复变函数与积分变换(修订版复旦大学)课后的第三章习题答案

合集下载

复变函数第三章答案

复变函数第三章答案

��� 在 C +1, 0 上,所以
∫ ∫ 1
1
���� C +1,0
1+
z2
dz
=
2i
1 ( ����

1
)dz = 1 (2π i) = π ,
C+1,0 z − i z + i
2i
同理如果 C 仅围绕 i 按顺时针转一周,有
∫ ∫ 1
1
���� C +1,0
1+
z2
dz
=
2i
( ���� 1 − 1 )dz = 1 (−2πi) = −π ,
dz = 1 ⋅( z −1)1−n 1− n
3 =
1
2 1− n
21−n −1
=
1 n−
1 ⎛⎜⎝1

1 2n−1
⎞ ⎟


所以,
⎧k ⋅(±2π i) + ln 2, n =1
In
=

⎨ ⎪⎩
n
1 −1
⎛⎜1 ⎝

1 2n−1
⎞ ⎟
,


n ≠1
6. 设 C = 0�,1是不过点 ±i 的简单光滑曲线,证明:
���
���
显然 C + 3, 2 构成简单闭曲线,并且1在 C + 3, 2 的内部,所以
∫ ���� 1 dz = 2π i ,
C+3,2 z −1 同理如果 C 仅围绕1按顺时针转一周,有
于是
∫ ���� 1 dz = −2π i ,
C+3,2 z −1
∫ ∫ ∫ ∫ I1 =
1 dz =

复变函数习题答案第3章习题详解

复变函数习题答案第3章习题详解

第三章习题详解1. 沿下列路线计算积分⎰+idz z 302。

1) 自原点至i +3的直线段;解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3()()()⎰⎰+=⎥⎦⎤⎢⎣⎡+=+=+131033233023313313i t i dt t i dz z i2) 自原点沿实轴至3,再由3铅直向上至i +3;解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz =3303323233131=⎥⎦⎤⎢⎣⎡==⎰⎰t dt t dz z连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz =()()()331031023323313313313-+=⎥⎦⎤⎢⎣⎡+=+=⎰⎰+i it idt it dz z i()()()333310230230233133********i i idt it dt t dz z i+=-++=++=∴⎰⎰⎰+ 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。

解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz =()()310312023131i it idt it dz z i=⎥⎦⎤⎢⎣⎡==⎰⎰连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz =()()()33103102323113131i i i t dt i t dz z ii-+=⎥⎦⎤⎢⎣⎡+=+=⎰⎰+()()333332023021313113131i i i i dz z dz z dz z iiii+=-++=+=∴⎰⎰⎰++ 2. 分别沿x y =与2x y =算出积分()⎰++idz iy x102的值。

解:x y = ix x iy x +=+∴22()dx i dz +=∴1 ()()()()()⎪⎭⎫⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=++=+∴⎰⎰+i i x i x i dx ix x i dz iy x i213112131111023102102 2x y = ()22221x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴()()()()()⎰⎰⎪⎭⎫⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=++=+∴+1104321022131142311211i i x i x i dx x i x i dz iy xi而()i i i i i 65612121313121311+-=-++=⎪⎭⎫⎝⎛++3. 设()z f 在单连通域B 内处处解析,C 为B 内任何一条正向简单闭曲线。

第三章 复变函数的积分习题与解答

第三章 复变函数的积分习题与解答

第三章 复变函数的积分习题与解答3.1 如果函数()f z 是在【1】单连通区域;【2】复通区域中的解析函数,问其积分值与路径有无关系?【答案 单连通 无关,复连通 有关】 3.2 计算积分 3||21z z =-⎰的值【答案 0】3.3 计算积分22d L zz a -⎰:其中0a >.设 L 分别为(1)(1)||/2; ||; (3)||z a z a a z a a =-=+=【答案 (1)0;(2)πia; (3)πia -】3.4 计算积分 Im d C z z⎰,其中积分曲线C 为 (1)从原点到2i +的直线段;(2)上半圆周 ||1z =,起点为1,终点为1-;(3)圆周|| (0)z a R R -=>的正方向(逆时针方向)【答案 2(1)1i /2;(2)π/2;(3)πR +--】3.5 计算积分 d ||C z zz ⎰的值,(1)||2; (2)||4;z z == 【答案(1)4πi;(2)8πi 】3.6 计算积分的值 π2icos d 2z z+⎰【答案 1/e e +】 3.7计算下列积分的值(1) ||1d cos z z z =⎰;(2)2||2d z ze z =⎰21||1||12i d d (3); (4)24()(2)z z z z z z z z ==++++⎰⎰ 【答案(1)0;(2) 0;(3) 0;(4) 4πi4i +】3.8 计算2||2||232|i|1||1522||1|i|2(1)d ; (2)d ;3(1)(21)cos (3)d ; (4)d (i)(2)d (5)d ; (6)(4)z z z z z z z z z e z z z z z z z e z zz z z e z z z z z ==-===-=--+--+⎰⎰⎰⎰⎰⎰【答案 (1)0;(2)0;(3)πicosi -;(4)3πi 2-;(5)πi 12(6)π8-】3.9 计算积分 (1)π61ii(1)sin d ; (2)ch3d ; (3)(1)d z z z z z z z e z--⎰⎰⎰【答案13(1)sin1cos1; (2)i; (3)1cos1i[sin(1)1]--+-】3.10 计算复数123cos (1)d C C zzz +⎰,其中1:||2C z =顺时针方向;2:||3C z =逆时针方向.(2)3||1d ()zz e zz a =-⎰,其中复常数||1a ≠【答案 (1) 0;(2)当||1,0;||1,πi aa a e ><】 3.11 设L 为不经过点b 和b -的简单正向(逆时针)曲线,b 为不等于零的任何复数,试就曲线L 与b 的各种可能计算积分的值.d ()()L zI zz b z b =+-⎰ 【答案 (1)L 不含b ±,则I=0;(2)L 含b ,πi bI =;L 含b -,πib I =-;(3)两点在内部 0I =】3.12 已知 π3||2()d e h z zξξξξ==-⎰,试求(i),(i)h h -,以及当||2z >时,()h z '的值. 【 ()π(i);(i)i);||2,()0h i h z h z '=-=>=】 3.13 计算积分 3d ()zC ze zz a -⎰,其中 常数a 在闭曲线C 内部【答案 1(2)2aa e +】3.14 设 C 为正向圆周1=z ,且||1a ≠,证明:积分222π1||22π||1||1 (||1)|d ||| (||1)a z a a z z a a -=-<⎧⎪=⎨->⎪⎩⎰3.15 利用积分 ||1d 2z zz =+⎰的值,证明2π012cos d 054cos θθθ+=+⎰3.16 计算积分 2|||d |,(||)||z r z a r z a =≠-⎰(提示:令i i :|d |d ,r z c z re z z θ=⇒=注意到点2,r aa 是关于圆周||z r =的对称点)3.17.已知2πsin 4()d f z zζζζζ==-⎰求(12i),(1),(1)f f f '-.3.18 计算积分(2)2||1cos d z z zz e z =⎰本章计算机仿真编程3.19 计算机仿真编程验证3.15的积分结果2π012cos d 054cos θθθ+=+⎰3.20 计算机仿真计算下列积分的值 (沿非闭合路径的积分)π63πii i2123πi(1)d ; (2)ch3d ; (3)(1)d ;zz I e z I z z I z e z --===-⎰⎰⎰i4211tan (4)d ,cos zI z z +=⎰其积分的路径为沿1到i 的直线段.(说明:沿闭合路径的积分可以利用留数的定义,留数定理来计算;而留数可以利用计算机仿真编程Matlab 直接求解)。

复变函数习题答案第3章习题详解

复变函数习题答案第3章习题详解
14.设 为不通过 与 的正向简单闭曲线, 为不等于零的任何复数,试就 与 跟 的不同位置,计算积分 的值。
解:分四种情形讨论:
1)若是 与 都在 的外部,那么 在 内解析,柯西—古萨大体定理有
2)若是 与 都在 的内部,由柯西积分公式有
3)若是 在 的内部, 都在 的外部,那么 在 内解析,由柯西积分公式有
和 知足拉普拉斯方程: ,

故 是 的解析函数。
23.设 为区域 内的调和函数及 ,问 是不是 内的解析函数?什么缘故?
解:设 ,那么 ,


因为 为区域 内的调和函数,具有二阶持续偏导且知足拉普拉斯方程
, 是 内的解析函数。
24.函数 是 的共轭调和函数吗?什么缘故?
解: , , , ,
故函数 不是 的共轭调和函数。
证明:因为 在 内解析,故积分 与途径无关,取从原点沿实轴到 ,再从 沿圆周 到 的曲线作为 ,那么:
13.设 和 为相交于 、 两点的简单闭曲线,它们所围的区域别离为 与 。 与 的公共部份为 。若是 在 与 内解析,在 、 上也解析,证明: 。
证明:如下图, 在 与 内解析,在 、 上也解析,由柯西—古萨大体定理有:
第三章习题详解
1.沿以下线路计算积分 。
1)自原点至 的直线段;
解:连接自原点至 的直线段的参数方程为:
2)自原点沿实轴至 ,再由 铅直向上至 ;
解:连接自原点沿实轴至 的参数方程为:
连接自 铅直向上至 的参数方程为:
3)自原点沿虚轴至 ,再由 沿水平方向向右至 。
解:连接自原点沿虚轴至 的参数方程为:
25.设 和 都是调和函数,若是 是 的共轭调和函数,那末 也是 的共轭调和函数。这句话对吗?什么缘故?

