F 和一条直线l (F 不在l 上)距离相等的点的轨迹)是抛物线。
点F 叫做焦点..,l 叫做准线。
...类似地,我们可以建立如下表所示的坐标系,从而得到抛物线方程的另外三种形式px y 22=,px y 22-=,py x 22-=()0>p .这四种方程都叫做抛物线的标准方程.标准方程 px y 22= px y 22-= py x 22= pyx 22-=图形焦点坐标⎪⎭⎫ ⎝⎛0,2p ⎪⎭⎫ ⎝⎛-0,2p ⎪⎭⎫ ⎝⎛2,0p ⎪⎭⎫ ⎝⎛-2,0p 准线方程 2p x -= 2p x = 2p y -= 2py =开口方向 向 右 向 左 向 上向 下说明:四个标准方程的区分:焦点在一次项字母对应的坐标轴上,开口方向由一次项系数的符号确定.当系数为正时,开口向坐标轴的正方向;系数为负时,开口向坐标轴的负方向.三.练习领会师生共同解答下列各例:【例1】求适合下列条件的抛物线的标准方程:(1)焦点为()0,3F ; (2)准线为41-=y ; (3)过点()1,3-P ; (4)焦点到原点的距离为2;(5)焦点是双曲线14491222=-y x 的左顶点;(6)焦点在直线012=+-y x 上。
数学高二选修抛物线知识点
数学高二选修抛物线知识点抛物线是数学中的一个重要概念,它在高中数学的选修课程中占有重要地位。
在高二学年,学生将进一步深入研究和应用抛物线的相关知识。
本文将重点介绍高二选修课程中涉及的抛物线知识点,帮助同学们更好地理解和掌握这一知识。
一、抛物线的定义和性质1. 抛物线的定义:抛物线是平面上动点到定点和到定直线的距离之差恒等于定值的轨迹。
2. 抛物线的标准方程:y = ax² + bx + c (a ≠ 0)3. 抛物线的顶点坐标:顶点的横坐标为 -b/2a,纵坐标为 c -b²/4a。
4. 抛物线的对称轴:对称轴的方程为 x = -b/2a。
5. 抛物线的焦点坐标:焦点的横坐标为 -b/2a,纵坐标为 c -b²/4a + 1/4a。
6. 抛物线的准线:准线的方程为 y = c - b²/4a - 1/4a。
二、抛物线的平移和缩放1. 抛物线的平移:若抛物线的标准方程为 y = ax² + bx + c,将其向右平移 h 个单位,新的方程为 y = a(x-h)² + b(x-h) + c。
2. 抛物线的缩放:若抛物线的标准方程为 y = ax² + bx + c,将其纵坐标扩大 k 倍,新的方程为 y = kax² + bx + c。
三、抛物线的图像和性质1. 抛物线的开口方向:当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
2. 抛物线的对称性:抛物线相对于其顶点具有对称性。
3. 抛物线的最值点:当 a > 0 时,抛物线的最小值为顶点的纵坐标;当 a < 0 时,抛物线的最大值为顶点的纵坐标。
4. 抛物线与坐标轴的交点:抛物线与 x 轴交点称为零点,与 y 轴交点称为截距。
四、抛物线的应用1. 抛物线在物理学中的应用:通过抛物线的运动轨迹,我们能够计算出抛物线在不同时间点的速度和加速度,从而研究物体受到的力和运动规律。
高二数学选修2-1复习教案第7讲 抛物线
高二第7讲 抛物线标准方程及性质一、教学目标1. 掌握抛物线的定义、几何图形、标准方程及简单几何性质(焦点、准线、范围、对称性、顶点、离心率).2. 理解数形结合的思想;会用抛物线的标准方程和几何性质处理一些简单的实际问题.3. 了解抛物线的简单应用,会用坐标研究直线与抛物线位置的关系.二、教学重、难点1.重点:抛物线的定义及其标准方程、抛物线性质的应用、直线与抛物线的位置关系 2.难点:焦半径、焦点弦的应用、直线与抛物线的位置关系.三、教学方法:一学、二记、三应用 四、知识梳理1. 抛物线的定义:满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等;(3)定点不在定直线上.定点F 叫做抛物线的焦点、定直线l 叫做抛物线的准线. 2.3.答:一是求抛物线方程时,首先弄清抛物线的对称轴和开口方向,正确地选择抛物线的标准方程;二是求抛物线的焦点坐标时,首先要把抛物线方程化为标准方程,再求解. 要注意标准方程中一次项变量决定焦点所在位置.y 2=ax 的焦点坐标为⎝⎛⎭⎫a 4,0,准线方程为x =-a 4. B 、辨明两个易误点:(a )抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与定直线垂直的直线.