几何概型练习题

合集下载

新人教A版高中数学必修333几何概型同步测试题

新人教A版高中数学必修333几何概型同步测试题

几何概型一、选择题一、取一根长度为3cm的绳索,拉直后在任意位置剪断,那么间的两段的长都不小于m的概率是()A、23B、13C、14D、不能确信2、某人睡午觉醒来,觉察表停了,他打开收音机想听电台整点报时,则他等待的时刻小于10分钟的概率是()A、16B、112C、160D、1723、在线段[0,3]上任取一点,则此点坐标大于1的概率是()A、34B、23C、12D、134、在1万平方千米的海域中有40平方千米的大陆架贮藏着石油,假若在海域中任意一点钻探,那么钻到油层面的概率是()A、140B、125C、1250D、1500二、填空题5、已知地铁列车每10分钟一班,在车站停1分钟,则乘客抵达站台当即乘上车的概率是__________________________。

6、边长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,则豆子落在圆及正方形夹的部份的概率是__________________________。

7、在等腰直角三角形ABC中,在斜线段AB上任取一点M,则AM的长小于AC的长的概率是_______________________。

8、几何概率的两个特点:(1)________________________________________________________。

(2)________________________________________________________。

9、在400ml自来水中有一个大肠杆菌,今从中随机掏出2ml水样放到显微镜下观看,则发觉大肠杆菌的概率是________________________________。

10、关于几何概率,概率为0的事件是不是可能发生?_________________。

11、在线段[0,a]上随机地投三个点,试求由点O到三个点的线段能组成一个三角形的概率是_____________________________________。

几何概型(有答案)

几何概型(有答案)
时刻(分钟),则
A
10 10
S
30
x
0 x 30
0 y 30
而二人会面 x y 10
SA P(A)= SS
302-202 = 302
9 5
练习:假设小明家订了一份报纸,送 报人可能在早上6:30至7:30之间把 报纸送到小明家,小明的爸爸离开家 去工作的时间在早上7:00至8:00之 间,问小明的爸爸在离开家前能得到 报纸的概率是多少? 书本上P137例2
练习
在500ml的水中有一个草履虫,现 从中随机取出2ml水样放到显微镜下 观察,则发现草履虫的概率是( ) A.0.5 B.0.4 C.0.004 D.不能确定
练习 取一根长为3米的绳子,拉直后在任意位 置剪断,那么剪得两段的长都不少于1米 1m 1m 的概率有多大?
3m
解:如上图,记“剪得两段绳子长都不 小于1m”为事件A,把绳子三等分,于 是当剪断位置处在中间一段上时,事件 A发生。由于中间一段的长度等于绳子 长的三分之一,所以事件A发生的概率P (A)=1/3。
例9、(1)在面积为S的三角形ABC的AB边上 任取一点P,则三角形PBC的面积小于S∕2的 概率是___; (2)向面积为S的三角形ABC内任投一点P, 则三角形PBC的面积小于S∕2的概率是___;
典型例题讲解
例10、下图的矩形,长为5,宽为2, 在矩形内在随机地撒300颗黄豆,数 得落阴影部分的黄豆数为138颗,则 我们可以估计出阴影部分的面积 为 .
解题方法小结:

对于复杂的实际问题,解题的 关键是要建立概率模型,找出 随机事件与所有基本事件相对 应的几何区域,把问题转化为 几何概型的问题,利用几何概 型公式求解。
练习

几何概型例题及解析

几何概型例题及解析

几何概型例题及解析题目:在边长为2的正方形内随机取一个点,则该点到正方形四个顶点的距离都大于1的概率是( )。

A. 1/2B. 1/4C. 3/4D. 1/16解析:在边长为2的正方形内,到四个顶点距离都大于1的区域是一个边长为1的正方形。

因此,所求概率为小正方形的面积与大正方形面积之比,即1/4。

题目:在半径为2的圆内随机取一条弦,则弦长小于等于2√3的概率为( )。

A. 1/4B. 1/2C. 3/4D. √3/2解析:在半径为2的圆内,弦长小于等于2√3的弦对应的圆心角为120°。

因此,所求概率为120°/360° = 1/3,但选项中并没有这个值,可能题目有误或选项不完整。

题目:在区间[0, 2]上随机取两个数x和y,则满足x^2 + y^2 ≤ 2的概率是( )。

A. π/4B. π/2C. 1 - π/4D. 1 - π/2解析:在区间[0, 2]上随机取两个数x和y,对应的平面区域是一个边长为2的正方形。

满足x^2 + y^2 ≤ 2的区域是一个半径为√2的圆在正方形内的部分。

所求概率为圆的面积与正方形面积之比,即π*(√2)^2 / (2*2) = π/2。

题目:在边长为1的正方形内随机取一个点,则该点到正方形中心的距离小于1/2的概率为( )。

A. 1/4B. 1/2C. 3/4D. √2/2解析:在边长为1的正方形内,到中心距离小于1/2的区域是一个边长为1/2的正方形。

因此,所求概率为小正方形的面积与大正方形面积之比,即(1/2)^2 = 1/4。

题目:在三维坐标系中,随机取一个点P(x, y, z),其中x, y, z ∈ [0, 1],则点P到原点O的距离小于等于√2/2的概率为( )。

A. π/6B. π/4C. π/3D. π/2解析:在三维坐标系中,到原点距离小于等于√2/2的点构成一个半径为√2/2的球在[0, 1]^3内的部分。

所求概率为球的体积与[0, 1]^3的体积之比,即(π*(√2/2)^3) / 1^3 = π/6。

高二数学几何概型试题

高二数学几何概型试题

高二数学几何概型试题1.如图,EFGH是以O为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用A 表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形HOE(阴影部分)内”,则P (B|A)=()A. B. C. D.【答案】A【解析】由条件概率及几何概率可知:P(B|A),故选A.【考点】条件概率及几何概率.2.从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分的概率为________.【答案】【解析】阴影部分面积为,∴所求概率为.【考点】定积分计算曲边图形的面积,几何概型.3.如图所示的“赵爽弦图”中,四个相同的直角三角形与中间的小正方形拼成的一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是______________.【答案】【解析】观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为,面积为,故飞镖落在阴影区域的概率.【考点】几何概率.4.已知,直线和曲线有两个不同的交点,他们围成的平面区域为,向区域上随机投以点,点落在内的概率为,若,则实数的取值范围是:【答案】【解析】将直线变形为,可知此直线过定点,为直线的斜率.曲线表示圆心在原点半径为2的上半个圆。

当直线与轴重合时平面区域和区域重合,此时;当直线位置时,区域的面积为,区域面积为,此时。

所以。

【考点】1不等式表示平面区域;2直线过定点问题及直线的斜率;3几何概型概率。

5.如图,在棱长为2的正方体内(含正方体表面)任取一点,则的概率 .【答案】【解析】以为原点为轴建立空间直角坐标系,则,设,则,则,从而.【考点】1.空间向量的数量积;2.几何概型.6.四边形ABCD为长方形,AB=2,BC=1,O为AB的中点。

在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A.B.C.D.【答案】C【解析】根据几何概型得,取到的点到O的距离大于2的概率:,选C.【考点】几何概型7.有一个底面半径为1、高为2的圆柱,点为这个圆柱底面圆的圆心,在这个圆柱内随机取一点,则点到点的距离大于1的概率为.【答案】【解析】空间内到点的距离等于1的点,是在以点为球心,1为半径的球面上,那么距离比1大的点在球的外部,因为基本事件总数是无限的,可以考虑几何概型,即圆柱内半球外部的体积与圆柱的体积比【考点】1、几何体的体积;2、几何概型.8.如图所示的矩形内随机撒芝麻,若落入阴影内的芝麻是628粒,则落入矩形内芝麻的粒数约是【答案】800【解析】由已知中矩形的长和宽可知,长是宽的2倍,根据随机模拟实验的概念,我们易得阴影部分的面积与矩形面积的比例约为芝麻落在阴影区域中的频率,由此我们构造关于S的方程,阴影解方程即可求矩形区域的粒数,故答案为800.【考点】几何概型点评:本题考查的知识点是几何概型与随机模拟实验,利用阴影面积与矩形面积的比例约为黄豆的方程,是解答本题的关键.落在阴影区域中的频率,构造关于S阴影9.取一根长度为米的绳子,拉直后在任意位置剪断,则剪得两段的长度都不小于1米,且以剪得的两段绳为两边的矩形的面积都不大于平方米的概率为()A.B.C.D.【答案】C【解析】设剪断后的两段绳长分别为x,y,那么可知的概率即为矩形区域的面积为25,那么满足题意的区域为,那么可知由几何概型概率可知为10:25=2:5,故答案为C.【考点】几何概型点评:主要是考查了几何概型的运用,分析区域长度和面积来求解,属于基础题。