复变函数与积分变换(修订版-复旦大学)课后习题答案

复变函数与积分变换(修订版-复旦大学)课后习题答案

习题 七1.证明:如果f (t )满足傅里叶变换的条件,当f (t )为奇函数时,则有⎰+∞⋅=0d sin )()(ωωωt b t f其中()⎰+∞⋅=0tdt sin π2)(ωωt f b当f (t )为偶函数时,则有⎰+∞⋅=0cos )()(ωωtd w a t f其中⎰+∞⋅=02tdt c f(t))(ωωos a证明:因为ωωωd G t f t i ⎰+∞∞-=e )(π21)(其中)(ωG 为f (t )的傅里叶变换()()()(cos sin )i tG f t edt f t t i t dt ωωωω+∞+∞--∞-∞==⋅-⎰⎰()cos ()sin f t tdt i f t tdt ωω+∞+∞-∞-∞=⋅-⋅⎰⎰当f (t )为奇函数时,t cos f(t)ω⋅为奇函数,从而⎰+∞∞-=⋅0tdt cos f(t)ωt sin f(t)ω⋅为偶函数,从而⎰⎰+∞∞-+∞⋅=⋅0.sin f(t)2tdt sin f(t)tdt ωω故.sin f(t)2)(0tdt iG ωω⋅-=⎰+∞有)()(ωωG G -=-为奇数。

ωωωωπωωπωd t i t G d e G t f t i )sin (cos )(21)(21)(+⋅=⋅=⎰⎰+∞∞-+∞∞-=01()sin d ()sin d 2ππi G i t G t ωωωωωω+∞+∞-∞⋅=⋅⎰⎰ 所以,当f(t)为奇函数时,有2()b()sin d .b()=()sin dt.πf t t f t t ωωωωω+∞+∞=⋅⋅⎰⎰其中同理,当f(t)为偶函数时,有()()cos d f t a t ωωω+∞=⋅⎰.其中02()()cos πa f t tdt ωω+∞=⋅⎰ 2.在上一题中,设()f t =21,0,1t t t ⎧<⎪⎨≥⎪⎩.计算()a ω的值.解:1200111220012012011200222()()cos d cos d 0cos d πππ221cos d d(sin )ππ122sin sin 2d 0ππ2sin 4(cos )π2sin 4cos cos π2sin 4co a f t t t t t t t t t t t t t t t t t tt d t t t tdt ωωωωωωωωωωωωωωπωωωωωπωωπω+∞+∞=⋅=⋅+⋅=⋅=⋅=⋅⋅-⋅=⋅+⋅⎡⎤=+⋅-⎢⎥⎣⎦=+⎰⎰⎰⎰⎰⎰⎰⎰23s 4sin ωωπωπω-3.计算函数sin ,6π()0,6πt t f t t ⎧≤⎪=⎨≥⎪⎩的傅里叶变换. 解:[]6π6π6π6π6π02()()d sin d sin (cos sin )d 2sin sin d sin 6ππ(1)i t i t F f f t e t t e tt t i t ti t t t i ωωωωωωωω+∞---∞--=⋅=⋅=⋅-=-⋅=-⎰⎰⎰⎰4.求下列函数的傅里叶变换 (1)()tf t e -=解: []||(||)0(1)(1)2F f ()()d d d 2d d 1i t t i t t i t t i t i f te t e e t e te t e t ωωωωωωω+∞+∞+∞----+-∞-∞-∞+∞--+-∞==⋅==+=+⎰⎰⎰⎰⎰(2)2()t f t t e-=⋅解:因为22222/4F[].()(2)2.t t t t e ee e t t e ω-----==⋅-=-⋅而所以根据傅里叶变换的微分性质可得224()F()tG t e e ωω--=⋅=(3)2sin π()1tf t t =- 解:222202200sin π()F()()d 1sin π(cos sin )d 11[cos(π)cos(π)]sin πsin 2d 2d 11cos(π+)cos(π-)d d ()11sin ,||π20,|i tt G f e t t tt i t t t t t t t i t i t t t t t i t i t t t iωωωωωωωωωωωωω+∞--∞+∞-∞+∞+∞-∞+∞+∞==⋅-=⋅---+--⋅=-=---=----≤=⎰⎰⎰⎰⎰⎰利用留数定理当当|π.⎧⎪⎨⎪≥⎩(4)41()1f t t=+ 解:4444401cos sin ()d d d 111cos cos 2d d 11i tt t G e t t i t t t t t t t t t t ωωωωωω+∞+∞+∞--∞-∞-∞+∞+∞-∞==-+++==++⎰⎰⎰⎰⎰令41R(z)=1z +,则R(z)在上半平面有两个一级极1)i i +-+. R()d 2π[R())]2π[R()1)]i t i z i z t e t i Res z e i i Res z e i ωωω+∞-∞⋅=⋅⋅++⋅⋅-+⎰故.|244cos ||||d Re[d ]sin )1122i t t e t t t t ωωωωω+∞+∞--∞-∞=+++⎰⎰(5) 4()1tf t t =+ 解:4444()d 1sin cos d d 11sin d 1i t tG e t t t t t t t i t t t t t i tt ωωωωω+∞--∞+∞+∞-∞-∞+∞-∞=⋅+⋅=⋅-++⋅=-+⎰⎰⎰⎰ 同(4).利用留数在积分中的应用,令4R()=1zz z +则44|sin d ()Im(d )11sin22i tt tt e i t i t t t ie ωωωω+∞+∞-∞-∞-⋅⋅-=-++=-⋅⋅⎰⎰.5.设函数F (t )是解析函数,而且在带形区域Im()t δ<内有界.定义函数()L G ω为/2/2()()e d .L i t L L G F t t ωω--=⎰证明当L →∞时,有1p.v.()e d ()2πi t L G F t ωωω∞-∞→⎰ 对所有的实数t 成立.(书上有推理过程) 6.求符号函数 1,0sgn 1,0||t t t t t -<⎧==⎨>⎩的傅里叶变换. 解: 因为1F (())π().u t i δωω=+⋅把函数sgn()t 与u(t)作比较.不难看出 sgn()()().t u t u t =-- 故:[]11F[sgn()]F(())F(())π()[π()]π()22π()()t u t u t i i i i δωδωωδωδωωω=--=+⋅-+⋅--=+--=7.已知函数()f t 的傅里叶变换()00F()=π()(),ωδωωδωω++-求()f t解:[]000-100000001()F (F())=π()()d 2πF(cos )=cos d d 2π[()()]()cos i ti t i t i t i tf t e t t e te e e tf t tωωωωωωδωωδωωωωωδωωδωωω+∞-∞+∞--∞-+∞--∞=⋅++-⋅+=⋅=++-=⎰⎰⎰而所以8.设函数f (t )的傅里叶变换()F ω,a 为一常数. 证明1[()]().f at F a a ωω⎛⎫=⎪⎝⎭1F[()]()()d ()d()i t i t f at f at e t f at e at a ωωω+∞+∞---∞-∞=⋅=⋅⎰⎰解:当a >0时,令u=at .则11F[()]()()d u i a f at f u e u F a a a ωωω-+∞-∞⎛⎫=⋅= ⎪⎝⎭⎰当a <0时,令u=at ,则1F[()]()F()f at a aωω=-. 故原命题成立.9.设()[]();F F f ωω=证明()()[]()F f t ωω=--F .证明:()[]()()()()()[]()[]()()[]()()e d e d e d e d e d .i t i u i i u u i t F f t f uf t u t f u f uu u f t F t ωωωωωωω+∞+∞--∞-∞+∞+∞--⋅-⋅--∞-∞+∞-⋅--∞=⋅=-⋅--=⋅=⋅=⋅=-⎰⎰⎰⎰⎰10.设()[]()F F f ωω=,证明:()[]()()()0001cos 2F f t F F t ωωωωωω⋅=-++⎡⎤⎣⎦以及()[]()()()0001sin .2F f t F F t ωωωωωω⋅=--+⎡⎤⎣⎦ 证明:()[]()()()()()0000000e +e cos 21e e 22212i t i t i t i t F f t F t f t F F f f t t F F ωωωωωωωωω--⎡⎤⋅=⋅⎢⎥⎣⎦⎧⎫⎡⎤⎡⎤=+⋅⋅⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭=-++⎡⎤⎣⎦同理:()[]()()(){}()()0000000e e sin 21e e 212i t i t i t i t Ff t F f t t i F F f f t t i F F i ωωωωωωωωω--⎡⎤-⋅=⋅⎢⎥⎣⎦=-⎡⎤⎡⎤⋅⋅⎣⎦⎣⎦=--+⎡⎤⎣⎦ 11.设()()π0,0sin ,0t 200e ,t t t f g t t t -⎧<⎧≤≤⎪==⎨⎨≥⎩⎪⎩,其他计算()*f g t . 解:()())*(d f y g y t f g t y +∞-∞-=⎰当t y o -≥时,若0,t <则()0,f y =故()*f g t =0.若0,0,2t y t π<≤<≤则()()()0()d sin d *t ty f y g y e y t f g t y t y -=⋅--=⎰⎰若,0..222t t y t y t πππ>≤-≤⇒-≤≤则()()2sin d *ty t e y t f g y t π--⋅-=⎰故()()()20,01,0sin cos e *221e .1e 22t t t t t t f g t t πππ--<⎧⎪⎪<≤-+=⎨⎪⎪>+⎩12.设()u t 为单位阶跃函数,求下列函数的傅里叶变换.()()()0e sin 1at f t u t t ω-=⋅()()()()()()()00000000002002e sin e e sin e e e e e 211e d d d d e 2d 2at i t at i t i t i t ati ta i t a i t ttG F t u f t t t i i i t t a i ωωωωωωωωωωωωωωωω+∞-∞+∞+∞+∞+--------+--++⎡⎤⎡⎤⎣∞⎣⎦⎦=====-=⋅⋅⋅⋅⋅-⋅⋅++⎰⎰⎰⎰⎰解:习题八1.求下列函数的拉普拉斯变换.(1)()sin cos f t t t =⋅,(2)4()etf t -=,(3)2()sin f t t= (4)2()f t t =, (5)()sinh f t bt=解: (1) 1()sin cos sin 22f t t t t =⋅=221121(())(sin 2)2244L f t L t s s ==⋅=++(2)411(())(e )24tL f t L s -==+(3)21cos 2()sin 2t f t t -==221cos21111122(())()(1)(cos2)222224(4)t L f t L L t s s s s -==-=⋅-⋅=++(4)232()L t s = (5)22e e 111111(())()(e )(e )22222bt bt bt bt bL f t L L L s b s b s b ---==-=⋅-⋅=-+-2.求下列函数的拉普拉斯变换.(1)2,01()1,120,2t f t t t ≤<⎧⎪=≤<⎨⎪≥⎩(2)cos ,0π()0,πt t f t t ≤<⎧=⎨≥⎩解: (1) 1220011(())()e 2e e (2e e )st st st s s L f t f t dt dt dt s +∞-----=⋅=⋅+=--⎰⎰⎰(2)πππ2011e (())()e cos e (1e )1s ststsL f t f t dt t dt s s -+∞---+=⋅=⋅=+++⎰⎰3.设函数()cos ()sin ()f t t t t u t δ=⋅-⋅,其中函数()u t 为阶跃函数, 求()f t 的拉普拉斯变换.解:20222(())()e cos ()e sin ()e cos ()e sin e 11cos e 1111st st st st st stt L f t f t dt t t dt t u t dtt t dt t dts t s s s δδ+∞+∞+∞---+∞+∞---∞-==⋅=⋅⋅-⋅⋅=⋅⋅-⋅=⋅-=-=+++⎰⎰⎰⎰⎰4.求图8.5所表示的周期函数的拉普拉斯变换解:2()e 1(())1e (1e )Tst T T as as f t dt as aL f t s s ---⋅+==---⎰5. 求下列函数的拉普拉斯变换.(1)()sin 2tf t lt l=⋅ (2)2()e sin5t f t t -=⋅(3)()1e t f t t =-⋅ (4)4()e cos4t f t t-=⋅(5()(24)f t u t =- (6()5sin 23cos 2f t t t =-(7) 12()e t f t t δ=⋅ (8) 2()32f t t t =++解:(1)222222221()sin [()sin ]221()(())(sin )[()sin ]22112()22()()tf t lt t lt l lt F s L f t L lt L t lt l ll ls s l s l l s l s l =⋅=--⋅==⋅=--⋅-'=-=-⋅=+++(2)225()(())(e sin 5)(2)25t F s L f t L t s -==⋅=++21(3)()(())(1e )(1)(e )(e )1111()1(1)t t t F s L f t L t L L t L t ss s s s ==-⋅=-⋅=+-⋅'=+=--- (4)424()(())(ecos 4)(4)16ts F s L f t L t s -+==⋅=++ (5)1,2(24)0,t u t >⎧-=⎨⎩其他22()(())((24))=(24)e 1=e =e st stsF s L f t L u t u t dtdt s∞-∞--==--⋅⎰⎰(6)222()(())(5sin 23cos2)5(sin 2)3(cos2)210353444F s L f t L t t L t L t s ss s s ==-=--=⋅-⋅=+++ (7)12332213(1)()22()(())(e )()()t F s L f t L t s s δδδΓ+Γ==⋅==-- (8)2221()(())(32)()3()2(1)(232)F s L f t L t t L t L t L s s s ==++=++=++6.记[]()()L f s F s =,对常数0s ,若00Re()s s δ->,证明00[e ]()()s t L f s F s s ⋅=-证明:00000()()00[e ]()e ()e ()e()e ()s t s tsts s ts s t L f s f t dtf t dt f t dt F s s ∞-∞∞---⋅=⋅⋅=⋅=⋅=-⎰⎰⎰7 记[]()()L f s F s =,证明:()()[(t)()]()n nF s L f t s =-⋅证明:当n=1时,0()()e st F s f t dt +∞-=⋅⎰0()[()e ][()e ]()e (())st stst F s f t dt f t dt t f t dt L t f t s+∞--+∞+∞-''=⋅∂⋅==-⋅⋅=-⋅∂⎰⎰⎰所以,当n=1时, ()()[(t)()]()n nFs L f t s =-⋅显然成立。

