九年级第二次月考答案2
2023-2024学年陕西省西安市光中学教育集团九年级(上)第二次月考物理试卷+答案解析
2023-2024学年陕西省西安市光中学教育集团九年级(上)第二次月考物理试卷一、单选题:本大题共10小题,共20分。
1.很多物理量的单位是以科学家名字命名的。
下列以科学家的名字命名的物理量单位与其物理量对应正确的是()A.安培——电阻B.欧姆——电压C.焦耳——热量D.伏特——电流2.下列四组物体中,在通常情况下都不容易导电的是()A.空气、人体B.陶瓷管、橡胶棒C.石墨棒、金属丝D.盐水溶液、塑料3.如图甲是小华在学校科技实践活动中自制的盐水动力车,主要是由盐水电池和一个小电动机组装而成的。
图乙是他在测量自制盐水电池的电压,下列内容摘自关于盐水动力车的说明书,其中说法不合理的是()A.盐水电池给小车供电时,化学能转化为电能B.盐水电池供电时不会升温C.自制盐水电池的电压是D.小车运动时电能转化为机械能4.下列有关电阻、变阻器说法正确的是()A.电阻是导体对电流的阻碍作用,导体中没有电流流过时,导体就没有电阻B.电阻是导体的一种性质,与电压成正比,与电流成反比C.将一根金属丝缓慢拉长后,其电阻变大D.滑动变阻器是通过改变电阻丝的横截面积来改变电阻的5.下列各图中,电流表能直接测量通过灯泡的电流的电路是()A. B.C. D.6.如图所示是电阻、的电压-电流关系图像,下列说法正确的是()A.电阻的阻值是B.的阻值小于的阻值C.电阻、串联,当电流为时,、两端总电压为3VD.电阻、并联,当电源电压为2V时,干路中的电流是7.用如图所示的器材探究影响导体电阻大小的因素,分别选用A、B、C、D四根不同的金属丝接入M、N 两点之间,下列说法正确的是()A.接A、D,可探究导体电阻大小与导体长度是否有关B.接C比接B时电流表示数更大一些C.接A、C,可探究导体电阻大小与横截面积是否有关D.该实验装置不能探究导体电阻与导体材料的关系8.在图所示的各电路中,闭合电键S后,在滑动变阻器滑片P向右移动的过程中,电表示数变化表示错误的是()A.电流表A示数变小B.电压表V示数变小C.电流表示数不变D.电流表A与电流表示数比值不变9.图甲是我们经常使用到的非接触式红外线测温枪的工作原理图。
九年级英语第二次月考试题(含答案)
九年级英语第二次月考试题(含答案)九年级英语第二次月考试题(含答案)听力部分:A.听录音选应答语。
(读一遍)5分1. A. They are roses B. They are red C. Sure ,they are2. A. I’d like to B. I like C. I would3. A. Yes, I’ve just seen a boy hit by a car B. Yes , I need a table for three personsC. Yes ,I need a room with two beds.4. A.. James Hanks is from Europe. B. I live in Wall Street, London, EnglandC. Yes, it’s Mrs. .T aylor and I live at number 23 Finaly Street.5. A. That’s OK. B. The weather is fine C. It’s a pity we can’t go out todayB听短对话,回答问题。
问题已经给出(读一遍 )5分6. What fruit does the girl like to eat ?A. ApplesB. PearsC. bananas7. Who is Li Ping waiting for ?A. His uncle .B. His fatherC. His mother8 What color is Lily’s swea ter ?A. BlueB. GreenC. Yellow9. How does the girl usually go to school ?A. By busB. On footC. By bike.10. What has Linda just boughtA. .A car .B. computerC. A TVsetC. 听长对话,选择答案.问题已经给出,(播放两遍)11. What happened to the madam ?A. She had a car accident .B. She wanted to buy a new car .C. She lost her car.12. Where did the madam park her car ?A. Near Front StreetB. In front of the hotelC. Near Park Street.13. What’s the car’s number ?A. 456JKYB. 654JKY.C. 564JKY14.When did the madam return to the parking lot ?A. At 10:10B. At 10:45.C. At 3:1015. What’s her phone number ?A. 23253031B. 23253041C. 23253401IV听短文,回答问题。
2023-2024学年四川省泸州市合江县第五片区九年级(上)第二次月考物理试卷+答案解析
2023-2024学年四川省泸州市合江县第五片区九年级(上)第二次月考物理试卷一、单选题:本大题共10小题,共30分。
1.根据所学的电学知识和生活经验,下列数据最接近实际的是()A.人体的正常体温约为B.人体安全电压为不高于36VC.电饭锅正常工作时电流为D.一节新干电池的电压为2V2.下列有关分子动理论的说法不正确的是()A.分子是真实存在的,因此我们可以直接观察到分子运动B.我们能够闻到花香是因为分子在不停地做无规则运动C.我们很难压缩固体体积是因为分子间存在着相互作用的斥力D.气体分子间的距离很远,彼此之间几乎没有作用力3.一瓶酒精用掉一半,剩下一半酒精的质量、密度、比热容和热值的情况是()A.质量、密度、比热容和热值都不变B.质量变为原来的一半,密度、比热容和热值不变C.质量和密度变为原来的一半,比热容和热值不变D.质量和热值变为原来的一半,密度和比热容不变4.关于图中所示的热现象,说法正确的是()A.图甲中炙热的铁水具有内能,冰冷的冰块没有内能B.图乙中冬天搓手取暖是将内能转化为机械能C.图丙中用湿毛巾冷敷降温是通过热传递的方式减小人体的内能D.图丁中能量转化与汽油机做功冲程能量转化都是机械能转化为内能5.下列说法中,正确的是()A.验电器的工作原理是“异种电荷互相吸引,同种电荷互相排斥”B.电流的方向都是从电源的正极流向负极C.同一电路中的两个灯泡,它们两端的电压相等,可以判断这两个灯一定是并联的D.油罐车底拖一条铁链是为了防止摩擦起电造成危害6.下列电路图中,电压、电流关系正确的是()A.B.C.D.7.关于电阻的说法正确的是()A.横截面积相同的导体,越长电阻越大B.两个电阻并联相当于增大了导体的横截面积,总电阻大于其中任何一个电阻C.电阻大小在数值上等于导体两端的电压与通过导体的电流的比值D.根据可知:电流相同时,导体的电阻与它两端的电压成正比8.如图所示,图甲是某款电子秤的外观图,图乙是它的原理图,表盘是由电压表改装而成的,下列判断正确的是()A.物体质量越大,电子秤示数越大,电路中电流不变B.物体质量越大,电子秤示数越小,电路中电流不变C.物体质量越大,电子秤示数越大,电路中电流越大D.物体质量越大,电子秤示数越小,电路中电流越大9.在探究通电螺线管的实验中,小明连接了如图所示的电路,通电螺线管A端放有一小磁针,闭合开关,移动滑动变阻器的滑片。
江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)
江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分,在每小题给出的四个选项中恰有一项是符合题目要求的)1.下列各点中,在反比例函数的图象上的是( )4y x =A. B. C. D.(14)--,(14)-,(2)-,2(2),-22.将抛物线向右平移2 个单位长度,再向下平移5 个单位长度,平移后的抛物线的2y x =解析式为( )A. B. C. D.2(2)5y x =+-2(2)5y x =++2(2)5y x =--2(2)5y x =-+3.如图,O 的半径为10,弦AB=16,点 M 是弦 AB 上的动点且点 M 不与点A 、B 重⊙合,则OM 的长不可能是( )A.5B.6C.8D.94.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上 120° 刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数是( )A.100°B.105°C.110°D.120°5.正方形网格中,如图放置,则=( )AOB ∠sin AOB ∠C. D.1226.如图,直线,直线m 、n 分别与直线a ,b ,c 相交于点A ,B ,C 和点D ,E ,F ,a ∥b ∥c 若AB =2,AC =5,DE =3,则EF =( )A.2.5B.4C.4.5D.7.57.已知点,,都在反比例函数的图象上,则,A (−4,y 1)B (−2,y 2)C (3,y 3)(0)ky k x =>y 1,的大小关系为( )y 2y 3 A. B. C. D.y 3<y 2<y 1y 2<y 3<y 1y 3<y 1<y 2y 2<y 1<y 38.如图,点D 在△ABC 的边AC 上,添加一个条件,不能判断△ABC 与△BDC 相似的是( )A.∠CBD =∠AB.C.∠CBA =∠C DBD.BC CD AC AB =BC CD AC BC=9.如图,∠B 的平分线 BE 与 BC 边上的中线 AD 互相垂直,并且 BE =AD =4,则BC 值为()A.7B.C. 6D.10.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为,50-(,)对角线 AC 和 OB 相交于点D ,且AC OB =40.若反比例函数的图象经过 ∙(0)k y x x =<点D ,并与BC 的延长线交于点E ,则值等于()CDE S ∆A. 2 B.1.5 C.1 D.0.5二、(本大题共8小题,第11~12每小题3分,13~18每小题4分,共30分)11.抛物线y =2(x +1)2 +3的顶点坐标是.12.在Rt △ABC 中,∠C =90°,AC =5,BC =4,则tanA=.13.正八边形的中心角是 度.14.圆锥的底面半径是3,母线长为4,则圆锥的侧面积为.15.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若 OA ∶AD =2∶3,则△ABC 与DEF 的面积比是 .16.如图,有一个测量小玻璃管口径的量具ABC ,AB 的长为18 mm ,AC 被分为60 等份.如果小玻璃管口径DE正好对应量具上20 等份处(DE ∥AB ),那么小玻璃管口径DE = mm.17. 已知,,若 m ≤n ,则实数 a 的23236m n a +=++22324m n a +=++值为.18. 线段AB =,M 为AB 的中点,动点 P 到点 M 的距离是1,连接 PB ,线段 PB绕点P 逆 时针旋转 90° 得到线段 PC ,连接 AC ,则线段 AC 长度的最小值是.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;(2)如图,在Rt △ABC 中,∠C =90°,AC ,BC ,解这个直角三角形.20.(本小题满分10分)如图,是三角形的外接圆,是的直径,AD ⊥BC 于点E .O ABC AD O (1)求证:;BAD CAD ∠=∠(2)若长为8,,求的半径长.BC 2DE =O 21.(本小题满分10分)如图,在平面直角坐标系 xOy 中,直线 y =2x +b 经过点 A (-2,0)与 y 轴交于点 B ,与反比例函数的图象交于点 C (m ,6),过 B 作 BD ⊥y 轴,交反比例函数(0)k y x x =>的图象于点D .连接AD 、CD .(0)k y x x=>(1)b =,k =,不等式 >2x +b (x >0)的解集是;k x(2)求△ACD 的面积.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD,交AB于点E,(1) 求证:△ADE∽△ABD;(2)若AB=10,BE=3AE,求线段AD长.23.(本小题满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.24.(本小题满分12分)某商品进货价为每件40 元,将该商品每件的售价定为50 元时,每星期可销售250 件.现在计划提高该商品的售价增加利润,但不超过58 元.市场调查反映:若该商品每件的售价在50元基础上每上涨1元,其每星期的销售量减少10 件.设该商品每件的售价上涨x元(x为整数且x≥0)时,每星期的销售量为y 件.(1)求y与x之间的函数解析式;(2)当该商品每件的售价定为多少元时,销售该商品每星期获得的利润最大?最大利润是多少?(3)若该商品每星期的销售利润不低于3000 元,求商品售价上涨x元的取值范围.在矩形ABCD 中,AB <BC ,AB =6,E 是射线CD 上一点,点C 关于BE 的对称点F 恰好落在射线DA 上.如图,当点 E 在CD 边上时,①若BC =10,DF 的长为;②若AF ·FD =9时,求 DF 的长;(2)作∠ABF 的平分线交射线 DA 于点M ,当 时,求 DF 的长.12MF BC =26.(本小题满分13分)在平面直角坐标系中,如果一个点的纵坐标比横坐标大k ,则称该点为“k 级差值点”.例如,(1,4)为“3级差值点” ,(﹣3,2)为“5级差值点”.(1) 点(x ,y )是“4级差值点”,则y 与x 的函数关系式是;(2) 若反比例函数的图象上只有一个“k 级差值点”(﹣3≤ k ≤2),t =4m +2k +4,求t 的取m y x=值范围;(3) 已知直线l : y =nx +3与抛物线y =a (x ﹣h )²+h +3交于A ,B 两点,且AB ≥3.若 k ≠3时,2直线 l 上无“k 级差值点”,求a 的取值范围.答案一、选择题1. A2. C3.A4.B4.B5.B6.C7.D8.B9.D 10.C二填空题、11. (-1,3)12.4 513. 4514. 12π15. 4∶2516.1218.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;解:原式= (2)分211122-⨯-…………………………………………………………………… 4分11142=--…………………………………………………………………… 5分14=(2)解:在在Rt △ABC 中,∠C =90°………………………………………………………… 7分∴∠A =60°…………………………………………………………………… 8分∠B =90°-∠A =90°-60°=30°………………………………………………… 9分 (10)分2AB AC ==20.(本小题满分10分)解:(1)∵AD 是的 ⊙O 直径∵AD ⊥BC∴弧BD =弧CD ,…………………………………… 2分∴∠BAD =∠CAD …………………………………… 4分C BAtan BC A AC ==(2) 连接OC∵AD 是的 ⊙O 直径∵AD ⊥BC∴CE =BE =BC…………………………………… 5分12∵BC =8∴CE =4…………………………… 6分在Rt △OEC 中,由勾股定理得,222OE EC OC +=设圆的半径长为r ,∵DE =2∴…………………8分222(2)4r r -+=∴5r =∴⊙O 的半径长为5…………………10分21.(本小题满分10分)(1) b =4,k =6,0<x<1…………………6分 (2)在y =2x +4中,令x =0,则y =4,∴B (0,4) ,在中,令y =4则x =1.56(0)y x x=>∴ D (1.5,4),∴BD =1.5…………………8分∴S △ACD =S △ABD +S △BCD ==…………………10分111.54 1.56422⨯⨯+⨯⨯-()9222.(本小题满分10分)(1)证明:∵BD 是∠ABC 的平分线∴∠ABD =∠DBC……………………………1分∵DE ⊥BD∴∠BDE =90°∵∠C =90°∴∠ADE + ∠BDC =90°,∠CBD +∠BDC =90°∴∠CBD = ∠ADE ……………………………………3分∴∠ADE = ∠ABD ……………………………………4分又∵∠A =∠A∴△ADE ∽△ABD ………………………………5分(2)解:∵AB =10,BE =3AE∴AE =2.5,BE =7.5………………………………6分由(1)得△ADE ∽△ABD ,∴………………………………8分AD AE AB AD∴AD 2=AB ·AE =10×2.5=25∴AD =5∴线段AD 长为5.………………………………10分23. (本小题满分12分)(1)证明:如图1,连接OC ,∵CD 为⊙O 切线,∴OC ⊥CD………………………………1分∵AD ⊥CD∴OC // AD ………………………………2分∴∠OCA =∠CAD , ………………………………3分又∵OA =OC∴∠OCA =∠OAC ………………………………4分∴∠CAD =∠OAC ,………………………………5分∴AC 平分∠DAB . ………………………………6分(2)解:如图所示,过点O 作OE ⊥AC 于点E ,则AE =EC =AC ,12∵∠BAD =60°,AC 平分∠DAB∴∠CAB =30°,∠COB =2∠CAB =60°,………………………………8分在Rt △AOE 中,AO =AB =2,12∴OE =OA =1,AE 12=∴AC =2AE =………………………………10分∴AOC BOCS S S ∆=+阴影扇形=2160212360π⨯⨯⨯+……………………………12分23π24.