几何概型大题

几何概型大题

1.某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,依此类推,统计结果如表:3 456停靠时间12121720151383-轮船数量(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为a小时,求a的值;((Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠a小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.2.假设小明家订了一份报纸,送报人可能在早上6:30﹣7:30之间把报纸送到小明家,小明父亲离开家去工作的时间在早上7:00﹣8:00之间,问小明父亲在离开家前能得到报纸(称为事件A)的概率是多少--3.空气质量按照空气质量指数大小分为七档(五级),相对应空气质量的七个类别,指数越大,说明污染的情况越严重,对人体危害越大.指数 级别类别 户外活动建议 0~50Ⅰ 优 可正常活动 51~100 :Ⅱ良 101~150Ⅲ 轻微污染 易感人群症状有轻度加剧,健康人群出现刺激症状,心脏病和呼吸系统疾病患者应减少体积消耗和户外活动.151~200 轻度污染 201~250Ⅳ 中度污染 心脏病和肺病患者症状显著加剧,运动耐受力降低,健康人群中普遍出现症状,老年人和心脏病、肺病患者应减少体力活动. 251~300 中度重污染301~500 《 Ⅴ重污染 健康人运动耐受力降低,由明显强烈症状,提前出现某些疾病,老年人和病人应当留在室内,避免体力消耗,一般人群应尽量减少户外活动. 现统计邵阳市市区2016年10月至11月连续60天的空气质量指数,制成如图所示的频率分布直方图.(1)求这60天中属轻度污染的天数;(2)求这60天空气质量指数的平均值;(3)将频率分布直方图中的五组从左到右依次命名为第一组,第二组,…,第五组.从第一组和第五组中的所有天数中抽出两天,记它们的空气质量指数分别为x ,y ,求事件|x ﹣y|≤150的概率.'(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.}5.(1)已知关于x的二次函数f(x)=ax2﹣4bx+1.设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)在区间[1,5]和[2,4]上分别取一个数,记为a,b,求方程+=1表示焦点在x轴上且离心率小于的椭圆的概率.·当a∈[0,3],b∈[0,2]时,方程①有实数根的概率为p1;当a∈[0,3],b∈[0,2]并且a∈N,b∈N时,方程①有实数根的概率为p2,求p1,p2的值.)7.已知关于x的一元二次方程:9x2+6mx=n2﹣4(m,n∈R).(1)若m∈{x|0≤x≤3,x∈N*},n∈{x|0≤x≤2,x∈Z},求方程有两个不相等实根的概率;(2)若m∈{x|0≤x≤3,x∈R},n∈{x|0≤x≤2,x∈R},求方程有实数根的概率.)8.假设小明家订了一份报纸,送报人可能在早上x(6≤x≤8)点把报纸送到小明家,小明每天离家去工作的时间是在早上y(7≤y≤9)点,记小明离家前不能看到报纸为事件M.(1)若送报人在早上的整点把报纸送到小明家,而小明又是早上整点离家去工作,求事件M的概率;(2)若送报人在早上的任意时刻把报纸送到小明家,而小明也是早上任意时刻离家去工作,求事件M的概率.》9.在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.(1)若抽奖规则是从一个装有2个红球和4个白球的袋中无放回地取出2个球,当两个球同色时则中奖,求中奖概率;(2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.(素(x,y).(1)求以(x,y)为坐标的点落在圆x2+y2=4内的概率;(2)求以(x,y)为坐标的点到直线x+y=0的距离不大于的概率.(提示:可以考虑采用数形结合法)】11.已知关于x的一元二次函数f(x)=ax2﹣bx+1,分别从集合P和Q中随机取一个数a和b得到数对(a,b).,(1)若P={x|1≤x≤3,x∈Z},Q={x|﹣1≤x≤4,x∈Z},求函数y=f(x)在x∈R内是偶函数的概率;(2)若P={x|1≤x≤3,x∈Z},Q={x|﹣1≤x≤4,x∈Z},求函数y=f(x)有零点的概率;(3)若P={x|1≤x≤3,x∈R},Q={x|﹣1≤x≤4,x∈R},求函数y=f(x)在区间[1,+∞)上是增函数的概率..(1)求甲、乙两个旅游团所选旅游线路不同的概率;(2)某天上午9时至10时,甲,乙两个旅游团都到同一个著名景点游览,20分钟后游览结束即离去.求两个旅游团在该著名景点相遇的概率.—13.如图,在圆心角为直角的扇形OAB中,分别以OA、OB为直径作两个半圆,在扇形OAB内随机取一点,求此点取自阴影部分的概率.!50分;第二组,成绩大于等于50分且小于60分;…第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中.(1)求成绩在区间[80,90)内的学生人数及成绩在区间[60,100]内平均成绩;(2)从成绩大于等于80分的学生中随机选3名学生,求至少有1名学生成绩在区间[90,100]内的概率.\15.甲、乙两人约定晚上6点到7点之间在某地见面,并约定先到者要等候另一人一刻钟,过时即可离开,求甲、乙能见面的概率.~(1)若甲预计在元月1日、3日、5日中的一天到达该港口,乙预计在元月1日、2日、3日中的一天到达该港口,且甲、乙在预计日期到达该码头均是等可能的,求甲、乙在同一天到该港口的概率.(2)若甲、乙均预计在元月1日00:00点﹣﹣﹣01:00点的任意时刻到达该港口,假设两船到达的时刻相差不超过20分钟,则后到的船必须要等待,求甲、乙中有船要等待的概率.参考答案与试题解析一.解答题(共16小题)1.某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,依此类推,统计结果如表:停靠时间`3456轮船数量1212}1720151383(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为a小时,求a的值;(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠a小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.【解答】解:(Ⅰ)a=(×12+3×12+×17+4×20+×15+5×13+×8+6×3)=4,(Ⅱ)设甲船到达的时间为x,乙船到达的时间为y,则`若这两艘轮船在停靠该泊位时至少有一艘船需要等待,则|y﹣x|<4,所以必须等待的概率为P=1﹣=,答:这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率为.2.假设小明家订了一份报纸,送报人可能在早上6:30﹣7:30之间把报纸送到小明家,小明父亲离开家去工作的时间在早上7:00﹣8:00之间,问小明父亲在离开家前能得到报纸(称为事件A)以横坐标表示报纸送到时间,以纵坐标表示父亲离家时间,建立平面直角坐标系,父亲在离开家前能得到报纸的事件构成区域是下图:由于随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A发生,所以P(A)==.|3.空气质量按照空气质量指数大小分为七档(五级),相对应空气质量的七个类别,指数越大,说明污染的情况越严重,对人体危害越大.指数级别类别户外活动建议~5Ⅰ优可正常活动、51~1Ⅱ良1 0 1~1 5Ⅲ轻微污染易感人群症状有轻度加剧,健康人群出现刺激症状,心脏病和呼吸系统疾病患者应减少体积消耗和户外活动.1 5 1~2 0 0¥轻度污染2 0 1~2 5 0Ⅳ中度污染心脏病和肺病患者症状显著加剧,运动耐受力降低,健康人群中普遍出现症状,老年人和心脏病、肺病患者应减少体力活动.2 5 1~3 0 0中度重污染)3 0 1~5 0 0Ⅴ重污染健康人运动耐受力降低,由明显强烈症状,提前出现某些疾病,老年人和病人应当留在室内,避免体力消耗,一般人群应尽量减少户外活动.现统计邵阳市市区2016年10月至11月连续60天的空气质量指数,制成如图所示的频率分布直方图.(1)求这60天中属轻度污染的天数;(2)求这60天空气质量指数的平均值;(3)将频率分布直方图中的五组从左到右依次命名为第一组,第二组,…,第五组.从第一组和第五组中的所有天数中抽出两天,记它们的空气质量指数分别为x,y,求事件|x﹣y|≤150的概率.】【解答】解:(1)依题意知,轻度污染即空气质量指数在151~200之间,共有×50×60=9天.(2)由直方图知60天空气质量指数的平均值为.(3)第一组和第五组的天数分别为60×=6天,60×=3天,则从9天中抽出2天的一切可能结果的基本事件有36种,由|x﹣y|≤150知两天只能在同一组中,而两天在同一组中的基本事件有18种,用M表示|x﹣y|≤150这一事件,则概率.4.设有关于x的一元二次方程x2+ax+b2=0.~(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.【解答】解:(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).设事件A为“方程x2+ax+b2=0有实根”.则判别式△=a2﹣4b2≥0,即a≥2b,若a=0,则b=0,若a=1,则b=0,若a=2,则b=0或b=1,-若a=3,则b=0或b=1共有6个,则对应的概率P=.(2)记事件B=“方程x2+ax+b2=0有实根”.由△=a2﹣4b2≥0,得:a≥2b全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},其面积为S=3×2=6.构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥2b},则D(3,)其面积为S′=×3×=,对应的概率P==.@5.(1)已知关于x的二次函数f(x)=ax2﹣4bx+1.设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)在区间[1,5]和[2,4]上分别取一个数,记为a,b,求方程+=1表示焦点在x轴上且离心率小于的椭圆的概率.【解答】解:(1)∵函数f(x)=ax2﹣4bx+1的图象的对称轴为直线x=,要使f(x)=ax2﹣4bx+1在区间[1,+∞)上为增函数,当且仅当a>0且≤1,即2b≤a.…(2分)若a=1,则b=﹣1;若a=2,则b=﹣1或1;若a=3,则b=﹣1或1.∴事件包含基本事件的个数是1+2+2=5.…(4分)而满足条件的数对(a,b)共有3×5=15个∴所求事件的概率为=.…(6分)`(2)方程+=1表示焦点在x轴上且离心率小于的椭圆,故…(8分)化简得又a∈[1,5],b∈[2,4],画出满足不等式组的平面区域,如图阴影部分所示,…(10分)阴影部分的面积为,故所求的概率P=.…(12分)6.设关于x的一元二次方程x2+2ax+b2=0①,当a∈[0,3],b∈[0,2]时,方程①有实数根的概率为p1;当a∈[0,3],b∈[0,2]并且a∈N,b∈N时,方程①有实数根的概率为p2,求p1,p2的值.【解答】解:(1)如图所示,试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}(图中矩形所示);其面积为S=3×2=6;;而构成事件“关于x的一元二次方程x2+2ax+b2=0有实根”的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}(如图阴影所示);故所求的概率为P1==;(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2,且a∈N,b∈N}如图中矩形中的点,共12个;而构成事件“关于x的一元二次方程x2+2ax+b2=0有实根”的区域为{(a,b)|0≤a≤3,0≤b≤2,且a≥b,a∈N,b∈N},如图阴影部分中的点,共9个;故所求的概率为P2==.(7.已知关于x的一元二次方程:9x2+6mx=n2﹣4(m,n∈R).(1)若m∈{x|0≤x≤3,x∈N*},n∈{x|0≤x≤2,x∈Z},求方程有两个不相等实根的概率;(2)若m∈{x|0≤x≤3,x∈R},n∈{x|0≤x≤2,x∈R},求方程有实数根的概率.【解答】解:方程的△=36m2+36(n2﹣4).(1)m∈{x|0≤x≤3,x∈N*}={1,2,3},n∈{x|0≤x≤2,x∈Z}={0,1,2},基本事件总数为9△>0,m2+n2>4,满足条件的(m,n)为(1,2),(2,1),(2,2),(3,0),(3,1),(3,2),共6个,∴方程有两个不相等实根的概率为=;(2)m∈{x|0≤x≤3,x∈R},n∈{x|0≤x≤2,x∈R},对应区域的面积为6,△≥0,m2+n2≥4,对应区域的面积为6﹣=6﹣π,∴方程有实数根的概率为=1﹣.—8.假设小明家订了一份报纸,送报人可能在早上x(6≤x≤8)点把报纸送到小明家,小明每天离家去工作的时间是在早上y(7≤y≤9)点,记小明离家前不能看到报纸为事件M.(1)若送报人在早上的整点把报纸送到小明家,而小明又是早上整点离家去工作,求事件M的概率;(2)若送报人在早上的任意时刻把报纸送到小明家,而小明也是早上任意时刻离家去工作,求事件M的概率.【解答】解:(1)设送报人到达的时间为X,小王离家去工作的时间为Y,记小王离家前不能看到报纸为事件M;则(X,Y)可以看成平面中的整点,试验的全部结果所构成的区域为Ω={(X,Y)|6≤X≤8,7≤Y≤9},整点共有3×3=9个,事件M所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X≥Y}整点有3个.是一个古典几何概型,所以P(M)=(2)如图,设送报人到达的时间为X,小王离家去工作的时间为Y,记小王离家前不能看到报纸为事件M;则(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(X,Y)|6≤X≤8,7≤Y≤9}一个正方形区域,面积为SΩ=4,】事件M所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X≥Y}即图中的阴影部分,面积为S A=.这是一个几何概型,所以P(M)==.9.在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.(1)若抽奖规则是从一个装有2个红球和4个白球的袋中无放回地取出2个球,当两个球同色时则中奖,求中奖概率;(2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.【解答】解:(1)从袋中6个球中无放回的摸出2个,试验的结果共有6×5=30种,中奖的情况分为两种:(i)2个球都是红色,包含的基本事件数为2×1=2;(ii)2个球都是白色,包含的基本事件数为4×3=12.:所以,中奖这个事件包含的基本事件数为14.因此,中奖概率为.…(6分)(2)设两人到达的时间分别为9点到10点之间的x分钟、y分钟.用(x,y)表示每次试验的结果,则所有可能结果为Ω={(x,y)|0≤x≤40,20≤y≤60};记甲比乙提前到达为事件A,则事件A的可能结果为A={(x,y)|x<y,0≤x≤40,20≤y≤60}.如图所示,试验全部结果构成区域Ω为正方形ABCD.而事件A所构成区域是正方形内的阴影部分.根据几何概型公式,得到P(A)==.所以,甲比乙提前到达的概率为.…(12分):10.已知集合A=[﹣3,3],B=[﹣2,2],设M={(x,y)|x∈A,y∈B},在集合M内随机取出一个元素(x,y).(1)求以(x,y)为坐标的点落在圆x2+y2=4内的概率;(2)求以(x,y)为坐标的点到直线x+y=0的距离不大于的概率.(提示:可以考虑采用数形结合法)【解答】解:(1)A=[﹣3,3],B=[﹣2,2],设M={(x,y)|x∈A,y∈B},表示的区域的面积为6×4=24.圆x2+y2=4的面积为4π,∴以(x,y)为坐标的点落在圆x2+y2=4内的概率为P1==,(2)由题意,到直线x+y=0的距离不大于的点为夹在两条平行直线x+y﹣2=0与x+y+2=0之间的范围内,如图所示,故所求事件的概率为.>11.已知关于x的一元二次函数f(x)=ax2﹣bx+1,分别从集合P和Q中随机取一个数a和b得到数对(a,b).(1)若P={x|1≤x≤3,x∈Z},Q={x|﹣1≤x≤4,x∈Z},求函数y=f(x)在x∈R内是偶函数的概率;(2)若P={x|1≤x≤3,x∈Z},Q={x|﹣1≤x≤4,x∈Z},求函数y=f(x)有零点的概率;(3)若P={x|1≤x≤3,x∈R},Q={x|﹣1≤x≤4,x∈R},求函数y=f(x)在区间[1,+∞)上是增函数的概率.【解答】解:(1)由已知得,P={1,2,3},Q={﹣1,0,1,2,3,4}.所有的有序数对有(1,﹣1),(1,0),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,0),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,0),(3,1),(3,2),(3,3),(3,4),共有18对,要使f(x)是偶函数,须有b=0,满足条件的有序数对有(1,0),(2,0),(3,0)共有3对,∴;{(2)由已知得,P={1,2,3},Q={﹣1,0,1,2,3,4},所有的有序数对有(1,﹣1),(1,0),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,0),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,0),(3,1),(3,2),(3,3),(3,4),共有18对,要使f(x)有零点,则b2﹣4a≥0,满足条件的有序数对有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共有6对,∴;(3)要使y=f(x)单调递增,则,即2a≥b,(a,b)可看成是平面区域Ω={(a,b)|1≤a≤3,﹣1≤b≤4}中的所有点,而满足条件是在平面区域A={(a,b)|2a≥b,1≤a≤3,﹣1≤b≤4}中的所有点,∴.[12.某旅游公司为甲,乙两个旅游团提供四条不同的旅游线路,每个旅游团可任选其中一条旅游线路.(1)求甲、乙两个旅游团所选旅游线路不同的概率;(2)某天上午9时至10时,甲,乙两个旅游团都到同一个著名景点游览,20分钟后游览结束即离去.求两个旅游团在该著名景点相遇的概率.【解答】解:(1)某旅游公司为甲,乙两个旅游团提供四条不同的旅游线路,每个旅游团可任选其中一条旅游线路,基本事件总数n=42=16,甲、乙两个旅游团所选旅游线路不同包含的基本事件个数m==4×3=12,∴甲、乙两个旅游团所选旅游线路不同的概率:p=.(2)设甲、乙两个旅游团到达著名景点的时刻分别为x,y,—依题意得,即,作出不等式表示的区域,如图:记“两个旅游团在著名景点相遇”为事件B,P(B)==.∴两个旅游团在该著名景点相遇的概率为.13.如图,在圆心角为直角的扇形OAB中,分别以OA、OB为直径作两个半圆,在扇形OAB内随机取一点,求此点取自阴影部分的概率.【解答】解:如图,设两个半圆的交点为C,且以AO为直径的半圆以D为圆心,连结OC、CD…设OA=OB=2,则弓形OMC的面积为S弓形OMC=S扇形OCD﹣S Rt△DCO=•π•12﹣×1×1=﹣可得空白部分面积为S空白=2(S半圆AO﹣2S弓形OMC)=2[•π•12﹣(﹣1)]=2因此,两块阴影部分面积之和为S阴影=S扇形OAB﹣S空白=π•22﹣2=π﹣2可得在扇形OAB内随机取一点,此点取自阴影部分的概率为P===1﹣答:在扇形OAB内随机取一点,则此点取自阴影部分的概率为1﹣.14.在参加市里主办的科技知识竞赛的学生中随机选取了40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;…第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中.(1)求成绩在区间[80,90)内的学生人数及成绩在区间[60,100]内平均成绩;(2)从成绩大于等于80分的学生中随机选3名学生,求至少有1名学生成绩在区间[90,100]内的概率.【解答】解:(1)∵各组的频率之和为1,∴成绩在区间[80,90)的频率为1﹣(×2+++)×10=,∴40名学生中成绩在区间[80,90)的学生人数为40×=4,成绩在区间[60,70),[70,80),[80,90),[90,100]内的人数分别为18,8,4,2,∴成绩在区间[60,100]内的平均成绩为;(2)设A表示事件“在成绩大于等于80分的学生中随机选2名学生,至少有1名学生成绩在区间[90,100]内”,由已知(1)的结果可知成绩在区间[80,90)内的学生有4人,记这四个人分别为a,b,c,d.成绩在区间[90,100]内的学生有2人,记这两个人分别为e,f,则选取学生的所有可能结果为:,事件总数为20.事件“至少有1名学生成绩在区间[90,100]之间”的可能结果为,基本事件为数16,∴.15.甲、乙两人约定晚上6点到7点之间在某地见面,并约定先到者要等候另一人一刻钟,过时即可离开,求甲、乙能见面的概率.【解答】解:如图所示,以x轴和y轴分别表示甲、乙两人到达约定地点和时间,则两人能够会面的等价条件是|x﹣y|<15.在平面直角坐标系内,(x,y)的所有可能结果是边长为60的正方形,而事件A“两人能够见面”的可能结果是阴影部分所表示的平面区域.由几何概型的概率公式得:=.所以两人能会面的概率是.16.甲、乙两艘货轮均要到某深入港停靠.(1)若甲预计在元月1日、3日、5日中的一天到达该港口,乙预计在元月1日、2日、3日中的一天到达该港口,且甲、乙在预计日期到达该码头均是等可能的,求甲、乙在同一天到该港口的概率.(2)若甲、乙均预计在元月1日00:00点﹣﹣﹣01:00点的任意时刻到达该港口,假设两船到达的时刻相差不超过20分钟,则后到的船必须要等待,求甲、乙中有船要等待的概率.【解答】解:(1)甲乙到达港口的时间有以下情况(1,1),(1,2),(1,3),(3,1),(3,2),(3,3),(5,1),(5,2),(5,3)共有9种,其中甲、乙在同一天到该港口的有(1,1),(3,3)共有2种,故甲、乙在同一天到该港口的概率P=;(2)甲、乙均预计在元月1日00:00点﹣﹣﹣01:00点的任意时刻到达该港口,假设两船到达的时刻相差不超过20分钟,则后到的船必须要等待,则满足x﹣y≤20或y﹣x≤20.设在上述条件时“甲、乙中有船要等待”为事件B,则S阴影=60×60﹣2××40×40=2000,S正方形=60×60=3600,故P(B)==.。