复变函数习题答案第3章习题详解

复变函数习题答案第3章习题详解

第三章习题详解1. 沿下列路线计算积分⎰+idz z 302。

1) 自原点至i +3的直线段;解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3()()()⎰⎰+=⎥⎦⎤⎢⎣⎡+=+=+131033233023313313i t i dt t i dz z i2) 自原点沿实轴至3,再由3铅直向上至i +3;解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz =33033023233131=⎥⎦⎤⎢⎣⎡==⎰⎰t dt t dz z连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz =()()()331031023323313313313-+=⎥⎦⎤⎢⎣⎡+=+=⎰⎰+i it idt it dz z i()()()333310230230233133********i i idt it dt t dz z i+=-++=++=∴⎰⎰⎰+ 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。

解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz =()()310312023131i it idt it dz z i=⎥⎦⎤⎢⎣⎡==⎰⎰连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz =()()()33103102323113131i i i t dt i t dz z ii-+=⎥⎦⎤⎢⎣⎡+=+=⎰⎰+()()333332023021313113131i i i i dz z dz z dz z iiii+=-++=+=∴⎰⎰⎰++ 2. 分别沿x y =与2x y =算出积分()⎰++i dz iy x102的值。

解:x y = ix x iy x +=+∴22 ()dx i dz +=∴1 ()()()()()⎪⎭⎫⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=++=+∴⎰⎰+i i x i x i dx ix x i dz iy x i213112131111023102102 2x y = ()22221x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴()()()()()⎰⎰⎪⎭⎫⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=++=+∴+1104321022131142311211i i x i x i dx x i x i dz iy xi而()ii i i i 65612121313121311+-=-++=⎪⎭⎫⎝⎛++3. 设()z f 在单连通域B 内处处解析,C 为B 内任何一条正向简单闭曲线。

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ①:∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-, ()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cos isin i 662=+=+z . 2551cos πisin πi 662=+=z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根.πi 4e ⎫⎪⎪⎝⎭)()1π12i44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版-复旦大学)课后的习题答案

(
)
证明∵ z + w = ( z + w) ⋅ ( z + w) = ( z + w) z + w = z ⋅ z + z ⋅ w + w⋅ z + w⋅ w = z + zw+ z⋅ w + w = z + w

2 2 2 2
(
)
∴ −8π 1 + 3i = 16π ⋅ e 2π 2π ⎞ ⑤解: ⎛ + i sin ⎟ ⎜ cos 9 9 ⎠ ⎝
5、Imz>1,且|z|<2. 解:表示圆盘内的一弓形域。
iϕ (2) 记 w = ρ e ,则
0<θ <
π ,0 < r < 2 4 映成了 w 平面 π . 2
习题二 1 z 下圆周 | z |= 2 的像.
上扇形域,即
0 < ρ < 4, 0 < ϕ <
−7i
⎤ = x ( x − y ) − 2 xy + ⎡ ⎣ y ( x − y ) + 2x y ⎦ i
2 2 2 2 2 2
= x3 − 3 xy2 + ( 3 x2 y − y3 ) i