(本小题满分12分)解:(1)由题意可得, y =250-10x=﹣10x+250,y 与x 之间的函数解析式是y =﹣10x +250;……………………………2分(2)设当该商品每件的售价上涨x 元时,销售该商品每星期获得的利润为w 元.由题意可得:w=……………………………4分(5040)(10250)x x +--+=2101502500x x -++=210(7.5)3062.5x --+∵,0≤x ≤25且x 为整数100-<∴当x =7或8时,w 取得最大值3060,此时50+x =57或58.……………………6分答:当该商品每件的售价为57或58元时,每星期获得的利润最大,最大利润为3060元.……………………………7分(3)由题意得:……………………………8分21015025003000x x -++=解得……………………………10分12510x x ==,当x =5或10时,此时50+x =55或60又∵售价不超过58元∴5≤x ≤8且x 为整数…………………………12分25.(本小题满分13分)(1) ①DF 的长为 2 …………………………2分②解:∵四边形ABCD 是矩形∴∠BCD =∠A =∠ABC =∠D = 90°,CD =AB =6由对称可知∠BFE =∠BCD =90°, BF =BC∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF又:∠D =∠A =90°∴△FAB ∽△EDF . ………………………4分∴………………………5分AFBADE FD =∴AB ·DE =AF .DF =9.又∵AB =6,∴DE =……………………………………………6分32∴CE =CD -DE =6 -=………………………7分3292(2)分两种情况讨论.①当点F 在线段 AD 上时,如图(1),过点M 作 MN ⊥BF 于点N ,则∠MNF =∠A =90°.又∵∠AFB =∠NFM∴△FMN ∽△FBA∴MN MF FNAB BF AF==又∵,BF =BC12MF BC =∴12MNMFFNAB BF AF ===∴MN =3,AF =2FN …………………………………………8分∵BM 平分∠ABF ,∠BNM =∠A =90°,∴AM = MN =3.∴AM +MF =2FN∴13()22BN FN FN++=∴13(6)22FN FN++=∴FN =4…………………………………………9分∴AD =BF =BC =6+4=10∴AF =8∴DF =AD - AF =10-8=2…………………………………10分②当点F 在线段 DA 的延长线上时如图(2),过点M 作 MN ⊥BF 于点 P .同①可得AM =MN =AB =3,BN =AB =6,BC = AD =10,12MF =BC =5,12∴AF =8,∴DF =18.综上可知,DF 的长为2或18.…………………………………13分26.(本小题满分13分)26.(1)…………………………………3分4y x =+(2)解:由题意得:mx kx =+∴20x kx m +-=∵图象上只有一个“k 级差值点”∴方程 有两个相等的实数根20x kx m +-=∴△=0∴240k m +=∴…………………………………4分24m k =-∵424t m k =++∴…………………………………5分224t k k =-++=2(1)5k --+当k =1时,t 有最大值5,当t =-3时,t 有最小值-11-11≤t ≤5…………………………………7分(3)由题意得若 k =3时,直线 l 上有“k 级差值点”∴y =x +3∴n =1…………………………………8分∴x +3= a (x -h )²+h +3∴x 1=h ,x 2=…………………………………9分1h a+∵AB ≥利用两点间距离公式或根据够勾股定理得出≥3即≥3………………………………11分12x x -1a ∴或,即………………………………13分103a <≤103a >≥-11,033a a ≥≥-≠。
人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)
2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、单选题(共18分)1.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.直角三角形C.正五边形D.正六边形2.在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1 3.若点P(2,n﹣1)与点Q(m+1,3)关于原点对称,则m+n的值为()A.﹣5B.﹣1C.1D.54.电影《长津湖》一上映,第一天票房2.05亿元,若每天票房的平均增长率相同,三天后累计票房收入达10.53亿元,平均增长率记作x,方程可以列为()A.2.05(1+2x)=10.53B.2.05(1+x)2=10.53C.2.05+2.05(1+x)2=10.53D.2.05+2.05(1+x)+2.05(1+x)2=10.535.如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.D.16.如图,矩形ABCD中,AB=8,BC=14,M,N分别是直线BC,AB上的两个动点,AE =2,△AEM沿EM翻折形成△FEM,连接NF,ND,则DN+NF的最小值为()A.14B.16C.18D.20二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程(x﹣2)(x+1)=0的根是.8.如图,AB是⊙O的直径,∠D=32°,则∠BOC等于.9.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(﹣1,6)和B(5,3),如图所示,则使不等式ax2+bx+c<mx+n成立的x的取值范围是.10.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是.11.如图,将正方形ABCD绕点A逆时针旋转60度得到正方形AEGF,连接EF,BF,点M,N分别为EF,BF的中点,连接MN,若MN的长度为1,则EF的长度为.12.如图所示,已知二次函数y=ax2+bx+c(a≠0)的部分图象,下列结论中:①abc>0;②4a+c>0;③若t为任意实数,则有a﹣bt≥at2+b;④若函数图象经过点(2,1),则a+b+c=;⑤当函数图象经过(2,1)时,方程ax2+bx+c﹣1=0的两根为x1,x2(x1<x2),则x1﹣2x2=﹣8.其中正确的结论有.三、解答题(共84分)13.解方程:x2+2x=0.14.如图,已知:A、B、C、D是⊙O上的四个点,且=,求证:AC=BD.15.如图,在平面直角坐标系中,二次函数y=x2﹣2x+c的图象经过点C(0,﹣3),与x 轴交于点A、B(点A在点B左侧).(1)求二次函数的解析式及顶点坐标;(2)根据图象直接写出当y>0时,自变量x的取值范围.16.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:△AEB≌△ADC;(2)连接DE,若∠ADC=110°,求∠BED的度数.17.已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.18.在△ABC中,AB=AC,点A在以BC为直径的半圆外.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图①中作弦EF,使EF∥BC;(2)在图②中以BC为边作一个45°的圆周角.19.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC绕点A顺时针旋转90°后得到的图形△AB1C1;(2)请画出将△ABC关于原点O成中心对称的图形△A2B2C2;(3)当△ABC绕点A顺时针旋转90°后得到△AB1C1时,点B对应旋转到点B1,请直接写出B1点的坐标.20.如图,△ABC内接于⊙O,AB是⊙O的直径.直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).21.恰逢新余桔子成熟的时节,为增加农民收入,助力乡村振兴.某驻村干部指导某农户进行桔子种植和销售,已知桔子的种植成本为1元千克,经市场调查发现,今年销售期间桔子的销售量y(千克)与销售单价x(元/千克)(1≤x≤12)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)请同学们求一下这位农户销售桔子获得的最大利润.22.如图所示,抛物线y=ax2+bx+c的对称轴为直线x=3,抛物线与x轴交于A(﹣2,0)、B两点,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)连接BC,在第一象限内的抛物线上,是否存在一点P,使△PBC的面积最大?最大面积是多少?23.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,⊙O与△BC的三边AB,BC,AC分别相切于点D,E,F则△ABC叫做⊙O的外切三角形,以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,则四边形ABCD叫做⊙O的外切四边形.(1)如图2,试探究圆外切四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,猜想:AB+CD AD+BC(横线上填“>”,“<”或“=”);(2)利用图2证明你的猜想;(3)若圆外切四边形的周长为36.相邻的三条边的比为2:6:7.求此四边形各边的长.24.如图,已知二次函数L1:y=ax2﹣4ax+4a+4(a>0)和二次函数L2:y=﹣a(x+2)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣4ax+4a+4(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是;(2)当EF=MN﹣1时,直接写出a的值;(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+2)2+1=0的解.参考答案一、单选题(共18分)1.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不一定是轴对称图形,不是中心对称图形,故本选项不合题意;C、是轴对称图形,但不是中心对称图形,故本选项不合题意;D、是轴对称图形,也是中心对称图形,故本选项符合题意.故选:D.2.解:将二次函数y=x2的图象向左平移2个单位长度,得到:y=(x+2)2,再向上平移1个单位长度得到:y=(x+2)2+1.故选:B.3.解:∵点P(2,n﹣1)与点Q(m+1,3)关于原点对称称,∴m+1=﹣2,n﹣1=﹣3,∴m=﹣3,n=﹣2.∴m+n=﹣3﹣2=﹣5.故选:A.4.解:∵第一天票房约2.05亿元,且以后每天票房的增长率为x,∴第二天票房约2.05(1+x)亿元,第三天票房约2.05(1+x)2亿元.依题意得:2.05+2.05(1+x)+2.05(1+x)2=10.53.故选:D.5.解:连接OA,如图,∵AB⊥CD,∴AE=BE=AB=4,在Rt△OAE中,OE===3,∴CE=OC﹣OE=5﹣3=2.故选:B.6.解:如图作点D关于BC的对称点D′,连接ND′,ED′.在Rt△EDD′中,∵DE=12,DD′=16,∴ED′==20,∵DN=ND′,∴DN+NF=ND′+NF,∵EF=EA=2是定值,∴当E、F、N、D′共线时,NF+ND′定值最小,最小值=20﹣2=18,∴DN+NF的最小值为18,故选:C.二、填空题(共18分)7.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.8.解:∵∠D=32°,∴∠BOC=2∠D=64°,故答案为:64°.9.解:观察函数图象知,当﹣1<x<5时,直线在抛物线的上方,即ax2+bx+c<mx+n,故答案为:﹣1<x<5.10.解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π.11.解:如图所示,连接BE,∵点M,N分别为EF,BF的中点,∴MN是△BEF的中位线,∴BE=2MN=2,由旋转可得,AB=AE,∠BAE=60°,∴△ABE是等边三角形,∴AE=BE=2=AF,又∵∠EAF=90°,∴EF===2.故答案为:2.12.解:由抛物线开口向上,因此a>0,对称轴是直线x=﹣=﹣1,因此a、b同号,所以b>0,抛物线与y轴的交点在负半轴,因此c<0,所以abc<0,故①不正确;由对称轴x=﹣=﹣1可得b=2a,由图象可知,当x=1时,y=a+b+c>0,即a+2a+c>0,∴3a+c>0,又∵a>0,∴4a+c>0,因此②正确;当x=﹣1时,y最小值=a﹣b+c,∴当x=t(t≠﹣1)时,a﹣b+c<at2+bt+c,即a﹣bt<at2+b,∴x=t(t为任意实数)时,有a﹣bt≤at2+b,因此③不正确;函数图象经过点(2,1),即4a+2b+c=1,而b=2a,∴2a+3b+c=1,∴a+b+c=,因此④正确;当函数图象经过(2,1)时,方程ax2+bx+c=1的两根为x1,x2(x1<x2),而对称轴为x =﹣1,∴x1=﹣4,x2=2,∴x1﹣2x2=﹣4﹣4=﹣8,因此⑤正确;综上所述,正确的结论有:②④⑤,故答案为:②④⑤.三、解答题(共84分)13.解:由原方程,得x(x+2)=0,则x=0或x+2=0,解得,x1=0,x2=﹣2.14.证明:∵=,∴=,∴AC=BD.15.解:(1)将C(0,﹣3)代入y=x2﹣2x+c得,c=﹣3,∴y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)令y=0得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∴当y>0时,自变量x的取值范围是x<﹣1或x>3.16.(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,,∴△EAB≌△DAC(SAS).(2)解:如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,∵△EAB≌△DAC,∴∠AEB=∠ADC=110°.∴∠BED=50°.17.解:(1)根据题意得Δ=(2k+1)2﹣4(k2+1)>0,解得k>;(2)根据题意得x1x2=k2+1,∵x1x2=5,∴k2+1=5,解得k1=﹣2,k2=2,∵k>,∴k=2.18.解:(1)如图①,EF为所作;(2)如图②,∠PBC为所作.19.解:(1)如图,△AB1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据(1)的图可得B1的坐标(2,﹣2).20.(1)证明:连接OC,∵直线l与⊙O相切于点A,∴∠DAB=90°,∵DA=DC,OA=OC,∴∠DAC=∠DCA,∠OAC=∠OCA,∴∠DCA+∠ACO=∠DAC+∠CAO,即∠DCO=∠DAO=90°,∴OC⊥CD,∴直线DC是⊙O的切线;(2)解:∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∵OC=OB,∴△COB是等边三角形,∴OC=OB=BC=2,∴CE=OC=2,∴图中阴影部分的面积=S△OCE﹣S扇形COB=﹣=2﹣.21.解:(1)当1≤x≤9时,设y=kx+b(k≠0),则,解得:,∴当1≤x≤9时,y=﹣300x+3300,当9<x≤12时,y=600,∴y=.(2)设利润为W,则:当1≤x≤9时,W=(x﹣1)y=(x﹣1)(﹣300x+3300)=﹣300x2+3600x﹣3300=﹣300(x﹣6)2+7500,∵开口向下,对称轴为直线x=6,∴当1≤x≤9时,W随x的增大而增大,∴x=5时,W最大=7500元,当9<x≤12时,W=(x﹣1)y=600(x﹣1)=600x﹣600,∵W随x的增大而增大,∴x=12时,W最大=6600元,∵7500>6600,∴最大利润为7500元.22.解:(1)∵抛物线的对称轴为直线x=3,A(﹣2,0),∴B点坐标为(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把C(0,4)代入得4=a×2×(﹣8),解得a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣8),即y=﹣x2+x+4;(2)存在.设点P的坐标为(x,﹣x2+x+4),设直线BC的解析式为y=kx+m(k≠0).将B(8,0)、C(0,4)代入y=kx+m,得:,解得:,∴直线BC的解析式为y=﹣x+4.过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∵S△PBC=S△PCD+S△PBD,∴△PCD与△PBD可以看作成以PD为底,两高之和为OB的三角形,∴S△PBC=PD•OB=×8×(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.此时P点的坐标为(4,6).23.解:(1)∵⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,∴猜想AB+CD=AD+BC,故答案为:=;(2)已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H,求证:AD+BC=AB+CD,证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等;(3)∵相邻的三条边的比为2:6:7,∴设此三边为2x,6x,7x,根据圆外切四边形的性质得,第四边为2x+7x﹣6x=3x,∵圆外切四边形的周长为36,∴2x+6x+7x+3x=18x=36,∴x=2,∴此四边形的四边的长为2x=4,6x=12,7x=14,3x=6.即此四边形各边的长为:4,12,14,6.24.解:(1)∵y=ax2﹣4ax+4a+4=a(x﹣2)2+4,a>0,∴y min=4,∵时,二次函数L1,L2的y值同时随着x的增大而减小,∴﹣2<x<2,故答案为:4,﹣2<x<2;(2)∵M(2,4),N(﹣2,1),∴MN==5,∵E(0,4a+4),F(0,﹣4a+1),∴EF=8a+3,∴8a+3=5﹣1,∴a=;(3)当AM=MN时,(m﹣2)2+42=25,∴m1=5,m2=﹣1,当m=5时,﹣a(x+2)2+1=0的解为:x=5,x=﹣9,当m=﹣1时,﹣a(x+2)2+1=0的解为:x=﹣1或x=﹣3,当AN=AM时,(m﹣2)2+42=(﹣2﹣m)2+12,∴m=,∴﹣a(x+2)2+1=0的解为:x=或x=,当AN=MN时,(m+2)2+1=25,∴m=﹣2﹣2(舍去),m=﹣2+2,∴﹣a(x+2)2+1=0的解为:x=﹣2+2,x=﹣2﹣2,综上所述:方程﹣a(x+2)2+1=0的解是:x=﹣1或x=﹣3;x=或x=;x=﹣2+2,或x=﹣2﹣2.。