几何概型、古典概型常考经典好题(史上最全面含答案)

几何概型、古典概型常考经典好题(史上最全面含答案)

几何概型、古典概型常考经典题(史上最全面)1.在长为2的线段AB 上任意取一点C ,则以线段AC 为半径的圆的面积小于π的概率为( ) A .14 B.12 C .34 D.π42.已知正棱锥S-ABC 的底面边长为4,高为3,在正棱锥内任取一点P ,使得V P-ABC <12V S-ABC 的概率是( ) A .34 B.78 C .12 D.143.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为( )A .12 B.32 C .13 D.144.在区间⎣⎢⎡⎦⎥⎤-π6,π2上随机取一个数x ,则sin x +cos x ∈[1, 2 ]的概率是( ) A .12 B.34 C .38 D.585.若m ∈(0,3),则直线(m +2)x +(3-m)y -3=0与x 轴、y 轴围成的三角形的面积小于98的概率为________.6.如图,正四棱锥S-ABCD 的顶点都在球面上,球心O 在平面ABCD 上,在球O 内任取一点,则这点取自正四棱锥内的概率为________.7.平面区域A 1={}(x ,y )|x 2+y 2<4,x ,y ∈R ,A 2={(x ,y )||x |+|y |≤3,x ,y ∈R}.在A 2内随机取一点,则该点不在A 1内的概率为________.8.在边长为4的等边三角形OAB 及其内部任取一点P ,使得OA ―→·OP ―→≤4的概率为( )A.12B.14C.13D.189.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为35,则AD AB =________. 10.某人对某台的电视节目进行了长期的统计后得出结论,他任意时间打开电视机看该台节目时,看不到广告的概率为910,那么该台每小时约有________分钟的广告.11.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.12.在面积为S 的ABC ∆ 的边AB 上任取一点P ,则PBC ∆的面积大于4S 的概率为 .13.在ABC ∆中,060,2,6ABC AB BC ∠===,在BC 上任取一点D ,则使ABD ∆为钝角三角形的概率为( )A .16B .13C .12D .23 14.从区间[0,1]上随机抽取2n 个数1212,,,,,,,n n x x x y y y ,构成n 个数对11(,)x y ,22(,)x y ,[来源:学+,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为__________. A .4n m B .2n m C .4m n D .m n15. 在等腰Rt △ABC 中, (1)在斜边A B 上任取一点M ,求AM 的长小于AC 的长的概率.(2)过直角顶点C 在ACB ∠内作一条射线CM ,与线段AB 交于点M ,求AM<AC 的概率.(3)已知P 是△ABC 所在平面内一点,PB +PC +2PA =0,现将一粒黄豆随机撒在△PBC 内,则黄豆落在△PBC 内的概率是( )A .14B .13C .23D .1216.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率。

高一数学几何概型试题答案及解析

高一数学几何概型试题答案及解析

高一数学几何概型试题答案及解析1.在区间上随机取一个数,的值介于0到之间的概率为()A.B.C.D.【答案】A【解析】由,可得或,即或,则的值介于到之间的概率为:.故选A.【考点】几何概型的问题.2.甲乙两人各自在300米长的直线形跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是多少().A.B.C.D.【答案】B【解析】由随机事件特点可知,甲乙两人可以在跑道上任何位置,且互不影响.同时考虑到两人距离不超过50米,将跑到建立数轴,且设甲乙两人的坐标为.则,满足几何概型.,,故B【考点】几何概型.3.向如图中所示正方形内随机地投掷飞镖,飞镖落在阴影部分的概率为 ().A.B.C.D.【答案】C【解析】观察这个图可知:阴影部分是一个小三角形,在直线AB的方程为6x-3y-4=0中,令x=1得A(1,),令y=-1得B(,-1).∴三角形ABC的面积为S=AC×BC=×(1+)(1-)=,则飞镖落在阴影部分(三角形ABC的内部)的概率是:P=.故选C.【考点】几何概型.4.在棱长为3的正方体内任取一个点,则这个点到各面的距离大于1的概率为()A.B.C.D.【答案】C【解析】以这个正方体的中心为中心且边长为1的正方体内.这个小正方体的体积为1,大正方体的体积为27,故概率为p=.【考点】几何概型.5.如图,在△AOB中,已知∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,则△AOC为钝角三角形的概率为()A.0.6B.0.4C.0.2D.0.1【答案】B【解析】点C的活动范围在线段OB上,所以D的测度为5,△ACO为钝角三角形包含∠OAC,∠OCA为钝角,△AOC为钝角三角形时,∠ACO为钝角,或∠OAB是钝角.当∠ACO=90°时,如下图由勾股定理可求 OC=1;∠OAB=90°时,由直角三角形中的边角关系可得OC=4,BC=1,综上,所以d的测度为2,故△AOC为钝角三角形的概率等于=0.4,故选B.【考点】几何概型.6.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为1.5 cm的圆,中间有边长为0.5 cm的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为.【答案】【解析】如图,.【考点】几何概型.7.如右图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长。