Re ( z
3
)=x
3
− 3 xy
2
,
Im ( z 3 ) = 3 x 2 y − y 3 .
⎛ 1 + i ⎞ (1 + i ) 1 − i ⎜ 2 ⎟= 2 = 2 ⎝ ⎠
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
π ⎛ 2 i 2 ⎞ 4 解: 3 + 3i= 6 ⋅ ⎜ + i = 6 ⋅ e ⎟ ⎜ 2 ⎟ 2 ⎠ ⎝

复变函数与积分变换(修订版复旦大学)课后的习题答案

复变函数与积分变换(修订版复旦大学)课后的习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛-+-- ⎝⎭⎝⎭①:∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-, ()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++=()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cos isin i 662=+=+z . 2551cos πi sin πi 662=+=+z3991cos πi sin πi 662=+=z ⑵-1的三次根 解:()()12π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos i sin 332=+=z2cos πisin π1=+=-z3551cos πi sin π332=+=-z的平方根.πi 4e ⎫=⎪⎪⎝⎭)()1π12i44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换第三章

复变函数与积分变换第三章
第三章 复变函数的积分
§3.1 复变函数积分的概念
1. 有向曲线 2. 积分的定义 3. 积分性质 4. 积分存在的条件及其计算法
1. 有向曲线
约定: C 光滑或分段光滑曲线(因而可求长).
C的表示 : z(t) x(t) iy(t) ( t ) (1)
z'(t)连续且z'(t) 0
1
(3
4i)2 tdt
(3
4i )2
1
tdt
o
C
0
0
x
(3 4i)2 . 2
另解:因为Czdz C ( x iy)(dx idy)
y
C zdz C xdx ydy iC ydx xdy
A
这两个积分都与路线C 无关
所以不论C 是怎样从原点连接到点3 4i 的 o
x
曲线,
zdz (3 4i)2 .
定理3.1 若f (z) u( x, y) iv( x, y)在光滑曲线C
上连续,则f (z)沿C可积,即C f (z)dz存在.
且 C f (z)dz C udx vdy iC vdx udy (4)
记忆
C (u iv)(dx idy)
证明 令zk xk iyk xk xk xk1 yk yk yk1
k k ik u(k ,k ) uk v(k ,k ) vk
n
n
Sn f ( k )zk (uk ivk )(xk iyk )
k 1 n
k 1 n
u(k ,k )xk v(k ,k )yk
k 1
k 1
当 0时,均是
n
n
实函数的曲线积分.
i[ v(k ,k )xk u(k ,k )yk ]

复变函数与积分变换(修订版-复旦大学)课后的第三章习题答案

复变函数与积分变换(修订版-复旦大学)课后的第三章习题答案
令y=0,上式变为
从而
(2)
用线积分法,取(x0,y0)为(1,0),有
由 ,得C=0
23.设 ,其中 各不相同,闭路C不通过 ,证明积分
等于位于C内的p(z)的零点的个数.
证明:不妨设闭路C内 的零点的个数为k,其零点分别为
24.试证明下述定理(无界区域的柯西积分公式):设f(z)在闭路C及其外部区域D内解析,且 ,则
(3)在 所围的区域内包含一个奇点 ,故
(4)在 所围的区域内包含两个奇点 ,故
10.利用牛顿-莱布尼兹公式计算下列积分.
(1) (2) (3)
(4) (5) (6)
解(1)
(2)
(3)
(4)
(5)
(6) 11.计算积分 ,其中 为
(1) (2) (3)
解(1)
(2)
(3)
16.求下列积分的值,其中积分路径C均为|z|=1.
(1) (2) (3)
解(1)
(2)
(3)
17.计算积分 ,其中积分路径 为
(1)中心位于点 ,半径为 的正向圆周
(2)中心位于点 ,半径为 的正向圆周
解:(1) 内包含了奇点

(2) 内包含了奇点 ,

19.验证下列函数为调和函数.
解(1)设 ,

从而有
, 满足拉普拉斯方程,从而是调和函数.
(2) 设 ,
(3)沿单位圆周|z|=1的右半圆周,从点-i到点i.
解(1)设.
(2)设 . 从 到
(3)设 . 从 到
6.计算积分 ,其中 为 .

∵ 在 所围的区域内解析

从而

7.计算积分 ,其中积分路径 为

最新复变函数习题答案第3章习题详解

最新复变函数习题答案第3章习题详解

第三章习题详解1. 沿下列路线计算积分⎰+idz z 302。

1) 自原点至i +3的直线段;解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3()()()⎰⎰+=⎥⎦⎤⎢⎣⎡+=+=+131033233023313313i t i dt t i dz z i2) 自原点沿实轴至3,再由3铅直向上至i +3;解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz =3303323233131=⎥⎦⎤⎢⎣⎡==⎰⎰t dt t dz z连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz =()()()331031023323313313313-+=⎥⎦⎤⎢⎣⎡+=+=⎰⎰+i it idt it dz z i()()()333310230230233133********i i idt it dt t dz z i+=-++=++=∴⎰⎰⎰+ 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。

解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz =()()310312023131i it idt it dz z i=⎥⎦⎤⎢⎣⎡==⎰⎰连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz =()()()33103102323113131i i i t dt i t dz z ii-+=⎥⎦⎤⎢⎣⎡+=+=⎰⎰+()()333332023021313113131i i i i dz z dz z dz z iiii+=-++=+=∴⎰⎰⎰++ 2. 分别沿x y =与2x y =算出积分()⎰++idz iy x102的值。

解:x y = ix x iy x +=+∴22()dx i dz +=∴1 ()()()()()⎪⎭⎫⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=++=+∴⎰⎰+i i x i x i dx ix x i dz iy x i213112131111023102102 2x y = ()22221x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴()()()()()⎰⎰⎪⎭⎫⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=++=+∴+1104321022131142311211i i x i x i dx x i x i dz iy xi而()i i i i i 65612121313121311+-=-++=⎪⎭⎫⎝⎛++3. 设()z f 在单连通域B 内处处解析,C 为B 内任何一条正向简单闭曲线。

《复变函数与积分变换复旦大学修订版》全部_习题答案

《复变函数与积分变换复旦大学修订版》全部_习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1kn=-,()Im i 0n=;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w ++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcosisin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πi sin πi 662=+=z3991cos πi sin πi 662=+=-z ⑵-1的三次根 解:()()12π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos i sin 332=+=z 2cos πisin π1=+=-z3551cos πi sin π332=+=-z的平方根. 解:πi 4e ⎫=⎪⎪⎝⎭∴)()1π1i ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z . 9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换第三章习题解答

复变函数与积分变换第三章习题解答

V-
上中
J 刊
2i/(z-i) dz =0
_
_
. .
z +i
小 3) C=C1+C2 � cozsz dz = fc, � cozsz dz-Cfi� cozs z dz = — 22冗!i (cos z)"长-— 22冗!i (cosz)"l::o=0
立 4) 1> z—] = 2兀i
对 5) 当Ial> l 时, l/(z-c矿在IzI�l上解析, c亿 __!-ta_宁 ) iz=O;
-5 -
炉ylz =f:lm沪 =0
=
sin
zI::女
=
sinz。。故结论成立

16. 设函数氏)在 0<1 zkl内解析, 且沿任何圆周 C: I z I= r, 0< r < I的积分为零,问八z)是否需在
z=O 处解析?试举例说明 之。
解 不一定 。 如令八z)=,zI- ' 则 其在 0<巨 kl内解析, 且沿任何圆周 C: I z I= r , 0< r< J的积分
-3 -
f4) c z立 -i其中C为以已2 ,土�5 i为顶点的正向菱形
f5)
ez
3
c位-a)
农,其中a为IaI* 1的任何复数 ,
C :IzI= 1为正向
解 I) 扣C z上 +l 十二 z+2i)dz=2冗i(4+3) = 14Jri
f2)
C — z22+i I 心=
}
f 上中1
l l
-
2i/(z+i) z -i 心+
2
dz
=

复变函数与积分变换第3章复变函数的积分

复变函数与积分变换第3章复变函数的积分
设 曲 线 C 的 方 程 : z ( t ) x ( t ) i y ( t ) ( t [ a , b ] )
C f( z ) d z C u d x v d y i C v d x u d y .
b
a{u[x(t),y(t)]x(t)v[x(t),y(t)]y(t)}dt
容易验证,右边两个线积分都与路线C 无关,
所以
的zd值z 无论
1 3 4i2 c
2
是C怎样的曲线都等于
例 3求 证 lri m 0 |z|rz2z 31dz0.
例 4求 Cz1 idz的 积 分 的 一 个 绝 对 上 界 , 其 中 C
为 从 原 点 到 34i的 直 线 段 .
区 域 包 含 于 D . 若 f(z)在 区 域 D 内 解 析 , 则
D
n
i) f(z)dz f(z)dz;
C
k1Ck
Ci
ii) f(z)dz0其 中 为 C 与 C k