(b )对于抛物线标准方程中参数p ,易忽视只有p >0才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义.4、抛物线的焦点弦及其性质如图,设AB 为抛物线y 2=2px (p >0)的焦点弦,A (x 1,y 1)、B (x 2,y 2),焦点F ⎝⎛⎭⎫p 2,0,准线l :x =-p 2,AM ⊥l ,BN ⊥l ,且C ,D 分别为AB ,MN 的中点,则 ⑴ MF ⊥NF ,DF ⊥AB ,AD ⊥BD ; ⑵ y 1y 2=-p 2,x 1x 2=p24;⑶ x 1=p 2+|AF |cosα,x 2=p 2+|BF |cos(α+π)=p2-|BF |cosα;⑷ |AF |=x 1+p 2,|BF |=x 2+p2;⑸ |AF |=p 1-cosα,|BF |=p1+cosα(设α为直线AB 与对称轴的夹角,|AF |≥|BF |);⑹ |AB |=x 1+x 2+p =|y 1-y 2|22p =2psin 2α(设α为直线AB 与对称轴的夹角);⑺ 1|AF |+1|BF |=2p(定值); ⑻ 直角梯形ABNM 的对角线交于顶点(原点O ),且S △AOB =S △MON =p 4|y 1-y 2|=p 22sinα;⑼ CD 被抛物线平分,即R 为CD 的中点;⑽ 设动弦AB 两端点在准线上的摄影点分别为C 、D ,线段CD 的中的为点M ,则A 、O 、D 三点共线,B 、O 、C 三点共线;以AB 为直径的圆与准线相切于点M ;抛物线在点A 、B 处的切线相交于点M;以CD 为直径的圆与动弦恒切与焦点F,即∠CFD =90°.分别以AF 、BF 为直径的圆必与y 轴相切.五、课前测试1.抛物线y =14x 2的准线方程是( )A .y =-1B .y =-2C .x =-1D .x =-22.(2019课标全国Ⅱ卷)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp +=的一个焦点,则p =( )A .2B .3C .4D .83.已知d 为抛物线y =2px 2(p >0)的焦点到准线的距离,则pd 等于( )A.12p 2 B .p 2 C.12 D.14六、典例剖析题型一 抛物线定义及应用例1:判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( ) (2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( )(3)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是(a4,0),准线方程是x =-a4.( )(4)抛物线既是中心对称图形,又是轴对称图形.( )例2(1)(2019·河北三市联考)过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A 、B 两点,且|PA |=12|AB |,则点A 到抛物线C 的焦点的距离为( )A.53B.75C.97 D .2(2)已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( )A .25-1B .25-2 C.17-1 D.17-2(3) (选讲提升)(佛山市2019届高三教学质量检测(二))已知抛物线)0(22>=p py x 的焦点为F ,准线为l ,点),4(0y P 在抛物线上,K 为l 与y 轴的交点,且PF PK 2=,则0y = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线及其标准方程
编稿:张林娟责编:孙永钊
【学习目标】
1.知识与技能:
(1)理解抛物线的定义,画出图形,并掌握其标准方程;
(2)利用定义求标准方程,焦点,准线;
(3)掌握简单运用.
2.过程与方法:
(1)根据抛物线特征选择不同解决方法;
(2)从具体情境中抽象出抛物线模型;
(3)用数学的思维和方法解决生活中与抛物线相关的问题.
3.情感态度与价值观:
在学习抛物线中,体会数形结合处理问题的好处.
【要点梳理】
要点一:抛物线的定义
定义:平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的集合叫作抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.
要点诠释:
(1)上述定义可归纳为“一动三定”,一个动点,一个顶点,一定直线,一个定值.
(2)定义中的隐含条件:焦点F 不在准线l 上,若F 在l 上,抛物线变为过F 且垂直与l 的一条直线.
(3)抛物线定义建立了抛物线上的点、焦点、准线三者之间的距离关系,在解题时常与抛物线的定义联系起来,将抛物线上的动点到焦点的距离与动点到准线的距离互化,通过这种转化使问题简单化.
要点二:抛物线的标准方程
1. 标准方程的推导
(1)建系:
如图,以过F 且垂直于 l 的直线为x 轴,垂足为K ,以FK 的中点O 为坐标原点建立直角坐标系xOy .
(2)设点:
设|KF |=p (p >0),那么焦点F 的坐标为(,0)2p ,准线l 的方程为2
p x =-.
设点M (x ,y )是抛物线上任意一点.
(3)列式:
点M 到l 的距离为d .由抛物线的定义,抛物线就是集合
{|||}P M MF d ==, 即22()||22
p p x y x -+=+. (4)化简:
将上式两边平方并化简,得22(0)y px p =>. ①
方程①叫抛物线的标准方程,它表示的抛物线的焦点在x 轴的正半轴上,坐标是(,0)2p ,其准线方程是2
p x =-. 2. 抛物线标准方程的四种形式:
根据抛物线焦点所在半轴的不同可得抛物线方程的的四种形式。