第一讲线段、角的计算与证明问题(

合集下载

第1讲 与三角形有关的线段和角

第1讲 与三角形有关的线段和角

知识讲解1.三角形的分类:1)按边分类:2)按角分类:2.三角形的高、中线、角平分线(1)三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足之间的线段叫做三角形的高。

三角形的三条高交于一点,这一点叫做三角形的_____________.(2)三角形的中线:在三角形中,连接一个顶点和它对边的_____的线段叫做三角形的中线. (3)三角形的角平分线:在三角形中,一个内角的_______和对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

3.三角形的内角与外角(1)三角形的内角:✓定义:三角形中相邻两边组成的角,叫做三角形的_____.✓三角形内角和定理:三角形三个内角的和等于__________.✓三角形内角和定理的作用:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可求出其_______度数;③求一个三角形中各角之间的关系。

(2)三角形的外角✓定义:三角形一边与另一边_____组成的角,叫做三角形的外角。

三角形外角和为_____。

✓性质:①三角形的一个外角等于与它____相邻的两个内角的和。

②三角形的一个外角大于与它______相邻的任何一个内角.4.三角形的三边关系(1)三边关系性质:三角形的任意两边之和______第三边,任意两边之差_____于第三边,三角形的三边关系反应了任意三角形边的限制关系.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和____最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.考点/易错点1关于三角形的高的注意事项:(1)三角形的高线是一条线段;(2)锐角三角形的三条高都在三角形______,三条高的交点也在三角形____部;钝角三角形有两条高落在三角形的_____部,一条在三角形_____部,三条高所在直线交于三角形___一点;直角三角形有两条高恰好是三角形的两条直角边,它们的交点是直角的顶点,另一条在三角形的内部。

初三数学上册课本第一讲

初三数学上册课本第一讲

证明(二)_______年_____月______ 日1、你能证明它吗?(1)三角形全等的性质及判定全等三角形的对应边_______ ,对应角也________. 判定: _____________________________________. (2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:三线合一是指: ____________________________________________. (3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于 60 度;等边三角形 的三条边都满足 “三线合一”的性质; 等边三角形是轴对称图形, 有 3 条对称轴。

判定定理:有一个角是 60 度的等腰三角形是等边三角形。

或者三个角都相等的 三角形是等边三角形。

(4)含 30 度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于 30 度,那么它所对的直角边等于斜 边的一半。

2、直角三角形(1)勾股定理及其逆定理定理: _____________________________________________________________ 。

逆定理: ___________________________________________________________ 。

(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的 逆命题就是逆定理。

(3)直角三角形全等的判定定理定理: ________________________________________ (HL) 3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质: __________________________________________________ 。

判定: __________________________________________________ 。

选修4-1第一讲相似三角形的判定及有关性质平行线分线段成比例定理课件人教新课标1

选修4-1第一讲相似三角形的判定及有关性质平行线分线段成比例定理课件人教新课标1

E.求证:AD AE DE . AB AC BC
A
(图形语言)
法2:为了证明
AD AB
DE BC
,需
D
用平行线分线段
线交于点G.
E
G
C
证明:过点C作CG//AB,且与DE的延长线交于点G.
∵DE//BC, ∴AD:AB=AE:AC ∵CG//AB, ∴DE:DG=AE:AC
A
D L1
B
E L2
F
C L3
图1
A
DE
B
C
图2
(二、提高题:)
C
1、如图:EF∥AB,BF:FC= 5 :4, AC=3厘米,则CE=(4 cm)
EF
2、已知在△ABC中,D3E∥BC,EF∥DC, A 那么下列结论不成立的是( B )
A
B
A
AD AF
AB AD
B AD AC
AB AE
C AF AD
设线段AB的中点为P1,线 段BC的三等分点为P2、P3. AP1=P1B=BP2= P2P3= P3C
l A
P1
B
P2 P3
C
l
D
Q1
E
l1 a1
Q2
l2 a1
Q3
F
a3
分别过点P1,P2, P3作直线
l3
a1,a2,a3平行于l1,与l 的交
点分别为Q1,Q2,Q3.
这时你想到了什么?
DQ1=Q1E=EQ2=Q2Q3=Q3F 平行线等分线段定理
(2)已知AB=a,BC=b,EF= c,
ac
C
则DE=( b )
D L1 E L2
C L3

八年级数学上学期与三角形有关的线段(基础)知识讲解——含课后作业与答案

八年级数学上学期与三角形有关的线段(基础)知识讲解——含课后作业与答案

与三角形有关的线段(基础)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并会应用三角形三边间的关系;3. 理解三角形的高、中线、角平分线及重心的概念,学会它们的画法及简单应用;4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义及分类1. 定义: 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③三角形的顶点:即相邻两边的公共端点.(2)三角形定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3) 三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.【高清课堂:与三角形有关的线段 2、三角形的分类 】2.三角形的分类(1)按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.(2)按边分类:要点诠释:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;②等边三角形:三边都相等的三角形.要点二、三角形的三边关系定理:三角形任意两边的和大于第三边.推论:三角形任意两边的差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.要点三、三角形的高、中线与角平分线1、三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言:如下图,AD 是ΔABC 的高,或AD 是ΔABC 的BC 边上的高,或AD⊥BC 于D ,或∠ADB =∠ADC=∠90°.注意:AD 是ΔABC 的高 ∠ADB=∠ADC=90°(或AD⊥BC 于D);要点诠释:(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心;(3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部;(ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部;(ⅲ)直角三角形三条高的交点是直角的顶点.2、三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.三角形的中线的数学语言:如下图,AD 是ΔABC 的中线或AD 是ΔA BC 的BC 边上的中线或BD =CD =21BC.要点诠释:(1)三角形的中线是线段;(2)三角形三条中线全在三角形内部;(3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心;(4)中线把三角形分成面积相等的两个三角形.3、三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:如下图,AD 是ΔABC 的角平分线,或∠BAD=∠CAD 且点D 在BC 上.注意:AD 是ΔABC 的角平分线 ∠BAD=∠DAC=21∠B AC (或∠BAC=2∠BAD=2∠DAC) . 要点诠释:(1)三角形的角平分线是线段;(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;(4)可以用量角器或圆规画三角形的角平分线.要点四、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、三角形的定义及表示1.如图所示.(1)图中共有多少个三角形?并把它们写出来;(2)线段AE是哪些三角形的边?(3)∠B是哪些三角形的角?【思路点拨】在(1)问中数三角形的个数时,应按一定规律去找,这样才会不重、不漏地找出所有的三角形;在(2)问中,突破口在于由三角形定义知,除了A、E再找一个第三点,使这点不在AE上,便可得到以AE为边的三角形;(3)问的突破口是∠B一定是以B为一个顶点组成的三角形中.【答案与解析】解:(1)图中共有6个三角形,它们是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC.(2)线段AE分别为△ABE,△ADE,△ACE的边.(3)∠B分别为△ABD,△ABE,△ABC的角.【总结升华】在数三角形的个数时一定要按照一定的顺序进行,做到不重不漏.举一反三:【变式】如图,,以A为顶点的三角形有几个?用符号表示这些三角形.【答案】3个,分别是△EAB, △BAC, △CAD.类型二、三角形的三边关系2. 三根木条的长度如图所示,能组成三角形的是( )【答案】D.【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A、B、C三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D选项中,2cm+3cm>4cm.故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能够成三角形.【高清课堂:与三角形有关的线段 例1】举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能; (2)不能; (3)能.3.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______.【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7, 即5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b.举一反三:【变式】(2015春•盱眙县期中)四边形ABCD 是任意四边形,AC 与BD 交点O .求证:AC+BD >(AB+BC+CD+DA ).【答案】证明:∵在△OAB 中OA+OB >AB在△OAD 中有OA+OD >AD ,在△ODC 中有OD+OC >CD ,在△OBC 中有OB+OC >BC ,∴OA+OB+OA+OD+OD+OC+OC+OB >AB+BC+CD+DA即2(AC+BD )>AB+BC+CD+DA ,即AC+BD >(AB+BC+CD+DA ).类型三、三角形中重要线段4. (2016春•江阴市月考)如图,AD ⊥BC 于点D ,GC ⊥BC 于点C ,CF ⊥AB 于点F ,下列关于高的说法中错误的是( )A .△ABC 中,AD 是BC 边上的高B .△GBC 中,CF 是BG 边上的高C .△ABC 中,GC 是BC 边上的高D .△GBC 中,GC 是BC 边上的高【思路点拨】根据三角形的一个顶点到对边的垂线段叫做三角形的高对各选项分析判断后利用排除法求解.【答案与解析】解:A 、△ABC 中,AD 是BC 边上的高正确,故本选项错误;B 、△GBC 中,CF 是BG 边上的高正确,故本选项错误;C 、△ABC 中,GC 是BC 边上的高错误,故本选项正确;D 、△GBC 中,GC 是BC 边上的高正确,故本选项错误.故选C .【总结升华】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,是基础题,熟记概念是解题的关键.举一反三:【变式】(2015•长沙)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .【答案】A . 5.如图所示,CD 为△ABC 的AB 边上的中线,△BCD 的周长比△ACD 的周长大3cm ,BC =8cm ,求边AC 的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD =BD ,②△BCD 的周长比△ACD 的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm ,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3.又∵ BC =8,∴ AC =5.答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法.举一反三:【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1.类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.与三角形有关的线段(基础)巩固练习【巩固练习】一、选择题1.(2016•西宁)下列每组数分别是三根木棒的长度,能用他们摆成三角形的是( ).A.3cm ,4cm,8cm B.8cm,7cm,15cmC.5cm ,6cm,11cm D.13cm ,12cm,20cm2.如图所示的图形中,三角形的个数共有( ).A.1个 B.2个 C.3个 D.4个3.(2015春•常州期中)如果三角形的两边长分别为4和5,第三边的长是整数,而且是奇数,则第三边的长可以是()A. 6 B. 7 C. 8 D. 94.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( ).A.5m B.15m C.20m D.28m5.三角形的角平分线、中线和高都是( ).A.直线 B.线段 C.射线 D.以上答案都不对6.下列说法不正确的是( ).A.三角形的中线在三角形的内部 B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部 D.三角形必有一高线在三角形的内部7.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是( ).A.S1>S2 B.S1<S2 C.S1=S2 D.以上三种情况都有可能8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( ).A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短二、填空题9.(2016•金平区一模)如图,自行车的三角形支架,这是利用三角形具有________性.10.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________.11. 已知等腰三角形的两边分别为4cm和7cm,则这个三角形的周长为________.12. 如图,AD是△ABC的角平分线,则∠______=∠______=12∠_______;BE是△ABC的中线,则_____=_____=12____ ;CF是△ABC的高,则∠________=∠________=90°,CF________AB.13. 如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14.(2015春•焦作校级期中)AD是△ABC的边BC上的中线,AB=3,AC=4,则中线AD的取值范围是_____________.三、解答题15.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.16.如图,在△ABC中,∠BAD=∠CAD,AE=CE,AG⊥BC,AD与BE相交于点F,试指出AD、AF分别是哪两个三角形的角平分线,BE、DE分别是哪两个三角形的中线?AG是哪些三角形的高?17.(2014春•苏州期末)如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.18.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题1. 【答案】D.2. 【答案】C;【解析】三个三角形:△ABC, △ACD, △ABD.3. 【答案】B;【解析】解:由题意,令第三边为x,则5﹣4<x<5+4,即1<x<9,∵第三边长为奇数,∴第三边长是3或5或7.∴三角形的第三边长可以为7.故选B.4. 【答案】D;【解析】因为第三边满足:|另两边之差|<第三边<另两边之和,故|6-12<AB<16+12 即4<AB<28故选D.5. 【答案】B.6. 【答案】C;【解析】三角形的三条高线不一定都在三角形内部.7. 【答案】C;【解析】中线把三角形分成面积相等的两个三角形.8. 【答案】A.二、填空题9. 【答案】稳定.10.【答案】5 cm或7 cm;【解析】三角形三边关系的应用.11.【答案】15cm或18cm;【解析】按腰为4 cm或7 cm分类讨论.12.【答案】BAD CAD BAC;AE CE AC;AFC BFC ⊥.13.【答案】15cm2,30cm2;【解析】S△ABE=S△A CE=15 cm2,S△AB C=2 S△ABE=30 cm2.14.【答案】解:延长AD至E,使DE=AD,连接CE.∵BD=CD,∠ADB=∠EDC,AD=DE,∴△ABD≌△ECD,∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即1<2AD<7,<AD<.故答案为:<AD<.三、解答题15.【解析】解:(1)5+5=10>a(0<a<10),且5+a>5,所以能围成三角形;(2)当-1<a<0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a=0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a >0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k,3k,5k,则2k+3k=5k不满足三角形三边关系.所以不能围成三角形.16.【解析】解:AD、AF分别是△ABC,△ABE的角平分线.BE、DE分别是△ABC,△ADC的中线,AG是△ABC,△ABD,△ACD,△ABG,△ACG,△ADG的高.17.【解析】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm.18.【解析】解:如图。