人教版(五四学制)2022-2023学年九年级数学上册第二次月考测试题(附答案) (2)
2022-2023学年九年级数学上册第二次月考测试题(附答案)一、选择题:(共30分)1.﹣的相反数是()A.﹣B.C.﹣2D.22.下列运算正确的是()A.(a2)3=a5B.a+a=a2C.a2•a3=a5D.a2(a+1)=a3+13.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.如图所示的几何体是由7个大小相同的小正方体组合而成的立体图形,则它的主视图是()A.B.C.D.5.如图,圆O中,弦AB、CD互相垂直且相交于点P,∠A=35°,则∠B的大小是()A.35°B.55°C.65°D.70°6.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是()A.k>2B.k≥2C.k≤2D.k<27.一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是()A.B.C.D.8.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=10.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x分钟,船舱内积水量为y吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y与x的函数关系.下列说法中正确的是()A.修船共用了38分钟时间B.修船过程中进水速度是排水速度的3倍C.修船完工后的排水速度是抢修过程中排水速度的3倍D.最初的仅进水速度和最后的仅排水速度相同二、填空题:(共30分)11.在“百度”搜索引擎中输入“二十大”,能搜索到与之相关的结果个数约为100000000,这个数用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.计算2的结果是.14.把多项式a2b﹣6ab2+9b3分解因式的结果是.15.不等式组的解集是.16.某商品经过连续两次降价,销售单价由原来的640元降到360元,则平均每次降价的百分率为.17.一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是度.18.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是.19.已知△ABC是以AB为一腰的等腰三角形,AB=5,tan∠BAC=,则△ABC的底边长为.20.如图,在△ABC中,AD平分∠CAB交BC于点D,∠CDA=45°,∠B=30°,DE⊥AB于点E,若AC=5,DE=2,则CB的长为.三、解答题:(共计60分)21.先化简,再求值:(+)÷,其中a=2sin60°+tan45°.22.如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点A、B均在小正方形的顶点上.(1)在图①中,作以AB为底的等腰△ABC,点C在小正方形的顶点上.(2)在图②中,作以AB为一边的平行四边形ABDE,点D、E在小正方形的顶点上,且满足平行四边形ABDE的面积为8,则tan∠E=.23.为了加强语文课外阅读,某年级积极组织学生参加课外阅读读书分享会活动,从年级推荐的四种读物A:《水浒传》、B:《骆驼祥子》、C:《昆虫记》、D:《朝花夕拾》中选择一本读物每周一与班级同学分享读书体会.读书分享会活动组随机抽取本年级的部分学生,调查他们这四本读物中最喜爱一本读物,并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该年级有1200名学生,估计全年级最喜爱《水浒传》的学生有多少人?24.如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,∠BAE=∠CAD,AB=AE,AD=AC(1)求证:∠DEC=∠BAE;(2)如图2,当∠BAE=∠CAD=30°,AD⊥AB时,延长DE、AB交于点G,试直接写出图中除△ABE、△ADC以外的等腰三角形.25.松立商店准备从永波机械厂购进甲、乙两种零件进行销售,若甲种零件的进价是乙种零件进价的,用1600元单独购进一种零件时,购进甲种零件的数量比乙种零件多4件.(1)求每个甲种零件,每个乙种零件的进价分别为多少元?(2)松立商店购进甲、乙两种零件共102个,准备将零件批发给零售商.甲种零件的批发价是100元,乙种零件的批发价是130元,松立商店计划从零售商处的获利超过2284元,通过计算求出松立商店最多给零售商批发多少个甲种零件?26.如图,⊙O是△ABC的外接圆,∠BAC的平分线AO交BC于点D.(1)如图1,求证:AB=AC;(2)如图2,点E、F在弧AB上,连接BF、CF、BE、BO,若∠BCF+∠F=2∠EBO,求证:∠BCF=2∠ABE;(3)如图3,CF交AB于点K,连接AE,AE=BK,若CK:AC=13:24,BF=,求⊙O的半径.27.如图,直线y=kx+(k≠0)交x轴于点A,交y轴于点B,点C在x轴正半轴,连接BC,且AB=AC=m.(1)若△ABC的面积为S,求用含m的式子表示△ABC的面积;(2)如图2,点D在线段AB上,将线段DB绕点D顺时针旋转60°至DG,连接BG,点E在x轴负半轴上,且AE=BD,连接CG,求凹四边形ACGB的周长与四边形ACGD 的周长之差与△DBG的周长的比值;(3)在(2)的条件下,延长DG交x轴于点F,∠BAC=2∠CGF,若BG﹣GF=1,△ADF的周长为15,求直线AB的解析式.参考答案一、选择题:(共30分)1.解:﹣的相反数是,故选:B.2.解:A、(a2)3=a6,故原题计算错误;B、a+a=2a,故原题计算错误;C、a2•a3=a5,故原题计算正确;D、a2(a+1)=a3+a2,故原题计算错误;故选:C.3.解:A.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;B.该图形既不是轴对称图形,也不中心对称图形,故此选项不合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D.该图形是中心对称图形,不是轴对称图形,故此选项不合题意;故选:A.4.解:该几何体的主视图是故选:A.5.解:由题意可知:∠DP A=90°,∵∠A=35°,∴由三角形的内角和定理可知:∠D=55°,由圆周角定理可知:∠B=∠D=55°,故选:B.6.解:∵y=的图象位于第一、第三象限,∴k﹣2>0,k>2.故选:A.7.解:共有6种可能,而有1种结果都是蓝色的,所以都是蓝色的概率概率为.8.解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.9.解:(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D)∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选:C.10.解:由图可得,修船共用了26﹣10=16(分钟),故A错误;修船过程中进水速度为:40÷10=4(吨/分钟),排水速度是4﹣(88﹣40)÷(26﹣10)=1(吨/分钟),故修船过程中进水速度是排水速度的4倍,故B错误;修船完工后的排水速度是88÷(48﹣26)=4(吨/分钟),故修船完工后的排水速度是抢修过程中排水速度的4倍,故C错误;由上可得,最初的仅进水速度和最后的仅排水速度相同,故D正确,故选:D.二、填空题:(共30分)11.解:100000000=1×108.故答案为:1×108.12.解:根据题意得:2x+7≠0,故答案为:x≠﹣3.5.13.解:原式=2×﹣2=﹣2=﹣.故答案为:﹣.14.解:原式=b(a2﹣6ab+9b2)=b(a﹣3b)2.故答案为:b(a﹣3b)2.15.解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.16.解:设平均每次降价的百分率为x,根据题意得:640(1﹣x)2=360,解得:x=25%或x=1.75(舍去),故答案是:25%.17.解:根据l===11π,解得:n=110,故答案为:110.18.解:过O作OF⊥CD于F,OQ⊥AB于Q,连接OD,∵AB=CD,∴OQ=OF,∵OF过圆心O,OF⊥CD,∴CF=DF=2,∴EF=2﹣1=1,∵OF⊥CD,OQ⊥AB,AB⊥CD,∴∠OQE=∠AEF=∠OFE=90°,∵OQ=OF,∴四边形OQEF是正方形,∴OF=EF=1,在△OFD中由勾股定理得:OD==,故答案为:.19.解:①如图,当AC为腰时,过点B作BD⊥AC,∵tan∠BAC=,∴,设BD=3x,AD=4x,在Rt△ABD中,AD2+BD2=AB2,即(4x)2+(3x)2=52,解得:x=(舍去负值),∴AD=4,BD=3,∴CD=AC﹣AD=1,∴BC=;②当BC为腰时,过点B作BD⊥AC,如图,∵tan∠BAC=,∴,设BD=3x,AD=4x,在Rt△ABD中,AD2+BD2=AB2,即(4x)2+(3x)2=52,解得:x=1(舍去负值),∴AD=4,∴AC=2AD=8.综上所述,△ABC的底边长为或8.故答案为:或8.20.解:作DF⊥AC,交AC的延长线与点F,∵∠CDA=45°,∠B=30°,∴∠DAE=15°,∵AD平分∠CAB交BC于点D,∴∠CAB=2∠DAE=30°,∵DE⊥AB,DF⊥AC,DE=2,∴DF=DE=2,在Rt△DEB中,∵∠B=30°,∴DB=2DE=4,∵∠DCF=∠B+∠CAB=60°,∴∠FDC=30°,在Rt△CDF中,设CF=x,则CD=2x,∵CF2+DF2=CD2,∴x2+4=4x2,∴或x=﹣(舍去),∵CD=,∴BC=CD+BD=.故答案为:.三、解答题:(共计60分)21.解:原式=[+]•=•=,当a=2sin60°+tan45°=2×+1=+1时,原式==.22.解:(1)如图①,等腰△ABC即为所求;(2)如图②,作AF⊥DE于点F,∵平行四边形ABDE的面积为8,AE=DE==∴DE•AF=8,∴AF==,∴EF===,∴tan∠E==×=.故答案为:.23.解:(1)被调查的学生人数为:12÷20%=60(人);则被调查的学生人数有60人;(2)喜欢B读物的学生数为:60﹣24﹣12﹣16=8(人),如图所示:(3)估计全年级最喜爱《水浒传》的学生有:1200×=480(人),则估计全年级最喜爱《水浒传》的学生有480人.24.证明:(1)如图1,∵∠BAC=∠EAD,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ACD与△ABE中,,∴△ACD≌△ABE,∴∠ACD=∠ABC,∵∠BAC+∠ABC+∠ACB=180°,∠ECD+∠ACD+∠ACB=180°,∵AB=AC,∴∠ABC=∠ACB,∴∠BAC+2∠ACB=180°,∠ECD+2∠ACB=180°,∴∠BAC=∠ECD;(2)解:如图2,①∵∠BAE=∠CAD=30°,∴∠ABC=∠ACB=∠AED=∠ADE=75°,由(1)得:∠ACD=∠ABC=75°,∠DCE=∠BAC=30°,∵AD⊥AB,∴∠BAD=90°,∴∠CAE=30°,∴∠AFC=180°﹣30°﹣75°=75°,∴∠ACF=∠AFC,∴△ACF是等腰三角形,②∵∠BCG=∠DCE=30°,∠ABC=75°,∴∠G=45°,在Rt△AGD中,∠ADG=45°,∴△ADG是等腰直角三角形,③∠EDF=75°﹣45°=30°,∴∠DEF=∠DFE=75°,∴△DEF是等腰直角三角形;④∵∠ECD=∠EDC=30°,∴△ECD是等腰三角形.25.解:设每个乙种零件的进价分别为x元,每个甲种零件的进价为x元,由题意可得:=4,解得:x=100,经检验:x=100是原方程的根,∴x=80(元),答:每个甲种零件的进价为80元,每个乙种零件的进价为100元;(2)设松立商店给零售商批发a个甲种零件,由题意可得:(100﹣80)a+(130﹣100)×(102﹣a)>2284,解得:a<77.6,∴a的最大整数为77,∴松立商店最多给零售商批发77个甲种零件.26.(1)证明:如图1,延长AD交⊙O于点G,连接BG、CG,∵AG是⊙O的直径,∴∠ABG=∠ACG=90°,∴∠AGB+∠BAG=90°,∠AGC+∠CAG=90°,∵AG平分∠BAC,∴∠BAG=∠CAG,∴∠AGB=∠AGC,∴AB=AC;(2)证明:如图2,连接OE,∵=,∴∠AOE=2∠ABE,∵=,∴∠F=∠BAC,由(1)知:AG平分∠BAC,∴∠BAC=2∠BAO,∵OA=OB,∴∠BAO=∠ABO,∴∠BOD=∠BAO+∠ABO=2∠BAO,∴∠BOD=∠BAC,∵OB=OE,∴∠BEO=∠EBO,∵∠BEO+∠EBO+∠BOE=180°,∠AOE+∠BOD+∠BOE=180°,∴2∠EBO=∠AOE+∠BOD=2∠ABE+∠F,∵∠BCF+∠F=2∠EBO,∴∠BCF+∠F=2∠ABE+∠F,∴∠BCF=2∠ABE;(3)解:如图3,延长BE至M,使EM=BC,连接AM,连接FO并延长交⊙O于点N,连接BN,作线段AB的垂直平分线交AB于R,交BE于L,过点A作AT⊥BM于T,∵AB=AC,∴∠ACB=∠ABC,∵四边形ACBE是⊙O的内接四边形,∴∠ACB+∠AEB=180°,∵∠AEM+∠AEB=180°,∴∠AEM=∠ABC,即∠AEM=∠KBC,在△EMA和△BCK中,,∴△EMA≌△BCK(SAS),∴AM=CK,∠M=∠BCF,∵CK:AC=13:24,∴设CK=13a,AC=24a,则AM=13a,AB=AC=24a,由(2)知:∠BCF=2∠ABE,设∠ABE=β,则∠M=∠BCF=∠BNF=2β,∵LR垂直平分AB,∴AR=BR=12a,AL=BL,∴∠BAL=∠ABE=β,∴∠ALM=∠BAL+∠ABE=2β=∠M,∴AL=AM=BL=13a,∴LR===5a,∵sin∠ABE==,即sinβ==,∴AT=a,∴sin2β===,∵FN是直径,∴∠FBN=90°,∴=sin∠BNF=sin2β=,∴FN=BF=×=13,∴圆的半径为FN=.27.解:(1)令x=0,则y=,∴B(0,),∴OB=,∴S=•OB•AC=••m=m;(2)由题意可知,△DBG是等边三角形,∴BD=BG=DG,∵AB=AC,BD=AE,∴AD=EC.∴凹四边形ACGB的周长=AC+CG+GB+AB,四边形ACGD的周长=AC+CG+GB+DA,∴凹四边形ACGB的周长与四边形ACGD的周长之差=AB﹣DA=BD,∵△BBG的周长=3BD,∴凹四边形ACGB的周长与四边形ACGD的周长之差与△DBG的周长的比值为=.(3)如图,在点F的右侧取点K,使FK=GF,则∠FKG=FGK,设∠CGF=α,则∠BAC=2α,∴∠ABC=∠ACB=90°﹣α,由(2)知,△BDG是等边三角形,∴∠BDG=∠BGD=60°,∴∠CFG=60°﹣2α,∠CBG=30°﹣α,∠BGF=120°,∴∠CKG=∠FGK=30°﹣α,∠BGC=120°+α,∴∠CKG=∠CBG,在△GCF中,由三角形内角和可知,∠GCK=120°+α,∴∠BGC=∠GCK,∵GC=CG,∴△BCG≌△KGC(AAS),∴BG=KC,∵BG﹣GF=1,∴CK﹣FK=1,即CF=1,设FK=a,则CK=a+1,∴BD=DG=BG=AE=a+1,∵△ADF的周长为15,∴AD=EC=6﹣a,∴DF=2a+1,AF=8﹣a,过点F作FM⊥AB于点M,∴DM=DF=a+,FM=DM=(a+),∴AM=6﹣a,在Rt△AFM中,由勾股定理可得,AM2+FM2=AF2,∴(6﹣a)2+[(a+)]2=(8﹣a)2,解得a=2或a=﹣(舍).∴AB=6﹣a+a+1=6,∴AO=,∴A(﹣,0),将点A的坐标代入y=kx+,解得k=.∴直线AB的解析式为:y=x+.。
