《简单的概率计算》教学设计

合集下载

小学数学课件简单随机事件的概率计算

小学数学课件简单随机事件的概率计算

条件概率和贝叶斯公式
条件概率:在事件B发生的情况下, 事件A发生的概率,记作P(A|B)
贝叶斯公式的应用场景:在决策 理论、统计学、人工智能等领域 有广泛的应用
添加标题
添加标题
添加标题
添加标题
贝叶斯公式:用于计算在已知一 些证据或先验知识的情况下,某 个事件发生的概率
贝叶斯公式的计算步骤:先计算 各个事件的概率,再根据条件概 率的公式和贝叶斯公式进行计算
举例:掷一枚骰子,出现1、2、3、4、5、6点中任意一点的概率是1/6。
几何概型概率计算
添加标题
定义:在一定条件下,每个样本点发生的可能性是相等的,并且每个样 本点之间是相互独立的。
添加标题 添加标题 添加标题
特点:样本空间是无限的,且每个样本点发生的可能性是相等的。
计算方法:将样本空间划分为若干个互不相交的子集,每个子集称为一 个“等可能事件”,然后求出每个等可能事件的概率,最后根据这些概 率计算出所求事件的概率。
公式:P(A∪B)=P(A)+P(B)-P(A∩B)
适用条件:两个事件A和B是互斥的 意义:表示事件A和事件B同时发生的概率等于各自发生的概率之和 减去同时发生的概率 应用:用于计算多个互斥事件的概率
概率的乘法公式
定义:P(A∪B)=P(A)+P(B)-P(A∩B)
适用条件:A、B为两个独立事件
计算步骤:先计算A和B的概率,再计算A和B同时发生的概率,最后代入公 式计算A或B发生的概率 注意事项:乘法公式只适用于两个独立事件,对于非独立事件需要使用其 他公式进行计算
概率的性质和计算方法
概率的取值范围是0到1之间,包括0但不包括1。 概率具有可加性,即两个独立事件的概率之和等于它们各自概率之和。 概率具有可交换性,即ቤተ መጻሕፍቲ ባይዱ个独立事件的概率顺序不影响其概率值。 概率具有可结合性,即三个独立事件的概率顺序不影响其概率值。

小学四年级数学教案学习进行简单的概率和统计计算

小学四年级数学教案学习进行简单的概率和统计计算

小学四年级数学教案学习进行简单的概率和统计计算小学四年级数学教案:学习进行简单的概率和统计计算引言:概率和统计在数学中扮演着重要的角色。

在小学四年级数学课程中,学生开始接触并学习概率和统计。

本节课的教学目标是帮助学生了解概率和统计的基本概念,并进行简单的计算。

本教案将以生动有趣的方式展开,以激发学生的兴趣和主动学习的能力。

一、概率的基本概念(5分钟)概率是用于衡量事件发生可能性的数学工具。

在这一部分,学生将学习以下概念:1. 事件和样本空间:给出一些简单的示例,引导学生理解事件和样本空间的概念。

例如,掷一枚硬币,事件可以是“正面朝上”,样本空间可以是{"正面", "反面"}。

2. 概率的概念:解释概率是指事件发生的可能性大小。

将概率表示为一个介于0和1之间的分数或百分数。

3. 用分数表示概率:通过具体的实例,教授学生如何用分数表示概率。

例如,扔一个骰子,事件为“得到一个偶数”的概率为1/2。

二、统计的基本概念(10分钟)统计是搜集、整理、分析和解释数据的方法。

在这一部分,学生将学习以下概念:1. 数据和调查:向学生提供简单的问题,并要求他们合作搜集数据。

例如,记录一所班级中男生和女生的数量。

2. 数据的表达方式:教授学生如何使用数据表、柱状图和折线图来可视化数据。

3. 数据的分析:引导学生思考如何根据数据回答问题。

例如,根据柱状图回答哪个颜色的小汽车最受欢迎。

三、概率计算(15分钟)现在,让我们开始进行概率计算。

这部分的教学重点是帮助学生通过实例来理解概率计算的方法。

1. 理论概率:给出一个简单的实例,如从一副扑克牌中抽取一张牌,教授学生如何计算事件发生的概率。

例如,抽到红桃的概率是多少?2. 实际概率:引导学生根据实际情境计算概率。

例如,从一篮子中抽取苹果,学生需要根据篮子中不同颜色苹果的数量来计算抽到绿色苹果的概率。

四、统计计算(15分钟)接下来,我们将进行统计计算。

人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。

本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。

通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。

二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。

在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。

但概率概念较为抽象,学生理解起来可能存在一定的困难。

因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。

三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。

2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。

四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。

2.难点:概率公式的灵活运用,解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。

2.合作学习法:分组讨论,培养学生团队合作精神。

3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。

六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。

2.教学工具:多媒体课件,黑板,粉笔。

3.学生活动:提前分组,准备进行合作学习。

七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。

2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。

同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。

初中数学求概率试讲稿教案

初中数学求概率试讲稿教案

初中数学求概率试讲稿教案知识与技能目标:通过具体实例,理解概率的求法,学会使用列表法和树状图法求解简单事件的概率。

过程与方法目标:通过观察、实验、猜测、推理等方法,培养学生的逻辑思维能力和数据分析能力。

情感态度与价值观目标:培养学生对数学的兴趣,感受数学在生活中的应用,培养学生的团队协作精神。

二、教学重难点重点:概率的求法及应用。

难点:如何运用列表法和树状图法求解复杂事件的概率。

三、教学过程(一)导入新课1. 创设情境:抛硬币实验。

教师演示抛硬币实验,引导学生观察实验结果,引发学生对概率的思考。

2. 提出问题:抛硬币实验中,正面朝上的概率是多少?(二)自主探究1. 学生动手实践:抛硬币实验。

学生自行进行抛硬币实验,记录实验结果,观察正面朝上的频率。

2. 学生交流讨论:总结正面朝上的概率。

学生分享实验结果,总结正面朝上的频率,引出概率的概念。

(三)新课讲解1. 概率的定义:概率是指某个事件在所有可能事件中发生的可能性。

2. 概率的求法:(1)列表法:将所有可能的结果列出,计算符合条件的结果数与总结果数的比值。

(2)树状图法:用树状图表示所有可能的结果,计算符合条件的结果数与总结果数的比值。

3. 举例讲解:使用列表法和树状图法求解简单事件的概率。

(四)课堂练习1. 练习题:运用列表法或树状图法,求解以下事件的概率。

(1)抛掷一枚骰子,求正面朝上的概率。

(2)从一副扑克牌中随机抽取一张,求抽到红桃的概率。

2. 学生解答:分组讨论,展示解题过程。

(五)总结拓展1. 学生总结:概率的求法及应用。

2. 拓展思考:概率在现实生活中的应用。

四、布置作业1. 运用列表法或树状图法,求解生活中遇到的概率问题。

2. 思考:概率在实际问题中的作用和意义。

五、教学反思本节课通过抛硬币实验引入概率的概念,引导学生动手实践,观察实验结果,培养学生的数据分析能力。

通过列表法和树状图法的讲解,让学生学会求解简单事件的概率,培养学生的逻辑思维能力。

第一节 概率的简单计算 教学案

第一节 概率的简单计算 教学案

第一节 概率的简单计算 教学案
【回顾与思考】
概率⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩
必然事件某一事件出现可能性的大小不确定事件不可能事件树状图计算方法列表格 【例题经典】
知道辨别确定事件、不确定事件
例1 (2006年泸州市)下列事件中是必然事件的是( )
(A )打开电视机,正在播广告
(B )掷一枚质地均匀的骰子,骰子停止后朝上的点数是6
(C )地球总是绕着太阳转
(D )今年10月1日,泸州市一定会下雨
【点评】ABD 都属于不确定事件 C 是必然事件
会用树状图求某一事件的概率
例2 (2006年浙江省)有四张背面相同的纸牌A ,B ,C ,D ,•其正面分别画有四个不同的几何图形(如图),小华将这4张牌背面朝上洗匀后,摸出一张,放回..
洗匀后再摸一张. (1)用树状图表示两次摸牌所有可能出现的结果(纸牌可用A ,B ,C ,D 表示);
(2
)求摸出两张牌面图形都是中心对称图形的纸牌的概率.
【点评】只有摸出BC 两种图案才是中心对称图形
会用列表格方法求某一事件的概率
例3 (2006年成都市)小明、小芳做一个“配色”的游戏.•下图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,或者转盘A •转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色.这种情况下小芳获胜;•同样,蓝色和黄色在一起配成紫色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负.
(1)
利用列表方法表示此游戏所有可能的结果; (2)此游戏的规则,对小明、小芳公平吗?试
说明理由.
【点评】列表格时要注意横栏与纵栏表示的对象是
否与题意相符.。