几何概型经典练习题

几何概型经典练习题

几何概型题目选讲的长,则该矩形面积CB,AC现作一矩形,邻边长分别等于线段.C上任取一点AB的线段cm12 .在长为142112 D. C. 32 cmB.A. ) 小于 (的概率为53368-12+0-42 . ==P,所求事件的概率12<x<8或4<x<0⇒32<)x-(12x,由题意知x=AC设解析:31222l:求A的事件为2的距离小于到直线P设点P,在圆上任取一点C.已知圆2 的值。

1 P(A)=解:的概2内随机取一个点,则此点到坐标原点的距离大于D在区域 D.表示的平面区域为.设不等式组率是,表示的区域为半径的圆内及圆上,2的点在以原点为圆心,2坐标系中到原点距离不大于解析:-44π-4 . =的正方形及其内部,所以所求的概率为2为边长为44 .__________的概率为2≤xlog≤1满足不等式x,则该实数x上随机取一实数[0,9].在区间422 . ,根据区间长度关系,得所求概率为4≤x≤2,得2≤xlog≤1由解析:2926,9]-[在.5 .__________轴有公共点的概率等于x的图像与f(x)则函数,m+mx+x=-f(x)设,m内任取一个实数2=Δ轴有公共点应满足x 的图像与f(x)函数解析:≤m≤6故-,6,9]-[∈m又,0≥m或4≤-m解得,0≥4m+m29+11 . ==P,因此所求概率9≤m≤0或4-1515 .甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.6如果甲船的(2)小时,求它们中的任何一条船不需要等待码头空出的概率;4如果甲船和乙船的停泊时间都是(1) 小时,求它们中的任何一条船不需要等待码头空出的概率.2小时,乙船的停泊时间为4停泊时间为或4≥x -y且24<y≤24,0<x≤0,则y、x设甲、乙两船到达时间分别为(1)解析:4. ≤-x-y,24<,24<y≤0=P(A),则A设“两船无需等待码头空出”为事件作出区域或4>x-y4.<-x-y120×20××2225 . =3624×24 乙船的停泊时间为小时,4当甲船的停泊时间为(2)4. ≥x-y或2≥y-x则满足两船不需等待码头空出,小时,2 ,画出区域B设在上述条件时“两船不需等待码头空出”为事件11,24<x≤022×22×+20×2022221442,24<y≤0 . ===P(B)28857624×24y-x或4>x-y2.>22-kx+y+x可以作两条直线与圆A(1,1)的值使得过k,则]2,2∈[-k知.70=k错误!未找到引用源。

高中几何概型试题及答案

高中几何概型试题及答案

高中几何概型试题及答案一、选择题1. 已知一个圆的半径为r,随机取圆内一点,该点落在半径为r/2的同心圆内的概率是多少?A. 1/4B. 1/2C. 1/8D. 1/16答案:A2. 从长度为1的线段上随机取两点,将线段分为三段,求这三段能构成三角形的概率。

A. 1/2B. 1/3C. 1/4D. 1/6答案:C3. 在一个边长为1的正方形内随机投掷一个半径为1/2的圆盘,求圆盘完全落在正方形内的概率。

A. 1/4B. 1/2C. 1/8D. 1/16答案:A二、填空题4. 一个圆的面积为π,随机取圆内一点,该点落在半径为1的同心圆内的概率是______。

答案:1/45. 从长度为3的线段上随机取两点,将线段分为三段,这三段能构成三角形的概率是______。

答案:1/26. 在一个边长为2的正方形内随机投掷一个半径为1的圆盘,圆盘完全落在正方形内的概率是______。

答案:1/4三、解答题7. 一个圆的半径为2,随机取圆内一点,求该点到圆心的距离小于1的概率。

答案:设圆心为O,随机点为P,OP<1,则P点落在半径为1的同心圆内。

由于大圆面积为4π,小圆面积为π,所以概率为π/4π=1/4。

8. 从长度为4的线段上随机取两点,将线段分为三段,求这三段能构成三角形的概率。

答案:设线段为AB,随机取点C和D,使得AC+CD+DB=4。

要构成三角形,必须满足AC+CD>DB,AC+DB>CD,DB+CD>AC。

这等价于C和D位于线段AB的中点两侧,且不同时位于AB的中点。

因此,构成三角形的概率为1/2。

9. 在一个边长为3的正方形内随机投掷一个半径为1的圆盘,求圆盘完全落在正方形内的概率。

答案:设正方形为ABCD,圆心为O,圆盘完全落在正方形内,即O点到正方形任意一边的距离都小于1。

由于正方形的对角线长度为√(3²+3²)=3√2,半径为1的圆盘可以完全落在正方形内,因此概率为1。

几何概型 - 简单 - 习题

几何概型 - 简单 - 习题

几何概型一、选择题(共12小题;共60分)1. 下列关于几何概型的说法错误的是A. 几何概型是古典概型的一种,基本事件都具有等可能性B. 几何概型中事件发生的概率与它的位置或形状无关C. 几何概型在一次试验中可能出现的结果有无限多个D. 几何概型中每个结果的发生都具有等可能性2. 已知是长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于的概率为A. B. C. D.3. 若将一个质点随机投入如图所示的长方形中,其中,,则质点落在以为直径的半圆内的概率是A. B. C. D.4. 张卡片上分别写有数字,,,,从这张卡片中随机抽取张,则取出的张卡片上的数字之和为奇数的概率为A. B. C. D.5. 设在上随机地取值,则关于的方程有实数根的概率为A. B. C. D.6. 如图,在半径为,弧长为的扇形中,以为直径作一个半圆.若在扇形内随机取一点,则此点取自阴影部分的概率是A. B. C. D.7. 在中,,,,在边上任取一点,则为钝角三角形的概率为A. B. C. D.8. 如图,在边长为的正方形内有区域(阴影部分所示),张明同学用随机模拟的方法求区域的面积.若每次在正方形内随机产生个点,并记录落在区域内的点的个数.经过多次试验,计算出落在区域内点的个数的平均值为个,则区域的面积约为A. B. C. D.9. 如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则A. B. C. D.10. 某个路口交通指示灯,红灯时间为秒,黄灯时间为秒,绿灯时间为秒,黄灯时间可以通行,当你到达路口时,等待时间不超过秒就可以通行的概率为A. B. C. D.11. 在长为的线段上任取一点,则点与线段两端点的距离都大于的概率等于A. B. C. D.12. 在区间内随机取出一个数,使得的概率为A. B. C. D.二、填空题(共5小题;共25分)13. 某路公共汽车每发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过的概率为.14. 在区间上随机选取一个数,则的概率为.15. 已知事件“在矩形的边上随机取一点,使的最大边是”发生的概率为,则.16. 在边长为的正三角形内任取一点,则使点到三个顶点的距离至少有一个小于的概率是.17. 已知一只蚂蚁在边长分别为,,的三角形的边上随机爬行,则其恰在离三个顶点的距离都大于的地方的概率为.三、解答题(共5小题;共65分)18. 设有一个等边三角形网格,其中各个等边三角形的边长都是,现将直径等于的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.19. 已知在等腰直角三角形中,.(1)在线段上任取一点,求使的概率;(2)在内任作射线,求使的概率.20. 在等腰的斜边上任取一点,求小于的概率.21. 如图,两盏路灯之间的距离是米,由于光线较暗,想在其间再随意安装两盏路灯、,问与,与之间的距离都不小于米的概率是多少?22. 在的水中有一个草履虫,现从中随机取出水放到显微镜下观察,求发现草履虫的概率.答案第一部分1. A 【解析】几何概型与古典概型是两种不同的概率模型,无包含关系.2. B3. B 【解析】长方形的面积,以为直径的半圆的面积,所以.4. C 【解析】采用列举法得所有的基本事件有,,,,,六种情况,其中两数字之和为奇数的有,,,四种情况,故所求概率为.5. C【解析】方程有实根,则,解得或(舍去).由几何概型的概率计算公式可知所求的概率为.6. B 【解析】阴影部分的面积为,扇形的面积为,所以在扇形内随机取一点,则此点取自阴影部分的概率.7. C 【解析】过点作,垂足为,则;过点作,交于点,则,,易知当点在线段和上时(不包括线段端点,,),为钝角三角形,故所求概率为.8. B 【解析】设区域的面积约为,根据题意有,所以,,所以区域的面积约为.9. A10. A11. D 【解析】将线段平均分成段,设中间两点分别为,,则当点在线段上时符合题意,所以概率.12. D第二部分13.【解析】本题可以看成向区间内均匀投点,求点落入内的概率.设某乘客候车时间不超过,所以.14.15.【解析】如图,设,根据对称性,由题中条件知,点的活动范围为,即.当时,,解得,所以.16.【解析】分别以点,,为圆心,以为半径作圆,与构成三个扇形,如图中阴影部分所示,当点落在其内时符合要求.所以.17.【解析】由题意可知,三角形的三条边长的和为,而蚂蚁要在离三个顶点的距离都大于的地方爬行,则它爬行的区域长度为,根据几何概型的概率计算公式可得所求概率为.第三部分18. 记事件为“硬币落下后与格线没有公共点”,如图所示,在等边三角形内作小等边三角形,使其三边与原等边三角形三边的距离都为,则小等边三角形的边长为.由几何概型的概率计算公式得.19. (1)设,,则.若,则,故的概率.(2)设,则.若,则,故的概率.20. 在上截取,于是,.21. 记:“与,与之间的距离都不小于米”,把三等分,由于中间长度为米所以.22. 记事件在取出的水中有草履虫,由几何概型的概率计算公式得.。

几何概型经典练习及解答

几何概型经典练习及解答

几何概型1.几何概率模型定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;2.几何概型的概率公式P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; 3.几何概型的特点1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.4.几何概型和古典概型的区别与联系联系:两种概率模型的思路是相同的,同属于“比例解法”,并且都是在随机事件“等可能”的前提下; 区别:古典概型中试验的基本事件的个数是有限的,而几何概型中试验的基本事件的个数是无限的,在具体问题的求解中要严格区别.5.计算几何概型的概率的步骤1)判断是否是几何概率,尤其是判断等可能性;2)计算基本事件空间与事件A 所含的基本事件对应的区域的几何度量(长度、面积或体积);3)代入公式计算.1.下列概率模型中,几何概型的个数为( C )注:①不是几何概型①从区间[10,10]-内任取出一个数,求取到1的概率;②从区间[10,10]-内任取出一个数,求取到绝对值不大于1的数的概率;③从区间[10,10]-内任取出一个数,求取到大于1而小于2的数的概率;④向一个边长为4cm 的正方形ABCD 内投一点P ,求点P 离中心不超过1cm 的概率.A .1B . 2C . 3D .42.某公共汽车站每隔5min 有一辆汽车到达,乘客到达汽车站的时刻是任意的,则一个乘客候车时间不超过3min 的概率为( C )A .51 B . 52 C . 53 D .54 3.在棱长为3的正方体内任取一点,则这个点到各面的距离大于1的概率为( C ) A .13 B .19 C .127 D .344.在面积为S 的ABC ∆的边AB 上任取一点P ,则PBC ∆的面积大于4S 的概率是( C ) A .14 B .12 C . 34 D .235.在区间[1,1]-上随机取一个数x ,cos 2x π的值介于0到12之间的概率为( A ) A .13 B .2π C .12 D .23 6.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( A )A .π21- B .π121- C .π2 D .π1 7.在区间[1-,2]上随机取一个数x ,则||x ≤1的概率是 .328.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为 .)(161431613+= 9.分别计算下列三个小题的概率:①设p 在[0,5]上随机地取值,求方程21042p x px +++=有实根的概率. ②在[1,1]-上任取两个实数,a b ,求二次方程2220x ax b ++=有两个非负实根的概率.③在区间[0,1]上任取三个实数,,x y z ,事件222{(,,)|1}A x y z x y z =++<.(1)构造出此随机事件A 对应的几何图形;(2)利用此图形求事件A 的概率. 答案:①35 ;②14 ;③6π.。