河北省邯郸市第二十五中学2024届九年级上学期第二次月考数学试卷(含解析)
邯郸市第二十五中学2023—2024学年九年级第一学期阶段测试(二)数学试卷一、选择题(本大题共16小题,共38分.1—6小题各3分,7—16小题各2分.在每小题给出的选项中,只有一项是符合题目要求的)1. 下列我国著名企业商标图案中,是中心对称图形的是( )A. B. C. D.【答案】B解析:A.不是中心对称图形,故此选项错误B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误D.不是中心对称图形,故此选项错误;故选B2. 函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是( )A. y=﹣2(x﹣1)2+2B. y=﹣2(x﹣1)2﹣2C. y=﹣2(x+1)2+2D. y=﹣2(x+1)2﹣2【答案】B解析:解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.3. 已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C解析:解:∵d=3<半径=4,∴直线与圆相交,∴直线m与⊙O公共点个数为2个,故选C.4. 如图,直角坐标系中一条圆弧经过格点,,,其中点坐标为,则该圆弧所在圆的圆心坐标为()A. B. C. D.【答案】A解析:解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦和的垂直平分线,交点即为圆心.如图所示,则圆心是.故选:A.5. 如图,在中,,,则的度数是()A. B. C. D.【答案】A详解】解:连接,∵在中,,∴,则,∵,∴,故选:A.6. 如图,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转,得到△ADE,点D恰好落在直线BC上,则旋转角的度数为( )A. 70°B. 80°C. 90°D. 100°【答案】D解析:∵将△ABC绕点A逆时针旋转,得到△ADE∴△ABC≌△ADE∴AB=AD∴∠ADB=∠B=40°∵∠ADB+∠B+∠BAD=180°∴∠BAD=180°-40°-40°=100°故选D7. 如图,⊙O是∆ABC的外接圆,半径为,若,则的度数为()A. 30°B. 25°C. 15°D. 10°【答案】A解析:解:连接OB和OC,∵圆O半径为2,BC=2,∴△OBC为等边三角形,∴∠BOC=60°,∴∠A=30°,故选A.8. 如图,是的直径,若,∠D=60°,则长等于( )A. 4B. 5C.D. 【答案】D解析:解:∵是的直径,∴,∵,∴,∴,∵,∴,∴,故选:D .9. 已知,,是抛物线上的点.则、、的大小关系是()A. B.C. D.【答案】B 解析:解:∵,∴对称轴是:,则关于直线对称的点为,∵,∴当时,随的增大而增大,∵,∴;即:,故选:B .10. 某同学将如图所示的三条水平直线,,的其中一条记为x 轴(向右为正方向),三条竖直直线,,的其中一条记为y 轴(向上为正方向),并在此坐标平面内画出了二次函数的图象,那么她所选择的x 轴和y 轴分别为直线( )A. B. C. D.【答案】D解析:解:∵,∴顶点坐标为,∵,∴抛物线与的交点为顶点,∴为y轴,∵二次函数与y轴的交点为,且,∴为x轴,故答案为:D.11. 根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A. B.C. D.【答案】C【解析】解析:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选C.12. 如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A. 3B.C.D.【答案】D解析:如图,设光盘圆心为O,连接OC,OA,OB,∵AC、AB都与圆O相切,∴AO平分∠BAC,OC⊥AC,OB⊥AB,∴∠CAO=∠BAO=60°,∴∠AOB=30°,在Rt△AOB中,AB=3cm,∠AOB=30°,∴OA=6cm,根据勾股定理得:OB=3,则光盘的直径为6,故选:D.13. 如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是( )A. ∠ABD=∠EB. ∠CBE=∠CC. AD∥BCD. AD=BC【答案】C解析:根据旋转的性质得,∠ABD=∠CBE=60°,∠E=∠C,AB=BD,则△ABD为等边三角形,即AD=AB=BD,∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以∠ADB=∠CBD,∴AD∥BC.故选C.14. 如图,已知的弦,以为一边作正方形,切点为E,则的半径为( )A. 4B. 3C. 6D. 5【答案】D解析:解:连接并延长,交于F,连接,设的半径为r,则,边与相切,,四边形为正方形,,,在中,,即,解得:,的半径为5,故选:D.15. 已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x﹣10234y50﹣4﹣30下列结论正确的是( )A. 抛物线的开口向下B. 抛物线的对称轴为直线x=2C. 当0≤x≤4时,y≥0D. 若A(x 1,2),B(x2,3)是抛物线上两点,则x1x2【答案】B解析:解:由表格可得,该抛物线的对称轴为直线x==2,故选项B正确;当x<2 时,y随x的增大而减小,当x>2时,y随x的增大而增大,所以该抛物线的开口向上,故选项A 错误;当0≤x≤4时,y≤0,故选项C错误;由二次函数图象具有对称性可知,若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2或x2<x1,故选项D 错误;故选:B.16. 有一题目:“已知;点为的外心,,求.”嘉嘉的解答为:画以及它的外接圆,连接,,如图.由,得.而淇淇说:“嘉嘉考虑的不周全,还应有另一个不同的值.”,下列判断正确的是()A. 淇淇说的对,且的另一个值是115°B. 淇淇说的不对,就得65°C. 嘉嘉求的结果不对,应得50°D. 两人都不对,应有3个不同值【答案】A解析:解:如图所示:∵∠BOC=130°,∴∠A=65°,∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°−65°=115°.故选:A.二、填空题(本大题共3小题,共10分.17小题2分,18—19小题各4分,每空2分)17. 二次函数的最小值是_________.【答案】3解析:解:∵a=1>0,∴当x=2时,y有最小值3.故答案为:3.18. 如图,在平面直角坐标系中,已知,以点为圆心的圆与轴相切.点、在轴上,且.点为上的动点,,则长度的最大值为__________,此时长度为__________.【答案】①. 8 ②. 16解析:解:连接,,∵已知,∴,又∵以点为圆心的圆与轴相切,∴得半径为3,则,由三角形三边关系可知:,当点在射线上时取最大值,如图,即:长度的最大值为8,又∵,,则点为斜边的中点,∴,∴当长度为最大值时,,故答案为:①8,②16.19. 如图,中,,.为中点,将绕着点逆时针旋转至.(1)当时,__________;(2)当恰为等腰三角形时,的值为__________.【答案】①. ②. 或或解析:解:(1)∵为中点,∴,∵将绕着点逆时针旋转至,∴,∴,∴,∵,即:∴,∵,∴,故答案为:;(2)如图1,连接,∵为中点,,∴,∴,而,∴,∴;当时,∴,∴,∴,∴,又∵,∴,∴,∴,即;当时,如图2,连接并延长交于,∵,∴垂直平分,∴,∵,为中点,∴,∴,∴,∴,∴,即;当时,如图3,连接并延长交于,连接,∵,为斜边中点,∴,∴垂直平分,∴,∵,∴,即;综上所述:当为等腰三角形时,的值为或或,故答案为:或或.三、解答题(本大题共7个小题,共72分.解答应等出文字说明、证明过程或演算步骤)20. 解方程:(1);(2)【答案】(1),(2)【小问1详解】由题意得,,则,∴,即,;【小问2详解】∴,因式分解为,∴,∴21. 如图,在平面直角坐标系中,的三个顶点坐标都在格点上,且与关于原点成中心对称.(1)画出;并写出各点坐标.(2)是的边上一点.将平移后点的对应点,请画出平移后的;(3)若和关于某一点成中心对称,则对称中心的坐标为__________.【答案】(1)作图见解析,,,(2)见解析(3)【小问1详解】解:∵,,,∴,,;∴即为所求;【小问2详解】∵,平移后点的对应点,∴先向右平移2个单位长度,再向下平移6个单位长度,即:如图所示;【小问3详解】连接,相交于点,则为对称中心,即:为的中点,∵,∴,又∵,∴,即,故答案为:.22. 如图,AB是的直径,弦于点M,连结CO,CB.(1)若,,求CD的长度;(2)若平分,求证:.【答案】(1)8;(2)证明见详解解析:解:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,Rt△OCM中,OM2+CM2=OC2,∴CM4,∴CD=8;(2)过点O作ON⊥BC,垂足N,∵CO平分∠DCB,∴OM=ON,∵CO=CO∴Rt△COM≌Rt△CON∴CM=CN∴CB=CD.23. 如图,,,直线经过点.设,于点,将射线绕点按逆时针方向旋转,与直线交于点.(1)判断:__________;(2)若,求的长;(3)若的外心在三角形内部(不包括边上),直接写出的取值范围.【答案】(1)(2)(3)【小问1详解】解:∵,,∴,在四边形中,,故答案是:;【小问2详解】由旋转可知,,又∵,∴,,∴.由(1)知,而,∴.又∵,∴,∴.又∵,则是等腰直角三角形,∴;【小问3详解】由(2)可知,当时,则为直角三角形,外心在其斜边上,当时,则为钝角三角形,外心在其外部,当时,∵,,,∴,则,∴,,则为锐角三角形,外心在其内部,故:.24. 随着城市的块速发展,人们的环保意识逐渐增强,对花木的需求量也逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图1所示;种植花卉的利润与投资量成二次函数关系,如图2所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户计划以10万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?【答案】(1),(2)他至少获得18万元利润,他能获取的最大利润是50万元【小问1详解】设,由图1所示,函数图象过,∴∴;∵该抛物线的顶点是原点∴设,由图2所示,函数的图象过∴,则,∴;【小问2详解】设这位专业户投入种植花卉万元,则投入种植树木万元,他获得的利润是万元,根据题意得:,∴当时,的最小值是18∵,∴当时,的最大值是50.∴他至少获得18万元利润,他能获取的最大利润是50万元.25. 如图,AB是的直径,点D、E在上,连接AE、ED、DA,连接BD并延长至点C,使得.(1)求证:AC是的切线;(2)若点E是的中点,AE与BC交于点F,①求证:CA=CF;②若的半径为3,BF=2,求AC的长.【答案】(1)见解析;(2)①见解析;②8解析:(1)∵AB是的直径,∴∠ADB=90°,∴∠DBA+∠DAB=90°,∵∠DEA=∠DBA,∠DAC=∠DEA,∴∠DBA=∠DAC,∴∠BAC=∠DAC+∠DAB=90°,∵AB是的直径,∠BAC=90°,∴AC是的切线;(2)①∵点E是的中点,∴∠BAE=∠DAE,∵∠CFA=∠DBA+∠BAE,∠CAF=∠DAC+∠DAE,∠DBA=∠DAC,∴∠CFA=∠CAF,∴CA=CF;②设CA=CF=x,则BC=CF+BF=x+2,∵的半径为3,∴AB=6,在Rt△ABC中,CA2+AB2=BC2,即:x2+62=(x+2)2,解得:x=8,∴AC=8.26. 如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+x+2;(2)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为解析:解:(1)将A(﹣1,0),B(0,2)代入y=﹣x2+bx+c,得:,解得:b=1,c=2∴抛物线的解析式为y=﹣x2+x+2.(2)①∵直线y=x-1与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,-1),点D的坐标为(2,0),∴0<m<2.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+m+2),点E的坐标为(m,m+3),∴PE=﹣m2+m+2﹣(m+3)=﹣m2+m+3=﹣(m﹣)2+.∵﹣1<0,0<<2,∴当m=时,PE最长.②由①可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,点Q的坐标为;②以PC为对角线,点Q的坐标为;③以CD为对角线,点Q的坐标为.综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为.。
苏科版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)
2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、选择题1.下列方程中,关于x的一元二次方程是()A.x2+2x=x2﹣1B.ax2+bx+c=0C.3(x+1)2=2(x+1)D.+﹣2=02.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=9 3.如图,已知A,B,C为⊙O上三点,若∠AOB=80°,则∠ACB度数为()A.80°B.70°C.60°D.40°4.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()A.70°B.90°C.110°D.120°5.若关于x的一元二次方程x2+x+m=0有实数根,则m的最大整数值是()A.﹣1B.0C.1D.26.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.35°B.40°C.45°D.50°7.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,4),(5,4),(1,﹣2),则以A,B,C为顶点的三角形外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(3,1)D.(1,3)8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题9.方程x2=2x的解是.10.若a是方程x2﹣2x﹣2=0的一个根,则2a2﹣4a=.11.写出一个以和﹣3为根,且二次项系数为1的一元二次方程为.12.如图,△ABC内接于⊙O,∠BAC=30°,BC=2,则⊙O的直径等于.13.在⊙O中,直径AB=4,弦CD⊥AB于P,OP=,则弦CD的长为.14.如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm为半径作⊙A,当AB=cm时,BC与⊙A相切.15.若关于x的一元二次方程x2﹣(k+2)x+2k=0的两根的和与积相等,则k的值为.16.如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在直线AB 上,且与点O的距离为6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移动,那么秒钟后⊙P与直线CD相切.三、解答题17.用适当的方法解下列方程:(1)(2x﹣1)2﹣25=0;(2)x2﹣2x﹣1=0(配方法);(3)2(x2﹣2)=7x;(4)3(x﹣2)2=x(x﹣2).18.已知:关于x的方程x2﹣6x+m﹣5=0的一个根是﹣1,求m值及另一根.19.已知一元二次方程x2﹣4x+k=0有两个不相等的实数根(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.20.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,求∠A的度数.21.如图,AB是⊙O的直径,CE是⊙O上的两点,CD⊥AB于D,交BE于F,,求证:BF=CF.22.如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.23.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.24.文通小商店经销甲、乙两种商品,现有如下信息:信息1:甲乙两种商品的进货单价之和是3元.信息2:甲商品零售单价比进货单价多2元,乙商品零售单价比进货单价的2倍少1元.信息3:按零售单价购买甲商品3件和乙商品2件,共付了15元.请根据以上信息,解答请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲商品500件和乙商品400件.经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件.