浙教版数学九年级上册《2.2简单事件的概率》说课稿

浙教版数学九年级上册《2.2简单事件的概率》说课稿

浙教版数学九年级上册《2.2 简单事件的概率》说课稿一. 教材分析浙教版数学九年级上册《2.2 简单事件的概率》这一节,是在学生已经掌握了概率的定义和一些基本概念的基础上进行讲解的。

本节课的主要内容是让学生理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。

教材通过大量的实例,使学生体会事件的随机性,培养学生的概率观念,提高学生运用概率知识分析和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于概率的基本概念和定义已经有所了解。

但是,学生在学习过程中,对于事件的分类和概率的计算方法可能还存在一定的困难。

因此,在教学过程中,我将会注重引导学生理解事件之间的关系,掌握概率的计算方法,并能够将概率知识应用到实际问题中。

三. 说教学目标1.知识与技能:使学生理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。

2.过程与方法:通过大量的实例,让学生体会事件的随机性,培养学生的概率观念,提高学生运用概率知识分析和解决问题的能力。

3.情感态度与价值观:激发学生学习概率的兴趣,培养学生积极思考、合作交流的学习态度,使学生感受到数学与生活的紧密联系。

四. 说教学重难点1.教学重点:理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。

2.教学难点:事件的分类和概率的计算方法。

五. 说教学方法与手段在教学过程中,我将采用讲授法、案例分析法、讨论法等多种教学方法,引导学生通过观察、思考、交流、实践等方式,掌握概率知识。

同时,利用多媒体教学手段,展示实例和计算过程,提高学生的学习兴趣和效果。

六. 说教学过程1.导入:通过一个简单的实例,引出本节课的主题,激发学生的学习兴趣。

2.基本概念:讲解事件的分类和概率的定义,让学生理解并掌握基本概念。

3.实例分析:分析多个实例,让学生体会事件的随机性,引导学生掌握概率的计算方法。

4.方法讲解:讲解如何将概率知识应用到实际问题中,让学生学会运用概率知识解决问题。

2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计

2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计

2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计一. 教材分析《简单事件的概率》是浙教版数学九年级上册第二章第二节的内容。

本节内容是在学生已经学习了概率的定义和一些基本概念的基础上进行的。

通过本节内容的学习,学生能够理解并掌握简单事件的概率的计算方法,提高解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于概率的基本概念已经有了一定的了解。

但是,对于如何计算简单事件的概率,学生可能还存在着一定的困难。

因此,在教学过程中,教师需要通过具体的例子,引导学生理解和掌握计算方法。

三. 教学目标1.知识与技能:使学生理解并掌握简单事件的概率的计算方法。

2.过程与方法:通过具体的例子,引导学生运用概率的知识解决问题。

3.情感态度价值观:培养学生对数学的兴趣,提高学生解决问题的能力。

四. 教学重难点1.重点:简单事件的概率的计算方法。

2.难点:如何引导学生理解和掌握简单事件的概率的计算方法。

五. 教学方法采用问题驱动法,通过具体的例子,引导学生理解和掌握简单事件的概率的计算方法。

同时,运用小组合作学习法,让学生在合作中思考,在思考中学习。

六. 教学准备1.教师准备:准备好相关的例子,制作好课件。

2.学生准备:预习相关的内容,准备好笔记本。

七. 教学过程1.导入(5分钟)教师通过一个简单的问题引导学生进入本节内容的学习,例如:“抛一枚硬币,正面朝上的概率是多少?”2.呈现(15分钟)教师通过课件呈现本节的内容,引导学生理解和掌握简单事件的概率的计算方法。

3.操练(15分钟)教师给出具体的例子,让学生运用概率的知识解决问题,例如:“抛两枚硬币,两枚都是正面朝上的概率是多少?”4.巩固(10分钟)教师通过一些练习题,让学生巩固所学的内容,例如:“抛三枚硬币,至少有两枚正面朝上的概率是多少?”5.拓展(10分钟)教师引导学生思考一些拓展问题,例如:“在抛硬币的过程中,出现正面的概率是否会随着抛硬币的次数的增加而改变?”6.小结(5分钟)教师对本节的内容进行小结,帮助学生梳理思路。

《8.3概率的简单性质》教学设计教学反思-2023-2024学年中职数学高教版2021基础模块下册

《8.3概率的简单性质》教学设计教学反思-2023-2024学年中职数学高教版2021基础模块下册

《概率的简单性质》教学设计方案(第一课时)一、教学目标1. 理解概率的基本概念,掌握概率的简单性质。

2. 能够运用概率的简单性质解决生活中的实际问题。

3. 培养学生对数学的兴趣,提高其逻辑思维能力。

二、教学重难点1. 教学重点:讲解概率的简单性质,通过实例引导学生理解并掌握该性质。

2. 教学难点:如何让学生理解概率在生活中的实际应用,以及如何运用概率的简单性质解决实际问题。

三、教学准备1. 准备教学用具:黑板、白板、笔、教学PPT等。

2. 搜集与概率的简单性质相关的实际生活案例,以便于学生理解。

3. 提前布置学生预习相关内容,使其对所学知识有初步了解。

4. 准备习题册,以便于学生练习和巩固所学知识。

四、教学过程:本节课是中职数学课程《概率的简单性质》教学设计方案(第一课时)的一部分,为了让学生更好地理解和掌握概率的概念和性质,以下是教学过程的设计:1. 导入新课:首先通过生活中的一些实例,如抽奖、掷骰子等,引出概率的概念,并引导学生思考概率的意义和作用。

设计提问:你们在生活中有没有遇到过抽奖活动?有没有掷过骰子?学生回答:有。

教师总结:概率就是描述某一事件发生的可能性大小,通过研究概率可以帮助我们更好地认识世界和预测未来。

2. 概念教学:在引导学生理解概率概念的基础上,进一步讲解概率的数学定义,包括基本事件、样本空间、事件等概念,并通过实例帮助学生加深理解。

设计提问:什么是基本事件?什么是样本空间?事件有哪些类型?学生回答:基本事件是随机试验中的基本单元;样本空间是所有基本事件的集合;事件包括确定事件和不确定事件。

教师总结:概率的数学定义需要从样本空间和事件出发,通过计算基本事件的概率来得到事件的概率。

3. 性质教学:讲解概率的性质,包括互斥事件的性质、对立事件的性质、可加性等,并通过实例帮助学生加深理解。

设计提问:什么是互斥事件?什么是对立事件?可加性是什么?学生回答:互斥事件是不能同时发生的事件;对立事件是不可能同时发生又互相排斥的事件;可加性是指多个事件的概率之和等于1。

人教版九年级数学上册25.1.2《概率》教案

人教版九年级数学上册25.1.2《概率》教案

人教版九年级数学上册25.1.2《概率》教案一. 教材分析人教版九年级数学上册第25.1.2节《概率》是概率统计部分的重要内容。

本节主要介绍了概率的定义、计算方法以及如何运用概率解决实际问题。

通过本节的学习,学生能够理解概率的概念,掌握基本的概率计算方法,并能够运用概率知识解决生活中的问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。