几何概型练习及答案

几何概型练习及答案

几何概型14.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一个人一刻钟,过时即可离去,求两人能会面的概率.15.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达码头的时刻是等可能的,如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率. 14.解:以x 和y 分别表示甲、乙两人到达约会地点的时间,则两人能会面的充要条件是||15x y -≤.在平面上 建立直角坐标系如图所示,则(x ,y )的所有可能结果是边长60的正方形,而可能会面的时间由图中的阴影部分所表示,这是一个几何概型问题.15.解:设甲、乙两艘船到达码头的时刻分别为x 与y,A 为两艘船都不需要码头空出,()[]{},|0,24x y x Ω=∈,要满足A,则1y x -≥或2x y -≥∴A=()[]{},|12,0,24x y y x x y x -≥-≥∈或∴()22211(241)242506.5220.8793424576A A S P S Ω-⨯+-⨯====.如图,60AOB ∠=,2OA=,5OB =,在线段OB 上任取一点C ,试求:(1)AOC∆为钝角三角形的概率;(2)AOC ∆为锐角三角形的概率.当堂练习:1.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( B )A .0.62 B .0.38 C .0.02 D .0.682.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25 cm 2与49 cm 2之间的概率为( B )A .310 B .15 C .25 D .453.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y C ) B .216 C .316 D .144.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( A )A .34 B .38 C .14 D .185.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则 求两人会面的概率为( C )A .13B .49C .59D .7106如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( A )A .2πB .1πC .23D .137.如图,有一圆盘其中的阴影部分的圆心角为45,若向圆内投镖,如果某人每次都投入圆内,那么他投中阴影部分的概率为( A )A .18B .14C .12D .348.现有100ml 的蒸馏水,假定里面有一个细菌,现从中抽取20ml 的蒸馏水,则抽到细菌的概率为( B )A .1100 B .120 C .110D .159.一艘轮船只有在涨潮的时候才能驶入港口,已知该港口每天涨潮的时间为早晨5:00至7:00和下午5:00至6:00,则该船在一昼夜内可以进港的概率是( C )A .14 B .18 C .110 D .11210.在区间[0,10]中任意取一个数,则它与4之和大于10的概率是( C )A .15 B .25 C . 35 D .27 11.若过正三角形ABC 的顶点A 任作一条直线L ,则L 与线段BC 相交的概率为( C )A .12 B .13 C . 16 D .11212.在500ml 的水中有一个草履虫,现从中随机取出2ml 水样放到显微镜下观察,则发现草履虫的概率是( B )A .0.5B .0.4C .0.004D .不能确定13.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率( c )A .r aB .2r aC . a r a -D .2a r a -14.已知地铁列车每10min 一班,在车站停1min .则乘客到达站台立即乘上车的概率为 111.16.在区间(0,1)中随机地取出两个数,则两数之和小于56的概率是 .17.假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去上班的时间为早上7:00~8:00之间,你父亲在离开家前能拿到报纸的概率为_______. 18.飞镖随机地掷在下面的靶子上.(1)在靶子1中,飞镖投到区域A 、B 、C 的概率是多少?(2)在靶子1中,飞镖投在区域A 或B 中的概率是多少?在靶子2中,飞镖没有投在区域C 中的概率是多少?19.一只海豚在水池中游弋,水池为长30m ,宽20m 的长方形,求此刻海豚嘴尖离岸边不超过2m 的概率. 20.在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.21.利用随机模拟方法计算曲线1y x=,1x =,2x =和0y =所围成的图形的面积.经典例题:解:如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =. (1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形 记"AOC ∆为钝角三角形"为事件M ,则11()0.45OD EB P M OB ++===即AOC ∆为钝角三角形的概率为0.4.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角, 记"AOC ∆为锐角三角"为事件N ,则3()0.65DE P N OB ===即AOC ∆为锐角三角形的概率为0.6. 1.B; 2.B; 3.C; 4.A; 5.C; 6.A; 7.A; 8.B; 9.C; 10.C; 11.C; 12.B; 13.B; 14. 111; 16.2572; 17. 87.5%;18.(1)都是13;(2)23;34。

几何概型例题分析及习题(含答案)

几何概型例题分析及习题(含答案)

几何概型例题分析及练习题(含答案)[例1]甲、乙两人约定在下午 4:00~5:00间在某地相见他们约好当其中一人先到后一定要等 另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。

解:设x 为甲到达时间,y 为乙到达时间.建立坐标系,如图|x — y|乞15时可相见,即阴 60 -4527影部分P2 6021 21 [例3]将长为1的棒任意地折成三段,求三段的长度都不超过的概率。

2解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为1-x -y ,则基本事件 组所对应的几何区域可表示为门二{(x, y) |0 ::: x :: 1,0 ::: y ::: 1,0 ::: x • y ::: 1},即图中黄色区域,此区域面积为[例2]设A 为圆周上一定点, 率。

在圆周上等可能任取一点与A 连接,求弦长超过半径,2倍的概cf BCD P =-圆周1事件“三段的长度都不超过丄”所对应的几何区域可表示为2 111 A ={(x, y)| (x, yb 11,x , y ,1 — x — y }2 22=181丄”的概率为P 二直2 12即图中最中间三角形区域,此区域面积为此时事件“三段的长度都不超过2 • -(-)22 2解:| AB |=| AC 匸..2R .y=-15x-y=1515 06012[例4]两对讲机持有者张三、李四,为卡尔货运公司工作,他们对讲机的接收范围是25km,X i x 2 _ -a 0 X 2 = b 0解: (2)(1)利用计算器产生 0 变换 a = a ! ” 2 _ 1 , (3) 从中数出满足条件 b至1区间两组随机数a 1,b 1 b = b - ” 2 -1 1 2a 且a . 0且b 0的数m 4c :解法1:记 ABC 的三内角分别为 形”,则试验的全部结果组成集合$11={「, )0 J , :: ,0 J因为ABC 是锐角三角形的条件是n , 3TnJI0 ,且二川:—2 2所以事件A 构成集合A={(「)|,0 (2)由图2可知,所求概率为A 、B 、C,求 ABC 是锐角三角形的概率。

高考复习几何概型复习题(含答案)

高考复习几何概型复习题(含答案)

几何概型试题汇编一、单选题(共27题;共54分)1.在区间上随机取一个数x,则事件“ ”不发生的概率为()A. B. C. D.2.在区间内的所有实数中随机取一个实数,则这个实数满足的概率是()A. B. C. D.3.在由不等式组所确定的三角形区域内随机取一点,则该点到此三角形的三个顶点的距离均不小于1的概率是( )A. B. C. D.4.设不等式组,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A. B. C. D.5.如图,矩形中,点的坐标为.点的坐标为.直线的方程为:且四边形为正方形,若在五边形内随机取一点,则该点取自三角形 (阴影部分)的概率等于()A. B. C. D.6.如图,六边形是一个正六边形,若在正六边形内任取一点,则恰好取在图中阴影部分的概率是()A. B. C. D.7.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影)。