商店决定把甲种商品的零售单价下降m (m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1900元?25.实践操作:如图,△ABC是直角三角形,∠ABC=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).(1)作∠BCA的平分线,交AB于点O;(2)以O为圆心,OB为半径作圆.综合运用:在你所作的图中,(1)AC与⊙O的位置关系是(直接写出答案)(2)若BC=6,AB=8,求⊙O的半径.26.阅读理解:(1)【学习心得】小刚同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC中,AB=AC,∠BAC=46°,D是△ABC外一点,且AD=AC,求∠BDC的度数,若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=°.(2)【问题解决】如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=28°,求∠BAC的度数.小刚同学认为用添加辅助圆的方法,可以使问题快速解决,他是这样思考的:△ABD的外接圆就是以BD的中点为圆心,BD长为半径的圆;△BCD的外接圆也是以BD的中点为圆心,BD长为半径的圆.这样A、B、C、D四点在同一个圆上,进而可以利用圆周角的性质求出∠BAC的度数,请运用小刚的思路解决这个问题.(3)【问题拓展】如图3,在△ABC的三条高AD、BE、CF相交于点H,求证:∠EFC=∠DFC.参考答案一、选择题1.解:A、x2+2x=x2﹣1是一元一次方程,故A错误;B、ax2+bx+c=0,a=0时是一元一次方程,故B错误;C、3(x+1)2=2(x+1)是一元二次方程,故C正确;D、+﹣2=0是分式方程,故D错误;故选:C.2.解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.3.解:∵∠AOB=80°,∴∠ACB=∠AOB=40°,故选:D.4.解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故选:C.5.解:由题意知,Δ=12﹣4m≥0,∴m≤,∴m的最大整数值是0.故选:B.6.解:连接OC,∵CE为圆O的切线,∴OC⊥CE,∴∠COE=90°,∵∠CDB与∠BAC都对,且∠CDB=25°,∴∠BAC=∠CDB=25°,∵OA=OC,∴∠OAC=∠OCA=25°,∵∠COE为△AOC的外角,∴∠COE=50°,则∠E=40°.故选:B.7.解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选:C.8.解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.二、填空题9.解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.故答案为x1=0,x2=2.10.解:把x=a代入方程得a2﹣2a﹣2=0,则a2﹣2a=2,所以2a2﹣4a=2(a2﹣2a)=2×2=4.故答案为4.11.解:∵+(﹣3)=﹣3,×(﹣3)=﹣3,∴以和﹣3为根,且二次项系数为1的一元二次方程为x2﹣(﹣3)x﹣3=0.故答案为:x2﹣(﹣3)x﹣3=0.12.解:作直径BD,连接CD,由圆周角定理得,∠D=∠BAC=30°,∠BCD=90°,∴BD=2BC=4,故答案为:4.13.解:连接OC,∵在⊙O中,直径AB=4,∴OA=OC=AB=2,∴弦CD⊥AB于P,OP=,∴CP==1,∴CD=2CP=2.故答案为:2.14.解:如图,过点A作AD⊥BC于点D.∵AB=AC,∠B=30°,∴AD=AB,即AB=2AD.又∵BC与⊙A相切,∴AD就是圆A的半径,∴AD=3cm,则AB=2AD=6cm.故答案是:6.15.解:∵关于x的一元二次方程x2﹣(k+2)x+2k=0的两根的和与积相等,∴x1+x2=x1x2k+2=2k,解得:k=2.故答案为:2.16.解:当点P在射线OA时⊙P与CD相切,如图,过P作PE⊥CD与E,∴PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P的圆心在直线AB上向右移动了(6﹣2)cm后与CD相切,∴⊙P移动所用的时间==4(秒);当点P在射线OB时⊙P与CD相切,如图,过P作PE⊥CD与F,∴PF=1cm,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm,∴⊙P的圆心在直线AB上向右移动了(6+2)cm后与CD相切,∴⊙P移动所用的时间==8(秒).故答案为4或8.三、解答题17.解:(1)(2x﹣1)2﹣25=0,(2x﹣1)2=25,2x﹣1=±5,2x﹣1=5或2x﹣1=﹣5,x1=3,x2=﹣2;(2)x2﹣2x﹣1=0,x2﹣2x=1,x2﹣2x+1=1+1,(x﹣1)2=2,x﹣1=±,x﹣1=或x﹣1=﹣,x1=1+,x2=1﹣;(3)2(x2﹣2)=7x,2x2﹣7x﹣4=0,(x﹣4)(2x+1)=0,x﹣4=0或2x+1=0,x1=4,x2=﹣;(4)3(x﹣2)2=x(x﹣2),3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)[3(x﹣2)﹣x]=0,(x﹣2)(3x﹣6﹣x)=0,(x﹣2)(2x﹣6)=0,x﹣2=0或2x﹣6=0,x1=2,x2=3.18.解:设方程的另一个根为n,∵方程x2﹣6x+m﹣5=0的两个根为﹣1和n,∴,解的:.∴m的值为﹣2,方程的另一根是7.19.解:由一元二次方程x2﹣4x+k=0有两个不相等的实数根,得Δ=b2﹣4ac=(﹣4)2﹣4k>0,解得k<4;(2)由k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0,得x2﹣4x+3=0,解得x1=1,x2=3,一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,当x=1时,把x=1代入x2+mx﹣1=0,得1+m﹣1=0,解得m=0,当x=3时,把x=3代入x2+mx﹣1=0,得9+3m﹣1=0,解得m=﹣,综上所述:如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,.20.解:连接OB,如图,∵AB=OC,∴AB=BO,∴∠BOC=∠A,∴∠EBO=∠BOC+∠A=2∠A,而OB=OE,得∠E=∠EBO=2∠A,∴∠EOD=∠E+∠A=3∠A,而∠EOD=84°,∴3∠A=84°,∴∠A=28°.21.证明:延长CD交⊙O于点G,连接BC,∵AB是⊙O的直径,CD⊥AB于D∴=,∵=,∴=,∴∠BCF=∠CBF,∴BF=CF.22.(1)解;∵∠DBA=50°,∴∠DOA=2∠DBA=100°,(2)证明:连接OE.在△EAO与△EDO中,,∴△EAO≌△EDO,∴∠EDO=∠EAO,∵∠BAC=90°,∴∠EDO=90°,∴DE与⊙O相切.23.(1)解:∵CB=CD,∴∠CDB=∠CBD=39°,由圆周角定理得,∠CAB=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=39°+39°=78°;(2)证明:∵CE=CB,∴∠CBE=∠CEB,∴∠1+∠CDB=∠2+∠CAB,∵∠BAC=∠BDC=∠CBD,∴∠1=∠2.24.解:(1)设甲商品的零售单价为x元,乙商品的零售单价为y元,则甲商品的进价为(x﹣2)元,乙商品的进价为,由题意得,,解得:.答:甲商品的零售单价为3元,乙商品的零售单价为3元;(2)把甲种商品的零售单价下降m,可多卖甲商品100×件,则利润为:(500+100×)×(3﹣m﹣1)+400(3﹣2)=1900,解得:m1=0.5,m2=1.答:当m为0.5或1时,商店每天销售甲、乙两种商品获取的总利润为1900元.25.解:实践操作:(1)如图所示:CO即为所求;(2)如图所示:⊙O即为所求;综合运用:(1)AC与⊙O的位置关系是:相切;故答案为:相切;(2)过点O连接AC与⊙O的切点E,∵BC=6,AB=8,∠ABC=90°,∴AC==10,由题意可得出:CB⊙O的切点为B,则CE=CB=6,设BO=x,则EO=x,AO=6﹣x,AE=10﹣6=4,∴在Rt△AOE中,AE2+EO2=AO2,即42+x2=(8﹣x)2,解得:x=3,∴⊙O的半径为:3.26.解:(1)如图1,∵AB=AC,AD=AC,∴以点A为圆心,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=∠BAC=23°,故答案是:23°;(2)取BD中点O,连接AO、CO,在Rt△BAO中,AO=BD,同理:CO=BD,∴AO=DO=CO=BO,∴点A、B、C、D在以O为圆心的同一个圆上,∴∠BAC=∠BDC=28°;(3)∵CF⊥AB,BE⊥AC,∴点A、F、H、E在以AH为直径的同一个圆上,∴∠EFC=∠DAC,同理:点B、D、H、E在以BH为直径的同一个圆上,∠DFC=∠CBE,又∵∠DAC=∠EBC,∴∠EFC=∠DFC.。
【月考卷】人教版2021~2022学年九年级化学第二次月考模拟测试卷(二)含答案与解析
人教版2021~2022学年第二次月考模拟测试卷(二)九年级化学(时间:50分钟化学分值:100分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.考试范围:人教版九年级上册第一单元~第四单元第I卷(选择题共45分)一、选择题(每小题只有一个选项符合题意,每小题3分,共45分)1.绿水青山就是金山银山。
下列说法正确的是()A.焚烧秸秆不会造成大气污染B.可吸入颗粒列物对人体健康没有危害C.臭氧(O3)不属于空气污染指数项目D.化学在环境监测和保护中起重要作用2.我国生活饮用水水质标准规定“铜<1.0mg/L,铁<0.3mg/L”,其中的铜、铁是指()A.原子B.元素C.离子D.单质3.下列基本实验操作的图示正确的是()A.检查气密性B.读液体体积C.过滤悬浊液D.熄灭酒精灯4.下列化学符号中的数字表示的意义不正确的是()A.NO2:“2”表示一个二氧化氮分子含有两个氧原子B.2Cu:“2”表示两个铜C .O:“+2”表示氧化镁中镁元素显+2价D.2OH﹣:“2”表示两个氢氧根离子5.2019年12月17日下午,我国首艘国产航母“山东舰”正式交付海军服役。
建造航母需要大量的金属钛。
工业上以钛铁矿(主要成分为钛酸亚铁FeTiO3)为原料生产钛。
钛酸亚铁FeTiO3中钛的化合价是()A.+4 B.+3 C.+2 D.+16.下列说法正确的是()A.混合物中可能只含一种元素B.氧气具有可燃性,是一种常见的燃料C.氧气能与许多物质发生反应,是一种典型的氧化物D.催化剂一定能加快化学反应速率,但不能改变生成物的量7.图1几种元素在元素周期表中的部分信息,图2是几个微粒的结构示意图。
鹤山市昆仑学校2022—2023-2024年度第二学期九年级语文第二次月考试卷(含答案)
鹤山市昆仑学校2022—2023-2024年度第二学期九年级语文第二次月考试卷(含答案)鹤山市昆仑学校2022-2023学年度第二学期综合训练二九年级语文2023.5姓名:班别:学号:说明:考试时间120分钟,满分120分。
一、积累运用(共30分)1.默写古诗文。
(共10分。
答对一句得1分,满分不超过10分)(1)万里赴戎机,__________。
(《木兰诗》)(2),铜雀春深锁二乔。
(杜牧《赤壁》)(3)__________,枳花明驿墙。
因思杜陵梦,__________。
(温庭筠《商山早行》)(4)故虽有名马,_,,不以千里称也。
(韩愈《马说》)(5)___________,小桥流水人家,___________。
(马致远《天净沙秋思》》(6)古诗文是浸润在每一个中国人血脉里的文化基因,是我们心底最有认同感的民族情怀。
李白《行路难》中的“,”是积极乐观的态度;辛弃疾《破阵子为陈同甫赋壮词以寄之》中的“,”是建功立业的豪迈壮志。
2.根据拼音写出相应的词语。
(4分)(1)他chóu chú( )了一会,终于决定还是自己送我去。
(2)大自然雕刻的奇峰、怪石、瀑布,huàn yǎng( )的飞禽、走兽、小虫,于他无用。
(3)这里看不到任何东西,和前几天令人máo gǔsǒng rán( )的单调没有任何区别。
(4)孔乙己看着问他的人,显出bùxièzhìbiàn( )的神气。
3.下面语段中,加点词语使用不恰当的一项是()(3分)A.行驶在广袤的沙漠中,就可感受“大漠孤烟直,长河落日圆”的风光。
B.某市为改善城市空气质量,在臭氧污染防治专项行动中取缔了城市露天烧烤等行为。
C.飞机落地,七岁断臂男孩被顺利送往医院,机舱内爆发出振聋发聩的掌声和欢呼声。
D.我校运动健儿训练刻苦,准备在即将到来的市运会赛场上取得佳绩,同学们拭目以待。
九年级数学第二次月考卷及答案
九年级数学第二次月考卷一、选择题(每题4分,共40分)1. 下列选项中,( )是实数。
A. √1B. 3+4iC. 0D. 1+i2. 若|a|=5,|b|=3,则|a+b|的取值范围是( )。
A. 2≤|a+b|≤8B. 8≤|a+b|≤10C. 2≤|a+b|≤10D.8≤|a+b|≤183. 已知等差数列{an},a1=1,a3=3,则公差d为( )。
A. 1B. 2C. 3D. 44. 不等式2x3>0的解集是( )。
A. x>1.5B. x<1.5C. x>3D. x<35. 下列函数中,( )是奇函数。
A. y=x^2B. y=|x|C. y=x^3D. y=2x6. 一次函数y=kx+b的图象经过一、二、四象限,则k和b的取值范围是( )。
A. k>0,b>0B. k<0,b>0C. k<0,b<0D. k>0,b<07. 在△ABC中,a=8,b=10,cosA=3/5,则sinB的值为( )。
A. 3/5B. 4/5C. 3/4D. 4/38. 下列图形中,( )的面积可以通过底乘以高的一半来计算。
A. 正方形B. 矩形C. 三角形D. 梯形9. 已知函数f(x)=2x+1,那么f(f(x))的值为( )。
A. 2x+1B. 4x+3C. 2x+3D. 4x+110. 下列方程中,( )是一元二次方程。
A. x^2+y^2=1B. x^2+2x+1=0C. 2x3y=5D. x^33x=0二、填空题(每题4分,共40分)11. 已知数列{an}的通项公式为an=n^2n+1,则a5=______。
12. 若|a|=3,|b|=4,且a与b同向,则a•b=______。
13. 在平面直角坐标系中,点A(2,3)关于原点的对称点坐标为______。
14. 已知等差数列{an},a1=3,a5=11,则公差d=______。
九年级第一学期语文第二次月考试卷(含答案)
九年级第一学期语文第二次月考试卷(含答案)考生注意:1.本试卷满分120 分,考试时间120 分钟。
2.所有答案必须写在答题纸上,写在试卷上无效。
一、积累与运用(25 分)1.下列词语中加点字的读音完全正确的一项是()A. 妖娆.(ráo)拮.据(jū)诓.骗(kuāng)成吉思汗.(hàn)B. 亵.渎(xiè)骈.进(pián)嗔.怒(chēn)强聒.不舍(guō)C. 襁.褓(qiáng)枘.凿(ruì)恣.睢(suī)廓然无累.(lěi)D. 佝.偻(gōu)阴晦.(huì)抽噎.(yē)恪.尽职守(gè)2.下列词语中没有错别字的一项是()A. 愕然滞碍根深蒂固重蹈复辙B. 旁骛陨落红装素裹一代天娇C. 嬉闹玄虚断章取义无与伦比D. 鄙夷凌驾原弛蜡象怒不可遏3.下列句子中加点成语使用恰当的一项是()A. 他在大会上的即兴讲话逻辑严密、语无伦次....,博得了与会专家的一致好评。
B. 正因为他具有海誓山盟....的崇高理想,才在工作中取得了出色的成就。
C. 他们两人的关系一直亲如兄弟,难怪人们说他们两人间不容发....。
D. 这些伪劣药品造成的危害骇人听闻....,药品市场非整顿不可。
4.下列句子没有语病的一项是()A. 通过这次活动,使我们开阔了眼界,增长了知识。
B. 为了避免今后不再发生类似的错误,我们必须严格遵守纪律。
C. 一个人是否拥有健康的体魄,关键在于持之以恒地参加体育锻炼。
D. 由于他良好的心理素质和优异的表现,赢得了评委的一致好评。
5.默写填空。
(8 分)(1)____________________,人迹板桥霜。
(温庭筠《商山早行》)(2)____________________,山雨欲来风满楼。
(许浑《咸阳城东楼》)(3)春蚕到死丝方尽,____________________。
(李商隐《无题》)(4)____________________,爱上层楼。
最新部编版九年级语文上册第二次月考试题及参考答案
(24)从此,我们再也没有提起过这个笑话。
7. 结合全文内容,分析为什么“从此,我们再也没有提起过这个笑话”。
8. 如果用圈点的方法在(16)段画线句中点出两个关键词,你会点哪两个?为什么?
9. “我”的儿子和母亲这两个人物在文章的情节发展中有何作用?
②子曰:“学而不思则罔,思而不学则殆。”
14. 第①段画线句“读书是一个人成长的重要途径”,对这个观点,你怎么看?写段议论性的文字,表明自己的看法。
三、古诗文阅读(共14分)
阅读下面两个语段,完成下面小题。
(一)庆历四年春,滕子京谪守巴陵郡。越明年,政通人和,百废具兴。乃重修岳阳楼,增其旧制,刻唐贤今人诗赋于其上,属予作文以记之。予观夫巴陵胜状,在洞庭一湖。衔远山,吞长江,浩浩汤汤,横无际涯;朝晖夕阴,气象万千。此则岳阳楼之大观也,前人之述备矣。然则北通巫峡,南极潇湘,迁客骚人,多会于此,览物之情,得无异乎?