八下数学第一章三角形的证明讲义

八下数学第一章三角形的证明讲义

第一章三角形的证明1.1等腰三角形(一)一、问题引入:列举我们已知道的公理:.(1)公理:同位角,两直线平行.(2)公理:两直线,同位角.(3)公理:的两个三角形全等.(4)公理:的两个三角形全等.(5)公理:的两个三角形全等.(6)公理:全等三角形的对应边,对应角. 注:等式的有关性质和不等式的有关性质都可以看作公理.二、基础训练:1. 利用已有的公理和定理证明:“两角及其中一角的对边对应相等的两个三角形全等.”2. 议一议:(1)还记得我们探索过的等腰三角形的性质吗?(2)等边对等角三线合一三、例题展示:在△ABC中,AD是角平分线,DE⊥AB, DF⊥AC,试猜想EF与AD之间有什么关系?并证明你的猜想.四、课堂检测:1. 如图,已知:AB∥CD,AB=CD,若要使△ABE≌△CDF,仍需添加一个条件,下列条件中,哪一个不能使△ABE≌△CDF的是()A.∠A=∠B ; B . BF=CE; C. AE∥DF; D. AE=DF.2. 如果等腰三角形的一个内角等于500则其余两角的度数为.3.(1)如果等腰三角形的一条边长为3,另一边长为5,则它的周长为.(2)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的腰长为.4. △ABC中,AB=AC, 且BD=BC=AD,求∠A的度数.5. 如图,已知D.E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE中考真题:已知:如图,△ABC中,AD是高,CE是中线,DC=BE, DG⊥CE,G 是垂足,求证:(1)G是CE中点.(2)∠B=2∠BCE.1.1 等腰三角形(二)一、问题引入:1. 在等腰三角形中作出一些相等的线段(角平分线.中线.高),你能发现其中一些相等的线段吗?你能证明你的结论吗?2.等腰三角形的两底的角平分线相等吗?怎样证明.已知:求证:证明:得出定理: .问题:等腰三角形两条腰上的中线相等吗?高呢?还有其他的结论吗?请你证明二、基础训练;1. 请同学们阅读P6的问题(1).(2),由此得到什么结论?2. 我们知道等腰三角形的两个底角相等,反过来此命题成立吗?并与同伴交流,由此得到什么结论?得出定理: ;简称: .三、例题展示:如图,△ABC 中,D.E 分别是AC.AB 上的点,BD 与CE相交于点O ,给出下列四个条件①∠EBO=∠DCO ;②∠BEO=∠CDO ;③BE=CD;④OB=OC,上述四个条件中,哪两个条件可判定是等腰三角形,请你写出一种情形,并加以证明.四、课堂检测:1. 已知:如图,在直角△ABC 中,角C 为45度,AD 垂直于BC,DE 垂直于AB,则图中等腰直角三角形共有( )A.3个B.4个C.5个D.6个2. 已知:如图,在△ABC 中,AB=AC, ∠BAC=1200, D.E 是BC上两点,且第1题 第2题 第3题 第4题AD=BD,AE=CE,猜想△ADE是三角形.3. 如图,在△ABC中,∠ABC与∠ACB的平分线交与点O,若AB=12,AC=18,BC=24,则△ABC的周长为()A.30B.36C.39D.424. 在△ABC中,AB=AC, ∠A=360,BD.CE是三角形的平分线且交于点O,则图中共有个等腰三角形.5. 如图:下午14:00时,一条船从处出发,以28海里/小时的速度,向正北航行,16:00时,轮船到达B处,从A处测得灯塔C在北偏西280,从B处测得灯塔C在北偏西560,求B处到灯塔C的距离.1.1 等腰三角形(三)一、问题引入:1. 已知△ABC中,AB=AC=5cm,请增加一个条件使它变为等边三角形.2. 有一个角是600的等腰三角形是等边三角形吗?试着证明你的结论.得出定理:有一个角是的三角形是等边三角形.二、基础训练:做一做:用两个含300角的三角板,你能拼出一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由.根据操作,思考:在直角三角形中,300角所对直角边与斜边有什么关系?并试着证明.得出定理:在直角三角形中,300角所对直角边等于斜边的.三、例题展示:1. 等腰三角形的底角为150,腰长为2a,求腰上的高.2. 判断:(1)在直角三角形中,直角边是斜边的一半.()(2)有一个角是600的三角形是等边三角形.()3. 证明三个角都相等的三角形是等边三角形.四、课堂检测1. 等腰三角形的底边等于150,腰长为20,则这个三角形腰上的高是.2. 在Rt△ABC中,∠ACB=900,∠A =300,CD⊥AB,BD=1,则AB= .3. 在△ABC中,AB=AC,∠BAC=1200,D是BC的中点,DE⊥AC,则AE:EC= .4. 如图,在Rt△ABC中,∠C=900,沿B点的一条直线BE折叠△ABC,使点C恰好落在AB的中点D处,则∠A= .5. 在Rt△ABC中,∠C=300,AD⊥BC,你能看出BD与BC的大小关系吗?中考真题:已知:如图,△ABC中,BD⊥AC,DE⊥AC,点D是AB的中点,∠A=300,DE=1.8,求AB的长.1.3 线段的垂直平分线(一)一、问题引入:“线段的垂直平分线上的点到这条线段的两个端点的距离相等”你能证明这一结论吗?二、基础训练:议一议:写出“线段的垂直平分线上的点到这条线段的两个端点的距离相等”这一命题的逆命题?它是真命题吗?如果是,请证明,并与同伴交流.三、例题展示:例:如图在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB.BC 延长线于F.E求证:(1)∠EAD=∠EDA ;(2)DF ∥AC(3)∠EAC=∠B四、课堂检测:1. 已知:线段AB 及一点P ,PA=PB ,则点P 在 上.2. 已知:如图,∠BAC=1200,AB=AC,AC 的垂直平分线交BC 于D 则∠ADC= .3. △ABC 中,∠A=500,AB=AC ,AB 的垂直平分线交AC 于D 则∠DBC 的度数 .4. △ABC 中,DE.FG 分别是边AB.AC 垂直平分线,则∠B ∠BAE ,∠C ∠GAF ,若∠BAC=1260,则∠EAG= .5. 如图,△ABC 中,AB=AC=17,BC=16,DE 垂直平分AB ,则△BCD 的周长是 .6. 有特大城市A 及两个小城市B.C ,这三个城市共建一个污水处理厂,使得该厂到B.C 两城市的距离相等,且使A 市到厂的管线最短,试确定污水处理厂的位置.第1题 第4题 第5题中考真题:已知:如图,DE是△ABC的AB边的垂直平分线,分别交AB.BC 于D.E,AE平分∠BAC,若∠B=300,求∠C1.3 线段的垂直平分线(二)一、问题引入:1. 等腰三角形的顶点一定在上.2. 在△ABC中,AB.AC的垂直平分线相交于点P,则PA.PB.PC的大小关系是.3. 在△ABC中,AB=AC,∠B=580,AB的垂直平分线交AC于N,则∠NBC= .4. 已知线段AB,请你用尺规作出它的垂直平分线.A B二、基础训练:1. 三角形的三边的垂直平分线是否相交于一点,这一点到三个顶点的距离是否相等?上面的问题如何证明?定理:三角形三条边的垂直平分线相交于,这一点到三个顶点的距离.三、例题展示:(1)如图,在△ABC中,∠A=400,O是AB.AC的垂直平分线的交点,求∠OCB 的度数;(2)如果将(1)中的的∠A度数改为700,其余的条件不变,再求∠OCB的度数;(3)如果将(1)中的的∠A度数改为锐角a,其余的条件不变,再求∠OCB 的度数.你发现了什么规律?请证明;(4)如果将(1)中的的∠A度数改为钝角a,其余的条件不变,是否还存在同样的规律?你又发现了什么?四、课堂检测:1. 在三角形内部,有一点P到三角形三个顶点的距离相等,则点P一定是()A. 三角形三条角平分线的交点;B. 三角形三条垂直平分线的交点;C. 三角形三条中线的交点;D. 三角形三条高的交点.2. 已知△ABC的三边的垂直平分线交点在△ABC的边上,则△ABC的形状为()A. 锐角三角形;B. 直角三角形;C. 钝角三角形;D. 不能确定3. 等腰Rt△ABC中,AB=AC,BC=a,其斜边上的中线与一腰的垂直平分线交于点O,则点O到三角形三个顶点的距离是.4. 已知线段a.b,求作以a为底,以b为高的等腰三角形.a b中考真题:已知:如图,Rt△ABC中,∠ACB=900, ∠BAC=600,DE垂直平分BC,垂足为D,交AB于点E,点F在DE的延长线上,且AF=CE,试探究图中相等的线段.1.4角平分线(一)一、提出问题:1. 角平分线的定义:______________________________________2. 问题1:还记得角平分线上的点有什么性质吗?你是怎样得到的?你能证明它吗?定理归纳:问题2:你能写出这个定理的逆命题?它是真命题吗?如果是,你能证明它?定理归纳:二、基础训练:用尺规怎样做已知角的平分线呢?并对自己的做法加以证明.三、例题解释:例:如图,已知AD为△ABC的角平分线,∠ABC=90°,EF⊥AC,交BC于点D,垂足为F,DE=DC,求证:BE=CF.四、课堂检测1. OM平分∠BOA,P是OM上的任意一点,PD⊥OA,PE⊥OB,垂足分别为D.E,下列结论中错误的是()A:PD=PE B:OD=OE C:∠DPO=∠EPO D:PD=OD2、如图所示,AD平分∠BAC,DE⊥AB,垂足为E,DF⊥AC,垂足为F,则下列结论不正确的是()A:△AEG≌△AFG B:△AED≌△AFD C:△DEG≌△DFG D:△BDE≌△CDFFEDC BA3. △ABC中, ∠ABC.∠ACB的平分线交于点O,连结AO,若∠OBC=25°,∠OCB=30°,则∠OAC=_____________°4. 与相交的两直线距离相等的点在()A:一条直线上B:一条射线上C:两条互相垂直的直线上D:以上都不对5. ∠AOB的平分线上一点M,M到OA的距离为2CM,则M到OB的距离为_________.6. 在RT△ABC中,∠C=90°,AD是∠BAC的平分线,若BC=16,BD=10,则D到AB的距离是________.7. 如图在两条交叉的公路L1与L2之间有两家工厂A.B,现在要修一个货物中转站,使它到两条公路的距离相等,以及到两个工厂距离相等,你能帮助确定中转站的地址吗?请试试.中考真题:如图,梯形ABCD,ABCD,AD=DC=CB,AD.BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F,(1)请写出图中4组相等的线段(已知的相等线段除外)(2)选择(1)中你所写的一组相等的线段,说说它们相等的理由.1.4 角平分线(二)基础训练:1. 如图:设△ABC的角平分线交于P,求证:P点在∠BAC的平分线上定理:三角形的三条角平分线交于点,并且这一点到三条边的距离.引申:三角形的三条角平分线交于一点,若设这一点到其中一边的距离为m,三边长分别为a.b.c,则三角形的面积S= .2. 已知:△ABC中,BP.CP分别是∠ABC和∠ACB的角平分线,且交于P,若P到边AB的距离为3cm,△ABC的周长为18cm,则△ABC的面积为.3. 到三角形三边距离相等的点是()A.三条中线的交点;B.三条高的交点;C.三条角平分线的交点D.不能确定三、例题展示:例:△ABC中,AC=BC, ∠C=900,AD是△ABC的角平分线,DE⊥AB于E. (1)已知:CD=4cm,求AC长(2)求证:AB=AC+CD四、课堂检测:1. 到一个角的两边距离相等的点在.2. △ABC中,∠C=900,∠A的平分线交BC于D,BC=21cm,BD:DC=4:3,则D 到AB的距离为.3. Rt△ABC中,AB=AC,BD平分∠ABC,DE⊥BC于E,AB=8cm,则DE+DC= cm.4. △ABC中,∠ABC和∠BCA的平分线交于O,则∠BAO和∠CAO的大小关系为.5.Rt△ABC中,∠C=900,BD平分∠ABC,CD=n,AB=m,则△ABD的面积是.6. 已知:OP 是∠MON 内的一条射线,AC ⊥OM ,AD ⊥ON ,BE ⊥OM ,BF ⊥ON ,垂足分别为C.D.E.F ,且AC=AD 求证:BE=BF中考真题:三条公路围成了一个三角形区域,今要在这个三角形区域内建一果品批发市场到这三条公路的距离相等,试找出批发市场的位置.第一章 单 元 检 测一、填空题(每小题3分):1.如图,修建抽水站时,沿着倾斜角为300的斜坡铺设管道,若量得水管AB 的长度为80米,那么点B 离水平面的高度BC 的长为 米.2. 如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是 三角形.3. 如图,已知AC=DB ,要使△ABC ≌△DCB ,只需增加的一个条件是 或 .4. 命题:“全等三角形的对应角相等”的逆命题是 ___________________________________ ___.这条逆命题是______命题(填“真”或“假”)5. 如图,一个顶角为40º的等腰三角形纸片,剪去顶角后,得到一个四边形,则=∠+∠21_________ ;6. 在△ABC 中,已知AB =AC ,AD 是中线,∠B =70°,BC =15cm ,则∠BAC = ,∠DAC = ,BD = cm ;第18题图C B A 第1题 第5题7. 已知,如图,O 是△ABC 的∠ABC.∠ACB 的角平分线的交点,OD ∥AB交BC 于D ,OE ∥AC 交BC 于E ,若BC = 10,则△ODE 的周长为 .8. 如图,在Rt △ABC 中,∠B=90°,∠A=40°,AC 的垂直平分线MN 与AB 相交于D 点,则∠BCD 的度数是 .9. △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D.若DC=7,则D 到AB 的距离是 .10. 如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD的长为 .二、选择题(每小题3分)1.等腰三角形底边上的高与底边的比是1∶2,则它的顶角等于( )A.90°B.60°C.120°D.150°2.下列两个三角形中,一定全等的是 ( )A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形3. 到△ABC 的三个顶点距离相等的点是△ABC 的( )A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点4. △ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,CD ⊥AB 于点D 若BC=a ,则AD 等于( ) A.21a B.23a C.23a D.3a 5. 如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( )A.30°B.36°C.45°D.70°三、解答题(每题12分)1. 如图,AD ⊥CD ,AB=10,BC=20,∠A=∠C=30°.求:(1)∠ABC 的度数(2)AD 和CD 的长.2.已知:如图,△ABC 中,AB=AC ,∠A=120°.(1)用直尺和圆规作AB 的垂直平分线,分别交BC. AB 于点M.N(保留作图痕迹,不写作法).(2)猜想CM 与BM 之间有何数量关系,并证明你的猜想.四、证明题(每题10分)1.已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD.求证:D 在∠BAC 的平分线上.2. 已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使 CE = CD .求证:BD = DE .五、(本题11分)阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法提示,请任意选择其中一种,对原题进行证明.。