但是,对于概率这一抽象的概念,学生可能难以理解和接受。

因此,在教学过程中,需要注重引导学生从实际问题中理解概率的概念,并通过大量的实例让学生掌握概率的计算方法。

三. 教学目标1.知识与技能:让学生理解概率的概念,掌握基本的概率计算方法,能够运用概率知识解决实际问题。

2.过程与方法:通过实例分析,让学生体验概率的计算过程,培养学生的逻辑思维能力。

3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学应用意识。

四. 教学重难点1.重点:概率的定义,概率的计算方法。

2.难点:如何从实际问题中抽象出概率模型,运用概率解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入概率的概念,让学生感受数学与生活的联系。

2.启发式教学法:在教学过程中,引导学生主动思考,通过讨论、交流等方式,让学生理解概率的计算方法。

3.巩固练习法:通过大量的练习,让学生掌握概率的计算方法,并能够运用到实际问题中。

六. 教学准备1.教学课件:制作相关的教学课件,以便于直观地展示概率的计算过程。

2.练习题:准备一些与本节课内容相关的练习题,以便于学生在课堂上进行操练。

七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币、抽签等,让学生思考:这些事件的结果是随机的,那么我们如何来描述这种随机性呢?2.呈现(10分钟)讲解概率的定义,让学生理解概率的意义。

如:抛一枚硬币,正面朝上的概率是1/2。

同时,介绍如何用数学符号表示概率,如P(A)、P(B)等。

浙教版数学九年级上册《2.2简单事件的概率》说课稿3

浙教版数学九年级上册《2.2简单事件的概率》说课稿3

浙教版数学九年级上册《2.2 简单事件的概率》说课稿3一. 教材分析浙教版数学九年级上册《2.2 简单事件的概率》是学生在学习了概率的基本概念之后,进一步深入研究概率论的一个章节。

本节内容主要让学生掌握简单事件的概率计算方法,通过实例分析,让学生理解并掌握必然事件、不可能事件、随机事件的概念,以及如何求解事件的概率。

教材通过丰富的实例,让学生在实际问题中感受概率知识的重要性,培养学生的数学应用能力。

二. 学情分析九年级的学生已经具备了一定的概率基础,对概率的基本概念有了初步的了解。

但是,学生在求解事件概率时,仍然容易混淆必然事件、不可能事件、随机事件的概念,同时在计算概率时,也容易忽视一些细节问题。

因此,在教学过程中,教师需要引导学生清晰地区分各种事件类型,并教会学生如何正确地进行概率计算。

三. 说教学目标1.知识与技能:让学生掌握必然事件、不可能事件、随机事件的概念,学会计算简单事件的概率。

2.过程与方法:通过实例分析,让学生理解并掌握概率的计算方法,培养学生的数学思维能力。

3.情感态度与价值观:让学生感受概率知识在实际生活中的应用,提高学生学习数学的兴趣。

四. 说教学重难点1.重点:必然事件、不可能事件、随机事件的概念及概率计算方法。

2.难点:如何正确地区分各种事件类型,并熟练地进行概率计算。

五. 说教学方法与手段1.采用问题驱动的教学方法,通过实例分析,引导学生主动探究概率计算方法。

2.利用多媒体教学手段,展示实例问题,提高学生的学习兴趣。

3.采用小组合作学习的方式,让学生在讨论中巩固知识,提高学生的团队合作能力。

六. 说教学过程1.导入新课:通过一个简单的实例,引出必然事件、不可能事件、随机事件的概念,激发学生的学习兴趣。

2.知识讲解:讲解必然事件、不可能事件、随机事件的定义,以及如何进行概率计算。

3.实例分析:分析几个典型的实例,让学生掌握概率计算的方法。

4.课堂练习:让学生独立完成一些练习题,巩固所学知识。

25.2 用列举法求概率(第一课时)(教学设计)九年级数学上册同步备课系列(人教版)

25.2 用列举法求概率(第一课时)(教学设计)九年级数学上册同步备课系列(人教版)

25.2 用列举法求概率(第一课时)一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十五章“概率初步”25.2 用列举法求概率(第一课时列表法求概率),内容包括:用列举法(列表法)求简单随机事件的概率.2.内容解析在一次试验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫做列举法. 当每次试验涉及两个因素时,为了更清晰、不重不漏地列举出试验的所有结果,教科书给出了以表格形式呈现的列举法——列表法.这种方法适合列举每次试验涉及两个因素,且每个因素的取值个数较多的情形.相对于直接列举法,用表格列举体现了分步分析对思考较复杂问题时起到的作用.将试验涉及的一个因素所有可能的结果写在表头的横行中,另一个因素所有可能的结果写在表头的竖列中,就形成了不重不漏地列举出这两个因素所有可能结果的表格.这种分步分析问题的方法,将在下节课树状图法中进一步运用.基于以上分析,确定本节课的教学重点是:用列表法求简单随机事件的概率.二、目标和目标解析1.目标1)会用直接列举法、列表法列举所有可能出现的结果.2)用列举法(列表法)计算简单事件发生的概率.2.目标解析达成目标1)的标志是:对于结果种数有限且每种结果等可能的随机事件,可以用列举法求概率;当每次试验涉及两个因素,且每个因素的取值个数较多时,相对于直接列举,采用表格的方式更有利于将试验的所有结果不重不漏地表示出来.达成目标2)的标志是:掌握列表法求概率的步骤:1)列表;2)通过表格计数,确定所有等可能的结果数n和符合条件的结果数m的值;,计算出事件的概率.3)利用概率公式P(A)=mn三、教学问题诊断分析学生已经理解了列举法求概率的含义,但对于涉及两个因素的试验,如何不重不漏地列举出试验所有可能的结果这对学生而言是一种考验,如何设计出一种办法解决这个较复杂问题,“分步”分析起到了重要作用.基于以上分析,本节课的教学难点是:掌握列表法求概率的步骤.四、教学过程设计(一)复习巩固【提问】简述概率计算公式?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾上节课所学内容,为接下来学习利用列表法求概率打好基础.(二)探究新知【问题一】老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,学生赢. 你们觉得这个游戏公平吗?师生活动:教师提出问题,学生尝试思考.【设计意图】通过现实生活中的实际问题,激发学生学习数学的兴趣.【问题二】同时掷两枚硬币,求下列事件的概率:1)两枚硬币两面一样.2)一枚硬币正面朝上,一枚硬币反面朝上.3)问题一中的游戏公平吗?师生活动:教师提出问题,先要求学生说出可能出现的情况.部分学生认为:上述三个事件恰好代表了抛掷两枚硬币的所有可能的结果,故概率分别为13;另一位学生认为:出现结果为:正正、正反、反正、反反,其中“正反”与“反正”应分别算作两种可能的结果,故上述事件的概率分别为14,14和12.教师强调:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫做列举法.师:你觉得问题一中的游戏公平吗?师生活动:学生通过刚才的结论得出:学生赢的概率与教师赢的概率相等,所以该游戏是公平的. 教师补充说明:上述这种列举法我们称为直接列举法(枚举法)并给出使用直接列举法的注意事项.【设计意图】让学生掌握用列举法求概率的使用条件:①所有可能出现的结果是有限个.②每个结果出现的可能性相等.【问题三】“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?由此你发现了什么?师生活动:教师共同作答,得出:同时掷两枚硬币,会出现:两正、两反,一正一反和一反一正;先后两次掷一枚硬币,也会出现:两正、两反,一正一反和一反一正.所以这两种实验的所有可能的结果一样.教师指出:“两个相同的随机事件同时发生”与“一个随机事件先后两次发生”的结果是一样的,因此作此改动对所得结果没有影响.当试验涉及两个因素时,可以“分步”对问题进行分析.【设计意图】让学生理解当试验涉及两个因素时,可以“分步”对问题进行分析.(三)典例分析与针对训练例1 小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是_________【针对训练】1. 从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为____________2. 如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为______________3.(2020·江苏南通·统考中考真题)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:1)写出这三辆车按先后顺序出发的所有可能结果;2)两人中,谁乘坐到甲车的可能性大?请说明理由.4.(2022·江苏南京·统考中考真题)甲城市有2个景点A、B,乙城市由3个景点C、D、E,从中随机选取景点游览,求下列事件的概率:(1)选取1个景点,恰好在甲城市;(2)选取2个景点,恰好在同一个城市.【设计意图】巩固用列举法求概率.(四)探究新知【问题三】同时投掷两个质地均匀的骰子,观察向上一面的点数,求下列事件的概率.1)两个骰子的点数相同.2)两个骰子点数的和是9.3)至少有一个骰子的点数为2.师生活动:师生分析得出,与问题二类似,问题三的试验也涉及两个因素(第一枚骰子和第二枚骰子),但这里每个因素的取值个数要比问题二多(抛一枚硬币有2种可能的结果,但掷一枚骰子有6种可能的结果),因此试验的结果数也就相应要多很多.因此,直接列举会比较繁杂,可以使用列表法.列表法适合列举每次试验涉及两个因素,并且每个因素的取值个数较多的情形.师:如何列表?师生活动:学生分析,因为试验涉及两个因素(两枚骰子),可以分两步进行思考,将第1枚骰子的所有可能结果作为表头的横行,将第2枚骰子的所有可能结果作为表头的竖列,列出如下表格:由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相同.1)两枚骰子的点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)= 636= 16 2)两枚骰子的点数相同(记为事件B)的结果有4种,即(3,6),(6,3),(5,4),(4,5) 所以P(B)= 436= 193)至少有一个骰子的点数为2(记为事件C)的结果有11种,即(1,2),(2,2),(3,2),(4,2),(5,2),(6,2) (2,1),(2,3),(2,4),(2,5),(2,6)所以P(B)= 1136【设计意图】明确列表法.【问题四】简述列表法求概率的步骤?师生活动:教师提出问题,学生尝试回答.教师引导与归纳得出:1)列表;2)通过表格计数,确定所有等可能的结果数n 和符合条件的结果数m 的值;3)利用概率公式P (A )=mn ,计算出事件的概率.【设计意图】让学生掌握列表法求概率的方法.(五)典例分析与针对训练例2 一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是_______________【针对训练】1. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行调查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是______________2.从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛.(1)若甲一定被选中参加比赛,再从其余3名学生中任意选取1名,恰好选中乙的概率是___________;(2)任意选取2名学生参加比赛,求一定有丁的概率.3.在一个不透明的口袋中装有大小材质完全相同的三个小球,分别标有数字3,4,5, 另有四张背面完全一样的卡片,卡片正面分别标有数字2,3,4,5,四张卡片背面朝上放在桌面上.小明先从口袋中随机摸出一个小球,记下小球上的数字为x,小红再从桌面上随机抽出一张卡片,记下卡片上的数字为y.(1)从口袋中摸出一个小球恰好标有数字3的概率是___________;(2)求点P(x,y)在直线y=x−1上的概率.【设计意图】巩固列表法求概率的方法.(六)直击中考1.(2023·安徽中考真题)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59 B.12C.13D.292.(2023·湖南中考真题)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是()A.16 B.14C.13D.123.(2023·黑龙江齐齐哈尔中考真题)某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是()A.12 B.13C.14D.16【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点. (七)归纳小结1. 通过本节课的学习,你学会了哪些知识?2. 用列举法求概率应该注意哪些问题?3. 列表法适用于解决哪类概率求解问题?使用列表法有哪些注意事项?(八)布置作业P138:练习五、教学反思。