⑤青年人读书欲望很强,读书劲头很大,这是可喜的现象。但有些人读书贪多求快,“在空中起跳”,忽视打好扎实的基础,违背了循序渐进的规律,结果收效甚微。因此,一个人只有掌握了正确的读书方法,才能日益精进。
11. 上面的文字告诉我们的一个道理是_____________________。(限12个字以内)
12. 阅读全文,判断下列说法,不正确的一项是( )
6.综合性学习。
“天行健,君子以自强不息;地势坤,君子以厚德载物。”学校开展以“君子自强不息”为主题的综合性实践活动,请你参加。
(1)【“自强不息”座右铭】请依据下面一段文字的内容,补写座右铭。要求:补写的部分字数、句式与上半句一致。
范仲淹少有大志,每以天下为己任,发奋苦读;“两弹元勋”邓稼先年轻时就立志要让国家变强盛,将自己毕生的心血奉献给了祖国的国防科研事业。
02 人教版九年级上第二次月考数学试卷含答案解析
九年级(上)第二次月考数学试卷2438分)一.选择题(共分,共小题,每小题y=1).下列四个点,在反比例函数的图象上的是( 1 6 C32DAB16 24)(﹣...(.(),﹣)),﹣(,﹣,A152BA处树.小明在测量楼高时,先测出楼房落在地面上的影长为,然后在米(如图)AC32)为立一根高米,则楼高为(米的标杆,测得标杆的影长22.5C15 DA10 B12 米..米米.米.3m).若函数为反比例函数,则的值为( 1DA1 B1C.﹣..±.4).一个正方体切去拐角后得到形状如图的几何体,其俯视图是(DA B C....ABC5ABC)为(.在△,则△中,AB.等边三角形.直角三角形C60D °.是顶角为钝角的等腰三角形.含的任意三角形yy56y33))都在反比例函数.若点(﹣,图象上,则(),(﹣,),(,312yyyAyy Byy CyyDyyy >>.>.>..>>>>213221113233 sinA7ABC).如图所示,△的顶点是正方形网格的格点,则的值为(ABC D....2 04acy=ax8bx个结论:≠)的图象如图所示,下列++(.如图,已知二次函数bc0b0ac0a2b4a④②③①)其中正确结论的有(>++;+<;<;>C DA B②③④①②④①②③①③④....2173分)二、填空题(共分,共小题,每小题=tantan30=19αα?°α度..若,则为锐角,xAAMy=mx10By=A轴,作.如图,、两点,一次函数与反比例函数过点的图象交于⊥=3kMBMS.,则垂足为,连接,若的值是ABM△1111”“画某个二次函数图象时,页,用.在我们刚刚学过的九年级数学下册课本第描点法列了如下表格:……8 5 6 7 3 x 4……y 7.5 5 3.5 3 3.5 5x=9y= .时,根据表格上的信息回答问题:该二次函数在22ky= hx1y=ax12y=x.﹣+化成(﹣的形式,则.用配方法将二次函数﹣)+13y=kxy=x0A1ak= .(,.如图,直线与双曲线()>)交于点,则14ABCDEABCEABCDBAD落在中,点在.如图,在矩形,使点边上,沿折叠矩形FAB=4BC=5tanAFE .的值为∠,则,处.若边上的点BCD3015AB处观察,当分别表示两幢相距.如图,已知米的大楼,小明在大楼底部点、ACDAB30的像,那么的玻璃幕墙看到大楼仰角增大到的顶部点度时,恰好能通过大楼AB米.的高度为大楼75分(共三、解答题:16.计算10﹣tan302cos4517°°+))+(﹣(﹣(﹣)2﹣ 3 sin452°﹣()|)﹣(+|.﹣×DEBC17AB表示)的影.如图,路灯下一墙墩(用线段,小明(用线段表示)的影子是MNEFM.,在子是处有一颗大树,它的影子是1P;)指定路灯的位置(用点(表示)2)在图中画出表示大树高的线段;(D3,试画图分析小明能否看见大树.()若小明的眼睛近似地看成是点y=5x=3xy18y=yyxy2,当时,﹣,﹣与)成正比例,并且当成反比例,与(.已知2211 x=1y=1xy之间的函数关系式.时,;求﹣与5y=5Cy=kxbA219﹚,,如图,+的图象与反比例函数,一次函数的图象交于点﹙﹣.﹙﹣xynBD.轴于点轴于点,交﹚,交by=kxy=1的表达式;+()求反比例函数和一次函数AOCOCOA2的面积.,.求△)连接(xkx3b的取值范围.时,请写出自变量>+)当(.DA20AB的仰角处时用测角仪测灯杆顶端的高度,结果他在.小刚学想测量灯杆1.6AAFG=45AEG=308C°°,又知测角仪高米来到∠的仰角∠,然后向前走了处,又测得1.73AB)(结果保留一位小数;参考数据:米,求灯杆≈的高度.2 321y=ax1bx20..已知二次函数(﹣+、的图象经过点(),,)1)求二次函数的解析式;(2)画出它的图象;(3)写出它的对称轴和顶点坐标.(2 x=2322y=xbxcA0.)且对称轴是直线.如图,已知二次函数(+,+的图象经过点1)求该函数的表达式;(2PBCABCP2的坐标.的面积是△的面积的倍,求点()在抛物线上找点,使△DBC23处测的高度,他们在斜坡上.如图所示,某数学活动小组选定测量小河对岸大树B6A30BA°处测得大树顶端在处,米到达坡底朝大树方向下坡走,的仰角是得大树顶端48FAE=30sin480.74°°°,的仰角是,求大树的高度(结果保留整数,参考数据:,若坡角∠≈1.731.110.67cos48tan48°°)≈,≈≈,九年级(上)第二次月考数学试卷参考答案与试题解析2483分)小题,每小题一.选择题(共分,共1y=)的图象上的是(.下列四个点,在反比例函数12 63BD24 C1A6 ).).(,﹣,,﹣)(﹣..(,﹣()反比例函数图象上点的坐标特征.【考点】根据反比例函数图象上点的坐标特征进行判断.【分析】=6613624=82=616=,,)×(﹣×,,×(﹣(﹣【解答】解:∵)×(﹣))﹣2y=3的图象上.∴点()在反比例函数,﹣D.故选ABA152处树米(如图)为,然后在.小明在测量楼高时,先测出楼房落在地面上的影长32AC)米,则楼高为(立一根高米的标杆,测得标杆的影长为D22.5 10 B12 C15A米米米..米..相似三角形的应用.【考点】经过物体顶部的在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,【分析】太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.=解:∵【解答】=,即=10米.∴楼高A.故选m3).若函数为反比例函数,则的值为(1 DC1 AB1 .﹣.±..反比例函数的定义.【考点】m的值.【分析】根据反比例函数的定义即可求出20 1m2=m1≠【解答】解:根据题意得:﹣﹣,且﹣m=1.解得:﹣D.故选4).一个正方体切去拐角后得到形状如图的几何体,其俯视图是(DC A B ....简单几何体的三视图.【考点】根据俯视图是从上面看到的图形判定则可.【分析】C.【解答】解:从上面看,是正方形右下角有阴影,故选ABC5ABC)为(.在△中,,则△BA .等边三角形.直角三角形C60D°.是顶角为钝角的等腰三角形的任意三角形.含特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【考点】=02cosBtanA3=0,进而利用特﹣【分析】首先结合绝对值以及偶次方的性质得出,﹣殊角的三角函数值得出答案.22cosBtanA3=0,﹣)【解答】解:∵(|﹣+|2cosB=0tanA3=0,∴,﹣﹣tanA=cosB=,∴,B=30A=60°°,∠,∠ABC为直角三角形.∴△A.故选:y3y365y),)都在反比例函数),(.若点(﹣,),(﹣图象上,则(,321 yy yyDyy yyyyAy ByC >>..>.>.>>>>212233112313反比例函数图象上点的坐标特征.【考点】yyy的值,然后比较大、、【分析】根据反比例函数图象上点的坐标特征,分别计算出321小即可.x=3=yx=3=5x=yy=,时,﹣时,;当解:当【解答】﹣时,﹣;当﹣312 yyy.<所以<312 C.故选ABC7sinA)的值为(的顶点是正方形网格的格点,则.如图所示,△.C DA B ....锐角三角函数的定义;勾股定理.【考点】利用网格构造直角三角形,根据锐角三角函数的定义解答.【分析】OBDBD=BCCDAB,,连接【解答】解:如图:在于点正上方找一点交,使ABCD,⊥根据网格的特点,AOCRt中,△在=CO=;AC==;==sinA=.则B.故选:2 4y=axabxc08个结论:≠+)的图象如图所示,下列+.如图,已知二次函数(02bc4a0a0bbac④③②①)+ ><;+<其中正确结论的有(+;>;BA C D②③④①②④①②③①③④....二次函数图象与系数的关系.【考点】0a①①正确;【分析】首先根据抛物线开口向上,可得,故>b0x=0②②正确;,可得<然后根据抛物线的对称轴为直线﹣>,故20yx=ay=axbxc010bca③,++﹣(≠)的图象,可得当﹣>时,>根据二次函数,所以+③正确.故200yx=20acy=axbxc2b4a④,故<+,所以时,≠+根据二次函数+()的图象,可得当<+③不正确;A.故选.解:∵抛物线开口向上,【解答】a0 ①正确;>∴,故x=0,﹣∵抛物线的对称轴为直线>b0②正确;,故<∴y0x=1,∵当时,﹣>0bac,∴>﹣+③正确;∴故0x=2y,∵<时,04a2bc,+<∴+④错误;∴结论①②③.综上,可得正确的结论有:A.故选2173分)小题,每小题分,共二、填空题(共tantan30=1=609αα?α°度..若为锐角,,则特殊角的三角函数值.【考点】tan30=tanα°α的值.【分析】本题可根据,得出的值,再运用三角函数的特殊值解出=1tantan30=tan30°°α?,,【解答】解:∵tan=α,∴α为锐角,又∵=60°α.∴60.故答案为:xABAMAy=mx10y=轴,两点,作的图象交于、⊥.如图,一次函数与反比例函数过点MBMk=3S3.,连接,则,若的值是垂足为ABM△k的几何意义;反比例函数图象的对称性.反比例函数系数【考点】ABMk的面积由反比例函数图象的对称性和反比例函数系数的几何意义可得:△【分析】AOM2k=2SS=.面积的倍,为△||AOMABM△△S=k=k=3S=3=2S.【解答】|,|解:由题意得:,则AOMAOMABM△△△3.故答案为:1111”“画某个二次函数图象时,描点法页,用.在我们刚刚学过的九年级数学下册课本第列了如下表格:……8 7 4 5 6 x 353.553.53y7.57.x=y根据表格上的信息回答问题:该二次函数时二次函数的图象.【考点】x=9x=3时的函数值相和当【分析】根据二次函数的图象关于对称轴对称并观察表格知当x=9时的函数值.等,据此可以求得当x=8x=4时的函和当【解答】解:∵二次函数的图象关于对称轴对称,且观察表格知低昂数值相等,x=3x=9时的函数值相等,∴当和当x=3y=7.5,∵当时x=9y=7.5.时∴当7.5.故答案为22x1ky=12xy=x1y=axh).用配方法将二次函数的形式,则﹣( +)﹣化成+(﹣﹣﹣2.﹣二次函数的三种形式.【考点】【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.2x1y=x ,﹣解:+﹣【解答】22x11=x,﹣)﹣+﹣(﹣2 x1=,﹣﹣)﹣(2 1xy=,)即﹣(﹣﹣2 1x.故答案是:﹣()﹣﹣13y=kxy=x0A1ak=2 .,则.如图,直线与双曲线(>)交于点(,)反比例函数与一次函数的交点问题.【考点】.直接利用图象上点的坐标性质进而代入求出即可.【分析】0A1ay=kxy=x,)交于点,>(【解答】解:∵直线与双曲线)(a=2k=2,,∴2.故答案为:ADCEABCDB14ABCDEAB落在折叠矩形在,使点.如图,在矩形边上,沿中,点AFEtanFAB=4BC=5.的值为边上的点∠处.若,,则.【考点】翻折变换(折叠问题)ABCDA=B=D=90CD=AB=4AD=BC=5°,由∠∠,【分析】由四边形,是矩形,可得:∠EFC=B=90CF=BC=5DCF=AFE°,即可得∠,∠折叠的性质可得:∠,∠由同角的余角相等,RtDCF 中,即可求得答案.△然后在ABCD 是矩形,【解答】解:∵四边形A=B=D=90CD=AB=4AD=BC=5 °,∴∠,∠,∠EFC=B=90CF=BC=5 °,∠由题意得:∠,AFEDFC=90DFCFCD=90 °°,+∠+∠,∠∴∠DCF=AFE ,∴∠∠RtDCFCF=5CD=4 ,∵在,△中,DF=3 ,∴tanAFE=tanDCF== .∠∴∠.故答案为:B15ABCD30处观察,当.如图,已知、米的大楼,小明在大楼底部点分别表示两幢相距ACDAB30的像,那么的玻璃幕墙看到大楼仰角增大到的顶部点度时,恰好能通过大楼20AB米.的高度为大楼-仰角俯角问题.解直角三角形的应用【考点】30BD=30RtBDEED°的长度,根据题意恰好,米,在中,可求得△【分析】根据仰角为CDABAAB=2ED .的像,可得的顶部点的玻璃幕墙看到大楼能通过大楼RtBDE 中,【解答】解:在△EBD=30BD=30 °米,,∵∠=tan30°,∴ED=10,解得:(米)A30CDAB的像,度时,恰好能通过大楼的顶部点∵当仰角增大到的玻璃幕墙看到大楼AB=2DE=20.(米)∴20.故答案是:75分三、解答题:(共16.计算10﹣72cos451tan30°°++(﹣)(﹣))﹣(2﹣3sin45 2°﹣|).(+|)×﹣﹣(二次根式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.【考点】1第二项利用特殊角的三角函数值计算,第三项【分析】()原式第一项化为最简二次根式,最后一项利用特殊角的三角函数值利用零指数幂法则计算,第四项利用负指数幂法则计算,计算即可得到结果;2)根据二次根式、特殊角的三角函数值、负整数指数幂、绝对值的意义运算,再根据实(数的运算顺序即可得出答案.10﹣712cos45tan30°°+﹣()+()﹣【解答】解:()﹣212=2 +﹣﹣×+×121=2+﹣+﹣=;2﹣sin4532°﹣|)+|﹣×)﹣((3=241)﹣+﹣(×﹣ 1 34=2+﹣﹣+=2.﹣DEBCAB17表示)的影表示)的影子是.如图,路灯下一墙墩(用线段,小明(用线段EFMMN.处有一颗大树,它的影子是,在子是1P ;(表示))指定路灯的位置(用点2 )在图中画出表示大树高的线段;(3D ,试画图分析小明能否看见大树.()若小明的眼睛近似地看成是点中心投影.【考点】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光【分析】DEAB的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,源.所以分别把和GMMNMNN是再由点光源出发连接的直线与地面相交即可找到顶部影子的顶端.线段GMD处于视点的盲区.,则看不到大树,大树的高.若小明的眼睛近似地看成是点P1是灯泡的位置;【解答】解:()点MG2是大树的高.()线段GM3D处于视点的盲区.)视点(看不到大树,y=5x=3xyx2y18y=yy,当成反比例,时,与(与)成正比例,并且当.已知﹣﹣,2211 xy=1yx=1之间的函数关系式.﹣与时,;求待定系数法求反比例函数解析式.【考点】x=3y=yy时,【分析】根据题意设出反比例函数与正比例函数的解析式,代入,再把当﹣21xyyy=y=5x=11之间的函的关系式,求出未知数的值,即可求出代入关于,当与时,﹣数关系式.2xyyx)成正比例,【解答】解:因为与与(成反比例,﹣21x2yy==k,﹣,(故可设)221 yy=y,因为﹣212xy=k,)所以﹣(﹣2x=1y=5x=31y=,,代入得﹣时,;时,把当.,解得2y=4x8y=kx.)得,(﹣再代入﹣﹣+25A219C5y=kxby=﹚,﹙﹣.﹣﹙的图象交于点,如图,一次函数,+的图象与反比例函数DxnyB.,交轴于点轴于点﹚,交1y=y=kxb的表达式;和一次函数(+)求反比例函数2OAOCAOC的面积.,()连接.求△x3kxb的取值范围.)当>+时,请写出自变量(反比例函数与一次函数的交点问题.【考点】Cm1Ay=的坐标代(,即可得出反比例函数的表达式,把)把求出的坐标代入【分析】bky=kxby=CAC,即可求出一入+求出的坐标,把得出方程组,求出、、的坐标代入次函数的表达式;OBy=x3AOBBOC2x=0的面积,相加即可;﹣和△代入求出,分别求出△()把3AC的坐标和图象得出即可.()根据、51A2y=m=10,(﹚代入)把﹙﹣得:,﹣解:【解答】y=,即反比例函数的表达式为n=2Cy=5n ,﹙,得:﹚代入把5C2,(即,)y=kxbCA,+得:把、的坐标代入k=1b=3,﹣解得:,y=x3;所以一次函数的表达式为﹣y=233y=xx=0,﹣得:代入)把(﹣OB=3,即.C52A25 ﹚,(﹙﹣,,﹣),∵2335=10.5AOC;|+×|﹣∴△×的面积为××x5kxbx2x03.>时,自变量<的取值范围是﹣)由图象可知:当+><或(A20ABD的仰角的高度,结果他在处时用测角仪测灯杆顶端.小刚学想测量灯杆1.6AFG=45AEG=308CA°°,又知测角仪高,然后向前走了米来到∠的仰角∠处,又测得AB1.73)(结果保留一位小数;参考数据:米,求灯杆≈的高度.-仰角俯角问题.【考点】解直角三角形的应用AGGFGEAGx,的长,计算即可得到米,根据正切的概念分别表示出【分析】设、的长为AB即可.求出xAG米,的长为【解答】解:设xAGEEG==Rt,△在中,RtAGFGF=AG=x,△在中,x=8 x,由题意得,﹣x10.9,≈解得,12.5AB=AGGB米,+则≈12.5AB米.答:灯杆的高度约为2 1021y=axbx23.,(﹣的图象经过点(,)、).已知二次函数+ 1)求二次函数的解析式;(2)画出它的图象;(3)写出它的对称轴和顶点坐标.(待定系数法求二次函数解析式;二次函数的图象.【考点】1)利用待定系数法求二次函数解析式解答;(【分析】.2 )根据二次函数图象的画法,列表、描点、连线,画出图象即可;(3 )把二次函数解析式化为顶点式解析式,然后写出对称轴与顶点坐标即可.(1,解:()依题意,得:【解答】,解得:2 y=x2x;所以,二次函数的解析式为:﹣222 12x=x12x11=2y=xx,)﹣+﹣﹣﹣﹣(()由对称性列表如下:21 ……4 12 3x 0 ﹣﹣ 1……8 y 8 3 3 0 0 ﹣;2x=1111y=3x1 .﹣,顶点坐标为()()由)(,﹣﹣可知对称轴为直线2bxcA03x=222y=x .+的图象经过点,.如图,已知二次函数()且对称轴是直线+1 )求该函数的表达式;(2PBCABC2P 的坐标.的面积是△)在抛物线上找点,使△倍,求点的面积的(待定系数法求二次函数解析式.【考点】1Acb 的值;坐标代入可得)将点(【分析】的值,根据对称轴可得24a3PaaABC2BC)(,,()先根据解析式求得点+、的坐标,继而可得△﹣的面积,设点PBCa的方程,即可从而表示出△的面积,根据二次函数的最小值及面积间关系得出关于a 的值,可得答案.求得2bxcc=33A10y=x ,(【解答】解:)将点(,)代入,得:++x=2 ,∵抛物线对称轴为4=2b=,,得:∴﹣﹣2 34xy=x;∴该二次函数解析式为﹣+2 3=04x2y=0x,﹣(+)令,得:x=3x=1,解得:或0C3B10,∴点((),,)、3=3S=2,则××ABC△2 aa34aP,,)设点+(﹣22 4aa=234a3=aS,××|﹣|则﹣|++|PBC△22 2y=x14x3=x,∵)(﹣﹣+﹣1,∴二次函数的最小值为﹣2 4aa3=6,根据题意可得﹣+a=2,解得:6262P.+,)∴点)或(的坐标为(,﹣D23BC处测的高度,他们在斜坡上.如图所示,某数学活动小组选定测量小河对岸大树BAA30B6°处测得大树顶端处,的仰角是米到达坡底,朝大树方向下坡走得大树顶端在0.74sin48FAE=3048°°°,,求大树的高度(结果保留整数,参考数据:,若坡角∠≈的仰角是cos480.67tan481.111.73°°)≈≈,,≈--坡度坡角问题.仰角俯角问题;解直角三角形的应用解直角三角形的应用【考点】CG=DHDG=CH ,再利用锐角三角函数的性质求出问题即可.,根据矩形性质得出【分析】HCEDGDBCGDH,作,⊥⊥于于【解答】解:如图,过点DHCG为矩形.则四边形DG=CHCG=DH,,故AHD中,在直角三角形DAH=30AD=6°,∵∠,DH=3AH=3,,∴CG=3,∴xBC,设为=ABCAC=,在直角三角形中,3DG=3BG=x,∴,+﹣tan30BDGBG=DG°?,中,∵在直角三角形.3=3x)(+∴﹣x13,≈解得:13米.∴大树的高度为:2112016日月年.。
人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)