与三角形有关的角(基础) 知识讲解

与三角形有关的角(基础) 知识讲解

与三角形有关的角(基础)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点诠释:如果直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.证法1:如图1所示,延长BC到E,作CD∥AB.因为AB∥CD(已作),所以∠1=∠A(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∠ACB+∠1+∠2=180°(平角定义),所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC边上任取一点D,作DE∥AB,交AC于E,DF∥AC,交AB于点F.因为DF∥AC(已作),所以∠1=∠C(两直线平行,同位角相等),∠2=∠DEC(两直线平行,内错角相等).因为DE∥AB(已作).所以∠3=∠B,∠DEC=∠A(两直线平行,同位角相等).所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义),所以∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线1l ,过B 点作2l ∥1l ,过C 点作3l ∥1l ,因为1l ∥3l (已作).所以∠l=∠2(两直线平行,内错角相等).同理∠3=∠4.又1l ∥2l (已作),所以∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).所以∠5+∠2+∠6+∠3=180°(等量代换).又∠2+∠3=∠ACB ,所以∠BAC+∠ABC+∠ACB=180°(等量代换).证法4:如图4,将ΔABC 的三个内角剪下,拼成以C 为顶点的平角.证法5:如图5-1和图5-2,在图5-1中作∠1=∠A ,得CD ∥AB ,有∠2=∠B ;在图5-2中过A 作MN ∥BC 有∠1=∠B ,∠2=∠C ,进而将三个内角拼成平角.【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.2.在△ABC中,已知∠A+∠B=80°,∠C=2∠B,试求∠A,∠B和∠C的度数.【思路点拨】题中给出两个条件:∠A+∠B=80°,∠C=2∠B,再根据三角形的内角和等于180°,即∠A+∠B+∠C=180°就可以求出∠A,∠B和∠C的度数.【答案与解析】解:由∠A+∠B=80°及∠A+∠B+∠C=180°,知∠C=100°.又∵∠C=2∠B,∴∠B=50°.∴∠A=80°-∠B=80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.举一反三:【变式】如图,在△ABC中,∠A=50°,E是△ABC内一点,∠BEC=150°,∠ABE的平分线与∠ACE的平分线相交于点D,则∠BDC的度数为多少?【答案】100°.解:∵△ABC中∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵△BCE中∠E=150°,∴∠EBC+∠ECB=180°﹣150°=30°,∴∠ABE+∠ACE=130°﹣30°=100°,∵∠ABE的平分线与∠ACE的平分线相交于点D,∴∠DBE+∠DCE=(∠ABE+∠ACE)=×100°=50°,∴∠DBE+∠DCE=(∠DBE+∠DCE)+(∠EBC+∠ECB)=50°+30°=80°,∴∠BDC=180°﹣80°=100°.类型二、三角形的外角3.(1)如图,AB和CD交于点O,求证:∠A+∠C=∠B+∠D .(2)如图,求证:∠D=∠A+∠B +∠C.【答案与解析】解:(1)如图,在△AOC中,∠COB是一个外角,由外角的性质可得:∠COB=∠A+∠C,同理,在△BOD中,∠COB=∠B+∠D,所以∠A+∠C=∠B+∠D.(2)如图,延长线段BD交线段于点E,在△ABE中,∠BEC=∠A+∠B ①;在△DCE中,∠BDC=∠BEC+∠C ②,将①代入②得,∠BDC=∠A+∠B+∠C,即得证.【总结升华】重要结论:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.举一反三:【变式1】如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°,则∠C等于().A、40°B、65°C、75°D、115°【答案】B.【变式2】如图,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,则∠BOC的度数为 .【答案】125°.类型三、三角形的内角外角综合4.已知如图∠xOy=90°,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线相交于点C,当点A,B分别在射线Ox,Oy上移动时,试问∠ACB的大小是否发生变化?如果保持不变,请说明理由;如果随点A,B的移动而变化,请求出变化范围.【思路点拨】根据角平分线的定义、三角形的内角和、外角性质求解.【答案与解析】解:∠C的大小保持不变.理由:∵∠ABY=90°+∠OAB,AC平分∠OAB,BE平分∠ABY,∴∠ABE=∠ABY=(90°+∠OAB)=45°+∠OAB,即∠ABE=45°+∠CAB,又∵∠ABE=∠C+∠CAB,∴∠C=45°,故∠ACB的大小不发生变化,且始终保持45°.【总结升华】本题考查的是三角形内角与外角的关系,掌握“三角形的内角和是180°”是解决问题的关键.举一反三:【变式】如图所示,已知△ABC中,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC 于G,试说明∠BPD与∠CPG的大小关系并说明理由.【答案】解:∠BPD=∠CPG.理由如下:∵ AD、BE、CF分别是∠BAC、∠ABC、∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠BAC,∠3=12∠ACB.∴∠1+∠2+∠3=12(∠ABC+∠BAC+∠ACB)=90°.又∵∠4=∠1+∠2,∴∠4+∠3=90°.又∵ PG⊥BC,∴∠3+∠5=90°.∴∠4=∠5,即∠BPD=∠CPG.。

新浙教版八年级上册数学第一章《三角形的初步知识》知识点及典型例题

新浙教版八年级上册数学第一章《三角形的初步知识》知识点及典型例题

新浙教版八年级上册数学第一章《三角形的初步知识》知识点及典型例题本文介绍了八年级上册数学第一章《三角形的初步知识》的知识点及典型例题。

其中,三角形按角分类分为锐角三角形、直角三角形和钝角三角形;按边的关系可分为等腰三角形、等边三角形和普通三角形。

文章还介绍了三角形的内角和定理、角平分线、重要线段中线和高线的定义、命题和证明步骤。

此外,文章还讲解了全等三角形、尺规作图、线段垂直平分线和角平分线的性质,以及如何利用这些知识点计算角度和线段长度。

最后,文章列举了八个考点,包括判断三条线段能否组成三角形、求三角形的某一边长或周长的取值范围、证明三角形全等等。

例题部分也包括了两个问题的解答。

1、正确画出AC边上的高的是(C)。

2、工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是(B)三角形具有稳定性。

3、不能唯一作出直角三角形的是(C)已知一锐角及其邻边。

4、已知AD、BE、CF是△ABC的三条中线,相交于点O,设△BDO面积为1,则S△ABC=(6)。

5、在图中,由于AB=CD。

AD=BC,所以△ABO≌△CDO,△ABO与△CDO的对应顶点分别为AO和CO,所以全等三角形的对数为1,选项A。

6、根据中线定理可知,DF=EF=BF=AF=1/2AC,所以四边形DCEF是平行四边形,面积为AC的一半,即22.5cm,选项B。

7、根据角平分线定理可知,BP/PC=AB/AC,所以BP/AB=PC/AC,由此可得△BPC与△ABC相似,所以∠BPC=2∠A,选项A。

8、由于BD是BC边上的垂直平分线,所以BD=DC=4,由勾股定理可得AD=3,所以AB=5,所以ΔABD的周长为12,选项D。

9、将三角形按照图中的方式编号,可以发现只有第3块的形状与原来的三角形相同,所以应该带第3块去。

10、以B为顶点的外角为∠ABC=180°-∠A=130°,以C为顶点的外角为∠ACB=180°-∠A=130°,由于外角和等于360°,所以两个外角的平分线的夹角为130°/2=65°,选项A。

几何——第一讲 几何基本概念与简单图形

几何——第一讲 几何基本概念与简单图形

(2)点 A、B 在直线 m 同侧:
第 4 页 共 29 页
(3)两个点都在内侧:
形式二:已知点 A 位于直线 m、n 的内侧, 在直线 m、n 上分别求点 P、Q,使得三角形 APQ 的周长最短。
3. 台球两次碰壁模型 形式一:已知点 A、B 位于直线 m、n 的内侧,在
直线 n、m 上分别求点 D、E 点,使得围成的四边形 ADEB 的周长最短。
果它们有一个公共点,我们就说他们相交,它们是相交 直线,这个公共点叫做它们的交点。
相交关系中最重要的是垂直相交,与垂直有关的知 识,有以下两个重要的结论: ⑴过一点有且仅有一条直线与已知直线垂直; ⑵直线外一点与直线上各点连结的所有线段中,垂线段 最短。
两条直线相交,可形成两组对顶角,它们分别相等, 也可以形成邻补角,即一条直线与端点在这条直线上的 一条射线组成的两个角。也就是说,邻补角是具有特殊 位置关系的两个互补角,一个角的邻补角有且只有两个。
如果两个角的和是一个平角,这两个角叫做互为补角; 如图(b): BDC ABD A ACD
如果两个角的和是一个直角,这两个角叫做互为余角。
第 8 页 共 29 页
⑶“8 字形”模型 如图(c): A B C D
⑷“内角平分线”模型 点 P 是 ABC 和 ACB 的角平分线的交点。 如图(d): BPC 90 1 A
第 20 页 共 29 页
四、面积初步
由于多边形可以分割成若干个三角形,所以多边形
在中学数学里,面积是非常重要的内容,除简单的 的面积可转化为三角形面积来研究。
面积计算外,还要学会使用“等积变换”的思想方法来处
关于三角形的面积,有以下几个重要性质:
理几何问题。
⑴等底等高的两个三角形面积相等;

七年级上册几何图形初步复习1

七年级上册几何图形初步复习1

一.直线、射线、线段1、直线经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线. 直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示. 平面上一个点及一条直线的位置有什么关系? ①点在直线上;②点在直线外. 一个点在一条直线上,也可以说这条直线经过这个点,一个点在直线外,也可以说这条直线不经过这个点.当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点.2、射线和线段直尺给我们线段的形象,手电筒发出的光给我们射线的形象,射线和线段都是直线的一部分.图①中的线段记作线段AB 或线段a ;图②中的射线记作射线OA 或射线m.B A 直线AB· l直线点在直线· B · 点在直线A O b a· a · B A O A m · ②①注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面.直线、射线和线段有什么联系和区别联系:线段、射线都是直线的一部分,将线段向一端延长得到射线,向两端延长得到直线,将射线向另一方向延长得到直线,它们都有“直”的特征,它们都可以用一个小写字母或两个大写字母来表示.区别:直线没有端点,射线有一个端点,线段有两个端点;直线可以向两个方向延伸,射线可以向一个方向延伸,线段不能再延伸;表示直线和线段的两个大写字母可以交换位置,而表示射线的两个大写字母不能交换位置.3、比较两条线段的长短⑴.度量法:用刻度尺分别量出两条线段的长度从而进行比较.⑵.叠合法:把一条线段移到另一条线段上,使一端重合,从而进行比较.如:线段AB 及线段CD 比较,且A 及C 点重合,则有以下几种情况:①B 及D 重合,两条线段相等,记作:AB =CD .②B 在线段CD 内部,则线段CD 大于线段AB ,记作:CD>AB .③B 在线段CD 外部,则线段CD 小于线段AB ,记作:CD<AB .4、线段的中点及等分点如图(1),点M 把线段AB 分成相等的两条线段AM 及BM ,点M 叫做线段AB 的中点.记作AM=MB=1/2AB如图(2),点M 、N 把线段AB 分成相等的三段AM 、MN 、NB ,点M 、N 叫做线段AB 的三等分点.类似地,还有四等分点,等等. 5、线段的性质 两点的所有连线中,线段最短。