设直角三角形有一内角为,若向弦图内随机抛掷1000颗米粒(大小忽略不计),则落在小正方形(阴影)内的米粒数大约为()A. 134B. 866C. 300D. 5008.我们可以用计算机产生随机数的方法估计的近似值,如图所示的程序框图表示其基本步骤(中用函数来产生的均匀随机数),若输出的结果为524,则由此可估计的近似值为()A. 3.144B. 3.154C. 3.141D. 3.1429.如图,在矩形区域的两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域和扇形区域(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A. B. C. D.10.在区间[0,1]上随机选取两个数x和y,则y>2x的概率为()A. B. C. D.11.用电脑每次可以从区间(0,1)内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于的概率为()A. B. C. D.12.在区间[﹣1,2]上随机取一个数x,则|x|≤1的概率为()A. B. C. D.13.设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A. +B. +C. ﹣D. ﹣14.如图一铜钱的直径为32毫米,穿径(即铜钱内的正方形小孔边长)为8毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米未落在铜钱的正方形小孔内的概率为()A. B. C. D.15.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是()A. B. C. D.16.圆O内有一内接正三角形,向圆O内随机投一点,则该点落在正三角形内的概率为()A. B. C. D.17.如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是()A. 1﹣B.C. 1﹣D. 与a的取值有关18.不等式6﹣5x﹣x2≥0的解集为D,在区间[﹣7,2]上随机取一个数x,则x∈D的概率为()A. B. C. D.19.如图,在边长为2的正方形ABCD的内部随机取一点E,则△ABE的面积大于的概率为()A. B. C. D.20.如图,点A为周长为3的圆周上的一定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为()A. B. C. D.21.如图,在圆心角为90°的扇形中以圆心O为起点作射线OC,则使得∠AOC与∠BOC都不小于30°的概率是()A. B. C. D.22.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A. B. C. D.23.某人从甲地去乙地共走了500m,途经一条宽为xm的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能被找到的概率为,则河宽为()A. 80mB. 100mC. 40mD. 50m24.在平面直角坐标系中,记抛物线y=x﹣x2与x轴所围成的平面区域为M,该抛物线与直线y=kx(k>0)所围成的平面区域为N,向区域M内随机抛掷一点P,若点P落在区域N内的概率为,则k的值为()A. B. C. D.25.在半径为1的圆O内任取一点M,过M且垂直OM与直线l与圆O交于圆A,B两点,则AB长度大于的概率为()A. B. C. D.26.在长为16cm的线段MN上任取一点P,以MP,NP为邻边作一矩形,则该矩形的面积大于60cm2的概率为()A. B. C. D.27.如图,圆O内有一个内接三角形ABC,且直径AB=2,∠ABC=45°,在圆O内随机撒一粒黄豆,则它落在三角形ABC内(阴影部分)的概率是()A. B. C. D.二、填空题(共7题;共7分)28.已知Ω1是集合{(x,y)|x2+y2≤1}所表示的区域,Ω2是集合{(x,y)|y≤|x|}所表示的区域,向区域Ω1内随机的投一个点,则该点落在区域Ω2内的概率为________.29.在[0,a](a>0)上随机抽取一个实数x,若x满足<0的概率为,则实数a的值为________.30.某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段任何的时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________31.上随机地取一个数k,则事件“直线y=kx与圆相交”发生的概率为________32.在棱长为2的正方体内随机取一点,取到的点到正方体中心的距离大于1的概率________.33.如图所示,为了求出一个边长为10的正方形内的不规则图形的面积,小明设计模拟实验:向这个正方形内均匀的抛洒20粒芝麻,结果有8粒落在了不规则图形内,则不规则图形的面积为________.34.矩形区域ABCD 中,AB 长为2 千米,BC 长为1 千米,在A 点和C 点处各有一个通信基站,其覆盖范围均为方圆1 千米,若在该矩形区域内随意选取一地点,则该地点无信号的概率为________.三、解答题(共8题;共65分)35.遂宁市观音湖港口船舶停靠的方案是先到先停.(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率36.如图,为圆柱的母线,是底面圆的直径,是的中点.(Ⅰ)问:上是否存在点使得平面?请说明理由;(Ⅱ)在(Ⅰ)的条件下,若平面,假设这个圆柱是一个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果小鱼游到四棱锥外会有被捕的危险,求小鱼被捕的概率.37.某同学在上学路上要经过A、B、C三个带有红绿灯的路口.已知他在A、B、C三个路口遇到红灯的概率依次是、、,遇到红灯时停留的时间依次是40秒、20秒、80秒,且在各路口是否遇到红灯是相互独立的.(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,(2)求这名同学在上学路上因遇到红灯停留的总时间.38.设关于x的一元二次方程x2+ax﹣+1=0.(1)若a是从1,2,3这三个数中任取的一个数,b是从0,1,2这三个数中任取的一个数,求上述方程中有实根的概率;(2)若a是从区间[0,3]中任取的一个数,b是从区间[0,2]中任取的一个数,求上述方程有实根的概率.39.设事件A表示“关于x的一元二次方程x2+ax+b2=0有实根”,其中a,b为实常数.(Ⅰ)若a为区间[0,5]上的整数值随机数,b为区间[0,2]上的整数值随机数,求事件A发生的概率;(Ⅱ)若a为区间[0,5]上的均匀随机数,b为区间[0,2]上的均匀随机数,求事件A发生的概率.40.已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2,3,4,5}和B={﹣2,﹣1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.41.已知正方形ABCD的边长为1,弧BD是以点A为圆心的圆弧.(1)在正方形内任取一点M,求事件“|AM|≤1”的概率;(2)用大豆将正方形均匀铺满,经清点,发现大豆一共28粒,其中有22粒落在圆中阴影部分内,请据此估计圆周率π的近似值(精确到0.01).42.某旅游公司为甲,乙两个旅游团提供四条不同的旅游线路,每个旅游团可任选其中一条旅游线路.(1)求甲、乙两个旅游团所选旅游线路不同的概率;(2)某天上午9时至10时,甲,乙两个旅游团都到同一个著名景点游览,20分钟后游览结束即离去.求两个旅游团在该著名景点相遇的概率.答案解析部分一、单选题1.【答案】D【考点】几何概型【解析】【解答】解:区间上随机取一个数x,对应区间长度为,满足事件“ ”的x范围为x+1≤3,即≤x≤2,对应区间长度为2+ ,所以事件不发生的概率为1﹣= ;故选D.【分析】由题意,本题是几何概型,首先求出事件对应的区间长度,利用长度比求概率.2.【答案】C【考点】几何概型【解析】【解答】由题意可得,该问题为长度型几何概型,则所求问题的概率值为:.故答案为:C.【分析】根据题目中所给的条件的特点,分别计算出区间(15,25]的长度,区间(17,20)的长度,代入几何概型概率计算公式,即可得到答案.考查几何概型的概率计算.其中根据已知条件计算出基本事件总数对应的几何量的大小,和满足条件的几何量的大小是解答本题的关键.3.【答案】D【考点】几何概型【解析】【解答】画出关于的不等式组所构成的三角形区域,如图所示.的面积为离三个顶点距离都不大于1的地方的面积为∴其恰在离三个顶点距离都不小于1的地方的概率为故答案为:D.【分析】画出关于x,y的不等式组所构成的三角形区域,求出三角形的面积;再求出距三角形的三顶点距离小于等于1的区域为三个扇形,三个扇形的和是半圆,求出半圆的面积;利用对立事件的概率公式及几何概型概率公式求出恰在离三个顶点距离都不小于1的地方的概率.几何概率:设几何概型的基本事件空间可表示成可度量的区域Ω,事件A所对应的区域用A表示(A⊆Ω),则P(A)=称为事件A的几何概率.4.【答案】D【考点】二元一次不等式(组)与平面区域,几何概型【解析】【解答】解:其构成的区域D如图所示的边长为2的正方形,面积为S1=4,满足到原点的距离大于2所表示的平面区域是以原点为圆心,以2为半径的圆外部,面积为=4﹣π,∴在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率P=故选:D.【分析】本题属于几何概型,利用“测度”求概率,本例的测度即为区域的面积,故只要求出题中两个区域:由不等式组表示的区域和到原点的距离大于2的点构成的区域的面积后再求它们的比值即可.5.【答案】D【考点】几何概型【解析】【解答】在中,令,得,即,则,所以,,由几何概型的概率公式,得在五边形内随机取一点,该点取自三角形 (阴影部分)的概率.故答案为:D.【分析】根据题意求出点D的坐标,再由两点间的距离公式代入数值求出结果,结合四边形的面积代入数值求出结果把数值代入到几何概型的概率公式求出结果即可。

几何概型典型例题

几何概型典型例题

几何概型1.(2009年高考福建卷)点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧的长度小于1的概率为________.答案:23解析:设事件M 为“劣弧的长度小于1”,则满足事件M 的点B 可以在定点A 的两侧与定点A 构成的弧长小于1的弧上随机取一点,由几何概型的概率公式得:P (M )=23.2.(2010年苏、锡、常、镇四市调研)已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.答案:36解析:设所求的面积为S ,由题意得6001000=S5×12,∴S =36.3.在棱长为a 的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a 的概率为________.解析:P =18×43πa 3a 3=π6.答案:π64.(2010年扬州调研)已知集合A {x |-1<x <5},B ={x |x -23-x>0},在集合A 中任取一个元素x ,则事件“x ∈A ∩B ”的概率是________.解析:由题意得A ={x |-1<x <5},B ={x |2<x <3},由几何概型知:在集合A 中任取一个元素x ,则x ∈A ∩B 的概率为P =16.答案:165.某公共汽车站每隔10分钟就有一趟车经过,小王随机赶到车站,则小王等车时间不超过4分钟的概率是________.答案:256.如图,M 是半径为R 的圆周上一个定点,在圆周上等可能地任取一点N ,连结MN ,则弦MN 的长度超过2R的概率是________.答案:12解析:连结圆心O 与M 点,作弦MN 使∠MON =90°,这样的点有两个,分别记为N 1,N 2,仅当点N 在不包含点M 的半圆弧上取值时,满足MN >2R ,此时∠N 1ON 2=180°,故所求的概率为180°360°=12. 7.已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},E ={(x ,y )|x -2y ≥0,x ≤4,y ≥0},若向区域Ω内随机投一点P ,则点P 落入区域E 的概率为________.解析:如图,区域Ω表示的平面区域为△AOB 边界及其内部的部分,区域E 表示的平面区域为△COD 边界及其内部的部分,所以点P 落入区域E 的概率为S △CODS △AOB=12×2×412×6×6=29.答案:298.已知函数f (x )=-x 2+ax -b .若a 、b 都是从区间[0,4]任取的一个数,则f (1)>0成立的概率是________.解析:f (1)=-1+a -b >0,即a -b >1,如图:A (1,0),B (4,0),C (4,3),S △ABC =92,P =S △ABC S 矩=924×4=932.答案:9329.在区间[0,1]上任意取两个实数a ,b ,则函数f (x )=12x 3+ax -b 在区间[-1,1]上有且仅有一个零点的概率为________.解析:f ′(x )=32x 2+a ,故f (x )在x ∈[-1,1]上单调递增,又因为函数f (x )=12x 3+ax -b 在[-1,1]上有且仅有一个零点,即有f (-1)·f (1)<0成立,即(-12-a -b )(12+a -b )<0,则(12+a+b )(12+a -b )>0,可化为⎩⎪⎨⎪⎧ 0≤a ≤10≤b ≤112+a -b >012+a +b >0或⎩⎪⎨⎪⎧0≤a ≤1≤b ≤112+a -b <0,12+a +b <0由线性规划知识在平面直角坐标系aOb 中画出这两个不等式组所表示的可行域,再由几何概型可以知道,函数f (x )=12x 3+ax -b 在[-1,1]上有且仅有一个零点的概率为可行域的面积除以直线a =0,a =1,b =0,b =1围成的正方形的面积,计算可得面积之比为78.答案:7810.设不等式组⎩⎪⎨⎪⎧ 0≤x ≤60≤y ≤6表示的区域为A ,不等式组⎩⎪⎨⎪⎧0≤x ≤6x -y ≥0表示的区域为B .(1)在区域A 中任取一点(x ,y ),求点(x ,y )∈B 的概率;(2)若x ,y 分别表示甲、乙两人各掷一次骰子所得的点数,求点(x ,y )在区域B 中的概率. 解:(1)设集合A 中的点(x ,y )∈B 为事件M ,区域A 的面积为S 1=36,区域B 的面积为S 2=18,∴P (M )=S 2S 1=1836=12.(2)设点(x ,y )在区域B 为事件N ,甲、乙两人各掷一次骰子所得的点(x ,y )的个数为36个,其中在区域B 中的点(x ,y )有21个,故P (N )=2136=712.11.(2010年江苏南通模拟)已知集合A ={x |-1≤x ≤0},集合B ={x |ax +b ·2x -1<0,0≤a ≤2,1≤b ≤3}.(1)若a ,b ∈N ,求A ∩B ≠∅的概率; (2)若a ,b ∈R ,求A ∩B =∅的概率.解:(1)因为a ,b ∈N ,(a ,b )可取(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)共9组.令函数f (x )=ax +b ·2x -1,x ∈[-1,0], 则f ′(x )=a +b ln2·2x .因为a ∈[0,2],b ∈[1,3],所以f ′(x )>0, 即f (x )在[-1,0]上是单调递增函数.f (x )在[-1,0]上的最小值为-a +b2-1.要使A ∩B ≠∅,只需-a +b2-1<0,即2a -b +2>0.所以(a ,b )只能取(0,1),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)7组.所以A ∩B ≠∅的概率为79.(2)因为a ∈[0,2],b ∈[1,3],所以(a ,b )对应的区域为边长为2的正方形(如图),面积为4.由(1)可知,要使A ∩B =∅,只需f (x )min =-a +b2-1≥0⇒2a -b +2≤0,所以满足A ∩B =∅的(a ,b )对应的区域是如图阴影部分.所以S 阴影=12×1×12=14,所以A ∩B =∅的概率为P =144=116.12.将长为1的棒任意地折成三段,求:三段的长度都不超过a (13≤a ≤1)的概率.解:设第一段的长度为x ,第二段的长度为y , 第三段的长度为1-x -y ,则基本事件组所对应的几何区域可表示为Ω={(x ,y )|0<x <1,0<y <1,0<x +y <1},此区域面积为12.事件“三段的长度都不超过a (13≤a ≤1)”所对应的几何区域可表示为A ={(x ,y )|(x ,y )∈Ω,x <a ,y <a,1-x -y <a }.即图中六边形区域,此区域面积:当13≤a ≤12时,为(3a -1)2/2,此时事件“三段的长度都不超过a (13≤a ≤1)”的概率为P=(3a -1)2/21/2=(3a -1)2;当12≤a ≤1时,为12-3(1-a )22.此时事件“三段的长度都不超过a (13≤a ≤1)”的概率为P =1-3(1-a )2.。