围 成 的 复 合 闭 路 ,C 与 C k均 取 正 方 向
例 3.7计 算2z1dz,其 中 C是 包 含 0和 1的 Cz2z
定 理 3 . 6设 f(z)在 单 连 通 区 域 D 解 析 , F (z)为 f(z)的 一 个 原 函 数 , 则 对 任 意 z0,z1 D , 有
z1 z0
f(z)dzF(z1)F(z0)
例 8计 算 bznd z,其 中 n是 正 整 数 。 a
例9计算izcoszdz. 0
为f (z)沿曲线C的积分,记为
n
Cf(z)dz=ln→ i∞ mk=1f(ζ k)Δ zk
沿 曲 线 C 的 负 方 向 的 积 分 记 为 f( z ) d z C

复变函数习题解答(第3章)

复变函数习题解答(第3章)

复变函数习题解答(第3章)p141第三章习题(一)[ 5, 7, 13, 14, 15, 17, 18 ]5. 由积分?C1/(z + 2) dz之值证明?[0, π] (1 + 2 cosθ)/(5 + 4cosθ) dθ = 0,其中C取单位圆周| z | = 1.【解】因为1/(z + 2)在圆| z | < 3/2内解析,故?C1/(z + 2) dz = 0.设C : z(θ)= e iθ,θ∈[0, 2π].则?C1/(z + 2) dz = ?C1/(z + 2) dz = ?[0, 2π] i e iθ/(e iθ + 2) dθ= ?[0, 2π] i (cosθ + i sinθ)/(cosθ + i sinθ + 2) dθ= ?[0, 2π] (- 2 sinθ + i (1 + 2cosθ ))/(5 + 4cosθ) dθ= ?[0, 2π] (- 2 sinθ)/(5 + 4cosθ) dθ+ i ?[0, 2π] (1 +2cosθ )/(5 + 4cosθ) dθ.所以?[0, 2π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0.因(1 + 2cosθ ))/(5 + 4cosθ)以2π为周期,故?[-π, π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0;因(1 + 2cosθ ))/(5 + 4cosθ)为偶函数,故[0, π] (1 + 2 cosθ)/(5 + 4cosθ) dθ = (1/2) ?[-π, π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0.7. (分部积分法)设函数f(z), g(z)在单连通区域D内解析,α, β是D内两点,试证[α, β] f(z)g’(z)dz = ( f(z)g(z))|[α, β] -?[α, β] g(z) f’(z)dz.【解】因f(z), g(z)区域D内解析,故f(z)g’(z),g(z) f’(z),以及( f(z)g(z))’都在D 内解析.因区域D是单连通的,所以f(z)g’(z),g(z) f’(z),以及( f(z)g(z))’的积分都与路径无关.[α, β] f(z)g’(z)dz +?[α, β] g(z) f’(z)dz = ?[α, β] ( f(z)g’(z)dz + g(z) f’(z))dz= ?[α, β] ( f(z)g(z))’dz.而f(z)g(z)是( f(z)g(z))’在单连通区域D内的一个原函数,所以[α, β] ( f(z)g(z))’dz = f(β)g(β) -f(α)g(α) = ( f(z)g(z))|[α, β].因此有?[α, β] f(z)g’(z)dz + ?[α, β] g(z) f’(z)dz = ( f(z)g(z))|[α,β],即?[α, β] f(z)g’(z)dz = ( f(z)g(z))|[α, β] -?[α, β] g(z) f’(z)dz.13. 设C : z = z(t) (α≤t≤β)为区域D内的光滑曲线,f(z)于区域D 内单叶解析且f’(z) ≠ 0,w = f(z)将曲线C映成曲线Γ,求证Γ亦为光滑曲线.【解】分两种情况讨论.(1) 当z(α) ≠z(β)时,C不是闭曲线.此时z(t)是[α, β]到D内的单射,z(t)∈C1[α, β],且在[α, β]上,| z’(t) |≠ 0.因Γ是曲线C在映射f下的象,所以Γ可表示为w = f(z(t)) (α≤t≤β).t∈[α, β],z(t)∈D.因f于区域D内解析,故f在z(t)处解析,因此f(z(t))在t处可导,且导数为f’(z(t))z’(t).显然,f’(z(t))z’(t)在[α, β]上是连续的,所以f(z(t))∈C1[α, β].因为f(z)于区域D内是单叶的,即f(z)是区域D到的单射,而z(t)是[α, β]到D内的单射,故f(z(t))是[α, β]到内的单射.因在D内有f’(z) ≠ 0,故在[α, β]上,| f’(z(t))z’(t) |= | f’(z(t)) | · |z’(t) |≠ 0.所以,Γ是光滑曲线.(2) 当z(α) = z(β)时,C是闭曲线.此时z(t)∈C1[α, β];在[α, β]上,有| z’(t) |≠ 0;z’(α) = z’(β);?t1∈[α, β],?t2∈(α, β),若t1 ≠t2,则z(t1) ≠z(t2).与(1)完全相同的做法,可以证明f(z(t))∈C1[α, β],且| f’(z(t))z’(t) |≠ 0.由z(α) = z(β)和z’(α)= z’(β),可知f’(z(α))z’(α) = f’(z(β))z’(β).因为?t1∈[α, β],?t2∈(α, β),若t1 ≠t2,则z(t1) ≠z(t2),由f(z)于区域D内单叶,因此我们有f(z(t1)) ≠f(z(t2)).所以Γ是光滑的闭曲线.14. 设C : z = z(t) (α≤t≤β)为区域D内的光滑曲线,f(z)于区域D内单叶解析且f’(z) ≠ 0,w = f(z)将曲线C映成曲线Γ,证明积分换元公式ΓΦ(w) dw = ?CΦ( f(z)) f’(z) dz.其中Φ(w)沿曲线Γ连续.【解】由13题知曲线Γ也是光滑曲线,其方程为w(t) = f(z(t)) (α≤t≤β).故?ΓΦ(w) dw = ?[α, β] Φ(w(t)) ·w’(t) dt = ?[α, β] Φ( f(z(t))) · ( f’(z(t)) z’(t)) dt.而?CΦ( f(z)) f’(z) dz = ?[α, β] ( Φ( f(z(t))) f’(z(t))) ·z’(t) dt.所以?ΓΦ(w) dw = ?CΦ( f(z)) f’(z) dz.15. 设函数f(z)在z平面上解析,且| f(z) |恒大于一个正的常数,试证f(z)必为常数.【解】因| f(z) |恒大于一个正的常数,设此常数为M.则?z∈ ,| f(z) | ≥M,因此| f(z) | ≠ 0,即f(z) ≠ 0.所以函数1/f(z)在上解析,且| 1/f(z) | ≤ 1/M.由Liuville定理,1/f(z)为常数,因此f(z)也为常数.17. 设函数f(z)在区域D内解析,试证(?2/?x2 + ?2/?y2) | f(z) |2 = 4 | f’(z) |2.【解】设f(z) = u + i v,w = | f(z) |2,则w = ln ( u 2 + v 2 ).w x = 2(u x u+ v x v),w y = 2(u y u+ v y v);w xx = 2(u xx u+ u x2 + v xx v+ v x2 ),w yy = 2(u yy u+ u y2 + v yy v+ v y2 );因为u, v都是调和函数,所以u xx u+ u yy u= (u xx + u yy) u= 0,v xx v+ v yy v= (v xx + v yy) v= 0;由于u, v满足Cauchy-Riemann方程,故u x2 = v y 2,v x 2 = u y2,故w xx + w yy = 2 (u x2 + v x2 + u y2 + v y2) = 4 (u x2 + v x2) = 4 | f(z) |2;即(?2/?x2 + ?2/?y2) | f(z) |2 = 4 | f’(z) |2.18. 设函数f(z)在区域D内解析,且f’(z) ≠ 0.试证ln | f’(z) |为区域D内的调和函数.【解】?a∈D,因区域D是开集,故存在r1 > 0,使得K(a, r1) = { z∈ | | z -a | < r1 } ?D.因f’(a) ≠ 0,而解析函数f’(z)是连续的,故存在r2 > 0,使得K(a, r2) ?K(a, r1),且| f’(z) -f’(a)| < | f’(a) |.用三角不等式,此时有| f’(z)| > | f’(a) | - | f’(z) -f’(a)| > 0.记U = { z∈ | | z -f’(a)| < | f’(a) |},则U是一个不包含原点的单连通区域.在沿射线L = {z∈ | z = - f’(a) t,t≥ 0 }割开的复平面上,多值函数g(z) = ln z可分出多个连续单值分支,每个单值连续分支g(z)k在\L上都是解析的.t≥ 0,| - f’(a) t -f’(a) | = (t + 1) | f’(a) | ≥ | f’(a) |,故- f’(a) t ?U.所以U ? \L,即每个单值连续分支g(z)k在U上都是解析的.因为当z∈K(a, r2)时,f’(z)∈U,故复合函数g( f’(z))k在上解析.而Re(g( f’(z))k) = ln | f’(z) |,所以ln | f’(z) |在K(a, r2)上是调和的.由a∈D的任意性,知ln | f’(z) |在D上是调和的.【解2】用Caucht-Riemann方程直接验证.因为f’(z)也在区域D内解析,设f’(z) = u + i v,则u, v也满足Cauchy-Riemann方程.记w = ln | f’(z) |,则w = (1/2) ln ( u 2 + v 2 ),w x = (u x u+ v x v) /( u 2 + v 2 ),w y = (u y u+ v y v) /( u 2 + v 2 );w xx = ((u xx u+ u x2 + v xx v+ v x2 )( u 2 + v 2 ) - 2(u x u+ v x v)2)/( u 2 + v 2 )2;w yy = ((u yy u+ u y2 + v yy v+ v y2 )( u 2 + v 2 ) - 2(u y u+v y v)2)/( u 2 + v 2 )2;因为u, v都是调和函数,所以u xx u+ u yy u= (u xx + u yy) u= 0,v xx v+ v yy v= (v xx + v yy) v= 0;由于u, v满足Cauchy-Riemann方程,故u x2 = v y 2,v x 2 = u y2,u x v x + u y v y = 0,因此(u x u+ v x v)2 + (u y u+ v y v)2= u x2u 2+ v x 2v 2 + 2 u x u v x v+ u y2u 2+ v y 2v 2 + 2 u y u v y v= (u x2 + v x2 )( u 2 + v 2 );故w xx + w yy = (2(u x2 + v x2 )( u 2 + v 2 ) - 2(u x2 + v x2 )( u 2 + v 2 ))/( u 2 + v 2 )2 = 0.所以w为区域D内的调和函数.[初看此题,就是要验证这个函数满足Laplace方程.因为解析函数的导数还是解析的,所以问题相当于证明ln | f(z) |是调和的,正如【解2】所做.于是开始打字,打了两行之后,注意到ln | f’(z) |是Ln f’(z)的实部.