《概率》教学设计

《概率》教学设计

《概率》教学设计《概率》教学设计一、教材分析:1、本章的主要内容是随机事件的定义,概率的定义,计算简单事件概率的方法,主要是列举法(包括列表法和画树形图法),利用频率估计概率。

中心内容是体会随机观念和概率思想。

课题学习“键盘上字母的排列规律”。

2、本章知识结构框图:二、学情分析:学生对统计以及简单的频数、频率的计算在七年级、八年级都已学过,学生有一定的概率基础。

对抽签、抽奖学生都很感兴趣,因为这些与他们的生活息息相关。

教学设计时选取抽签、抽奖、掷正方形骰子、摸球抓阄、猜拳、投硬币等与学生贴近的素材引起了他们极大地学习热情。

对于画树形图,分支较多时学生审题有一定困难,对于列表法摸球放回与不放回容易混淆。

三、教学目标:1、知识目标(1)理解什么是必然发生的事件、不可能发生的事件,什么是随机事件;通过对生活中各种事件的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。

(2)通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。

(3)在具体情境中了解概率的意义,体会概率是描述不确定现象的规律的数学模型,理解概率的取值范围的意义,发展随机观念。

能够运用列举法(包括列表、画树形图)计算事件发生的概率。

(4)能够通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值,理解频率与概率的区别与联系。

2、能力目标:(1)动手能力:动手试验,在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯。

(2)归纳能力:通过试验,归纳事件发生的频率,得出列举法(包括列表、画树形图)的方法。

(3)计算能力:计算简单事件发生的概率。

3、情感目标:(1)体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。

(2)在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯;需经过大量重复的试验,让学生从中体验到科学的探究态度。

《2.4概率的简单应用》作业设计方案-初中数学浙教版12九年级上册

《2.4概率的简单应用》作业设计方案-初中数学浙教版12九年级上册

《概率的简单应用》作业设计方案(第一课时)一、作业目标本作业旨在通过实践操作和理论应用,使学生能够:1. 理解概率的基本概念和计算方法;2. 掌握概率在生活中的简单应用;3. 培养学生的逻辑思维能力和解决问题的能力。

二、作业内容作业内容主要包括以下几个方面:1. 理论复习:要求学生复习概率的基本概念,如事件、概率的定义及计算方法等。

2. 实践操作:设计几个简单的概率实验,如抛硬币、掷骰子等,让学生亲自操作并记录实验结果,计算事件的概率。

3. 情景应用:设计实际生活场景,让学生运用所学概率知识解决实际问题。

例如,设计一个抽奖活动,让学生计算中奖的概率;或者设计一个彩票购买策略,让学生分析购买不同类型彩票的中奖概率。

4. 作业题目:布置一定量的习题,包括选择题、计算题和应用题,以巩固学生对概率知识的理解和应用能力。

三、作业要求1. 实践操作部分:学生需亲自进行实验操作,并准确记录实验数据和结果。

2. 情景应用部分:学生需根据所给情景,运用所学知识进行分析和计算,提出自己的见解和解决方案。

3. 作业题目部分:学生需独立完成作业题目,注意审题,理解题意,运用所学知识进行解答。

同时,要求学生书写规范,步骤清晰,答案准确。

4. 作业提交时,需附上实验记录和解题过程,以便教师了解学生的思考过程和解题方法。

四、作业评价教师将根据以下标准对学生的作业进行评价:1. 实践操作部分:是否亲自进行实验操作,实验数据是否准确,实验结果是否符合理论预期。

2. 情景应用部分:是否能够运用所学知识进行分析和计算,提出的见解和解决方案是否合理。

3. 作业题目部分:是否独立完成作业题目,答案是否准确,步骤是否清晰,书写是否规范。

4. 综合表现:学生是否认真对待作业,是否有独立思考和解决问题的能力。

五、作业反馈教师将对每位学生的作业进行认真批改,指出错误和不足,并提供详细的解题思路和解题方法。

同时,教师将根据学生的作业情况,进行针对性的辅导和指导,帮助学生更好地掌握概率知识。

13.4.2概率的简单计算

13.4.2概率的简单计算

课题:13.4.2 概率的简单计算(2) 班级_____姓名_______【使用方法】结合学习目标用10分钟时间预习课本105-107页,用30分钟的时间独立完成学案,保持卷面整洁,不讨论,圈出难点和疑点。