精编中考数学压轴题动点产生的定值与最值问题8个专题讲解

精编中考数学压轴题动点产生的定值与最值问题8个专题讲解

中考数学压轴题动点产生的定值与最值问题8个专题讲解目录第 1 讲角为定值的常规解法第 2 讲角为定值的高级解法第3讲边为定值的动点问题第4讲线段的和或差为定值的动点问题第5讲比值为定值的动点问题第6讲乘积为定值的动点问题第7讲面积为定值的动点问题第8讲动点产生的几何最值问题第1讲角为定值的常规解法【几何法证明角为定值】(1)三角形内角和定理(2)三角形外角定理(3)等腰三角形底角相等(4)直角三角形两锐角互余(5)平行线的同位角相等、内错角相等、同旁内角互补(6)平行四边形的对角相等、邻角互补(7)等腰梯形底角相等(8)圆所涉及的角的关系:圆心角、圆周角、弦切角定理等【例】如图,平面内两条互相垂直的直线相交于点O,∠MON=90°,点A、B分别在射线O M、ON 上移动,AC是△BAO的角平分线,BD为∠ABN的角平分线,AC与B D的反向延长线交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB 的度数;若发生变化,求出变化范围。

、【例】如图所示,O的直径A B=4,点P是A B延长线上的一点,过P点作O的切线,切点为C,连接AC.(1)若∠CPA=30°,求P C的长;(2)若点P在A B的延长线上运动,∠CPA的平分线交A C于点M,你认为∠CMP 的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP 的大小。

【代数法求角为定值】一般在直角坐标系中,可以用坐标的方法表示出边或角,从而求解具体角为定值的问题。

【例】如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t 秒(t>0),抛物线y = ax2 + bx + c 经过点O和点P,已知矩形A BCD的三个顶点为A(1,0),B(1,−5),D(4,0).(1)求c,b (用含t的代数式表示):(2)当4<t<5时,设抛物线分别与线段A B,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=218;(3)在矩形A BCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”。

八年级(上)培优讲义:第1讲-三角形的初步知识(1)

八年级(上)培优讲义:第1讲-三角形的初步知识(1)

第1讲三角形的初步知识1(认识三角形、定义与命题、证明)一、知识建构1. 三角形按角分类:(1)锐角三角形:三角形的,这样的三角形称之为锐角三角形(2)直角三角形:三角形有,这样的三角形称之为直角三角形(3)钝角三角形:三角形有,这样的三角形称之为钝角三角形2. 三角形的角平分线:在三角形中,,这个角的顶点与交点之间的线段叫做三角形的角平分线。

3.三角形的中线:在三角形中,,叫做这个三角形的中线。

(1)三角形的中线的形状也是一条;(2)三角形的三条角中线.4.三角形高的定义:从三角形的一个顶点线,的线段叫做三角形的高。

5.三角形三边之间的关系为:6.能清楚地规定某一名称或术语的句子叫做该名称或术语的______.7.对某一件事情作出_______判断的句子叫做命题.•每个命题都是由______•和______两部分组成的.8.思考下列命题的条件和结论分别是什么?并判断那些命题正确? 那些命题不正确?(1)相等的角是对顶角。

(2)直角三角形两锐角互余。

(3)同位角相等。

(4)一个角的补角一定大于这个角的余角。

9. 阅读教材内容后请回答:(1)怎样判断一个命题是真命题还是假命题?(1)真命题、公理、定理三者的区别与联系各是什么?10.判断下列命题是真命题还是假命题?如果是假命题,请说明理由;如果是真命题,请用推理的方法来说明.(1)如果ab=0,那么a=b=0;(2)如图,若AC∥DE,∠1=∠2,则AB∥CD.二、经典例题例1.对于同一平面内的三条直线a,b,c,给出下列5个判断:①a∥b②b∥c;•③a⊥b;④a∥c;⑤a⊥c.请以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题(至少写两个命题).例2.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°例3. 如图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连接A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2=B1A2,连接A2B2…按此规律下去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠A n+1B n B n+1=θn,则(1)θ1= , (2)θn= .例4.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.图1图2DC EA B例5. 一个三角形的三条边长分别为1、2、x ,则x 的取值范围是( )A .1≤x ≤3B .1<x ≤3C .1≤x <3D .1<x <3例6. 已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是 .例7. 两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE .例8.如图,已知AB ∥CD ,直线EF 分别截AB 、CD 于 点M 、N ,MG 、NH 分别是∠EMB 与∠END 的平分线.求证:MG ∥NH . 请根据分析思路,写出证明过程.三、基础演练1.在△ABC 中,若∠A +∠B =88°,则∠C =_______,这个三角形是______ 三角形.∠EMG=12∠∠ENH=12∠END可证∠EMG=∠MNH要证MG ∥NH 只需证:∠EMB=∠END已知AB ∥CDABCDE FHMN2.直角三角形的一个锐角为42°,则另一个锐角为_________.3.在△ABC 中,若∠A =35°,∠B =68°,则与∠C 相邻的外角等于_______ °.4.若5条线段长分别为1cm ,2cm ,3cm , 4cm ,5cm ,则以其中3条线段为边长可以构成三角形的个数是___________ .5.一木工师傅有两根70,100长的木条,他要选择第三根木条,将它们钉成三角形木架,则第三根木条取值范围_____________ ,木架周长的取值范围_____________ . 6. 如图所示,下面的推理中正确的是 ( ) A .∵∠1=∠2,∴AB ∥CDB .∵∠ABC +∠BCD =180°,∴AD ∥BC C .∵AD ∥BC ,∴∠3=∠4D .∵∠ABC +∠DAB =180°,∴AD ∥BC 7.命题“若a b >,则1ab>”是真命题还是假命题?请说明理由.8.若等腰三角形腰长为6,则底边x 的取值范围是 ( ) A . 6<x <12 B . 0<x <6 C . 0<x <12 D . 无法确定9. 如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形 10.如图所示,在△ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,过点D 作DE ∥BC •交AB 于点E ,过点D 作DF ⊥AB 于点F .求证:BC =DE +EF .四、直击中考1. (2013广西)一个三角形的周长是36cm ,则以这个三角形各边中点为顶点的三角形的周长是( )A .6cmB .12cmC .18cmD .36cm2.(2013衡阳)如图,∠1=100°,∠C =70°,则∠A 的大小是( )A .10°B .20°C .30°D .80°3241D CBA B CE DF A3.(2013鄂州)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( )A .165°B .120°C .150°D .135°4.(2013黔东南州)在△ABC 中,三个内角∠A 、∠B 、∠C 满足∠B ﹣∠A =∠C ﹣∠B ,则∠B = 度.5.(2013温州)如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°,则∠3= 度.6.(2013雅安)若(a ﹣1)2+|b ﹣2|=0,则以a 、b 为边长的等腰三角形的周长为 .7.(2013东城).如图,∠ACD 是△ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A . 设A θ∠=,则1A ∠= ;n A ∠= 8.(2014杭州)下列命题中,正确的是( )A .梯形的对角线相等B . 菱形的对角线不相等C . 矩形的对角线不能互相垂直D . 平行四边想的对角线可以互相垂直五、能力拓展1.如图,OB 、OC 是∠AOD 的任意两条射线,OM 平分∠AOB ,ON 平分∠DOC ,若∠MON =α,∠BOC =β,则∠AOD 可表示为( )A . 2α-βB . α-βC . α+βD . 2α2.如图,在锐角△ABC中,CD、BE分别是AB、AC上的高,•且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是()A.150°B.130°C.120°D.1003.已知等腰三角形的周长为14cm,底边与腰的比为3:2,求各边长.4. 已知a,b,c是一个三角形的三条边长,则化简|a+b-c|-|b-a-c|的结果是多少?5.如图所示,已知等腰直角三角形ABC中,∠ACB=90°,直线L经过点C,•AD•⊥L,BE⊥L,垂足分别为D,E.(1)证明:△ACD≌△CBE;(2)求证:DE=AD+BE;(3)当直线L经过△ABC内部时,其他条件不变,(2)中的结论还成立吗?如果成立,请给出证明;如果不成立,猜想这时DE,AD,BE有什么关系?证明你的猜想.六、挑战竞赛1. 在△ABC中,∠A= 50°, 高BE,CF所在的直线相交于点O,求∠BOC.FEC AB2.△ABC 中,已知∠ABC = 74°, ∠A = 56°, BE 是AC 边上的高,CF 是△ ABC 的角平分线,求∠ACF 和∠BFC .4.如图,在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,求S △ABE .5.如图,45AOB ∠=,过OA 上到点O 的距离分别为1,4,7,10,13,16,…的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为,,,321s s s …,观察图中的规律,第4个黑色梯形的面积=4S ,第n (n 为正整数)个黑色梯形的面积=n S .6.在△ABC 中,AC AB =,D 是底边BC 上一点,E 是线段AD 上一点,且∠BAC CED BED ∠=∠=2.(1) 如图1,若∠︒=90BAC ,猜想DB 与DC 的数量关系为 ; (2) 如图2,若∠︒=60BAC ,猜想DB 与DC 的数量关系,并证明你的结论; (3)若∠︒=αBAC ,请直接写出DB 与DC 的数量关系.OA BCDEA EBCD图1 图2。