但Ln z不是单值函数,它也没有在整个上的单值连续分支,【解1】前面的处理就是要解决这个问题.]p141第三章习题(二)[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]1. 设函数f(z)在0 < | z | < 1内解析,且沿任何圆周C : | z | = r, 0 < r < 1的积分值为零.问f(z)是否必须在z = 0处解析?试举例说明之.【解】不必.例如f(z) = 1/z2就满足题目条件,但在z = 0处未定义.[事实上可以任意选择一个在| z | < 1内解析的函数g(z),然后修改它在原点处的函数值得到新的函数f(z),那么新的函数f(z)在原点不连续,因此肯定是解析.但在0 < | z | < 1内f(z) = g(z),而g(z)作为在| z | < 1内解析的函数,必然沿任何圆周C : | z | = r的积分值都是零.因此f(z)沿任何圆周C : | z | = r的积分值也都是零.若进一步加强题目条件,我们可以考虑,在极限lim z→0 f(z)存在的条件下,补充定义f(0) = lim z→0 f(z),是否f(z)就一定在z = 0处解析?假若加强条件后的结论是成立,我们还可以考虑,是否存在满足题目条件的函数,使得极限lim z→0 f(z)不存在,也不是∞?]2. 沿从1到-1的如下路径求?C1/√z dz.(1) 上半单位圆周;(2) 下半单位圆周,其中√z取主值支.【解】(1) √z = e i arg z /2,设C : z(θ)= e iθ,θ∈[0, π].C1/√z dz = ?[0, π] i e iθ/e iθ/2dθ = ?[0, π] i e iθ/2dθ = 2e iθ/2|[0, π] = 2(- 1 + i).(2) √z = e i arg z /2,设C : z(θ)= e iθ,θ∈[-π, 0].C1/√z dz = -?[-π, 0] i e iθ/e iθ/2dθ = -?[-π, 0] i e iθ/2dθ = - 2e iθ/2|[-π, 0] = 2(- 1 -i).[这个题目中看起来有些问题:我们取主值支,通常在是考虑割去原点及负实轴的z平面上定义的单值连续分支.因此,无论(1)还是(2),曲线C上的点-1总不在区域中(在区域的边界点上).因此曲线C也不在区域中.所以,题目应该按下面的方式来理解:考虑单位圆周上的点ζ,以及沿C从1到ζ的积分的极限,当ζ分别在区域y > 0和区域y < 0中趋向于-1时,分别对应(1)和(2)的情形,简单说就是上岸和下岸的极限情形.那么按照上述方式理解时,仍然可以象我们所做的那样,用把积分曲线参数化的办法来计算,这是由积分对积分区域的连续性,即绝对连续性来保证的.以后我们遇到类似的情形,都以这种方式来理解.]3. 试证| ?C(z + 1)/(z - 1) dz | ≤ 8π,其中C为圆周| z - 1 | = 2.【解】若z∈C,| z + 1 | ≤ | z - 1 | + 2 = 4,故| (z + 1)/(z - 1) | ≤ 2.因此| ?C(z + 1)/(z - 1) dz | ≤?C| (z + 1)/(z - 1) | ds≤ 2 · Length(C) = 8π.4. 设a, b为实数,s = σ+ i t (σ > 0)时,试证:| e bs–e as| ≤ | s | · | b–a | e max{a, b} ·σ.【解】因为f(z) = e sz在上解析,故f(z)的积分与路径无关.设C是从a到b的直线段,因为e sz/s是f(z)的一个原函数,所以| ?C e sz dz | = | e sz/s |[a, b] | = | e bs–e as|/| s |.而| ?C e sz dz | ≤?C | e sz|ds = ?C | e(σ+ i t)z|ds = ?C | eσ z+ i tz|ds= ?C | eσ z|ds ≤?C e max{a, b} ·σ ds = | b–a | e max{a, b} ·σ.所以| e bs–e as| ≤ | s | · | b–a | e max{a, b} ·σ.5. 设在区域D = { z∈ : | arg z | < π/2 }内的单位圆周上任取一点z,用D内曲线C 连接0与z,试证:Re(?C1/(1 + z2) dz ) = π/4.【解】1/(1 + z2)在单连通区域D内解析,故积分与路径无关.设z = x + i y,z∈D,i z∈{ z∈ : 0 < arg z < π } = { z∈ : Im z > 0 },-i z∈{ z∈ : -π < arg z < 0 } = { z∈ : Im z < 0 },故1 + i z∈{ z∈ : Im z > 0 }, 1 -i z∈{ z∈ : Im z < 0 }.设ln(z)是Ln(z)的主值分支,则在区域D内( ln(1 + i z) - ln(1 -i z) )/(2i)是解析的,且(( ln(1 + i z) - ln(1 -i z) )/(2i))’ = (i/(1 + i z) + i/(1 -i z))(2i) = 1/(1 + z2);即( ln(1 + i z) - ln(1 -i z) )/(2i)是1/(1 + z2)的一个原函数.C1/(1 + z2) dz = ( ln(1 + i z) - ln(1 -i z) )/2 |[0, z]= (ln(1 + i z) - ln(1 -i z))/(2i) = ln((1 + i z)/(1 -i z))/(2i)= (ln |(1 + i z)/(1 -i z)| + i arg ((1 + i z)/(1 -i z)))/(2i)= -i (1/2) ln |(1 + i z)/(1 -i z)| + arg ((1 + i z)/(1 -i z))/2,故Re(?C1/(1 + z2) dz ) = arg ((1 + i z)/(1 -i z))/2.设z = cosθ + i sinθ,则cosθ> 0,故(1 + i z)/(1 -i z) = (1 + i (cosθ + i sinθ))/(1 -i (cosθ + i sinθ)) = i cosθ/(1 + sinθ),因此Re(?C1/(1 + z2) dz ) = arg ((1 + i z)/(1 -i z))/2= arg (i cosθ/(1 + sinθ))/2 = (π/2)/2 = π/4.[求1/(1 + z2) = 1/(1 + i z) + 1/(1 -i z) )/2的在区域D上的原函数,容易得到函数( ln(1 + i z) - ln(1 -i z) )/(2i),实际它上就是arctan z.但目前我们对arctan z的性质尚未学到,所以才采用这种间接的做法.另外,注意到点z在单位圆周上,从几何意义上更容易直接地看出等式arg ((1 + i z)/(1 -i z))/2 = π/4成立.最后,还要指出,因曲线C的端点0不在区域D中,因此C不是区域D中的曲线.参考我们在第2题后面的注释.]6. 试计算积分?C( | z | - e z sin z ) dz之值,其中C为圆周| z | =a > 0.【解】在C上,函数| z | - e z sin z与函数a- e z sin z的相同,故其积分值相同,即?C( | z | - e z sin z ) dz = ?C( a- e z sin z ) dz.而函数a- e z sin z在上解析,由Cauchy-Goursat定理,?C( a-e z sin z ) dz = 0.因此?C( | z | - e z sin z ) dz = 0.7. 设(1) f(z)在| z | ≤ 1上连续;(2) 对任意的r (0 < r < 1),?| z | = r f(z) dz = 0.试证?| zf(z) dz = 0.| = 1【解】设D(r) = { z∈ | | z | ≤r },K(r) = { z∈ | | z | = r },0 < r≤ 1.因f在D(1)上连续,故在D(1)上是一致连续的.再设M = max z∈D(1) { | f(z) | }.?ε > 0,?δ1> 0,使得?z, w∈D(1), 当| z-w | < δ1时,| f(z) -f(w)| < ε/(12π).设正整数n≥ 3,z k= e 2kπi/n ( k = 0, 1, ..., n- 1)是所有的n次单位根.这些点z0, z1, ..., z n– 1将K(1)分成n个弧段σ(1), σ(2), ..., σ(n).其中σ(k) (k = 1, ..., n- 1)是点z k– 1到z k的弧段,σ(n)是z n–1到z0的弧段.记p(k) (k = 1, ..., n- 1)是点z k– 1到z k的直线段,p(n)是z n–1到z0的直线段.当n充分大时,ma x j {Length(σ( j))} = 2π/n < δ1.设P是顺次连接z0, z1, ..., z n–1所得到的简单闭折线.记ρ =ρ(P, 0).注意到常数f(z j)的积分与路径无关,?σ( j)f(z j) dz =?p( j)f(z j) dz;那么,| ?K(1)f(z) dz -?P f(z) dz |= | ∑j?σ( j)f(z) dz -∑j?p( j)f(z) dz |= | ∑j (?σ( j)f(z) dz -?p( j)f(z) dz ) |≤∑j | ?σ( j)f(z) dz -?p( j)f(z) dz |≤∑j ( | ?σ( j)f(z) dz -?σ( j)f(z j) dz | + | ?p( j)f(z j) dz -?p( j)f(z) dz | )= ∑j ( | ?σ( j) ( f(z)-f(z j)) dz | + | ?p( j) ( f(z)-f(z j)) dz | )= ∑j ( ?σ( j)ε/(12π) ds + ?p( j)ε/(12π) ds )= (ε/(12π))·∑j ( Length(σ( j)) + Length(p( j)) )≤ (ε/(12π))·∑j ( Length(σ( j)) + Length(σ( j)) )= (ε/(12π))· (2 Length(K(1)))= (ε/(12π))· 4π = ε/3.当ρ< r < 1时,P中每条线段p(k)都与K(r)交于两点,设交点顺次为w k, 1, w k, 2.设Q是顺次连接w1, 1, w1, 2, w2, 1, w2, 2, ..., w n, 1, w n, 2所得到的简单闭折线.与前面同样的论证,可知| ?K(r)f(z) dz -?Q f(z) dz |≤ε/3.因此,| ?K(1)f(z) dz | = | ?K(1)f(z) dz -?K(r)f(z) dz |≤ | ?K(1)f(z) dz -?P f(z) dz | + | ?K(r)f(z) dz -?Q f(z) dz | + | ?P f(z) dz-?Q f(z) dz |≤ε/3 + ε/3 + | ?P f(z) dz-?Q f(z) dz |.记连接w k, 2到w k +1, 1的直线段为l(k),连接w k, 2到z k +1的直线段为r(k),连接z k +1到w k +1, 1的直线段为s(k),则| ?r(k)f(z) dz + ?s(k)f(z) dz-?l(k)f(z) dz |≤M ( Length(l(k)) + Length(r(k)) + Length(s(k)) ) ≤ 3 M · Length(l(k)).因为当r → 1-时,有Length(l(k)) → 0,故存在r∈(ρ, 1)使得| ?r(k)f(z) dz + ?s(k)f(z) dz-?l(k)f(z) dz | < ε/(3n).