【学习目标】1. 通过练习进一步理解概率的计算方法2. 会熟练计算简单模型当中事件的概率【复习导入】在一次实验中,如果各种结果发生的可能性都相同,那么一个事件E 发生的概率是 _____)(所有等可能结果的可能发生的结果数事件E E P 如果事件E 为必然事件,则P(E)=_____;如果事件E 为不可能事件,则P(E)=_____;如果事件E 为不确定事件,P(E)的范围是________总之,任何事件E 发生的概率的范围是___________【预习自测】1、20张背面完全一样的卡片,其中8张正面印有桂林山水,7张正面印有百色风光,5张正面印有北海海景;把这些卡片的背面朝上搅匀,从中随机抽出一张卡片,抽中正面是桂林山水卡片的概率是( ).2、从扑克牌中任意抽出一张,求这张牌恰好为下面情况的概率:(1)牌上字母为J,Q 或K ;(2)牌上数字小于5;(3)牌上的数字大于5且小于83、某城市的固定电话号码由8位数字组成,其中以6220开头的电话用户号码共2865个,如果任意写出一个以6220开头的八位数,这个数字恰为该城市电话号码的概率是多少?4、从三名男生和若干名女生中任意选取1名同学去参加学校组织的演讲比赛,选出的同学是女生的概率为1310。

试求女生的人数。

【我的收获】____________________________________________________________________________【当堂检测】1、小新正在练投掷飞镖,如图是飞镖游戏板:(1)任意投掷一个飞镖击中哪种颜色的正方形的概率大?(2)求击中白颜色正方形的概率.(3)求击中黑色正方形的概率.2、一只口袋内有7个红球,3个白球,这10个球除了颜色外都相同,摇匀后,小莹先从中任意摸出一球(不知什么颜色),并且不再放回,小亮随后从口袋内摸出一个球。

人教版九年级上册25.2用列举法求概率(第1课时)教学设计

人教版九年级上册25.2用列举法求概率(第1课时)教学设计
2.学生分享:让学生尝试用自己的方法解决这个问题,鼓励他们分享思考过程和结果。
3.教师引导:根据学生的回答,引导学生认识到解决此类问题需要用到概率知识,进而引出本节课的主题——用列举法求概率。
(二)讲授新知
1.列举法概念:介绍列举法的定义,即通过列出所有可能的结果,计算每种结果出现的概率。
2.步骤与方法:讲解列举法求解概率问题的步骤:
2.培养勇于探索、积极思考的学习态度,提高解决问题的自信心;
3.学会与他人合作,尊重他人意见,培养良好的团队协作精神;
4.感受概率知识在实际生活中的应用,增强将所学知识应用于实际问题的意识。
本节课的教学设计以列举法求解概率问题为主线,结合生活实例,让学生在探索中学习,在学习中应用。通过小组合作、问题解决等教学活动,培养学生的数学素养、合作意识和解决问题的能力。同时,注重情感态度与价值观的培养,使学生在学习过程中感受到数学的魅力和价值。
(3)在一个装有10个白球、5个黑球的袋子中,先后两次随机抽取一个球,求第二次抽到黑球的概率。
3.拓展题:
(1)小华有3件上衣、2条裤子,他随机选择一件上衣和一条裤子穿上,求他穿上的衣服颜色搭配是“红配蓝”的概率;
(2)一个密码锁由4位数字组成,每位数字可以是0到9中的任意一个,求设置的密码是“回文数”(即1234、4321这类数字)的概率;
1.重点:掌握列举法求解概率问题的步骤和方法,并能应用于实际问题。
2.难点:
(1)理解并运用列举法求解复杂概率问题,如组合问题、排列问题等;
(2)将实际问题转化为数学模型,运用列举法求解;
(3)在合作学习中,提高沟通协作能力,充分发挥团队作用。
(二)教学设想
1.教学方法:
(1)采用情境导入法,以生活实例引入本节课的内容,激发学生兴趣;