中考冲刺几何综合问题—知识讲解及典型例题解析

中考冲刺几何综合问题—知识讲解及典型例题解析

;;中考冲刺:几何综合问题—知识讲解及典型例题解析【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要 考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选 择题、填空题、几何推理计算题以及代数与几何的综合计算题 ,还有更注重考查学生分析问题和解决问 题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多, 题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有 实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能 力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等)2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等)3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图 1,在正方形 ABCD 中,点 E 、F 分别是边 BC 、AB 上的点,且 CE=BF ,连接 DE ,过点 E 作 EG ⊥DE,使 EG=DE ,连接 FG ,FC .(1)请判断:FG 与 CE 的数量关系和位置关系;(不要求证明)(2)如图 2,若点 E 、F 分别是 CB 、BA 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出 判断判断予以证明;(3)如图 3,若点 E 、F 分别是 BC 、AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直 接写出你的判断.【思路点拨】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(3)结论仍然成立.如图3中,设DE与FC的延长线交于点M,证明方法类似.【答案与解析】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(3)结论仍然成立.理由:如图3中,设DE与FC的延长线交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,∴∠CBF=∠DCE=90°在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.【总结升华】本题考查四边形综合题、正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,注意这类题目的解题规律,图形变了,条件不变,证明的方法思路完全一样,属于中考常考题型.举一反三:【变式】已知:如图(1),射线AM//射线BN,AB是它们的公垂线,点D、C分别在AM、BN上运动(点D与点A不重合、点C与点B不重合),E是AB边上的动点(点E与A、B不重合),在运动过程中始终保持DE⊥EC,且AD+DE=AB=a.(1)求证:∆ADE∽∆BEC;(2)如图(2),当点E为AB边的中点时,求证:AD+BC=CD;(3)设AE=m,请探究:∆BEC的周长是否与m值有关?若有关,请用含有m的代数式表示∴1∆BEC的周长;若无关,请说明理由.【答案】(1)证明:∵DE⊥EC,∴∠DEC=90︒.∴∠AED+∠BEC=90︒.又∵∠A=∠B=90︒,∴∠AED+∠EDA=90︒.∴∠BEC=∠EDA.∴∆ADE∽∆BEC.(2)证明:如图,过点E作EF//BC,交CD于点F,∵E是AB的中点,容易证明EF=1(AD+BC).2在Rt∆DEC中,∵DF=CF,∴EF=12 CD.1(A D+BC)=CD.22∴AD+BC=CD.(3)解:∆AED的周长=AE+AD+DE=a+m,BE=a-m.设AD=x,则DE=a-x.∵∠A=90︒,∴DE2=AE2+AD2.即a2-2ax+x2=m2+x2.a2-m2∴x=.2a由(1)知∆ADE∽∆BEC,∆ADE的周长AD a+m2a=∴a2-m2==∆BEC的周长BE a-m2a.∴∆BEC的周长=2a⋅∆ADE的周长=2a.a+m∴∆BEC的周长与m值无关.2.在△ABC中,∠ACB=45º.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=42,BC=3,CD=x,求线段CP的长.(用含x的式子表示)【思路点拨】(1)由题干可以发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解.(2)是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,和上题一样找AC的垂线,就可以变成第一问的条件,然后一样求解.(3)D在BC之间运动和它在BC延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X还是4-X.分类讨论之后利用相似三角形的比例关系即可求出CP.【答案与解析】(1)结论:CF⊥BD;证明如下:ΘAB=AC,∠ACB=45º,∴∠ABC=45º.由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90º,∴∠DAB=∠FAC,∴△DAB≌△FAC,∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90º.即CF⊥BD.(2)CF⊥BD.(1)中结论仍成立.理由是:过点A作AG⊥AC交BC于点G,∴AC=AG可证:GAD≌CAF∴∠ACF=∠AGD=45º∠BCF=∠ACB+∠ACF=90º.即CF⊥BD(3)过点A作AQ⊥BC交CB的延长线于点Q,易证△AQD∽△DCP,∴ CP = CD ,∴ = , ∴CP = - + x . ∴ CP = CD , ∴ = , ∴CP = + x . ①点 D 在线段 BC 上运动时,∵∠BCA=45º,可求出 AQ= CQ=4.∴DQ=4-x ,CP x DQ AQ4 - x 4 x 2 4②点 D 在线段 BC 延长线上运动时,∵∠BCA=45°,∴AQ=CQ=4,∴DQ=4+x.过 A 作 AQ⊥BC,∴∠Q=∠FQC=90°,∠ADQ=∠AFC,则△AQD∽△ACF.∴CF⊥BD,∴△AQD∽△DCP,CP x DQ AQ4+x 4x 2 4【总结升华】此题综合性强,需要综合运用全等、相似、正方形等知识点,属能力拔高性的题目.3.如图,正方形ABCD 的边长为 6,点 E 是射线 BC 上的一个动点,连接 AE 并延长,交射线 DC 于点 F △,将 ABE 沿直线 AE 翻折,点 B 坐在点 B ′处.自主探究:(1)当=1 时,如图 1,延长 AB ′,交 CD 于点 M .①CF 的长为; ②判断 AM 与 FM 的数量关系,并证明你的结论.(2)当点 B ′恰好落在对角线 AC 上时,如图 2,此时 CF 的长为, 拓展运用:(3)当=2 时,求 sin ∠DAB ′的值.= .(【思路点拨】1)①利用相似三角形的判定与性质得出FC=AB即可得出答案;②利用翻折变换的性质得出∠BAF=∠MAF,进而得出AM=FM;(2)根据翻折变换的性质得出∠BAE=∠MAF,进而得出AM=MF,利用△ABE∽FCE得出答案即可;(3)根据①如图1,当点E在线段BC上时,延长AB′交DC边于点M,②如图3,当点E在线段BC 的延长线上时,延长AD交B′E于点N,分别利用勾股定理求出即可.【答案与解析】解:(1)①当=1时,∵AB∥FC,∴△ABE∽FCE,∴==1,∴FC=AB=6,②AM=FM,理由如下:∵四边形ABCD是正方形,∴AB∥DC,∴∠BAF=∠AFC,∵△ABE沿直线AE翻折得到△AB′E,∴∠BAF=∠MAF,∴∠MAF=∠AFC,∴AM=FM;(2)如图2,∵当点B′恰好落在对角线AC上时,∴∠1=∠2,∵AB∥FC,∴∠1=∠F,∴∠2=∠F,∴AC=FC,∵AB=BC=6,∴AC=FC=6,∵AB∥FC,∴△ABE∽FCE,∴===,(3)①如图1,当点E在线段BC上时,延长AB′交DC边于点M,∵AB∥CF,∴△ABE∽△FCE,∴==2,∵AB=6,∴CF=3,∴DF=CD+CF=9,由(1)知:AM=FM,∴AM=FM=9﹣DM,在△Rt ADM中,由勾股定理得:DM′2=(9﹣DM)2﹣62,解得:DM=,则MA=,∴sin∠DAB′==,②如图3,当点E在线段BC的延长线上时,延长AD交B′E于点N,由(1)知:AN=EN,又BE=B′E=12,点∴NA=NE=12﹣B′N,在△Rt AB′N中,由勾股定理得:B′N2=(12﹣B′N)2﹣62,解得:B′N=,AN=,∴sin∠DAB′=故答案为:6;6=.,.【总结升华】此题主要考查了翻折变换的性质以及相似三角形的判定与性质和勾股定理等知识,熟练利用相关性质和进行分类讨论得出是解题关键.类型二、几何计算型问题4.已知如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60︒保持不变.设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中,当y取最小值时,判断△PQC的形状,并说明理由.【思路点拨】(1)属于纯静态问题,只要证两边的三角形全等就可以了.(2)是双动点问题,所以就需要研究在P,Q运动过程中什么东西是不变的.题目给定∠MPQ=60°,其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关系,所以很自然想到要通过相似三角形找比例关系.(3)条件又回归了当动点静止时的问题,由第二问所得的二次函数,很轻易就可以求出当x取对称轴的值时y有最小值,接下来就变成了“给定PC=2,求△PQC形状”的问题了,由已知的BC=4,自然看出P 是中点,于是问题轻松求解.【答案与解析】(1)证明:∵△MBC是等边三角形∴MB=MC,∠MBC=∠MCB=60︒∵M是AD中点∴AM=MD∵AD∥BC∴∠AMB=∠MBC=60︒,∠DMC=∠MCB=60︒∴△AMB≌△DMC∴AB=DC∴梯形ABCD是等腰梯形.∴ PC ∴ x 而(2)解:在等边 △MBC 中, MB = MC = BC = 4,∠MBC = ∠MCB = 60︒,∠MPQ = 60︒∴∠BMP + ∠BPM = ∠BPM + ∠QPC = 120︒∴∠BMP = ∠QPC∴ △BMP ∽△CQPCQ = BM BP∵ PC = x ,MQ = y ∴ BP = 4 - x ,QC = 4 - y4 - y 1 = ∴ y = x 2 - x + 4 4 4 - x4(3)解: △PQC 为直角三角形,∵ y = 1(x - 2)2 + 34 ∴当 y 取最小值时, x = PC = 2∴ P 是 BC 的中点, MP ⊥ BC , ∠MPQ = 60︒,∴∠CPQ = 30︒,∴∠PQC = 90︒∴ △PQC 为直角三角形.【总结升华】以上题目是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相 等,某角固定时,将动态问题化为静态问题去求解 .如果没有特殊条件,那么就需要研究在动点移动中 哪些条件是保持不变的.举一反三:【变式】已知:如图,N 、M 是以 O 为圆心,1 为半径的圆上的两点,B 是 MN 上一动点(B 不与点 M 、N 重合),∠MON=90°,BA⊥OM 于点 A ,BC⊥ON 于点 C ,点 D 、E 、F 、G 分别是线段 OA 、AB 、BC 、CO的中点,GF 与 CE 相交于点 P ,DE 与 AG 相交于点 Q .(1)四边形 EPGQ(填“是”或者“不是”)平行四边形;(2)若四边形 EPGQ 是矩形,求 OA 的值.【答案】(1)是.证明:连接OB,如图①,∵BA⊥OM,BC⊥ON,∴∠BAO=∠BCO=90°,∵∠AOC=90°,∴四边形OABC是矩形.∴AB∥OC,AB=OC,∵E、G分别是AB、CO的中点,∴AE∥GC,AE=GC,∴四边形AECG为平行四边形.∴CE∥AG,∵点D、E、F、G分别是线段OA、AB、BC、CO的中点,∴GF∥OB,DE∥OB,∴PG∥EQ,∴四边形EPGQ是平行四边形;(2)解:如图②,∴ AD ,AE=1,在①的条件下,设 CP 1= x ,S VP FC = y ,求 y 与 x 之间的函数关系式, 3 ∵口 EPGQ 是矩形.∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE,AE= , BEBC x y y : = : x 设 OA=x ,AB=y ,则 2 2 2得 y 2=2x 2,又∵OA 2+AB 2=OB 2, 即 x 2+y 2=12.∴x 2+2x 2=1,解得:x=3 . 3即当四边形 EPGQ 是矩形时,OA 的长度为3 3 .5.在 Y ABCD 中,过点 C 作 CE⊥CD 交 AD 于点 E,将线段 EC 绕点 E 逆时针旋转 90o 得到线段 EF(如图 1)(1)在图 1 中画图探究:①当 P 为射线 CD 上任意一点(P 1 不与 C 重合)时,连结EP 1 绕点 E 逆时针旋转 90o 得到线段 EC 1.判断直线 FC 1 与直线 CD 的位置关系,并加以证明; ②当 P 2 为线段 DC 的延长线上任意一点时,连结 EP 2,将线段 EP 2 绕点 E 逆时针旋转 90o 得到线段 EC 2.判断直线 C 1C 2 与直线 CD 的位置关系,画出图形并直接写出你的结论.4 (2)若 AD=6,tanB=1 1 并写出自变量 x 的取值范围.图1 备用图【思路点拨】(1)本题在于如何把握这个旋转 90°的条件.旋转 90°自然就是垂直关系,于是出现了一 系列直角三角形,于是证角、证线就手到擒来了.(2)是利用平行关系建立函数式,但是不要忘记分类讨论.【答案与解析】(1)①直线 FG 与直线 CD 的位置关系为互相垂直. 112,- - . , , 证明:如图 1,设直线 FG 与直线 CD 的交点为 H .1 G 1AE F G 2 P H 1 DBCP 2图 1∵线段 EC 、EP 分别绕点 E 逆时针旋转 90°依次得到线段 EF 、EG , 1 1∴ ∠PEG = ∠CEF = 90° EG = EP ,EF = EC . 1 1 1 1∵ ∠G EF = 90° ∠PEF , ∠PEC = 90° ∠PEF ,1 1 1 1∴ ∠G EF = ∠PEC .1 1∴ △G EF ≌△PEC .1 1∴ ∠G FE = ∠PCE .1 1∵ EC ⊥ C D ,∴ ∠PCE = 90°, 1∴ ∠G FE = 90° 1∴ ∠EFH = 90°.∴ ∠FHC = 90°.∴ FG ⊥ CD . 1②按题目要求所画图形见图 1,直线 G G 与直线 CD 的位置关系为互相垂直.1 2(2)∵四边形 ABCD 是平行四边形,∴ ∠B = ∠ADC .∵ AD = 6,AE = 1 tan B = 4 3 , ∴ DE = 5 tan ∠EBC = tan B = 4 3. 可得 CE = 4 .由(1)可得四边形 EFCH 为正方形.∴ CH = CE = 4 .P 1 2 2 2 2 1 ①如图 2,当 P 点在线段 CH 的延长线上时,1 G 1A EFD H BC 图 2∵ FG = CP = x ,PH = x - 4 ,1 1 1 ∴ S△P FG 1 1 1 x( x - 4) = ⨯ FG ⨯ PH = 1 1 . ∴ y = 1 2x 2 - 2 x ( x > 4) . ②如图 3,当 P 点在线段 CH 上(不与 C 、H 两点重合)时, 1G 1 FB A ECD P 1 H图 3∵ FG = CP = x ,PH = x - 4 ,1 1 1 ∴ S △P FG 1 = 1 x(4 - x) FG ⨯ PH = 1 1 . 1 ∴ y = - x2 + 2 x (0 < x < 4) . 2③当 P 点与 H 点重合时,即 x = 4 时, △PFG 不存在. 1 1 1综上所述, y 与 x 之间的函数关系式及自变量 x 的取值范围是 y =1 2 x 2 - 2 x ( x > 4) 或 1 y = - x 2 + 2 x (0 < x < 4) . 2【总结升华】本题着重考查了二次函数的解析式、图形的旋转变换、三角形全等、探究垂直的构成情况 等重要知识点,综合性强,能力要求较高.考查学生分类讨论,数形结合的数学思想方法.举一反三: 【变式】已知,点 P 是∠MON 的平分线上的一动点,射线 PA 交射线 OM 于点 A ,将射线 PA 绕点 P 逆时针 旋转交射线 ON 于点 B ,且使∠APB+∠MON=180°.(1)利用图 1,求证:PA=PB ;(2)如图2,若点C是AB与OP的交点,当△SPOB=3S△PCB时,求PB与PC的比值;(3)若∠MON=60°,OB=2,射线AP交ON于点D,且满足且∠PBD=∠ABO,请借助图3补全图形,并求OP的长.【答案】(1)作PE⊥OM,PF⊥ON,垂足为E、F∵四边形OEPF中,∠OEP=∠OFP=90°,∴∠EPF+∠MON=180°,已知∠APB+∠MON=180°,∴∠EPF=∠APB,即∠EPA+∠APF=∠APF+∠FPB,∴∠EPA=∠FPB,由角平分线的性质,得PE=PF,∴△EPA≌△FPB,即PA=PB;(2)∵S△POB=3S△PCB,∴PO=3PC,由(1)可知△PAB为等腰三角形,则∠PBC=又∵∠BPC=∠OPB(公共角),∴△PBC∽△POB,11(180°-∠APB)=∠MON=∠BOP,22∴PB PC=PO PB,即PB2=PO•PC=3PC2,∴PB=3PC(3)作BH⊥OT,垂足为H,当∠MON=60°时,∠APB=120°,由PA=PB,得∠PBA=∠PAB=12(180°-∠APB)=30°,又∵∠PBD=∠ABO,∠PBD+∠PBA+∠ABO=180°,∴∠ABO=12(180°-30°)=75°,则∠OBP=∠ABO+∠ABP=105°,在△OBP中,∵∠BOP=30°,∴∠BPO=45°,在Rt△OBH中,BH=1OB=1,OH=3,2在Rt△PBH中,PH=BH=1,∴OP=OH+PH=3+1.。