2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、选择题:(共30分)1.下列图形是中心对称图形,但不是轴对称图形的是()A.平行四边形B.等边三角形C.圆D.正方形2.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1B.y=ax2+bx+cC.s=2t2﹣2t+1D.y=(x﹣1)(2+x)﹣x23.在平面直角坐标系中,点P(﹣2,a)与点Q(b,3)关于原点对称,则a+b的值为()A.5B.﹣5C.1D.﹣14.下列命题中假命题的个数是()①三点确定一个圆;②三角形的内心到三边的距离相等;③相等的圆周角所对的弧相等;④平分弦的直径垂直于弦;⑤垂直于半径的直线是圆的切线.A.4B.3C.2D.15.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°6.抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.x轴的正半轴上D.x轴的负半轴上7.设⊙O的直径为m,直线l与⊙O相离,点O到直线l的距离为d,则d与m的关系是()A.m=d B.m<d C.2d>m D.2d<m8.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°9.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3B.1:4C.1:5D.1:2510.如图,点E和点F是正方形ABCD的边BC和边CD上的两动点,且∠EAF=45°,有下列结论:①EF=BE+DF;②∠AEB=∠AEF;③BG2+DG2=2AG2;④如果BE=CE,那么DF:CF=1:3;⑤△AFE∽△AGM且相似比是;其中正确的结论有()个.A.1B.2C.3D.4二、填空题:(共18分)11.一元二次方程2x2=x的解是.12.在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为.13.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.14.如图,P A,PB切⊙O于A,B两点,CD切⊙O于点E,分别交P A,PB于点C,D.若⊙O的半径为2,∠P=60°,则△PCD的周长等于.15.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B (如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b 的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.16.如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2021的坐标为.三、解答题:(共72分)17.解下列方程:(1)3x2﹣5x+1=0(公式法);(2)3(2x﹣5)2﹣27=0.18.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.19.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足5x1+x2=8,求实数m的值.20.如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证:△ABP∽△PCD;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.21.绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?22.如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.23.如图①,△ABC与△DEF是将△ACF沿过A点的某条直线剪开得到的(AB,DE是同一条剪切线).平移△DEF使顶点E与AC的中点重合,再绕点E旋转△DEF,使ED,EF分别与AB,BC交于M,N两点.(1)如图②,△ABC中,若AB=BC,且∠ABC=90°,则线段EM与EN有何数量关系?请直接写出结论;(2)如图③,△ABC中,若AB=BC,那么(1)中的结论是否还成立?若成立,请给出证明:若不成立,请说明理由;(3)如图④,△ABC中,若AB:BC=m:n,探索线段EM与EN的数量关系,并证明你的结论.24.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F(不与点C重合),使|FC﹣FE|的值最大,若存在,请求出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,△OPQ是等腰三角形.参考答案一、选择题:(共30分)1.解:A、平行四边形不是轴对称图形,是中心对称图形.故本选项正确;B、等边三角形是轴对称图形,不是中心对称图形.故本选项错误;C、圆是轴对称图形,也是中心对称图形.故本选项错误;D、正方形是轴对称图形,也是中心对称图形.故本选项错误.故选:A.2.解:A、y=3x﹣1,是一次函数,故A不符合题意;B、当a=0时,函数y=ax2+bx+c不是二次函数,故B不符合题意;C、s=2t2﹣2t+1,是二次函数,故C符合题意;D、y=(x﹣1)(2+x)﹣x2=2x+x2﹣2﹣x﹣x2=x﹣2,是一次函数,故D不符合题意;故选:C.3.解:∵点P(﹣2,a)与Q(b,3)关于原点对称,∴b=2,a=﹣3,则a+b的值为:2﹣3=﹣1.故选:D.4.解:①错误,不在同一条直线上的三点确定一个圆;②正确,三角形的内心到三边的距离相等;③错误,在同圆或等圆中,相等的圆周角所对的弧相等;④错误,如果平分的弦是直径,那么平分弦的直径不垂直于弦;⑤错误,过半径的外端且垂直于半径的直线是圆的切线.故选:A.5.解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.6.解:∵y=x2﹣2x+m2+2=(x﹣1)2+(m2+1),∴顶点坐标为:(1,m2+1),∵1>0,m2+1>0,∴顶点在第一象限.故选:A.7.解:∵⊙O的直径为m,点O到直线L的距离为d,直线L与⊙O相离,∴d>,即2d>m,故选:C.8.解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠CAD=45°,∠ACD=90°﹣20°=70°,∴∠ADC=180°﹣45°﹣70°=65°,故选:C.9.解:∵DE∥AC,∴△DEO∽△CAO,∴=()2=,∴DE:AC=BE:BC=1:5,∴BE:EC=1:4,∴S△BED:S△DEC=1:4,故选:B.10.解:如图,延长CB至Q,使BQ=DF,连接AQ,∵BQ=DF,∠ADF=∠ABQ,AB=AD,∴△ADF≌△ABQ(SAS),∴AF=AQ,∠DAF=∠BAQ,∵∠EAF=45°,∴∠EAQ=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°,∴∠EAQ=∠EAF=45°,在△AEF和△AEQ中,,∴△AEF≌△AEQ(SAS),∴EQ=EF,∠AEB=∠AEF,∴BE+BQ=BE+DF=EF,故①②正确;设AB=BC=CD=2a,当BE=EC=a时,∵EF2=CF2+EC2,∴(a+DF)2=(2a﹣DF)2+a2,∴DF=a,∴CF=a,∴DF:CF=1:2,故④错误;如图,将△ABG绕点A逆时针旋转90°,连接PG,∴AP=AG,∠P AG=90°,∠ADP=∠ABG=45°,∴PG2=AG2+AP2=2AG2,∠BDP=90°,∴DG2+PD2=PG2,∴BG2+DG2=2AG2,故③正确;如图,连接ME,∵∠CBD=∠EAF=45°,∴点A,点B,点E,点M四点共圆,∴∠AEM=∠ABD=45°,∴∠AEM=∠EAM=45°,∴AM=EM,∴AE=AM,∵∠DAG=90°﹣∠BAG,∠AMB=180°﹣∠ABD﹣∠EAF﹣∠BAG=90°﹣∠BAG,∴∠DAG=∠AMB,∵AD∥BC,∴∠DAG=∠AEB,∵∠AEB=∠AEF,∴∠AMB=∠AEF,又∵∠EAF=∠GAM,∴△EAF∽△MAG,∴相似比为=,故⑤正确;故选:D.二、填空题:(共18分)11.解:2x2=x,2x2﹣x=0,x(2x﹣1)=0,x1=0,x2=.12.解:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠B=∠EFC,∴BD∥EF,∵DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴===,∴BC=DE,∴CF=BC﹣BF=DE=6,∴DE=10.故答案是:10.13.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.14.解:如图,连接OA,OB,OP,∵P A,PB切⊙O于A,B两点,OA,OB是半径,∴OA⊥P A,OB⊥PB,且OA=OB,∴OP是∠APB的平分线,∵∠APB=60°,∴∠APO=30°,∴OP=2OA=4,在Rt△APO中,由勾股定理得AP==2,∵P A,PB切⊙O于A,B两点,∴P A=PB=2,∵CD切⊙O于点E,∴AC=CE,BD=DE,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=P A+PB=4,故答案为:4.15.解:由题意得:AB=b﹣a=2,设AM=x,则BM=2﹣x,x2=2(2﹣x),x=﹣1±,x1=﹣1+,x2=﹣1﹣(舍),则AM=BN=﹣1,∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4,故答案为:2﹣4.16.解:∵A(0,0),B(2,0),∴AB的中点为(1,0),∴P1(1,1),∵△AP1B绕点B顺时针旋转180°,∴P2(3,﹣1),同理分别得到P3(5,1),P4(7,﹣1),P5(9,1),…,∴P n(2n﹣1,(﹣1)n+1),∴P2021的坐标为(4041,1),故答案为:(4041,1).三、解答题:(共72分)17.解:(1)∵a=3,b=﹣5,c=1,∴Δ=(﹣5)2﹣4×3×1=13>0,则x==,∴;(2)∵3(2x﹣5)2﹣27=0,∴3(2x﹣5)2=27,∴(2x﹣5)2=9,则2x﹣5=3或2x﹣5=﹣3,解得x1=1,x2=4.18.解:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求.19.解:(1)∵方程有两个不相等的实数根,∴Δ=b2﹣4ac=(﹣4)2﹣4×1×m>0,m<4,∴实数m的取值范围是m<4.(2)∵x1+x2=4,5x1+x2=8,∴x1=1,∵x1是方程的根,把x1=1代入原方程得1﹣4+m=0,∴m=3,∴实数m的值是3.20.解:(1)∵AB=AC∴∠ABC=∠ACB∵∠APC=∠ABC+∠BAP∴∠APD+∠DPC=∠ABC+∠BAP且∠APD=∠B∴∠DPC=∠BAP且∠ABC=∠ACB∴△BAP∽△CPD(2)∵△ABP∽△PCD∴即∵PD∥AB∴即∴∴∴BP=21.解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.22.(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∵CE⊥AB,∴OC∥AB,∴∠DAB=∠COD=60°,由(1)知,∠CBE+∠CAD=90°,∴∠CBE=90°﹣∠CAD=60°=∠DAB,∴BC∥OA,∴四边形ABCO是平行四边形,∵OA=OC,∴▱ABCO是菱形;②由①知,四边形ABCO是菱形,∴OA=OC=AB=2,∴AD=2OA=4,由①知,∠COD=60°,在Rt△ACD中,∠CAD=30°,∴CD=2,AC=2,∴AD,AC与围成阴影部分的面积为S△AOC+S扇形COD=S△ACD+S扇形COD=××2×2+=+π.23.解:(1)EM=EN.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图②所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵BA=BC,点E为AC中点,∴BE平分∠ABC.又∵EH⊥AB,EG⊥BC,∴EH=EG.在△HEM和△GEN中,∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,∴△HEM≌△GEN.∴EM=EN.(2)EM=EN仍然成立.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图③所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵BA=BC,点E为AC中点,∴BE平分∠ABC.又∵EH⊥AB,EG⊥BC,∴EH=EG.在△HEM和△GEN中,∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,∴△HEM≌△GEN.∴EM=EN.(3)线段EM与EN满足关系:EM:EN=n:m.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图④所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵∠HEM=∠GEN,∠EHM=∠EGN,∴△HEM∽△GEN.∴EM:EN=EH:EG.∵点E为AC的中点,∴S△AEB=S△CEB.∴AB•EH=BC•EG.∴EH:EG=BC:AB.∴EM:EN=BC:AB.∵AB:BC=m:n,∴EM:EN=n:m.24.解:(1)∵抛物线y=ax2+bx﹣8经过点A(﹣2,0),D(6,﹣8),∴,解得,∴抛物线解析式为y=x2﹣3x﹣8,∵y=x2﹣3x﹣8=(x﹣3)2﹣,∴抛物线对称轴为直线x=3,又∵抛物线与x轴交于点A、B两点,点A坐标(﹣2,0),∴点B坐标(8,0).设直线l的解析式为y=kx,∵经过点D(6,﹣8),∴6k=﹣8,∴k=﹣,∴直线l的解析式为y=﹣x,∵点E为直线l与抛物线对称轴的交点,∴点E的横坐标为3,纵坐标为﹣×3=﹣4,∴点E坐标(3,﹣4);(2)抛物线上存在点F,连接FC,FE.则有|FC﹣FE|≤CE.当点F为直线CE与抛物线交点时(不与点C重合),FC﹣FE=CE,此时|FC﹣FE|值最大.设直线CE解析式为y=kx﹣8,点E的坐标为(3,﹣4),∴3k﹣8=﹣4,∴k=,∴直线CE解析式为y=x﹣8,∵抛物线的表达式为y=x2﹣3x﹣8,联立解得,(舍去),,∴点F为直线CE与抛物线交点时(不与点C重合),|FC﹣FE|值最大.此时F;(3)①如图1,当OP=OQ时,△OPQ是等腰三角形.∵点E坐标(3,﹣4),∴OE==5,过点E作直线ME∥PB,交y轴于点M,交x轴于点H.∴,∴OM=OE=5,∴点M坐标(0,﹣5).设直线ME的解析式为y=k1x﹣5,∴3k1﹣5=﹣4,∴k1=,∴直线ME解析式为y=x﹣5,令y=0,得x﹣5=0,解得x=15,∴点H坐标(15,0),∵MH∥PB,∴,即,∴m=﹣,②如图2,当QO=QP时,△POQ是等腰三角形.∵当x=0时,y=x2﹣3x﹣8=﹣8,∴点C坐标(0,﹣8),∴CE==5,∴OE=CE,∴∠1=∠2,∵QO=QP,∴∠1=∠3,∴∠2=∠3,∴CE∥PB,设直线CE交x轴于N,解析式为y=k2x﹣8,∴3k2﹣8=﹣4,∴k2=,∴直线CE解析式为y=x﹣8,令y=0,得x﹣8=0,∴x=6,∴点N坐标(6,0),∵CN∥PB,∴,∴,∴m=﹣.③OP=PQ时,显然不可能,理由,∵D(6,﹣8),∴∠1<∠BOD,∵∠OQP=∠BOQ+∠ABP,∴∠PQO>∠1,∴OP≠PQ,综上所述,当m=﹣或﹣时,△OPQ是等腰三角形.。
第二次月考--九年级上册英语 模拟测试卷(人教版)(含答案)
第二次月考--2024-2025学年九年级英语模拟测试卷(人教版)一、单项选择(共10小题;每小题1分,满分10分)1.No hurry! Please __________ your time.A.take B.save C.set D.value2.—How many eggs has that hen __________?—Nearly one hundred.A.lay B.laid C.lied D.lain3.—Jack won first prize in the competition.—Yes. The news ________ really quickly. Now everybody in our school has known it.A.spread B.left C.connected D.jumped4.The boats take different lines, but they all _______ in the same place.A.give up B.clear up C.end up D.make up5.__________ comes here, you should say hello to him.A.Whatever B.Whoever C.Wherever D.Whomever6.I admire you for ________ such a difficult job on time.A.finish B.to finish C.finishing D.finished7.— Why did he look so sad?— Because he ______ to pass the final exam.A.succeeded B.failed C.required D.advised8.The old man couldn’t afford to buy that bike although it was ________.A.unimportant B.inexpensive C.impolite D.unnecessary9.You needn’t take your wallet while shopping. It’s ______ to pay on WeChat or Alipay (支付宝).A.convenient B.helpful C.comfortable D.polite10.If you have no idea about how to use the machine, you can read the ______ first.A.interviews B.inventions C.instructions D.corrections二、完形填空(共两节,满分20分)第一节阅读下面短文,从短文前的选项中选出能填入空白处的最佳选项。
宿迁市钟吾初级中学2022-2023学年九年级上学期第二次月考英语试题(含解析)
宿迁市钟吾初级中学2022-2023学年九年级上学期第二次月考英语试题二、单项选择(共15小题;每小题1分,满分15分)1.(1分)When he was________university student,he published his first volume of poetry.()A.a B.an C.the D./2.(1分)﹣﹣What was the ____________of the car accident?﹣﹣The driver drove too fast so the car was out of control()A.problem B.cause C.result D.purpose3.(1分)Jane Austen,the writer of Pride and Prejudice,wrote many stories of love.But she______single all her life.A.reminded B.remained C.realized D.required4.(1分)At first,Spud Webb was refused by the coach.Then________hard work,he got the scholarship from North Carolina State University.()A.through B.at C.on D.though5.(1分)The reporter could ______imagine how such an old man was able to climb the highest mountain in England.()A.simply B.hardly C.suddenly D.correctly6.(1分)—Sir,when can we go out to play badminton?—You can do it as soon as your task_________.()A.completes B.is completedC.will be completed D.will complete7.(1分)—When shall we go on a trip to Zaohe Longyun City,this week or next week?一________is OK.You decide.()A.Neither B.Every C.Either D.Each8.(1分)一He always_________to read books till midnight.一Oh,he is a top student.If he is not in the library,he is sure to be on the way.()A.gives up B.picks up C.stays up D.puts up9.(1分)—I want to have my bike __________.一Let us get the man over there __________you.()A.repair;to help B.repairing;helpC.repaired;to help D.to repair;helps10.(1分)一What do you think of the film Song of Spring?一It's very moving.It's worth _________ second time.()A.to watch B.to be watchedC.being watch D.watching11.(1分)—Will Helen come to our company tomorrow afternoon?—I am sure________ she will come,but I don't know_________ or not she'll take part in our project.()A.if;whether B.if;ifC.that;if D.that;whether12.(1分)_________great progress you have made this term! —lt's very kind of you to say so.()A.What B.How C.what a D.How a13.(1分)Why not ______ your teacher for advice when you don't know ______ the problems?()A.ask;what to do withB.to ask;how to deal withC.ask;what to deal withD.to ask;how to do with14.(1分)I really wonder__________.()A.how can I improve my EnglishB.which dress should I wear tonightC.who I can talk about the projectD.why he was late this morning15.(1分)﹣Thank you for giving me so much practical advice.﹣.Keep trying and you are sure to be successful.()A.It depends B.I didn't mean itC.Don't mention it D.I can't agree more三、完形填空16.(15分)A woman was at an airport waiting to board her flight.She still had a lot of(1),so she went to a shop and bought a book to read.(2)she was in the shop,she decided to buy a bag of cookies as(3).She(4)at her gate,sat down and started reading her book.She was so focused on her book that she didn't(5)what was going on around her.But she did see that a man had sat down next to her and taken one of her cookies out of the bag.She pretended (假装)not to notice,as she didn't want to make a scene.But then the man took more.He kept eating the cookies (6)there was just one left.The man tookthe last cookie and(7)it in half.He tapped (轻拍)the woman on the shoulder and (8)one half to her.The woman could not believe that someone would(9)all of her cookies and then offer half a cookie in return.She(10)grabbed (夺取)the half﹣cookie out of his hand and ate it without any words.Finally,it was time for her to board.But as she went to the gate,she(11)that her bag of cookies was still in her purse.The man had been eating his(12)cookies the whole time and simply wanted to share the last one with her.The woman blushed (脸红了).She sincerely wanted to(13)to the man for her rudeness.When we're not paying attention to the world around us,it can be easy to(14)what's happening or even become angry with others.It is better to keep our eyes open and think about every(15)when trying to understand a particular situation.