对这个r,我们有| ?P f(z) dz-?Q f(z) dz | = | ∑k (?r(k)f(z) dz + ?s(k)f(z) dz-?l(k)f(z) dz ) |≤∑k (| ?r(k)f(z) dz + ?s(k)f(z) dz-?l(k)f(z) dz |) ≤∑k ε/(3n) = ε/3.故| ?K(1)f(z) dz | ≤ε.因此?K(1)f(z) dz = 0.8. 设(1) f(z)当| z–z0 | > r0 > 0时是连续的;(2) M(r)表| f(z) |在K r : | z–z0 | = r > r0上的最大值;(3) lim r → +∞r M(r) = 0.试证:lim r → +∞?K(r) f(z) dz = 0.【解】当r > r0时,我们有| ?K(r) f(z) dz | ≤?K(r) | f(z) | ds≤?K(r) M(r) ds = 2πr M(r) → 0 (当r → +∞时),所以lim r → +∞?K(r) f(z) dz = 0.9. (1) 若函数f(z)在点z = a的邻域内连续,则lim r → 0 ?| z–a | = r f(z)/(z–a) dz = 2πi f(a).(2) 若函数f(z)在原点z = 0的邻域内连续,则lim r → 0 ?[0, 2π] f(r e iθ ) dθ = 2π f(0).【解】(1) 当r充分小时,用M(r)表| f(z) |在K r : | z–a | = r上的最大值;| ?| z–a | = r f(z)/(z–a) dz–2πi f(a) |= | ?| z–a | = r f(z)/(z–a) dz–f(a)?| z–a | = r1/(z–a) dz |= | ?| z–a | = r( f(z) –f(a))/(z–a) dz | ≤?| z–a | = r| f(z) –f(a) |/| z–a| ds≤M(r) ?| z–a | = r1/| z–a| ds = 2πr M(r).当r → 0时,由f(z)的连续性,知M(r) → | f(a) |.故| ?| z–a | = r f(z)/(z–a) dz–2πi f(a) | → 0.因此,lim r → 0 ?| z–a | = r f(z)/(z–a) dz = 2πi f(a).(2) 根据(1),lim r → 0 ?| z | = r f(z)/z dz = 2πi f(0).而当r充分小时,我们有| z | = r f(z)/z dz = ?[0, 2π] f(r e iθ )/(r e iθ )· (r e iθi ) dθ = i ?[0, 2π] f(r e iθ ) dθ.所以,lim r → 0 (i ?[0, 2π] f(r e iθ ) dθ)= 2πi f(0).故lim r → 0 ?[0, 2π] f(r e iθ ) dθ = 2π f(0).10. 设函数f(z)在| z | < 1内解析,在闭圆| z | ≤ 1上连续,且f(0) = 1.求积分(1/(2πi))?| z | = 1 (2 ± (z + 1/z)) f(z)/z dz之值.【解】(1/(2πi))?| z | = 1 (2 ± (z + 1/z)) f(z)/z dz= ?| z | = 1 (2f(z)/z± (zf(z)/z + (1/z)f(z)/z) dz= (1/(2πi)) ·( ?| z | = 1 2f(z)/z dz ± (?| z | = 1 f(z) dz +?| z | = 1 f(z)/z 2dz) )= (1/(2πi)) ·( 2(2πi) f(0)± (0+ (2πi/1!)f’(0)) )= 2 f(0)±f’(0) = 2 ±f’(0).11. 若函数f(z)在区域D内解析,C为D内以a, b为端点的直线段,试证:存在数λ,| λ| ≤ 1,与ξ∈C,使得f(b) -f(a) = λ(b -a) f’(ξ).【解】设C的参数方程为z(t) = (1 –t ) a + t b,其中t∈[0, 1].在区域D内,因f(z)是f’(z)的原函数,故f(b) -f(a) = ?C f’(z) dz = ?[0, 1] f’((1 –t ) a + t b) (b -a) dt = = (b -a) ?[0, 1] f’((1 –t ) a + t b) dt.(1) 若?[0, 1]| f’((1 –t ) a + t b) | dt = 0,因| f’((1 –t ) a + t b) |是[0, 1]上的连续函数,故| f’((1 –t ) a + t b) |在[0, 1]上恒为零.即f’(x)在C上恒为零.此时取λ= 0,任意取ξ∈C,则有f(b) -f(a) = (b -a) ?[0, 1] f’((1 –t ) a + t b) dt = 0 = λ(b -a) f’(ξ).(2) 若?[0, 1]| f’((1 –t ) a + t b) | dt > 0,因| f’((1 –t ) a + t b) |是[0, 1]上的实变量连续函数,由积分中值定理,存在t0∈[0, 1],使得?[0, 1]| f’((1 –t ) a + t b) | dt = | f’((1 –t0) a + t0b) |.取ξ = (1 –t0) a + t0b,则f’(ξ) = f’((1 –t0) a + t0b) ≠ 0,令λ= (?[0, 1] f’((1 –t ) a + t b) dt)/ f’(ξ).因为| ?[0, 1] f’((1 –t ) a + t b) dt | ≤?[0, 1]| f’((1 –t ) a + t b) | dt = | f’(ξ) |.所以| λ| = | (?[0, 1] f’((1 –t ) a + t b) dt)/ f’(ξ) |= | ?[0, 1] f’((1 –t ) a + t b) dt |/| f’(ξ) | ≤ 1.且f(b) -f(a) = (b -a) ?[0, 1] f’((1 –t ) a + t b) dt = λ(b -a) f’(ξ).12. 如果在| z | < 1内函数f(z)解析,且| f(z) | ≤ 1/(1 - | z |).试证:| f(n)(0) | ≤ (n + 1)!(1 + 1/n)n < e (n + 1)!,n =1, 2, ....【解】设K(r) = { z∈ | | z | = r },0 < r≤ 1.由Cauchy积分公式和高阶导数公式,有| f(n)(0) | = (n!/(2π)) | ?K(r) f(z)/z n + 1dz | ≤ (n!/(2π)) ?K(r) | f(z) |/| z |n + 1ds≤ (n!/(2π)) ?K(r) 1/((1 - | z |)| z |n + 1) ds = (n!/(2π))/((1 -r ) r n + 1) 2πr= n!/((1 -r ) r n).为得到| f(n)(0) |的最好估计,我们希望选取适当的r∈(0, 1),使得n!/((1 -r ) r n)最小,即要使(1 -r ) r n最大.当n≥ 1时,根据均值不等式,(1 -r ) r n = (1 -r ) (r/n)n ·n n≤ (((1 -r ) + (r/n) + ... + (r/n))/(n + 1))n + 1 ·n n = n n/(n + 1)n + 1.当1 -r = r/n,即r = n/(n + 1)时,(1 -r ) r n达到最大值n n/(n + 1)n + 1.因此,我们取r = n/(n + 1),此时有| f(n)(0) | ≤n!/((1 -r ) r n) = n!/(n n/(n + 1)n + 1) = (n + 1)!(1 + 1/n)n < e (n + 1)!.[也可以用数学分析中的办法研究函数g(r) = (1 -r ) r n在(0, 1)内的上确界,也会得到同样的结果.]13. 设在| z | ≤ 1上函数f(z)解析,且| f(z) | ≤ 1.试证:| f’(0) | ≤ 1.【解】设D = { z∈ | | z | ≤ 1 }.由高阶导数公式,| f’(0) | = (1/(2π))| ??D f(z)/z 2dz | ≤ (1/(2π)) ??D1/| z |2 ds = 1.14. 设f(z)为非常数的整函数,又设R, M为任意正数,试证:满足| z | > R且| f(z) | > M的z必存在.【解】若不然,当| z | > R时,| f(z) | ≤M.而f(z)为整函数,故必连续,因此f(z)在| z | ≤R上有界.所以f(z)在上有界.由Liouville定理,f(z)必为常数,这与题目条件相矛盾.15. 已知u + v = (x–y)(x2 + 4xy + y2) – 2(x + y),试确定解析函数f(z) = u + i v.【解】由于u x + v x = 3(x2 + 2xy–y2) – 2,u y + v y = 3(x2– 2xy–y2) – 2,两式相加,再利用Cauchy-Riemann方程,有u x = 3(x2–y2) –2.两式相减,再利用Cauchy-Riemann方程,有v x = 6xy.所以f’(z) = u x + i v x = 3(x2–y2) – 2 + 6xy i = 3(x + y i)2– 1 = 3 z2– 2.因此,f(z) = z3–2z + α,其中α为常数.将z = 0代入,f(z) = z3–2z + α,得α = f(0).把(x, y) = (0, 0)带入u + v = (x–y)(x2 + 4xy + y2) – 2(x + y),得u(0, 0) + v(0, 0) = 0.设u(0, 0) = c∈ ,则v(0, 0) = -c.因此α = f(0) = u(0, 0) + v(0, 0) i = (1 -i )c.所以,f(z) = z3– 2z + (1 -i )c,其中c为任意实数.[书上答案有误.设f(z) = z3– 2z + (a + b i),则f(z) = (x + y i)3– 2(x + y i) + (a + b i) = (x3 - 3xy2 – 2x + a) + (3x2y-y3– 2y + b)i.因此,u + v = (x3 - 3xy2 – 2x + a) + (3x2y-y3– 2y + b)= (x–y)(x2 + 4xy + y2) – 2(x + y) + (a + b),所以,当a + b≠ 0时,不满足题目所给条件.]16. 设(1) 区域D是有界区域,其边界是周线或复周线C;(2) 函数f1(z)及f2(z)在D内解析,在闭域cl(D) = D + C上连续;(3) 沿C,f1(z) = f2(z).试证:在整个闭域cl(D),有f1(z) = f2(z).【解】设f(z) = f1(z) -f2(z).用Cauchy积分公式,?z∈D有f(z) = (1/(2πi))?C f(ζ)/(ζ–z) dζ = 0.所以?z∈cl(D)有f(z) = 0,即f1(z) = f2(z).-?±≠≥·?≤≡⊕??αβχδεφγηι?κλμνοπθρστυ?ωξψζ∞∏∑?⊥∠ √§ψ∈∠?????§ #?→←↑↓?∨∧??????∑ΓΦΛΩ?m∈ +,?m∈ +,★?α1, α2, ..., αn?lim n→∞,+n→∞?ε > 0,∑u n,∑n≥ 1u n,m∈ ,?ε > 0,?δ> 0,【解】?[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中G为C所围内部区域.
证明:在D内任取一点Z,并取充分大的R,作圆CR: ,将C与Z包含在内
则f(z)在以C及 为边界的区域内解析,依柯西积分公式,有
因为 在 上解析,且
所以,当Z在C外部时,有