线面角的求法总结

线面角的求法总结

线面角的求法总结三种求解线面角的方法1.直接法:当平面的斜线与斜线在平面内的射影相交时,它们所成的角即为直线与平面所成的角。

一般通过解直角三角形来计算,其中垂线段是最重要的元素,它可以联系各线段。

例如,在四面体ABCS中,SA、SB、SC两两垂直,且∠SBA=45°,∠SBC=60°,M为AB的中点,求(1)BC与平面SAB所成的角。

(2)SC与平面ABC所成的角。

解:(1)由于SC垂直于SB和SA,因此SB是BC在平面SAB上的射影,∴∠XXX为60°。

2)连接SM和CM,得到SM垂直于AB。

由于SC垂直于AB,因此AB垂直于平面SCM,从而面ABC垂直于面SCM。

过S作SH⊥CM于H,则SH⊥平面ABC,∴CH即为SC在面ABC内的射影。

因此,∠SCH为SC与平面ABC所成的角,其正弦值为√7/7.2.利用公式sinθ=h/ι,其中θ是斜线与平面所成的角,h是垂线段的长,ι是斜线段的长。

求出垂线段的长是关键也是难点,可以使用三棱锥的体积相等来求解。

例如,在长方体ABCD-A1B1C1D1中,AB=3,BC=2,A1A=4,求AB与面AB1C1D1所成的角的正弦值。

解:设点B到AB1C1D1的距离为h,由于VAB1C1D1=VA1B1C1D,因此1/3S△AB1C1·h=1/3S△BB1C1·AB,解得h=12/5.设AB与面AB1C1D1所成的角为θ,则sinθ=h/AB=4/5.3.利用公式cosθ=cosθ1·cosθ2已知,其中AO是平面α的斜线,A是斜足,OB垂直于平面α,B为垂足,则直线AB是斜线在平面α内的射影。

设AC是平面α内的任意一条直线,且OBC垂直于AC,垂足为C,则∠BAO=θ1,∠BAC=θ2.例如,如图所示,求直线AB与平面α所成的角的余弦值。

解:由于OB垂直于平面α,因此∠XXX即为直线AB与平面α所成的角。

专题13 利用全等三角形的性质解决线段的证明与计算问题(解析版)

专题13 利用全等三角形的性质解决线段的证明与计算问题(解析版)