高中数学 专题1.12 几何概型练习(含解析)新人教A版必

高中数学 专题1.12 几何概型练习(含解析)新人教A版必

几何概型1.在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,则使得∠AOC 和∠BOC 都不小于30°的概率为( )A .13 B .23 C .14D .34【答案】 A【解析】 记M =“射线OC 使得∠AOC 和∠BOC 都不小于30°”.如图所示,作射线OD ,OE 使∠AOD =30°,∠AOE =60°.当OC 在∠DOE 内时,使得∠AOC 和∠BOC 都不小于30°,此时的测度为度数30,所有基本事件的测度为直角的度数90.所以P (M )=3090=13.2.方程x 2+x +n =0(n ∈ (0,1))有实根的概率为( ) A.12 B.13 C.14 D.343.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A .14B .12C .34D .23【答案】 C【解析】 如右图所示,在边AB 上任取一点P ,因为△ABC 与△PBC 是等高的,所以事件“△PBC 的面积大于S 4”等价于事件“|BP ||AB |>14”.即P ⎝⎛⎭⎪⎫△PBC 的面积大于S 4=|PA ||BA |=34.4.(2012·北京高考)设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4 B.π-22 C.π6 D.4-π45.在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36 cm 2与81 cm 2之间的概率为________.6.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________. 【答案】1316【解析】 记事件A =“打篮球”,则P (A )=π×⎝ ⎛⎭⎪⎫142π×12=116. 记事件B =“在家看书”,则P (B )=π×⎝ ⎛⎭⎪⎫122π×12-P (A )=14-116=316.故P (B )=1-P (B )=1-316=1316.7.在区间[0,1]上随意选择两个实数x ,y ,则使x 2+y 2≤1成立的概率为________.8.一海豚在水池中自由游弋,水池为长30 m ,宽20 m 的长方形,求此刻海豚嘴尖离岸边不超过2 m 的概率.【解析】 如图,四边形ABCD 是长30 m 、宽20 m 的长方形.图中的阴影部分表示事件A :“海豚嘴尖离岸边不超过2 m ”.问题可化为求海豚嘴尖出现在阴影部分的概率. ∵S 长方形ABCD =30×20=600(m 2),S 长方形A ′B ′C ′D ′=(30-4)×(20-4)=416(m 2),∴S阴影部分=S长方形ABCD-S长方形A ′B ′C ′D ′=600-416=184(m 2),根据几何概型的概率公式,得P (A )=184600=2375≈0.31.。