人教版九年级数学上25.1.2《概率》名师教案

人教版九年级数学上25.1.2《概率》名师教案

人教版九年级数学上25.1.2《概率》名师教案25.1.2 概率(彭小永)一、教学目标(一)学习目标1. 了解概率的意义,渗透随机观念2. 理解概率的一些性质3. 能计算一些简单事件的概率(二)学习重点计算一些简单实际问题的概率(三)学习难点概率的意义及判断试验条件的意识.二、教学设计(一)课前设计1.预习任务(1)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件发生的概率,记为 P(A) .(2)一般地,如果一次试验有n个可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)= ( ) .(3)若用P(A)表示事件A发生的概率,则P(A)的范围是 .特别地,当A为必然事件时,P(A)= 1 .当A为不可能事件时,P(A)= 0 .(4)事件发生的概率越大,它的概率就越接近 1 ;反之,事件发生的概率越小,它的概率就越接近 0 .2.预习自测(1)抛掷一枚质地均匀的硬币,正确的说法是()A.正面一定朝上 B.正面朝上比反面朝上的概率大C.反面一定朝上 D.正面朝上与反面朝上的概率都是0.5【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】【答案】3 4(二)课堂设计1.知识回顾(1)必然事件、不可能事件和随机事件的定义是什么?(2)确定事件包含哪些?(3)你能分别举一个必然事件、不可能事件和随机事件的例子吗?请试一试.2.问题探究探究一概率的定义●活动①问题重现,温故知新问题1 五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序,为了抽签,我们在盒中放5个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1、2、3、4、5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.(1)抽到的数字是1;(2)抽到的数字小于6 ;(3)抽到的数字是0.师问:以上三个事件分别是什么事件?你能用具体数值来刻画其发生的可能性大小吗?分别是多少呢?小军抽到1到5中每一个数字的可能性是不是一样的?学生举手抢答.【设计意图】让学生回忆必然事件、不可能事件和随机事件的定义,感受其可能性,为“概率”这一定义的引出铺路.●活动②整合旧知,探究概率的定义问题2 小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.师问:掷一次骰子,在骰子向上的一面上,可能出现哪些点数?骰子上每一个数字出现的可能性是不是同样多的?分别是多少?由学生举手抢答.归纳总结出概率的定义,如下:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).【设计意图】在学生完成了问题1的基础上,利用问题2进一步让学生明白:每个数字出现的可能性大小相等,即每个数字出现的机会是等可能性的. 与分别是问题1和问题2中各个数字出现的可能性大小,从而得出概率的定义.探究二实例解析,理解概率的定义和性质●活动①运用定义,初试身手示例掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】解:(1)∵向上一面出现的点数共有六种情况,点数2只是其中的一种,∴出现点数2的概率:P(点数为2)=1 6(2)∵向上一面出现的点数共有六种情况,其中奇数有3个,∴点数为奇数的概率:P(点数为奇数)=36=12(3)∵向上一面出现的点数共有六种情况,大于2小于5的数字有2个,∴点数大于2小于5的概率:P(大于2小于5)=26=13【思路点拨】充分运用定义,求出相关事件的概率.【答案】(1)16(2)12(3)13【设计意图】用多个实例,总结出概率的一些性质●活动②归纳小结,得出概率性质师问:由问题1和问题2,以及示例,你能得到概率的哪些性质?由学生举手抢答. 归纳总结出概率的如下性质:概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A).性质1:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果. 因为,所以,.性质2:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.性质3:P(必然事件)=1,P(不可能事件)=0.探究三利用概率的定义与性质,解决实际问题●活动①概率的基本运算师问:概率的公式是什么?它有哪些性质?例1 一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A. B. C. D.【知识点】概率【数学思想】模型思想【解题过程】解:∵5 个球中,红色的有2个∴P(摸出红球)【思路点拨】红球个数占总球数的比例即为摸到红球的概率.【答案】C练习:某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A. B. C. D.【知识点】概率【数学思想】模型思想【解题过程】解:∵1 分钟共60秒,黄灯占5秒∴P(看到黄灯)【思路点拨】用黄灯的时间5秒,除以三种信号灯一轮变换的总时间60秒,即得抬头看到黄灯的概率.【答案】A【设计意图】进一步强化概率的计算方法.●活动②利用概率公式求概率与球的个数例2 在一个不透明的袋子中装有仅有颜色不同的10个球,其中红球4个,黑球6个. (1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出一个球,将“摸出黑球”记为事件A,请完成下列表格:事件A 必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率为,求m的值.【知识点】概率公式的灵活运用【数学思想】分类讨论思想,方程思想【解题过程】解:(1)若第一次将4个红球取完,则第二次摸出黑球为必然事件;若第一次取2个或3个红球,则第二次取出的球不一定是黑球,即第二次取出黑球为随机事件. 所以第一个空填数字“4”,第二个空填“2或3”.(2)由题意知,袋子内球的总数仍为10个,黑球的数量为(m+6)个,由概率的定义可得:,解得m=2.【思路点拨】准确把握必然事件与随机事件的定义是解决第(1)问的关键;第(2)问运用概率公式逆向求m的值,只要合理运用概率公式便可迎刃而解.【答案】(1)第一个空填数字“4”,第二个空填“2或3”. (2)m=2.练习:甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知2=,平均成绩=8.5环.甲射击成绩的方差S甲(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩及成绩的方差,并据此比较甲乙的射击“水平”.(方差的公式是:)【知识点】统计与概率【数学思想】数形结合思想【解题过程】解:(1)∵乙的射击总次数为12次,不少于9环的有7次,∴估计乙射击成绩不少于9环的概率为.(2)由题意得:(环),∴,∴甲的射击成绩更稳定.【思路点拨】读懂统计图中的数据,用好平均数、方差和概率的公式,便可顺利解决此题. 当平均成绩一样的时候,方差越小越稳定.【答案】(1)乙射击成绩不少于9环的概率红色为;(2)甲的射击成绩更稳定. 【设计意图】用综合性试题提高学生的解题能力. ●活动③ 与图形相关的概率计算例3 如图是一个可以自由转动的转盘,转盘分为7个大小相同的扇形,颜色分别为红、绿、黄三种颜色. 指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率: (1)指针指向红色; (2)指针指向红色或黄色; (3)指针不指向红色. 【知识点】概率【数学思想】数形结合思想 【解题过程】解:按颜色把7个扇形分别记为:红1、红2、红3、绿1、绿2、黄1、黄2,所有可能结果的总数为7,并且它们出现的可能性相等.(1)指针指向红色(记为事件A )的结果有3种,即红1、红2、红3, 因此,P (A )=(2)指针指向红色或黄色(记为事件B )的结果有5种,即红1、红2、红3、 黄1、黄2,所以, P (B )=(3)指针不指向红色(记为事件C )的结果有4种,即绿1、绿2、黄1、黄2,因此,P (C )=【思路点拨】由于指针停到每块扇形的机会相同,所以只需要数出符合条件的色块数量,用它除以总的色块数,即得相应事件的概率.【答案】(1)P (红色)=;(2)P (红色或黄色)=;(3)P (不是红色)=红红红绿绿黄黄练习:下图为计算机“扫雷”游戏的画面. 在一个99个方格的雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏一颗地雷.小王在游戏开始时随机点击一个方格,点击后出现下图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域. 数字3表示在A区域有3颗地雷.请问,下一步应该点击A区域还是B区域更安全?【知识点】概率【数学思想】数形结合思想【解题过程】解:∵A区域有8个方格,这八个方格中有3颗地雷B区域有72个方格,这72个方格中有7个地雷∴点击A区域遇到地雷的概率为,点击B区域遇到地雷的概率为,而,也就是说,点击B区域更安全.【思路点拨】分别计算两个事件的概率,再比较概率的大小即可.【答案】由于点击B区域遇到地雷的概率更小,所以选择点击B区域更好.【设计意图】进一步强化与图形相关的试题中求概率的方法.3. 课堂总结知识梳理(1)概率的定义:对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).(2)概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A). (3)概率的性质:性质1:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果. 因为,所以,.性质2:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.性质3:P(必然事件)=1,P(不可能事件)=0.重难点归纳(1)概率的定义:对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).(2)概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A).(3)P(必然事件)=1,P(不可能事件)=0.(三)课后作业基础型自主突破1.必然事件的概率是()A. B. C. D.【知识点】必然事件的概率【数学思想】模型思想【解题过程】必然事件指的是在一定条件下必然要发生的事件,所以它的概率为1.【思路点拨】正确理解必然事件的定义,牢记特殊事件的概率【答案】D2.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为0.5C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【知识点】概率【数学思想】分类讨论思想【解题过程】解:A 不可能事件发生的概率为0,正确;B 随机事件发生的概率不一定为0.5,如掷骰子时,各个数字朝上的概率为C 概率很小的事件指的是发生的可能性很小,但不是不发生,如买彩票中特等奖就是一个小概率事件,但仍可能发生;D 由于实验的次数较少,实验得到的结果不一定刚好与理论概率吻合,所以不一定是50次. 【思路点拨】由于受各种条件的限制,实验得到的结果往往与理论值有一定的偏差,对于具体问题要具体分析.【答案】A3.四张质地、大小相同的卡片上分别画上如图所示的图形.在看不到图形的情况下,从中任意抽取一张,则抽取的卡片是轴对称图形的概率为()A. B. C. D.【知识点】概率,轴对称图形【数学思想】分类讨论,数形结合【解题过程】解:在这四个图形中,只有等腰梯形和圆是轴对称图形,所以抽到轴对称图形的概率为【思路点拨】认清轴对称图形,数出它的个数,此题便可迎刃而解.【答案】A4.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标为1、2、3、4、5,从中随机摸出一个小球,其标号大于2的概率为()A. B. C. D.【知识点】概率【解题过程】在这5个数中,大于2的数字有3、4、5共三个数字,所以它的概率为. 【思路点拨】找出符合条件的数,将它与总数相除即可.【答案】C5.将“定理”的英语单词“theorem”中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌上,任取一张,那么取到字母e的概率为 .【知识点】概率【解题过程】7个字母中有2个“e”,所以取到字母“e”的概率为【思路点拨】牢记概率的计算公式便可轻松得解.【答案】6. 桶里原有质地均匀,形状大小完全一样的6个红球和4个白球,小明不慎弄丢了其中的2个红球,现从桶里随机摸出一个球,摸到白球的概率是 .【知识点】概率【数学思想】模型思想【解题过程】由于桶里的球有4红4白,所以摸到白的概率为.【思路点拨】用概率的计算公式即可【答案】能力型师生共研7. 如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A .B .C .D .【知识点】概率【思想方法】数形结合C【解题过程】将六个点两两相连,可得15条线段,其中只有AC、BD、CE、DF、EA、FB这6条的长度为,所以概率为 .【思路点拨】找出符合条件的线段数量,并数出总的线段条数,再将前者与总条数相除即可. 【答案】B8. 在盒子中放有三张分别写有、、2的卡片,从中随机抽出两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A .B .C .D .【知识点】概率的计算,分式的定义【数学思想】分类讨论思想【解题过程】当或作分母时,四组数据都符合分式的定义;当分母为2时,这两组数据不符合分式的定义. 所以能组成分式的概率为.【思路点拨】分式指的是分母中含有未知数的式子. 找出所有组合中符合分式定义的式子个数,相除即可.【答案】B探究型多维突破9. 在一个不透明的围棋盒子中有颗黑棋和颗白棋,从盒子中随机取出一颗棋子,它是黑棋的概率为.(1)写出与之间的函数关系式;(2)现在往盒子中再放进10颗黑棋,这时随机取出黑色棋子的概率为,请求出和的值. 【知识点】概率【数学思想】方程思想【解题过程】解:(1)由题意得:,解得(2)由题意得:,将代入,解得,所以,.【思路点拨】用方程的思想解决问题是一种很常用的方法.【答案】(1);(2),.10.口袋中有5张完全相同的卡片,分别写有1 cm、2 cm、3 cm、4 cm、5cm,口袋外有2张卡片,分别写有 4 cm和5 cm.现随机从袋内取出一张卡片,与口袋外的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,回答下列问题:(1)求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率;(3)求这三条线段能组成等腰三角形的概率.【知识点】概率,三角形三边的关系,直角三角形和等腰三角形的性质【数学思想】分类讨论思想【解题过程】解:(1)由于口袋外的两个长度分别为4 cm和5 cm,要组成三角形,则第三边的长度应满足,所以,当摸出的长度为2 cm、3 cm、4 cm、5cm时,都符合题意,其概率为;(2)由于口袋外的两个长度分别为4 cm和5 cm,袋内的5条线段中,只有3cm能与它们组成直角三角形,所以,组成直角三角形的概率为;(3)由于口袋外的两个长度分别为4 cm和5 cm,袋内的5条线段中,只有4cm与5cm能分别与它们组成等腰三角形,所以,组成等腰三角形的概率为;【思路点拨】三角形的两边之和大于第三边,两边之差小于第三边;直角三角形满足勾股定理;等腰三角形要注意验证两腰之和大于底边.【答案】(1);(2);(3) .自助餐1.掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上 B.必有5次正面朝上C.掷2次必有1次正面朝上 D.不可能10次正面朝上【知识点】概率【解题过程】由于正、反两面出现的概率相同,所以答案A是正确的. 理论概率指的是一种可能性,它不一定刚好等于实验频率,其他几个答案的描述不对.【思路点拨】准确理解概率的含义,在实验中,理论概率不一定刚好等于实验频率.【答案】A2.从长度分别为3、5、7、9的四条线段中任取三条作边,能够组成三角形的概率为()A. B. C. D.【知识点】概率的计算,三角形三边的关系【数学思想】分类讨论思想【解题过程】从3、5、7、9中任取三条作边,共有4种情况,分别是①3、5、7;②3、5、9;③3、7、9;④5、7、9. 其中只有第二组不能构成三角形. 所以构成三角形的概率为. 【思路点拨】三角形的任意两边之和大于第三边,任意两边之差小于第三边.【答案】D3.在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3个,白球 n个,若从袋中任取一球,摸出白球的概率为,则n= .【知识点】概率【数学思想】方程思想【解题过程】解:由概率的计算公式知:,解得n=9.【思路点拨】用方程的思想列式求解;或者推算出摸到红球的概率为,逆向思考,算出球的总数,减去红球的个数即得白球的个数.【答案】n=9.4.从-3、-2、-1、0、1、2这六个数中,任意抽取一个数,作为正比例函数和二次函数中m的值,恰好使得正比例函数的图象经过第二、四象限,且二次函数的图象开口向上的概率为 .【知识点】概率,正比例函数和二次函数的性质【数学思想】分类讨论思想【解题过程】解:∵正比例函数∴,只有-3不合题意∵二次函数∴,解得,只有0、1、2符合题意综上所述,在已知的六个数中,只有 0、1、2这三个数符合题意,所以,概率为.【思路点拨】当k<0时,正比例函数的图象必过二、四象限. 当时,二次函数的图象开口向上.【答案】.5.袋中有红、绿、黄三种除颜色外其余都相同的球,其中有红球4个,绿球5个,从中摸出一球是绿球的概率是.(1)袋里黄球的个数;(2)任意摸出一球为红球的概率.【知识点】概率【数学思想】模型思想,方程思想【解题过程】解:(1)设有m个黄球,则,解得m=6,所以有6个黄球;(2)P(红球)【思路点拨】牢牢抓住概率的定义即可,.【答案】(1)有6个黄球;(2)P(红球)6.在一个不透明的围棋盒子中有颗白棋,颗黑棋,它们除颜色外都一致,从盒子中随机取出一颗棋子,它是黑棋的概率为.(1)写出与之间的函数关系式;(2)现在往盒子中再放进5颗白棋和1颗黑棋,这时随机取出白色棋子的概率为,请求出和的值.【知识点】概率【数学思想】方程思想【解题过程】解:(1)由题意得:,解得(2)由题意得:,解得,所以.【思路点拨】用方程的思想解决问题是一种很常用的方法.【答案】(1);(2),.。