1专题13 利用全等三角形的性质解决线段的证明与计算问题知识对接考点一、全等三角形的性质 (1)全等三角形对应边相等; (2)全等三角形对应角相等.考点二、怎样解运用全等三角形性质的问题证明两条线段相等或两个角相等时,常证明两条线段或两个角所在的三角形全等,运用全等三角形的性质,即全等三角形的对应边相等、对应角相等得到.专项训练一、单选题1.(2021·福建九年级)如图,点E ,F 在线段BC 上,ABF 与DEC 全等,点 A 和点D ,点B 和点C 是对应点,AF 和DE 交于点 M ,则与EM 相等的线段是( )A .BEB .EFC .FCD .MF【答案】D 【分析】根据ABF 与DEC 全等,点A 和点D ,点B 和点C 是对应点,可得AFB DEC ∠=∠,则有EM FM =. 【详解】解:∵ABF 与DEC 全等,点A 和点D ,点B 和点C 是对应点, ∵AFB DEC ∠=∠, ∵EM FM =, 故选:D . 【点睛】本题考查了全等三角形的性质,等腰三角形的判定与性质,熟悉相关性质是解题的关键.2.(2021·山东九年级)如图,在菱形ABCD 中,6AB =,60BCD ∠=︒,E 是AD 中点,BE 交AC 于点F ,连接DF ,则DF 的长为( )A .4BC .D .【答案】C 【分析】连接DB , 四边形ABCD 为菱形,∵BCD =60°,可得∵ABD 为等边三角形,求出AF 的长度,再证明∵AEF ∵∵DEF ,即可求出DF 的长度. 【详解】 如图:连接DB∵四边形ABCD 为菱形,∵BCD =60°, ∵∵BCD =∵BAD =60°,∵AB =AD ,∵DAC =∵BAC =12∵DAB =30°,即∵ABD 为等边三角形, 又E 为AD 的中点, ∵BE ∵AD ,∵AE =12AD =12AB =3,cos ∵EAF =AE AF = cos AF 又在∵AEF 和∵DEF 中,∵AEF =∵DEF =90°,AE =DE ,EF =EF ,3∵∵AEF ∵∵DEF , ∴DF =AF故选:C . 【点睛】本题考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,以及特殊锐角三角函数值,熟悉并灵活运用以上性质式解题的关键.3.(2021·天津和平·)如图,在AOB 中,15,6,OAB AOB OB OC ∠=∠=︒=平分AOB ∠,点P 在射线OC 上,点Q 为边OA 上一动点,则PA PQ +的最小值是( )A .1B .2C .3D .4【答案】C 【分析】在射线OB 上截取一点Q ',使得OQ OQ '=,则OPQ OPQ ∆≅∆',可得PQ PQ ='.作AH OB ⊥于H .可得PA PQ PA PQ +=+',推出当A 、P 、Q '共线,且垂直OB 时,PA PQ +'的值最小,最小值为AH ,【详解】解:在射线OB 上截取一点Q ',使得OQ OQ '=,则OPQ OPQ ∆≅∆',可得PQ PQ ='.作AH OB ⊥于H . ∵'PA PQ PA PQ +=+,∵当A 、P 、Q '共线,且垂直OB 时,PA PQ +'的值最小,即最小值为AH ∵15OAB AOB ∠=∠=∵6OB AB ==,30OA B AO H B A B ∠+∠=∠=, 在Rt ABH 中, ∵·sin303AH AB ==,+的最小值为3,∵PA PQ故选C.【点睛】本题考查轴对称-最短问题、全等三角形,等腰三角形的性质、三角函数等知识,解题的关键在于能够熟练的掌握相关知识点.4.(2021·江苏南通田家炳中学九年级)如图,在直角坐标系中,已知点A(6,0),点B为y轴正半轴上一动点,连接AB,以AB为一边向下作等边∵ABC,连接OC,则OC的最小值()A B.3C.D.【答案】B【分析】以OA为对称轴作等边∵AMN,由“SAS”可证∵ANC∵∵AMB,可得∵AMB=∵ANC=60°,由直角三角形的性质可求∵AEN=30°,EO= ,则点C在EN上移动,当OC'∵EN时,OC'有最小值,即可求解.【详解】解:如图,以OA为对称轴作等边∵AMN,延长CN交x轴于E,∵∵ABC是等边三角形,∵AMN是等边三角形,∵AM=AN,AB=AC,∵MAN=∵BAC,∵AMN=60°=∵ANM,∵∵BAM=∵CAN,∵∵ANC∵∵AMB(SAS),∵∵AMB=∵ANC=60°,∵∵ENO=60°,∵AO=6,∵AMB=60°,AO∵BO,∵MO=NO=∵∵ENO=60°,∵EON=90°,5∵∵AEN=30°,, ∵点C 在EN 上移动,∵当OC'∵EN 时,OC'有最小值, 此时,O'C=12EO=3, 故选:B .【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,垂线段最短,锐角三角函数,确定点C 的运动轨迹是解题的关键.5.如图,已知:在∵ABCD 中,E 、F 分别是AD 、BC 边的中点,G 、H 是对角线BD 上的两点,且BG =DH ,则下列结论中不正确的是( )A .GF ∵FHB .GF =EHC .EF 与AC 互相平分D .EG =FH【答案】A 【分析】连接EF 交BD 于O ,易证四边形EGFH 是平行四边形,然后证明是否得出选项. 【详解】连接EF 交BD 于点O ,在平行四边形ABCD 中的AD=BC ,∵EDH=∵FBG , ∵E 、F 分别是AD 、BC 边的中点, ∵DE∵BF,DE=BF=12BC ,∵四边形AEFB 是平行四边形,有EF∵AB , ∵点E 是AD 的中点,∵点O 是BD 的中点,根据平行四边形中对角线互相平分,故点O 也是AC 的中点,也是EF 的中点,故C 正确,又∵BG=DH,∵∵DEH∵∵BFG , ∵GF=EH ,故B 正确,∵DHE=∵BGF ,∵∵GHE=∵HGF , ∵∵EHG∵∵FGH , ∵EG=HF ,故D 正确,∵GF∵EH ,即四边形EHFG 是平行四边形,而不是矩形,故∵GFH 不是90度, ∵A 不正确. 故选A. 【点睛】本题考查平行四边形的判定与性质和全等三角形的判定与性质,解题的关键是熟练掌握平行四边形的判定与性质和全等三角形的判定与性质.6.如图,ABC DEC ≌△△,A 和D ,B 和E 是对应点,B 、C 、D 在同一直线上,且5CE =,7AC =,则BD 的长为( )A .12B .7C .2D .14【答案】A 【分析】7根据全等三角形的性质即可得到结论. 【详解】解:如图,ABC DEC ∆≅∆,A 和D ,B 和E 是对应点,B 、C 、D 在同一直线上,且5CE =,7AC =,5BC EC ∴==,7CD AC ==,12BD BC CD ∴=+=.故选:A . 【点睛】本题主要考查的是全等三角形的性质,熟练掌握全等三角形的性质是解题的关键. 7.如图:若ABE ACF ≌,且5,2==AB AE ,则EC 的长为( )A .2B .2.5C .3D .5【答案】C 【分析】根据全等三角形的性质得AC=AB=5,由EC=AC ﹣AE 求解即可. 【详解】解:∵ABE ACF ≌,AB=5, ∵AC=AB=5, ∵AE=2,∵EC=AC ﹣AE=5﹣2=3, 故选:C . 【点睛】本题考查了全等三角形的性质、线段的和与差,熟练运用全等三角形的性质是解答的关键. 8.如图,ABC ADE △≌△,点D 在边BC 上,则下列结论中一定成立的是( )A.AC DE==B.AB BDC.ABD ADB∠=∠∠=∠D.EDC AED【答案】C【分析】根据全等三角形的性质可直接进行排除选项.【详解】△≌△,解:∵ABC ADE∵AB=AD,BC=DE,AC=AE,∵B=∵ADE,∵C=∵E,∵∵ABD=∵ADB,故A、B、D都是错误的,C选项正确;故选C.【点睛】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.9.如图,∵ACE∵∵DBF,AE//DF,AB=3,BC=2,则AD的长度等于()A.2B.8C.9D.10【答案】B【分析】根据全等三角形的对应边相等解答.【详解】解:由图形可知,AC=AB+BC=3+2=5,∵∵ACE∵∵DBF,∵BD=AC=5,9∵CD =BD−BC =3, ∵AD =AC +CD =5+3=8, 故选:B . 【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.10.(2021·河北)如图,已知平行四边形ABCD ,3CD cm =,依下列步骤作图,并保留作图痕迹: 步骤1:以B 为圆心,BE 长为半径画弧∵,分别交AB ,BC 于点E ,F ; 步骤2:以A 为圆心,以BE 长为半径画弧∵,交AD 于点G ;步骤3:以G 为圆心,以EF 长为半径画弧∵,弧∵和弧∵交于点H ,过H 作射线,交BC 于点M .则下列叙述不正确...的是:( )A .AMC C ∠=∠B .AM CD =C .AM 平分BAD ∠ D .BEF AGH ∆∆≌【答案】C 【分析】由作图痕迹,可以得到∵EBF∵∵GAH ,从而有∵EBF=∵GAH ,因此可以判断A 、B 、D 正确,因为C 不一定成立,故可以得到解答. 【详解】解:如图,连结E 、F 和G 、H ,由已知,在∵EBF 和∵GAH 中,AG=EB ,AH=BF ,HG=EF ,∵∵EBF∵∵GAH ,故D 正确; ∵∵EBF∵∵GAH ,∵∵EBF=∵GAH ,由平行四边形的性质可得:∵AMB=∵GAH ,∵∵EBF=∵AMB ,∵AB=AM ,又由平行四边形的性质可得:AB=CD ,∵AM=CD ,故B 正确;∵∵AMB+∵AMC=180°,∵∵EBF+∵AMC=180°,又由平行四边形的性质可得:∵EBF+∵C=180°,∵∵AMC=∵C ,故A 正确; ∵∵BAM=∵MAD 不一定成立,∵C 不正确, 故选C . 【点睛】本题考查三角形全等的判定和应用,熟练掌握作一个角等于已知角的作法和依据是解题关键. 二、填空题11.如图,矩形ABCD 中,AD =2,E 为CD 上一点,连接AE ,将∵ADE 沿AE 折叠,点D 恰好落在BC 上,记为D ′,再将∵D ′CE 沿D ′E 折叠,若点C 的对应点C ′落在AE 上,则AB 的长为___.【分析】由折叠的性质得到ADE AD ED CE D C E ∆∆⎧⎨∆∆'''⎩'≌≌,能得到345∠=∠=∠,再用平角的性质得到34560∠=∠=∠=︒,再由1490∠+∠=︒,得到1230∠=∠=︒,可以求出6∠,最后可以求出cos AB AD BAD ''=⨯∠. 【详解】 如图:由折叠的性质得:ADE AD E D CE D C E ∆∆⎧⎨∆∆'''⎩'≌≌11∵123435AD AD ∠=∠∠=∠=⎧⎨∠=∠'⎩;; ∵345∠=∠=∠ ∵345180∠+∠+∠=︒ ∵34560∠=∠=∠=︒ ∵1490∠+∠=︒ ∵1230∠=∠=︒∵6901230∠=︒-∠-∠=︒ ∵'Rt ABD 中,'30BAD ∠=︒∵cos cos AB AD BAD AD BAD '''=⨯∠=⨯∠2==【点睛】本题考查了矩形与折叠,全等三角形的性质,三角函数,掌握它们的性质是解题的关键.12.(2021·江苏扬州市·九年级二模)如图,Rt ∵ABC ∵Rt ∵FDE ,∵ABC =∵FDE =90°,∵BAC =30°,AC =4,将Rt∵FDE 沿直线l 向右平移,连接BD 、BE ,则BD +BE 的最小值为___.【答案】【分析】根据平面直角坐标系,可以假设(E m ,则(1D m +,,则BD BE +求BD BE +的最小值,相当于在x 轴上找一点(,0)R m ,使得R 到(1M -,,N 的距离和的最小值,如图1中,作点N 关于x 轴的对称点N ',连接MN '交x 轴题意R ,连接RN ,此时RM RN +的值最小,最小值MN ='的长. 【详解】解:建立如图坐标系,在Rt ABC ∆中,90ABC ∠=︒,4AC =,30BAC ∠=︒, 122BC AC ∴==,AB ==∴斜边AC 上的高ABC FDE ∆≅∆,4EF AC ∴==,斜边EF∴可以假设(E m ,则(1D m +,,BD BE ∴+欲求BD BE +的最小值,相当于在x 轴上找一点(,0)R m ,使得R 到(1M -,,N 的距离和的最小值,如图1中,作点N 关于x 轴的对称点N ',连接MN '交x 轴题意R ,连接RN ,此时RM RN +的值最小,最小值MN ='BD BE ∴+的最小值为故答案为:13【点睛】本题考查轴对称最短问题,平面直角坐标系,勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.13.(2021·浙江金华·九年级)如图,在ABC 中,1841B C ∠=︒∠=︒,,点D 是BC 的中点,点E 在AB 上,将BDE 沿DE 折叠,若点B 的落点B '在射线CA 上,则BA 与B D '所夹锐角的度数是________.【答案】80︒. 【分析】根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得BD B D '=, DC DB '=,由等腰三角形性质以及三角形外角定理求得BDB '∠度数,在BOD 中根据内角和即可求得BA 与B D '所夹锐角的度数. 【详解】如下图,连接DE ,BA 与B D '相交于点O ,将 ∵BDE 沿 DE 折叠, BDE B DE '∴△≌△,BD B D '∴=,又∵D 为BC 的中点,BD DC =,BD B D '∴=,41DB C C '∴==︒∠∠, BDB DB C C =''∴=+︒∠∠∠82,18080BOD B BDB '∴=︒--=︒∠∠∠, 即BA 与B D '所夹锐角的度数是80︒.故答案为:80︒. 【点睛】本题考察了轴对称的性质、全等三角形的性质、中点的性质、三角形的外角以及内角和定理,综合运用以上性质定理是解题的关键.14.(2021·广东)如图,点M 是Rt ∵ABC 斜边AB 的中点,过点M 作DM ∵CM ,交AC 于点D ,若AD =2,BC =5,则CD =_______【分析】延长CM ,使CD =MN ,连接AN ,证明()AMN BMC SAS ∆∆≌,由全等三角形的性质得出5BC AN ==,NAM B ∠=∠,由勾股定理求出DN =【详解】解:延长CM ,使CD =MN ,连接AN , 如图所示:∵点M 是Rt ABC ∆斜边AB 的中点, ∵AM BM =, 在AMN ∆和BMC ∆中, AM BM AMN BMC MN CM =⎧⎪∠=∠⎨⎪=⎩, ∵()AMN BMC SAS ∆∆≌,15∵5BC AN ==,NAM B ∠=∠, ∵//AN BC , ∵90BCA ∠=︒, ∵90NAD ∠=︒,∵DN == ∵DM CM ⊥,CM MN =,∵CD DN ==【点睛】本题考查了全等三角形的判定与性质,勾股定理,中垂线的性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.15.(2021·浙江)如图,已知: Rt Rt 90ABC CEF ABC CEF ∠=∠=︒≌,,306A AC ∠=︒=,.现将CEF △绕点C 逆时针旋转α度,线段CF 与直线AB 交于点O ,连接OE .则当OE OB =时,线段OA 的长为________.【答案】【分析】过E 作EH ∵CF 于H ,得出ABC CEF ≅,设OF=x ,则OC=6-x ,根据勾股定理得出结果. 【详解】解:过E 作EH ∵CF 于H , ∵ABC CEF ≅,∵6CF AC == ,30A ∠=︒, ∵9060EFC A ∠=︒-∠=︒, 设OF =x ,则OC =6-x , 在Rt ∆OCB 中,2222(6)9OB OC BC x =-=--,在Rt ∆FEH 中,EH =EF FH =EF ·cos60º=32, ∵OH =x -32,在Rt ∆OEH 中,222223()2OE EH OH x =+=-+,又∵OE =OB ,∵2223()(6)92x x -+=--解得x =2,∵BO∵AO =AB -BO =故答案为【点睛】本题考查了全等三角形的性质,勾股定理及特殊角的三角函数,正确作出辅助线是解题的关键. 三、解答题16.(2021·云南)如图,AC ∵BD ,垂足点E 是BD 的中点,且AB =CD ,求证:AB //CD .【答案】详见解析 【分析】17先证明,BE DE = 再利用斜边直角边公理证明()Rt ABE Rt CDE HL ≌,可得A C ∠=∠,从而可得答案. 【详解】证明:∵点E 是BD 的中点 ∵BE ED =. ∵AC BD ⊥∵90AEB DEC ∠=∠=︒. 在Rt ABE △和Rt CDE △中AB CDBE ED =⎧⎨=⎩∵()Rt ABE Rt CDE HL ≌, ∵A C ∠=∠, ∵//AB CD . 【点睛】本题考查的是利用斜边直角边证明两个三角形全等,以及全等三角形的性质,平行线的判定,掌握以上知识是解题的关键.17.如图,在正方形ABCD 中,点E 在BC 边的延长线上,点F 在CD 边的延长线上,且CE DF =,连接AE 和BF 相交于点M . 求证:AE BF = .【答案】证明见解析. 【分析】利用正方形的性质证明:AB=BC=CD ,∵ABE=∵BCF=90°,再证明BE=CF ,可得三角形的全等,利用全等三角形的性质可得答案. 【详解】证明:∵四边形ABCD 为正方形,∵AB=BC=CD ,∵ABE=∵BCF=90°, 又∵CE=DF ,∵CE+BC=DF+CD 即BE=CF , 在∵BCF 和∵ABE 中,BE CF ABE BCF AB BC =⎧⎪∠=∠⎨⎪=⎩∵ABE BCF △△≌(SAS ), ∵AE=BF . 【点睛】本题考查的是正方形的性质,三角形全等的判定与性质,掌握以上知识是解题的关键. 18.(2021·吉林)综合与实践在数学活动课上,老师出示了这样一个问题:如图1,在ABC 中,90ACB ∠=︒,6AC =,8BC =,点D 为BC 边上的任意一点.将C ∠沿过点D 的直线折叠,使点C 落在斜边AB 上的点E 处.问是否存在BDE 是直角三角形?若不存在,请说明理由;若存在,求出此时CD 的长度.探究展示:勤奋小组很快找到了点D 、E 的位置.如图2,作CAB ∠的角平分线交BC 于点D ,此时C ∠沿AD 所在的直线折叠,点E 恰好在AB 上,且90BED ∠=︒,所以BDE 是直角三角形.问题解决:(1)按勤奋小组的这种折叠方式,CD 的长度为 .(2)创新小组看完勤奋小组的折叠方法后,发现还有另一种折叠方法,请在图3中画出来. (3)在(2)的条件下,求出CD 的长. 【答案】(1)3;(2)见解析;(3)247CD = 【分析】(1)由勾股定理可求AB 的长,由折叠的性质可得AC=AE=6,CD=DE ,∵C=∵BED=90°,由勾股定理可求解;(2)如图所示,当DE∵AC,∵EDB=∵ACB=90°,即可得到答案;(3)由折叠的性质可得CF=EF,CD=DE,∵C=∵FED=90°,∵CDF=∵EDF=45°,可得DE=CD=CF=EF,通过证明∵DEB∵∵CAB,可得DE BD=,即可求解.AC BC【详解】(1)∵∵ACB=90°,AC=6,BC=8,∵10AB=,由折叠的性质可得:∵ACD∵∵AED,∵AC=AE=6,CD=DE,∵C=∵BED=90°,∵BE=10-6=4,∵BD2=DE2+BE2,∵(8-CD)2=CD2+16,∵CD=3,故答案为:3;(2)如图3,当DE∵AC,∵BDE是直角三角形,(3)∵DE∵AC,∵∵ACB=∵BDE=90°,由折叠的性质可得:∵CDF∵∵EDF,∵CF=EF,CD=DE,∵C=∵FED=90°,∵CDF=∵EDF=45°,∵EF=DE,∵DE=CD=CF=EF,∵DE∵AC,∵∵DEB∵∵CAB,19∵DE BD AC BC =, ∵886DE DE -=, ∵DE=247, ∵247CD =【点睛】此题考查几何变换综合题,全等三角形的性质,折叠的性质,相似三角形的判定和性质,勾股定理等知识,灵活运用这些性质进行推理是解题的关键.19.(2021·陕西西北工业大学附属中学九年级)如图,在平行四边形ABCD 中,E 为BC 边上一点,且B AEB ∠=∠.求证:AC DE =.【答案】证明见解析. 【详解】试题分析:由平行四边形的性质得:AB=DC ,180ABC BCD ∠+∠=︒,证得AEC BCD ∠=∠,从而可证AEC ∵DCE ,故可得结论.试题解析:∵四边形ABCD 是平行四边形, ∵AB DC =,180ABC BCD ∠+∠=︒. ∵AB DC =,∵ABE AEB ∠=∠,AE DC =. ∵180AEC AEB ∠+∠=︒, ∵AEC BCD ∠=∠. 又EC EC =, ∵AEC ∵DCE , ∵AC ED =.20.(2021·广东九年级)如图,已知点E 、C 在线段BF 上,且BE =CF ,CM ∵DF ,(1)作图:在BC 上方作射线BN ,使∵CBN =∵1,交CM 的延长线于点A (用尺规作图法,保留作图痕迹,21不写作法);(2)在(1)的条件下,求证:AC =DF .【答案】(1)作图见解析;(2)证明见解析【详解】试题分析:(1)∵以E 为圆心,以EM 为半径画弧,交EF 于H ,∵以B 为圆心,以EM 为半径画弧,交EF 于P ,∵以P 为圆心,以HM 为半径画弧,交前弧于G ,∵作射线BG ,则∵CBN 就是所求作的角.(2)证明∵ABC ∵∵DEF 可得结论.试题解析:(1)如图,(2)∵CM ∵DF ,∵∵MCE =∵F ,∵BE =CF ,∵BE +CE =CF +CE ,即BC=EF ,在∵ABC 和∵DEF 中,∵1{CBN BC EF MCE F∠∠∠∠=== ∵∵ABC ∵∵DEF ,∵AC =DF .【点睛】本题考查了基本作图-作一个角等于已知角,同时还考查了全等三角形的性质和判定;熟练掌握五种基本作图:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.21.定义:一条对角线垂直平分另一条对角线的四边形叫做筝形,如图,筝形ABCD 的对角线AC 、BD 相交于点O .且AC 垂直平分BD .(1)请结合图形,写出筝形两种不同类型的性质:性质1: ;性质2: .(2)若AB ∵CD ,求证:四边形ABCD 为菱形.【答案】(1)对角线互相垂直,是轴对称图形;(2)见解析【分析】(1)由筝形的定义即可得出结论;(2)由垂直平分线的性质得出AB=AD ,BO=DO ,同理:BC=DC ,由AS 证明∵AOB∵∵CDO ,得出AB=CD ,因此AB=CD=BC=AD ,即可得出四边形ABCD 为菱形.【详解】解:(1)由筝形的定义得:对角线互相垂直,即AC∵BD ;是轴对称图形,对称轴为AC ;故答案为对角线互相垂直,是轴对称图形;(2)∵AC 垂直平分BD ,∵AB =AD ,BO =DO ,同理:BC =DC ,∵AB∵CD ,∵∵ABO =∵ODC ,在∵ABO 和∵CDO 中,ABO ODC BO DOAOB DOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵∵AOB∵∵CDO (ASA ),∵AB =CD ,∵AB =CD =BC =AD ,∵四边形ABCD 为菱形.【点睛】本题考查了菱形的判定、筝形的性质、线段垂直平分线的性质、全等三角形的判定与性质;熟练掌握筝形的性质,证明三角形全等是解题的关键.22.(2021·湖北黄石·)如图,D 是ABC 的边AB 上一点,//CF AB , DF 交AC 于E 点,DE EF =.23(1)求证:ADE ∵CFE ;(2)若5AB =,4CF =,求BD 的长.【答案】(1)证明见详解;(2)1.【分析】(1)根据ASA 证明即可;(2)根据(1)可得ADE CFE ∆≅∆,即由AD CF =,根据BD AB AD AB CF 求解即可.【详解】(1)证明://AB FC ,∴∠=∠ADE F ,在ADE ∆和CFE ∆中,ADE FDE EF AED CEFADE CFE ASA ;(2)由(1)得ADE CFE ∆≅∆AD CF ∴=∵541BD AB AD AB CF .【点睛】本题考查全等三角形的判定和性质、平行线的性质等知识,熟练掌握基本知识是解题的关键. 23.(2021·江苏南京·南师附中新城初中)如图,在正方形ABCD 中,E 、F 、G 、H 分别是各边上的点,且AE BF CG DH ===.求证:(1)AHE BEF ≌△△; (2)四边形EFGH 是正方形.【答案】(1)见解析;(2)见解析【分析】(1)在正方形ABCD 中,由AE BF CG DH ===可得:AH BE CF DG ===,即可求证;(2)由(1)可用同样的方法证得EBF FCG △≌△,FCG GDH ≌△△,可得到FCG GDH ≌△△,然后证明90HEF ∠=︒,即可求证.【详解】(1)证明:∵四边形ABCD 为正方形,∵AB BC CD DA ===,90A B ∠=∠=︒.又∵AE BF DH CG ===,∵AH BE CF DG ===.∵()SAS AHE BEF ≌△△ (2)由(1)得,AHE BEF ≌△△, 同理,EBF FCG △≌△,FCG GDH ≌△△, ∵EF FG GH HE ===,AEH BFE ∠=∠,∵90B ∠=︒,∵90EFB FEB ∠+∠=︒,∵90AEH FEB ∠+∠=︒,∵90HEF ∠=︒,∵四边形EFGH 为正方形.【点睛】本题主要考查了正方形的性质和判定,三角全等的判断和性质,熟练掌握并会灵活应用相应知识点是解题的关键.25。