设Z在C内,则f(z)=0,即
故有:
令y=0,上式变为
从而
(2)
用线积分法,取(x0,y0)为(1,0),有
由 ,得C=0
23.设 ,其中 各不相同,闭路C不通过 ,证明积分
等于位于C内的p(z)的零点的个数.
证明:不妨设闭路C内 的零点的个数为k,其零点分别为
24.试证明下述定理(无界区域的柯西积分公式):设f(z)在闭路C及其外部区域D内解析,且 ,则
习题三
1.计算积分 ,其中C为从原点到点1+i的直线段.
解设直线段的方程为 ,则 .

2.计算积分 ,其中积分路径C为
(1)从点0到点1+i的直线段;
(2)沿抛物线y=x2,从点0到点1+i的弧段.
解(1)设 .
(2)设 .
3.计算积分 ,其中积分路径C为
(1)从点-i到点i的直线段;
(2)沿单位圆周|z|=1的左半圆周,从点-i到点i;
(1) (2) (3)
解(1)
(2)
(3)
17.计算积分 ,其中积分路径 为
(1)中心位于点 ,半径为 的正向圆周
(2)中心位于点 ,半径为 的正向圆周
解:(1) 内包含了奇点

(2) 内包含了奇点 ,

19.验证下列函数为调和函数.
解(1)设 ,

从而有
, 满足拉普拉斯方程,从而是调和函数.
(2) 设 ,

从而有
, 满足拉普拉斯方程,从而是调和函数.证明:函数 , 都是调和函数,但 不是解析函数
证明:
∴ ,从而 是调和函数.
∴ ,从而 是调和函数.
但∵
∴不满足C-R方程,从而 不是解析函数.
22.由下列各已知调和函数,求解析函数
(1) (2)
解(1)因为
所以
(3)沿单位圆周|z|=1的右半圆周,从点-i到点i.
解(1)设 .
(2)设 . 从 到
(3)设 . 从 到
6.计算积分 ,其中 为 .

∵ 在 所围的区域内解析

从而

7.计算积分 ,其中积分路径 为
(1) (2) (3)
(4)
解:(1)在 所围的区域内, 只有一个奇点 .
(2)在 所围的区域内包含三个奇点 .故
(3)在 所围的区域内包含一个奇点 ,故
(4)在 所围的区域内包含两个奇点 ,故
10.利用牛顿-莱布尼兹公式计算下列积分.
(1) (2) (3)
(4) (5) (6)
解(1)
(2)
(3)
(4)
(5)
(6) 11.计算积分 ,其中 为
(1) (2) (3)
解(1)
(2)
(3)
16.求下列积分的值,其中积分路径C均为|z|=1.
相关文档
最新文档