几何概型同步练习3新必修3

几何概型同步练习3新必修3

几何概型一、选择题1.从分别写有A ,B ,C ,D ,E 的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率是( ) A.51 B.52 C.103 D.107 解析:5张卡片中任取2张,有25C 种不同的取法,2张上的字母恰好按字母顺序相邻的概率52425==C P . 答案:B2.一部3卷文集,随机地排在书架上,卷号自左向右或自右向左恰为1,2,3的概率是( ) A.61 B.32 C.31 D.21答案:C3.从4名选手甲、乙、丙、丁中选取2人组队参加数学竞赛,其中甲被选中的概率是( ) A.31 B.21 C.32D.53 解析:4名选手甲、乙、丙、丁中,选取2人,有24C 种不同的取法,甲被选中的概率是21324==C P . 答案:B4.如图,AB 是圆O 的直径,OC ⊥AB ,假设你在图形上随机撒一粒黄豆,则它落到阴影部分的概率为( )A.π21 B.π1 C.π13 D.π2 解析:这是个几何概型,设圆O 的半径为R ,所求的落到阴影部分的概率为ππ12212=⨯⨯==RRR P 圆的面积阴影的面积. 答案:B5.在两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率是( ) A.21 B.31 C.41D.51解析:记“灯与两端距离都大于2 m”为事件A ,则灯只能在中间2 m 的绳子上挂,所以事件A 发生的概率3162)(==A P .答案:B6.已知地铁列车每10 min 到站一次,且在车站停1 min ,则乘客到达站台立即乘上车的概率是( )A.101B.61C.6011D.111解析:记“乘客到达站台立即乘上车”为事件A ,所以事件A 发生的概率1111101)(=+=A P .答案:D 二、填空题7.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的资料,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率近似为____________.解析:记“一部汽车在一年时间里挡风玻璃破碎”为事件A ,所以事件A 发生的概率100320000600)(==A P . 答案:0.038.在1万平方千米的海域中有40平方千米的大陆架贮藏着石油,假如在海域中任意一点钻探,钻到油层面的概率是_______________.解析:记“在海域中任意一点钻探,钻到油层面”为事件A ,所以事件A 发生的概率P(A)=1000040=0.004. 答案:0.0049.将长为L 的木棒随机地折成3段,则3段构成三角形的概率是______________. 解析:设M =“3段构成三角形”.x ,y 分别表示其中两段的长度,则第三段的长度为L -x -y. Ω={(x ,y)|0<x <L ,0<y <L ,0<x+y <L}.由题意,x ,y ,L -x -y 要构成三角形,需有x+y >L -x -y ,即x+y >2L;x+(L -x -y)>y ,即y <L2;y+(L -x -y)>x ,即x <2L . 故M ={(x ,y)|x+y >2L ,y <2L ,x <2L}.如图所示,可知所求概率为412)2(21)(22=⨯=Ω=LL M M P 的面积的面积.答案:0.25 三、解答题10.为了调查某野生动物保护区内某种野生动物的数量,调查员某天逮住这种动物600只做好标记后放回,经过一星期后,又逮到这种动物500只,其中做过标记的有50只,根据上述数据,估算保护区内有多少只动物?解:设保护区内这种野生动物有x 只,每只动物被逮到的可能性是相同的,那么第一次逮到的600只占所有这种动物的概率为x600,第二次逮到的500只中,有50只是第一次逮到的,即事件发生的频数为50,说明第一次逮到的在总的动物中的频率为101,由概率的定义知101600=x ,解得x =6 000,即按此方法计算,估计保护区内有6 000只这种野生动物. 11.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一天二十四小时内到达该码头的时刻是等可能的.如果甲船停泊时间为1小时,乙船停泊时间为2小时,求它们中的任意一艘都不需要等待码头空出的概率.解:这是一个几何概型问题.设甲、乙两艘船到达码头的时刻分别为x 与y ,A 为“甲、乙两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,且基本事件所构成的区域为Ω={(x ,y)|0≤x ≤24,0≤y ≤24}.要使两船都不需要等待码头空出,当且仅当甲比乙早到达1小时以上或乙比甲早到达2小时以上,即y -x ≥1或x -y ≥2,故A ={(x ,y)|y -x ≥1或x -y ≥2},x ∈[0,24],y ∈[0,24].A 为图中阴影部分,Ω为边长是24的正方形,∴所求概率的面积的面积Ω=A A P )(=2222421)224(21)124(⨯-+⨯- =115210135765.506=. 12.平面上有一个边长为34的等边△ABC 网格,现将直径等于2的均匀硬币抛掷在此网格上(假定都落在此网格上),求硬币落下后与网格线没有公共点的概率. 解:设事件M ={硬币落下后与等边△ABC 的网格线没有公共点}.要使硬币落在网格上的条件是硬币的重心需落在此△ABC 的边上或内部,故所有的随机基本事件所构成的区域为△ABC.当硬币与边恰有一个公共点的重心位置就是临界点的位置.如图,所有临界点形成三条临界线,三条临界线构成一个小△EFG 区域,因此事件M 所构成的区域为△EFG 区域. 经计算得△EFG 的边长为32.∴41343443323243)(=⨯⨯⨯⨯==∆∆ABCEFG S S M P .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何概型练习题1.在正方体 ABCD - A 1B 1C 1D 1内随机取点则该点落在三棱锥 A 1- ABC 内的概率是 ( )A .16 mB .20 mC .8 mD .10 m5.一个路口的红绿灯,红灯的时间为 30秒,黄灯的时间为 5 秒,绿灯的时间为 40秒,当某人到达路口时,看见的是红灯的概率是 ________ ;看见的不是黄灯的概率是 _______ .6.取一根长度为 4 m 的绳子,拉直后在任意位置剪断, 那么剪得的两段都不少于 1 m 的概率是 _____ . 7.点 A 为周长等于 3 的圆周上的一个定点, 若在该圆周上随机取一点 B ,则劣弧 的长度小于 1 的概率_8.已知如图所示的矩形,长为 12,宽为 5,在矩形内随机地投掷 1 000 粒黄豆,落在阴影部分的黄豆为 600 粒,则可以估计出阴影部分的面积为 ________9.点 P 在边长为 1的正方形 ABCD 内运动,则动点 P 到顶点 A 的距离 | PA | ≤1的 概率为 __ .10.利用计算机产生 0~1 之间的均匀随机数 a ,则事件“ 3a -1<0”发生的概率为 ______ .11.一只蚂蚁在三边边长分别为 3、4、 5 的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过 1 的概率为 ________ .12.在一个球内挖去一个几何体,其三视图如图.在球内任取一点P ,则点落在剩余几何体上的概率为 ________ .13.在长为 12 cm 的线段 AB 上任取一点 C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于 20 cm 2的概率为 _____ .A ..1.6 .22.如图,在一个边长为 a 、b ( a >b >0)的矩形内画一个梯形,梯形上、下底边分别为 3a与2a ,高为 b . 向该矩形内随机地投一点,则所投的点落在梯形内部的概率为 ( )1A . B12 1.4 C .5712 D .123.在区间 [0,1] 内任取两个数,则这两个数的平方和也在 [0,1] 内的概率是 ()πCπDπ10.20.404.某人从甲地去乙地共走了 500 m ,途中要过一条宽为 x m 的河流,他不小心把一件物品丢在途中, 若物品掉在河里就找不到, 物品不掉在河里就能找到, 已知该物品能被找到的概率为24则河宽为25A .B14.在 1 升高产小麦种子中混入一粒带麦锈病的种子,从中随机取出 ;从中随机取出 30 毫升,含有麦锈病种子的概率是3 的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体的距离均大于 1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为116.在区间 [, ]上随机取一个数 x ,cos x 的值介于 0 至2之间的概率为 ___________ 2 2 217. 如图所示, 设 M 是半径为 R 的圆周上一个定点, 在圆周上等可能地任取一点 N ,连接 MN ,则弦 MN 的长超过 2R 的概率为 ______ .18.如图,在圆心角为直角的扇形 OAB 中,分别以 OA ,OB 为直径作两个半圆.在扇形 OAB 内随机取一点,则此点取自阴影部分的概率是 ________ .19.已知正三棱锥 S - ABC 的底边长为 4,高为 3,在三棱锥内任取一点 P ,使得1V P -ABC < 2V S -ABC 的概率是120.已知正方体 ABCD - A 1B 1C 1D 1的棱长为 1,在正方体内随机取点 M ,求使四棱锥 M - ABCD 的体积小于6的概率.21. (1) 在半径为 1 的圆的一条直径上任取一点,过该点作垂直于直径的弦,其长度超过该圆内接正三 角形的边长 3的概率是多少 (2) 在半径为 1 的圆内任取一点,以该点为中点作弦,问其长超过该圆内 接正三角形的边长 3的概率是多少 (3) 在半径为 1 的圆周上任取两点,连成一条弦,其长超过该圆内 接正三角形边长 3的概率是多少23.设关于 x 的一元二次方程 x 2+ 2ax +b 2= 0. 若 a 是从区间 [0,3] 任取的一个数, b 是从区间 [0,2] 任取的一个数,求方程有实根的概率.10 毫升,含有麦锈病种子的概率15.一只蜜蜂在一个棱长为 6 个表面24.设AB=6,在线段AB上任取两点(端点A,B除外) ,将线段AB分成了三条线段,(1) 若分成的三条≤1. [ 解析 ] 设在 [0,1] 内取出的数为 a ,b ,若 a 2+b 2 也在 [0,1] 内,则有如右图,试验的全部结果所构成的区域为边长为0≤a 2+ b 2a2+ b 2 在线段的长度均为正整数,求这三条线段可以构成三角形的概率;正实数,求这三条线段可以构成三角形的概率.答案: 1.在正方体 ABCD -A 1B 1C 1D 1 内随机取点则该点落在三棱锥1A .3 11 B . C . D621 .4[ 答案 ]B[ 解析 ]体积型几何概型问题.VA 1- ABC 1P = = .P =VABC -D A 1B 1C 1D 1= 62.如图,在一个边长为 a 、b (a >b >0) 的矩形内画一个梯形,梯形上、下底边分别为3a与2a ,高为32b . 向该矩形内随机地投一点,则所投的点落在梯形内部的概率为 ( )故所投的点落在梯形内部的概率为5abS 梯形 12 5 P = = = .S 矩形 ab 123.(2013 ~2014·山东济南模拟 )在区间 [0,1] 内任取两个数, 则这两个数的平方和也在 [0,1] 内的概率是 ( )[ 答案 ] A(2) 若分成的三条线段的长度均为A 1- ABC 内的概率是 (115.7A .B .C . D124 12.12[ 答案 ] C[ 解析 ] S 矩形 = ab .1 115S 梯形=2 3a +2a b = ab . 12 .A .10π20π40=20(m) .二、填空题5.一个路口的红绿灯,红灯的时间为 30秒,黄灯的时间为 5 秒,绿灯的时间为 40秒,当某人到达路口时看见的是红灯的概率是 ________ . 解析 以时间的长短进行度量,故 P =30= 2.75 5答案256.取一根长度为 4 m 的绳子,拉直后在任意位置剪断, 那么剪得的两段都不少于 1 m 的概率是 _____ .2 解析 把绳子 4 等分,当剪断点位于中间两部分时,两段绳子都不少于1 m ,故所求概率为 P = =41[0,1] 内的点在 4单位圆内 ( 如阴影部分所示 ) ,故所求概率为1ππ4.某人从甲地去乙地共走了 500 m ,途中要过一条宽为 x m 的河流,他不小心把一件物品丢在途中,若物品掉在河里就找不到,物品不掉在河里就能找到,已知该物品能被找到的概率为 2425,则河宽为 ()A .16 mB .20 mC .8 mD .10 m [ 答案 ] B[ 解析 ] 物品在途中任何一处丢失的可能性是相等的,所以符合几何概型的条件.找24 1 1到的概率为 25,即掉到河里的概率为 ,则河流的宽度占总距离的 ,所以河宽为 25 25 1500×252 解析如图可设与的长度等于1,则由几何概型可知其整体事件是其周长3,则其概率是3.3 答案238.已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷 1 000 粒黄豆,落在阴影部分的黄豆为600 粒,则可以估计出阴影部分的面积为 __________ .600 S解析设所求的面积为S,由题意,得 1 000=5×12,则S=36.答案369.(2014·长沙联考)点P在边长为1的正方形ABCD内运动,则动点P到顶点A的距离| PA| ≤1的概率为_____ .解析如图,满足|PA|≤1的点P在如图所示阴影部分运动,则动点P到顶点A的距离|PA|≤1的12×π×124=π1×1 =4π答案410.(2013·福建)利用计算机产生0~1 之间的均匀随机数a,则事件“ 3a-1<0”发生的概率为概率为S阴影S正方形30[ 答案 ] 2[ 解析 ] 如图所示,△ ABC 中, AB =3, AC =4, BC =5,则△ ABC 的周长为 3+4+5=12. 设某时刻该蚂蚁距离三角形的三个顶点的距离均超过 1为事件 A , DE + FG + MN 3+2+ 1 1则 P (A ) =BC +CA +AB = 12 = 2.12.在一个球内挖去一个几何体,其三视图如图.在球内任取一点 P ,则点 P 落在剩余几何体上的概率为[ 答案 ] 53125[ 解析 ] 由三视图可知,该几何体是球与圆柱的组合体,球半径 R =5,圆柱底面半径 r = 4,高 h= 6,故球体积 V =43π R = 5030 ,圆柱体积 V 1=π r · h =96π,3313.(2012·辽宁卷改编 )在长为 12 cm 的线段 AB 上任取一点 C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于 20 cm 2的概率为 _______ .解析 设AC =x cm,0<x <12,则 CB = (12 - x )cm ,要使矩形面积大于 20 cm 2,只要 x (12 -x )> 20,=,即取 30 毫升种子含有带麦锈病的种子的概率为∴所求概率 P =500π3 -96π 500π53 . 125.则 x 2- 12x + 20<0,解得 2<x <10,所求概率为 10-2 P =1223. 2答案 2314.在 1 升高产小麦种子中混入一粒带麦锈病的种子,从中随机取出 10 毫升,含有麦锈病种子的概率;从中随机取出 30 毫升,含有麦锈病种子的概率解析 1升=1 000毫升,记事件 A :“取出 10毫升种子含有这粒 带麦锈病的种子”.则 P (A ) =1 10000 =,即取出 10 毫升种子含有这粒带麦锈病的种子的概率为 . 记事件 B :30 毫升种子含有带麦锈病的种子”.则 P(B)=1 00015.一只蜜蜂在一个棱长为 3 的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体 的距离均大于 1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为 _________ .解析 由已知条件,可知蜜蜂只能在一个棱长为 1的小正方体内飞行, 结合几何概型, 可得蜜蜂“安 131 全飞行”的概率为 P = 33= 27.答案 217π π 116.(2014·淮安模拟 )在区间 -2,2 上随机取一个数 x ,cos x 的值介于 0 至2之间的概率为答案 1317. 如图所示,设 M 是半径为 R 的圆周上一个定点,在圆周上等可能地任取一点 N ,连接 MN ,则弦MN的长超过 2R 的概率为 ________解析 如图,在圆上过圆心 O 作与 OM 垂直的直径 CD ,则 MD = MC = 2R ,当点 N 不在半圆π R 1 弧 上时, MN > 2R ,故所求的概率 P (A )= = .2π R 2答案 12 18.(2012·湖北卷改编 ) 如图,在圆心角为直角的扇形 OAB 中,分别以 OA ,OB 为直径作两个半圆.在扇形 OAB 内随机取一点,6 个表面解析 由 0≤ cosππ2, 2π πππ或 3 ≤ x ≤ 2 ,结合几何概型的概率公式可得所求的概率为 P = π222 3 1 π =3. 21x ≤2,x ∈ ππ ,可得- 2 ≤ x ≤-则此点取自阴影部分的概率是1 1 π解析 如图,设 OA = 2 ,S 扇形 AOB =π, S △OCD = 2× 1× 1= 2,S 扇形 OCD = 4 , ∴在以 OA 为直径的半圆中,π π 1 π- 1×22空白部分面积 S 1=2-2 4-2 =1,所有阴影面积为 π- 2.故所求概率 P = π =1-π.21-π解析 三棱锥 P -ABC 与三棱锥 S - ABC 的底面相同,V P -ABC <12V S -ABC 就是三棱锥 P - ABC 的高小于三棱锥 S - ABC 的高的一半,过高的中点作一平行底面的截面,这个截面下任取一点都符合题意,设底 面 ABC 的面积为 S ,三棱锥 S - ABC 的高为 h ,则所求概率为: P = 1 1 1 13Sh -3×4S ×2h 1 13Sh 78.7 答案 78三、解答题20.已知正方体 ABCD -A 1B 1C 1D 1 的棱长为 1,在正方体内随机取点 M ,求使四棱锥 M -ABCD 的体积答案 19.(2014·徐州二模 ) 已知正三棱锥 S -ABC 的底边长为4,高为 3,在三棱锥内任取一点 P ,使得 V P -小于16的概率.6[ 分析] 由题目可获取以下主要信息:①正方体ABCD-A1B1C1D1 的棱长为1,M为其内一点;1②求四棱锥M-ABCD的体积小于的概率.解答本题的关键是结合几何图形分析出概率模型.[ 解析] 如图,正方体ABCD-A1B1C1D1,设M-ABCD的高为h11则×S 四边形ABCD× h< ,36又S 四边形ABCD=1,1V正方体12 则h< ,即点M在正方体的下半部分.故所求概率P=2 V正方体21.(1) 在半径为 1 的圆的一条直径上任取一点,过该点作垂直于直径的弦,其长度超过该圆内接正三角形的边长3的概率是多少(2) 在半径为 1 的圆内任取一点,以该点为中点作弦,问其长超过该圆内接正三角形的边长3的概率是多少(3) 在半径为 1 的圆周上任取两点,连成一条弦,其长超过该圆内接正三角形边长3的概率是多少[ 解析] (1) 设事件A=“弦长超过 3 ”,弦长只与它跟圆心的距离有关,11∵弦垂直于直径,∴当且仅当它与圆心的距离小于2时才能满足条件,由几何概率公式知P(A)=2.1(2) 设事件B=“弦长超过3”,弦被其中点惟一确定,当且仅当其中点在半径为2的同心圆内时,1 才能满足条件,由几何概率公式知P(B) =4.(3) 设事件C=“弦长超过3”,固定一点A 于圆周上,以此点为顶点作内接正三角形ABC,显然只有当弦的另一端点D落在上时,才有| AD|>| AB| =3,由几何概率公式知P(C)=13.22.设关于x的一元二次方程x2+2ax+b2=0.若a是从区间[0,3] 任取的一个数,区间[0,2] 任取的一个数,求方程有实根的概率.解 设事件 A 为“方程 x 2+2ax +b 2=0有实根”.当 a ≥0, b ≥0时,方程 x 2+2ax +b 2=0 有实根 的充要条件为 a ≥b .试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2} ,构成事件 A 的区域为{(a ,b )|0 ≤ a ≤3,0 ≤ b ≤2,a ≥ b } ,根据条件画出构成的区域 ( 略) ,可得所求的概率为2=3. 23.设 AB = 6,在线段 AB 上任取两点 ( 端点 A ,B 除外 ),将线段 AB 分成了三条线段,(1) 若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率;(2) 若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率.解 (1) 若分成的三条线段的长度均为正整数,则三条线段的长度所有可能情况是 1,1,4 ; 1,2,3 ;12,2,2 ,共 3种情况, 其中只有三条线段长为 2,2,2 时能构成三角形, 故构成三角形的概率为 P =3.(2) 设其中两条线段长度分别为 x , y ,则第三条线段长度为 6- x - y ,故全部试验结果所构成的区 域为所表示的平面区域为△ OAB .若三条线段 x ,y, 6-x - y 能构成三角形,x +y >6-x -y ,则还要满足 x +6-x - y >y ,y +6-x -y >x ,x +y >3,即为 y <3,x <3,所表示的平面区域为△ DEF ,123×2- × 22 2 P( A)= 3×20<x <6,0<x <6, 0<y <6,0<6-x -y <6, 即 0< y < 6, 0<x +y <6,由几何概型知,所求概率为S△DEF 1 P==. S△AOB 41.2.答案127.点A为周长等于 3 的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧的长度小于 1 的概率为_______ .1[ 答案]3 [ 分析] 解不等式,求出a 的取值范围,算出此范围与所给区间的比值即可.1[ 解析] 由题意,得0<a<3,所以根据几何概型的概率计算公式,得事件“3a-1<0”发生的概率为13.11.一只蚂蚁在三边边长分别为3、4、 5 的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过 1 的概率为________ .1ABC< V S-ABC的概率是______。

相关文档
最新文档