第一节 与三角形有关的线段-学而思培优

第一节 与三角形有关的线段-学而思培优

第一节与三角形有关的线段-学而思培优本文讲解了与三角形有关的线段,包括三角形的定义、分类、三边关系定理及其应用、三条重要的线段(高、中线、角平分线)以及三线交点位置等。

文章还介绍了三角形的稳定性和整数边三角形,并提供了数学方法和几何模型。

最后,文章提供了基础演练题目。

1.三角形的定义:三条不在同一条直线上的线段首尾相接组成的图形。

2.三角形的分类:按边分类。

3.三角形的三边关系定理及其应用:1) 三角形的任意两边之和大于第三边,任意两边之差小于第三边。

2) 应用:判断能否围成三角形、确定第三边的长或周长取值范围、化简代数式、证明线段间的不等关系等。

4.三角形的三条重要线段:1) 高:从一个顶点向对边作垂线,顶点和垂足之间的线段。

2) 中线:连接一个顶点和对边中点的线段。

3) 角平分线:一个内角的平分线与对边相交,顶点和交点之间的线段。

5.三线交点位置:1) 锐角三角形的三条高线交点在内部,直角三角形的交点是直角顶点,钝角三角形的交点在外部,叫做垂心。

2) 三角形的三条中线交于内部的一点,叫做重心。

3) 三角形的三条角平分线交于内部的一点,叫做内心。

6.三角形具有稳定性。

7.整数边三角形:1) 边长都是整数的三角形。

2) 若a、b、c是三角形的三边,且a≥b≥c,则a<b+c,且仅当a=b=c时等号成立。

8.数学方法:几何问题代数化、分类讨论等。

9.几何模型:三角形、三角形的高线、中线和角平分线、整数边三角形。

基础演练:1.(1) C (2) A2.根据图11-1-1,小方在池塘的一侧选取一点,测得OA=15米,OB=10米。

求估计池塘岸边A、B两点的距离。

已知A、B间的距离不可能是()A.5米B.10米C.15米D.20米。

3.如果三角形三条高线的交点恰好是这个三角形的顶点,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.均有可能。

4.如果一个三角形的两边长分别为5和7,则周长L的取值范围是多少?如果x为最长边,则x的取值范围是多少?5.设三角形三边之长分别为3,8,2a-1,则a的取值范围是多少?6.根据图11-1-2,一扇窗户打开后,用窗钩BC可将其固定。

第一讲 三角形的边(含解析) (人教版)

第一讲 三角形的边(含解析) (人教版)

第一讲三角形的边【学习目标】1.认识三角形的边、内角、顶点,能用符号语言表示三角形.2.掌握三角形三边的关系定理,能利用定理及其推论进行简单的证明.3.了解三角形按边分类的原则和结论.重点:理解三角形三边之间的不等关系.难点:运用三角形三边之间的不等关系解题.【新课讲解】知识点1:三角形的概念【问题1】观察下面三角形的形成过程,说一说什么叫三角形?三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫作三角形.【问题2】三角形中有几条线段? 几个定点?有几个角?三角形有三条线段,三个顶点,三个角。

(1)三条边:线段AB,BC,CA是三角形的边。

(2)三个顶点:点A,B,C是三角形的顶点。

(3)三个角:∠A,∠B,∠C叫作三角形的内角,简称三角形的角。

(4)三角形记法:三角形ABC用符号表示△ABC。

三角形的三条边的长短可以分别用小写的字母表示.比如AB=c,BC=a,CA=b(5)三角形的对边与对角:在△ABC中,AB边所对的角是∠C, BC边所对的角是∠A, CA边所对的角是∠B;∠A所对的边是BC,∠B所对的边是AC,∠C所对的边是AB.学习三角形问题注意事项1.构成三角形应满足以下两个条件:(1)位置关系:三条线段不在同一直线上;(2)联接方式:三条线段首尾顺次相接。

2.三角形的表示方法:三角形用符号“△”表示;记作“△ABC”,读作“三角形ABC”,除此△ABC还可记作△BCA,△CAB, △ACB等。

3.规定:三角形ABC的三边,一般的顶点A所对的边记作a,顶点B所对的边记作b,顶点C所对的边记作c。

例题讲解【例题1】(1)下面图中有几个三角形?用符号表示出这些三角形?(2)以AB为边的三角形有哪些?(3)以B为顶点的三角形有哪些?(4)以∠C为角的三角形有哪些?(5)说出△BCD的三个角和三个顶点所对的边.【答案】(1)3个,它们分别是△ABD,△ABC, △BCD。

(2) 以AB为边的三角形有△ABD,△ABC。

中考数学解答题之四边形的有关证明与计算

中考数学解答题之四边形的有关证明与计算
E A D M B C N
考点 4
平行四边形、特殊的平行四边形
【例 4】 (梅州)如图,在△ABC 中,点 P 是边 AC 上的一个动点,过点 P 作直线 MN∥BC,设 MN 交∠BCA 的平分线于 点 E,交∠BCA 的外角平分线于点 F. (1)求证:PE=PF; (2)当点 P 在边 AC 上运动时,四边形 BCFE 可能是菱形吗?说明理由; (3)若在 AC 边上存在点 P,使四边形 AECF 是正方形,且 AP 3 = .求此时∠A 的大小. BC 2 A E P F
重点、难点
2.线角的证明与计算. 难点:证明与计算的综合运用
考点及考试要求
会解决中考之第 20 或 21 题---有关于四边形的有关证明与计算(以及三角形)
教学内容
【考点链接】
一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 二、证明两角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。

2018_2019学年高中数学第一讲相似三角形的判定及有关性质二平行线分线段成比例定理课件新人教A版选修4_1

2018_2019学年高中数学第一讲相似三角形的判定及有关性质二平行线分线段成比例定理课件新人教A版选修4_1
证明 作 EH∥AB 交 AC 于点 H, AC BC AC AH AF DF AF AH ∴AH= BE,∴BC= BE ,同理可证:AH=DE,∴DF=DE. ∵△BDC 为直角三角形且 E 为 BC 边中点, AH AH AC AF ∴BE=CE=DE,∴ BE =DE,∴BC=DF.
规律方法 通过添加辅助线,构造基本 图形,借图寻找合适的等量关系,再结 合其他知识综合利用,以解决问题.
且 DE∥BC,DF∥AC,则下列等式成立的是( AD DE A.BD=BC DF DE C.AC =BC
解析
AE BF B.EC=FC EC BF D.AC=BC
AD AE BD EC ∵DE∥BC,∴BD=EC,∴AD= AE.①
BD BF 又∵DF∥AC,∴DA=FC.② EC BF EC BF EC BF 由①②知 AE=FC,即 = ,∴AC=BC. AE+EC BF+FC
a∥b∥c,直线 m 分别与 a,b,c 相交于点 A,B, 符号语言 C,直线 n 分别与 a,b,c 相交于点 D,E,F,则 DE AB EF BC=____
图形语言
作用
证明分别在两条直线上的线段成比例
2.推论
文字 平行于三角形一边的直线截其他两边(或两边
比例 语言 的延长线)所得的对应线段成段成比例定理来作
1 图,由于 AC= CB,所以 C 为线段 AB 的三等分 2 点,于是作射线 AK,然后在 AK 上依次截取 AB1 =B1B2=B2B3,连接 B3B.过 B1 作 B1C∥B3B,即得 到点 C.
跟踪演练 1
如图,D,E,F 分别在 AB,AC,BC 上, )
答案 D
要点二 例2
平行线分线段成比例定理及推论的简单应用

八年级数学上第13章三角形中的边角关系命题与证明13.1三角形中的边角关系3三角形中几条重要线段授课

八年级数学上第13章三角形中的边角关系命题与证明13.1三角形中的边角关系3三角形中几条重要线段授课

感悟新知
例4 如图,在△ABC 中,AD,BE 分别是△ABC, 知2-练 △ABD的中线. (1)若△ABD与△ADC的周长之差为 3,AB=8,求 AC 的长. (2)若S△AB间 的关系和面积之间的关系解题.
感悟新知
解:(1)因为AD为BC边上的中线,
B.CE是△BCD的角平分线 C. 3 1 ACB
2
D.CE是△ABC的角平分线
知1-练
感悟新知
知识点 2 三角形的中线
知2-讲
1.定义:连接三角形一个顶点和它对边的中点,所得的 线段叫做该三角形这条边上的中线.
2.位置图例:任何三角形的三条中线都交于一点,且该 点在三角形内部,如图,这 个点叫做三角形的重心.
感悟新知
总结
知2-讲
三角形的中线把边分成相等的两条线段,故BD=CD,
且△ ABD 的边BD上的高与△ACD 的边CD上的高相同,
根据等底同高的三角形的面积相等,可得所分得的两个
三角形的面积相等,即S△ ABD=S△ ADC=
1 2
S△ABC.
感悟新知
知2-练
例5 张大爷的两个儿子都长大成人了,也该分家了.
1 (中考·长沙)过△ABC的顶点A,作BC边上的高,以 下作法正确的是( )
感悟新知
知3-练
2 下列说法中正确的是( ) A.三角形的三条高都在三角形内 B.直角三角形只有一条高 C.锐角三角形的三条高都在三角形内 D.三角形每一边上的高都小于其他两边
感悟新知
知识点 4 定义
知4-讲
像这样能明确界定某个对象含义的语句叫做定义. 今后我们还会学习许多定义.
感悟新知
知3-练
解:以A,B,C,D,E中的三点为顶点的三角形有 △ABC,△ABD,△ABE,△ACD,△ACE,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲线段、角的计算与证明问题
【前言】
中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目
的在于考察基础。

第二部分往往就是开始拉分的中,难题了。

大家研究今年的北京一模就会
发现,第二部分,或者叫难度开始提上来的部分,基本上都是以线段,角的计算与证明开始
的。

城乡18个区县的一模题中,有11个区第二部分第一道题都是标准的梯形,四边形中线段角的计算证明题。

剩下的7个区县题则将线段角问题与旋转,动态问题结合,放在了更有难度的倒数第二道乃至压轴题当中。

可以说,线段角问题就是中考数学有难度题的排头兵。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

在这个专题中,我们对各区县一模真题进行总结归纳,分析研究,来探究线段,角
计算证明问题的解题思路。

第一部分真题精讲
【例1】(2010,崇文,一模)
∥,如图,梯形ABCD中,A D B C
BD CD BDC AD BC
,°,,.求AB的长.
9038
【思路分析】线段,角的计算证明基本都是放在梯形中,利用三角形全等相似,直角三角形性质以及勾股定理等知识点进行考察的。

所以这就要求我们对梯形的性质有很好的理解,
并且熟知梯形的辅助线做法。

这道题中未知的是AB,已知的是AD,BC以及△BDC是等腰直角三角形,所以要把未知的AB也放在已知条件当中去考察.做AE,DF垂直于BC,则很轻易发现我们将AB带入到了一个有大量已知条件的直角三角形当中.于是有解如下.
1。

相关文档
最新文档