(1)A.seats B.money C.tasks D.time(2)A.While B.If C.Since D.Although(3)A.nice B.well C.good D.soon(4)A.arrived B.reached C.got D.returned(5)A.believe B.worry C.notice D.forget(6)A.during B.until C.after D.unless(7)A.broke B.C.dropped D.changed(8)A.put out B.carried out C.held out D.found out(9)A.borrow B.steal C.bring D.buy(10)A.happily B.sadly C.excitedly D.angrily(11)A.realized B.understood C.knew D.aware(12)A.half B.self C.last D.own(13)A.apologize B.thank C.offer D.prove(14)A.reflect B.learn C.misunderstand D.consider(15)A.memory B.possibility C.necessity D.requirement四、阅读理解(共两节,满分30分)第一节阅读下列短文,选出最佳选项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案5. 写出:周日到周六Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday; 一月到十二月January, February, March, April, May, June, July, August, September, October, November, December 春夏秋冬spring, summer, autumn, winter,阳光明媚的sunny, 多云的cloudy, 下雨的rainy, 刮风的windy, 下雪的snowy;基数词与序数词:1 one / first, 2 two / second, 3 three / third 4 four / fourth, 5 five / fifth, 6 six / sixth 7seven / seventh, 8 eight / eighth 9 nine / ninth, 10 ten / tenth, 11 eleven / eleventh, 12 twelve / twelfth, 13thirteen / thirteenth, 15 fifteen / fifteenth, 18eighteen / eighteenth, 19 nineteen / nineteenth 20 twenty / twentieth 21 twenty-one / twenty-first, 30 thirty, / thirtieth 40 forty / fortieth 50 fifty / fiftieth, 80 eighty / eightieth 90 ninety / ninetieth 100 one hundred / one hundredth, two thousand 背不规则动词表期中复习I. 根据句意及首字母提示,完成各句中所缺单词1. He produces more meat this year than he did last year.2. They have been married for ten years.3. We use knives to cut things and spoons to eat soup.4. There’s some rubbish on the floor.5. Is it a safe country to live in?6. His country has developed a friendship with China.7. You needn't rush. You've plenty of time.8. I was wondering how to get there quickly.9. Tom's father was a farmer in Texas.10. The boy went on eating till he was full.11. The girls formed a line at the door a moment ago.12. He lent me his car yesterday, but it broke down.13. Don't stick the chopsticks into your rice!14. My feelings towards Susan have changed overthe years.15. Do you know who invented planes?16. I wish all of you a pleasant journey.17. The children are picking apples on the farm.18. The salt is very expensive in ancient China.19. He likes eating apple pies very much.20. He knocked at the door and entered. 21. His horse has a white mark on its head.22. Ann kissed her mother good night and went to bed.23. You look relaxed these days.24. She's the girl whose bicycle was stolen.25. He was described as being very clever.26. I asked where the bank was and he pointedacross the road.27. The door is locked at night.28. Don't trouble yourself with such a matter.29. They received orders to start at once.30. The scoop is used for heating ice cream.31. He threw a stone at the dog and it ran away.32. The orange has a sour taste.33. Many centuries have passed since that time.34. He was a boy with an active brain.35. I bought a basket of pears yesterday.36. Coins are made of meta l.37. Fish can't live on land.38. Write your name below the line.39. The price of the watch has risen since last month.40. This train is direct so you do not have to change.41. Where can we park the car?42. It’s an empty bottle and there’s nothing in it.43. He often experiments with animals.44. I will put some riddles to you, boys.45. He e-mailed me yesterday on QQ.46. His house stands beside a river.47. She normally goes to bed at nine o'clock.II. 用所给动词的适当形式填空1.—Does he drink milk every day?—No, he never drinks it.2. Look! The children are playing basketball.3. We went to the beach last summer vacation.4. Did you read a book last night?5. There will be less pollution in 5 years.6. I was reading when he came in yesterday.7. Eating too much is bad for your health.8. Run like this. Don’t run like that.9. Can / Could you bring my book here?10. We shouldn’t eat too much fast food.11. He has to look after his mother now.12. It’s important to work hard every day.13. I find it hard to work out the problem.14. They were born in China, but they aren’t herenow.15. I want/need to buy a pen.17. He taught me to play soccer yesterday.18. He learned to sing songs at the age of 4.19. Would you like to go with us?20. He’s happy to be here. 21. I hope to see you .22. Do you have something to eat? I’m hungry.23. He seems to be ill. 24. He planned to exercise.25. He asked me to get up early. He told me not tosleep late.26. Jim likes reading books in the afternoon. Butthis afternoon he doesn’t like to read books.27. He’s too tired. So he stopped to rest.28. They stopped talking when the teacher came in.29. Remember to close the door when you leave.30. I’m busy doing my homework. 31. He enjoys listening to music after supper.32. We had a good time/fun reading a book.33. When did you start to hiccup / hiccupping?34. When did you finish writing the letter?35. He often practices speaking English.36. How about joining us?37. He is good at running. 38. Thanks for helpingme.39. He does well in drawing.40. Can you imagine flying in the sky?41. Could you please help me?42. I can help you work /to work out the problem.43. Let’s go to drink something. I’m thirsty.44. He makes me do lots of things every day.45. Could you tell me who is singing a song now?46. He said he would fly to Beijing tomorrow.47. The teacher told us the earth goes around the sun.48. He said that he must work hard.49. I often hear him sing in the room. Listen! Youcan hear him singing in the room.50. He spent the whole day watching TV.51. Do you want to see him play soccer?52. When I walked past the playground, I saw him playing soccer.53. —Where is Tom? I can’t find him.—He has gone to Shanghai.54. —Have you seen my book?— Yes, I saw it five minutes ago.55. I haven’t taken any food since last Sunday.56. The best way to learn English is by using English.57. — How does he study for a test?— He studies by reading books.58. He used to get up late, but now he gets used togetting up early.59. We don’t allow him to smoke here.60. We don’t allow smoking here.61. Teenagers shouldn’t be allowed to drive.62. We weren’t allowed to have the test yesterday.63 My life has changed a lot in the past few years.64. The long bridge will be built in two months.65.Which language is the most widely spoken in the world?66. Last year a large number of trees were cut down.67. The students are often told to take care of their desks and chairs.68. The old man is ill. He must be sent to the hospital.69. Vegetables, eggs and fruits are sold in this shop.70.The food smells delicious.作文参考范文:(仅供参考,自己仿写)1. The telephone is one of the most useful inventions in the world today, but do you know who invented it?The telephone was invented by Alexander Bell. He was a Scottish-American scientist who was born in the UK in 1847. Bell invented the telephone with the help of his partner Tomas Watson in 1876, and it was invented by accident. Besides the phone, Bell also learned to send music noted through the telephone in 1975.The telephone makes the world smaller, and you can talk to people who are far away from you. So today it’s used nearly everywhere in the world.2. An unforgettable thingI have experienced many things in my life. But there’s one thing I’ll never forget.My math teacher is a kind person. He is very easygoing and patient to his students. His classes are so interesting that we all like him very much. He is popular with us, not only does he have great teaching skills, but also he gives us advices on how to learn other subjects well. I remembered one time, I failed in my math exam and I felt very upset. When he knew that, he came to encourage me. He gave me confidence and cheered me up. With his help, I got a good mark in the final math exam. so I really want to thank him for the help and knowledge he gave me.The things has influenced me a lot and I won’t forget it for ever. Thank you, my dear teacher. I’ll study harder in the future!3. 背报纸第四期中缝给出的例文,4. Dear Jim,I’m glad to hear that you’ll come to China next month. Here are some table manners about China, and I hope they can help you.In China the dishes are placed on the table and people sit around the table and share them. And the Chinese hosts take good care of every guest, and sometimes they use a pair of clean chopsticks to put some food in your bowl or plate. If you feel uncomfortable with this, you can just say a polite thank you and leave the food there. Don't stick your chopsticks into the rice. Instead, put them on your dish. And you are not supposed to tap on your bowl with your chopsticks. It is not polite. When you eat, you can talk loudly with other people.Remember these rules and I believe you will have a good time in China!5. Dear Ted,I have some good news to tell you. We'll have an English speech in our school next Monday. The topic is " Hold on Your Dreams". It will start at 4: 30 p. m. I would like to invite you to it and I believe you'll be interested in it.Now I'll tell you how to get to our school by bus. You can take bus No. 102 just on the left of your school and get off on Center Street. Then go across the street, take a No. 2 bus and get off at the terminus. Go on and then turn left at the first crossing to Peace Street. Go along the street and you will see a restaurant on your right. Our school, No. 10 Middle School is just next to it.Waiting for your reply.Yours, Xiao Hua6. Welcome to JiningMy hometown Jining is a wonderful place to take a holiday. It lies in the southwest of Shandong Province in China.The weather here is great and there’s also many places of great interests in Jining.If you travel in Jining, you can visit Qufu. Confucius once lived there, so it’s an educational place. And you can also go to the Taibai Lake. You can go boating in the lake and enjoy the beautiful scenery there. There are many traditional snacks in Jining, such as Youtiao and Bengrouganfan. I believe you’ll like them. There are also many good museums in Jining and you can learn a lot about Jining’s history in the museums.Welcome to Jining, and I believe you’ll have a great time and fall in love with this city!。