最新整理初三数学简单事件的概率教学设计.docx

最新整理初三数学简单事件的概率教学设计.docx

最新整理初三数学教案《简单事件的概率》教学设计《简单事件的概率》教学设计教学目标:1、了解事件A发生的概率为;2、掌握用树状图和列表法计算涉及两步实验的随机事件发生的概率。

3、通过实验提高学生学习数学的兴趣,让学生积极参与数学活动,在活动中发展学生的合作交流意识和能力。

教学重点:进一步经历用树状图、列表法计算随机事件发生的概率。

教学难点:正确地利用列表法计算随机事件发生的概率。

教学过程:一、创设故事情景国王和大臣的故事相传古代有个王国,国王非常阴险而多疑,一位正直的大臣得罪了国王,被叛死刑,这个国家世代沿袭着一条奇特的法规:凡是死囚,在临刑前都要抽一次“生死签”(写着“生”和“死”的两张纸条),犯人当众抽签,若抽到“死”签,则立即处死,若抽到“生”签,则当场赦免。

国王一心想处死大臣,与几个心腹密谋,想出一条毒计:暗中让执行官把“生死签”上都写成“死”。

问题:1、在国王的阴谋中,大臣被处死的可能性为多大?2、在法规中,大臣被处死的可能性为多大?3、大臣会想到什么计策?然而,在断头台前,聪明的大臣迅速抽出一张纸签塞进嘴里,等到执行官反应过来,纸签早已吞下,大臣故作叹息说:“我听天意,既将苦果吞下,只要看剩下的签是什么字就清楚了。

”剩下的当然写着“死”字,国王怕犯众怒,只好当众释放了大臣。

国王“机关算尽”,想把不确定事件变为确定事件,反而搬起石头砸自己脚,让机智的大臣死里逃生。

问题4、在大臣的计策中,大臣被处死的可能性为多大?二、搜索生活,数学就在我们身边1.从标有1-10的数字小片中,随机地抽出一张卡片,则抽出5的可能性多大?2.如图甲三色转盘,让转盘自由转动一次,“指针落在黄色区域”的可能性是多少?那乙呢?甲已三、新课教学。

1、问题5、事件发生的可能性大小是由什么来决定?如果几个事件的发生条件相同,那么这些事件发生的可能性相同.这样的事件称为等可能性事件.判断下列事件是否为等可能事件?(1)抛掷一枚均匀的硬币,正面朝上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《简单的概率计算》教学设计一、教学目标(一)知识目标1.在具体情景中进一步了解概率的意义,体会概率是描述不确定现象的数学模型.2.了解一类事件发生概率的计算方法,并能进行简单计算.3.能设计符合要求的简单概率模型.(二)能力目标1.体会事件发生的不确定性,建立初步的随机观念.2.进一步体会“数学就在我们身边”,发展学生“用数学”的意识和能力.(三)情感目标1.进一步培养学生公平、公正的态度,使学生形成正确的人生观.2.提高学生之间的合作交流能力和学习数学的兴趣.二、教学重难点(一)教学重点1.进一步体会概率是描述不确定现象的数学模型.2.了解另一类(几何概率)事件发生概率的计算方法,并能进行简单计算.3.能设计符合要求的简单数学模型.(二)教学难点1.了解另一类(几何概率)事件发生概率的计算方法.2.设计符合要求的简单数学模型.三、教具准备投影片四张:第一张:(记作投影片§4.3 A)第二张:议一议(记作投影片§4.3 B;)第三张:例题(记作投影片§4.3 C;)第四张:随堂练习(记作投影片§4.3 D)四、教学过程Ⅰ.创设问题情景,引入新课[师]我手中有两个不透明的袋子,一个袋子中装有8个黑球,2个白球;另一个袋子里装有2个黑球,8个白球.这些球除颜色外完全相同.在哪一个袋子里随意摸出一球,摸到黑球的概率较大?为什么?[生]在第一个袋子里摸到黑球的概率较大.这是因为,在第一个袋子里,P (摸到黑球)=108=54;而在第二个袋子里,P (摸到黑球)=51102=. [师]现在,我们把两个袋子换成两个房间——卧室和书房,把袋子中的黑白球换成黑白相间的地板砖,示意图4-7如下:(出示投影片§4.3 A )图4-7图4-7中的每一块方砖除颜色外完全相同,小猫分别在卧室和书房中自由地走来走去,并随意停留在某块方砖上.在哪个房间里,小猫停留在黑砖上的概率大呢?(板书课题:停留在黑砖上的概率)Ⅱ.讲授新课——讨论停留在黑砖上的概率1.议一议[师]我们首先观察卧室和书房的地板图,你会发现什么?[生]卧室中黑地板的面积大,书房中白色地板的面积大.[生]每块方砖除颜色不同外完全相同,小猫自由地走来走去,并随意停留在某块方砖上,具有随机性.[师]很好.这位同学已经能用随机观念,去解释我们所研究的事件.由此可知小猫停留在任意一块方砖上的可能性是相同的.[生]老师,我知道了,卧室和书房面积是相等的,而卧室中黑砖的面积大于书房中黑砖的面积,故小猫在卧室里自由地走来走去,并随意停留在某块方砖上,其中停留在黑砖上的概率较大.[师]那么,小猫在卧室里自由地走来走去,停留在黑砖上的概率为多少呢?如何计算呢?下面我们看投影片§4.3 B.图4-8[议一议]假如小猫在如图4-8所示的地板上自由地走来走去,并随意停留在某块方砖上,它最终停留在黑色方砖上的概率是多少?(图中每一块除颜色外完全相同)(通过讨论,借助经验,学生可以意识到小猫在方砖上自由地走来走去的随机性,从而计算出最终停留在黑砖上的概率).[生]方砖除颜色外完全相同,小猫自由自在地走来走去,并随意停留在某块方砖上,那么小猫停留在任意一块方砖上的概率都相同.因此P (小猫最终停留在黑色方砖上)=41164=. [师]你是怎样想到计算小猫最终停留在黑色方砖上概率用164的.[生]我是这样想的,这16块方砖,就像16个小球(除颜色外完全相同),其中4块黑砖相当于4个黑球,12个白砖相当于12个白球,小猫随意在地板上自由地走来走去,相当于把这16个球在袋子中充分搅匀,而最终小猫停留在黑砖上,相当于从袋子中随意摸出一球是黑球,因此我们推测P (小猫最终停留在黑砖上)=41164=. [师]很好.有没有不同解释呢? [生]我们组是这样想的:小猫最终停留在黑砖上的概率,与面积大小有关系.此事件的概率等于小猫最终停留在黑砖上所有可能结果组成的图形面积即4块方砖的面积,除以小猫最终停留在方砖上的所有可能结果组成的图形即16块方砖的面积.所以P (小猫最终停留在黑砖上)=41164=个方砖面积个方砖面积. [师]同学们的推测都是很有道理的.接下来我们来看课本P 110两个问题.2.想一想(1)小猫在上图所示的地板上自由地走来走去,它最终停留在白色方砖上的概率是多少?(2)你同意(1)的结果与下面事件发生的概率相等吗?袋中有12个黑球和4个白球,这些球除颜色外都相同,从中任意摸出一球是黑球[生](1)P (小猫最终停留在白色方砖上)=431612=;(2)这两个事件发生的概率是相同的,都是43. [师]你还能举出了一些不确定事件,使它们发生的概率也为43吗? (给同学们一定的思考的时间) [生]如上节课我们玩的摸球游戏,盒子中装有12个红球,4个白球,摸到红球的概率也是43. [生]例如,我手中有16张卡片,每张卡片上分别标有1~16这些数字,充分“洗 ”过后,随意抽出一张,抽到卡片上的数字不大于12的概率为431612=. [生]例如一个转盘被分成16个相等的扇形,其中12个扇形涂成红色,其余4个涂成黄色,让转盘自由转动,则指针落在红色区域的概率为431612=. [师]同学们举出了一些不确定事件,它们发生的概率都为43.其实这样的事件举不胜举.我们不难发现,这些事件虽叙述不同,但它们的实质是相同的.Ⅲ.应用深化1.例题 [师]日常生活中有许多形式的抽奖游戏,我们可以利用概率的知识计算某些游戏获奖的概率.下面我们就来看这样的例子(出示投影片§4.3 C ).图4-9[例1]某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以分别获得100元、50元、20元的购物券(转盘被分成20个相等的扇形).甲顾客购物120元,他获得购物券的概率是多少?他得到100元、50元、20元购物券的概率分别是多少?(可先由学生独立思考,然后进行交流.)[师]日常生活中的抽奖游戏要保证对每个参加抽奖者公平,此题是如何保证的?[生]转盘被等分成20个扇形,并且每一个顾客自由转动转盘,说明指针落在每个区域的概率相同,对于参加转动转盘的顾客来说,每转动一次转盘,获得购物券的概率相同,获得100元、50元、20元购物券的概率也相同,因此游戏是公平的.[师]你是如何计算的?[生]解:根据题意,甲顾客的消费额在100元到200元之间,因此可以获得一次转动转盘的机会.转盘被等分成20个扇形,其中1个红色、2个黄色、4个绿色,因此,对于甲顾客来说,P (获得购物券)=20720421=++; P (获得100元购物券)=201; P (获得50元购物券)=101202=; P (获得20元购物券)=51204=. [师]很好.特别指出的是转盘被等分成若干份,并且自由转动的情况下,才可用上面的方法计算.2.随堂练习[师](出示投影片§4.4 D )图4-10如图4-10所示,转盘被等分成16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为83. 你还能举出一个不确定事件,它发生的概率也是83吗? (由学生以小组为单位讨论完成,教师可看情况参与到学生的讨论中,注意发现学生错误,及时予以指导.这是一个开放性问题,答案不唯一,只要红色区域占6份即可.鼓励学生多举概率为83的事件,以使他们体会概率模型的思想.)3.补充练习一张写有密码的纸片被随意地埋在下面矩形区域内(每个方格大小一样)(1)埋在哪个区域的可能性大?(2)分别计算出埋在三个区域内的概率;(3)埋在哪两个区域的概率相同.图4-11(由学生板演完成)解:(1)埋在“2”号区域的可能性大.(2)P (埋在“1”号区域)=41; P (埋在“2”号区域)=2142 ; P (埋在“3”号区域)=41. (3)埋在“1”和“3”区域的概率相同.Ⅳ.课时小结 [师]同学们,我们一块来谈一下这节课的收获[生]我们学会了计算小猫最终停留在黑砖上的概率.[生]我们还学会了设计概率相同的不确定事件.由此我们发现概率相同的不确定事件可以看作是由一个统一的概率模型演变来的.[生]我们还了解了日常生活中的抽奖游戏,还可以计算出获奖的概率.[师]看来,同学们的收获还真不小!Ⅴ.课后作业1.习题4.3 1、2.2.调查当地的某项抽奖活动,并试着计算抽奖者获奖的概率.Ⅵ.活动与探究图4-12如图4-12是一个转盘,它被等分成6个扇形.你能否在转盘上涂上适当的颜色,使得自由转动这个转盘,当它停止转动时,分别满足以下的条件:(1)指针停在红色区域和停在黄色区域的概率相同(2)指针停在蓝色区域的概率大于停在红色区域的概率.你能设计一个方案,使得以上两个条件同时满足吗?[过程]因为这个转盘被等分成6个扇形,并且能够自由转动,因此指针落在6个区域的可能性即概率相同.根据概率的计算公式就可得出结论.本题是一个开放题,答案不唯一.[结论](1)只需涂红色和涂黄色的区域的面积相同即可;(2)只需涂蓝色区域面积大于涂红色的即可.若要以上两个条件同时满足,则需涂红色和涂黄色区域面积相同,且小于涂蓝色区域的面积即可.五、板书设计§4.3 简单的概率计算一、提出问题:在哪一个房间,小猫停留在黑砖上概率大?二、联系学过的知识、经验、分析解决问题1.议一议:P (小猫最终停留在黑色方砖上)=41; 2.想一想:建立概率模型:举例说明概率为43的不确定事件. 三、应用、深化1.例题(抽奖游戏)2.练习(由学生口答)。

相关文档
最新文档