六年级分数裂项法

合集下载

六年级第一讲:分数裂项

六年级第一讲:分数裂项

| 六年级·提高班 教师版 | 第1讲 李斌老师主编暑假 Nice Education分数裂项| 六年级·提高班 教师版 | 第1讲 李斌老师主编暑假 Nice Education例1一、单位分数的拆分:导入课堂 练习:()[]1161+= ()与[ ]中数不同 例1:()()()()()()()()11111111201201101+=+=+=+=+=教学建议:首先要掌握10的因数有哪几个解:分析:分数单位的拆分,主要方法是:从分母N 的约数中任意找出两个m 和n,有:BA n m N n n m N m n m N n m N 11)()()()(11+=+++=++= 本题10的约数有:1,10,2,5 …… 例如:选1和2,有:151301)21(102)21(101)21(10)21(1101+=+⨯++⨯=+⨯+⨯= 本题具体的解有:3011513511416011211101111101+=+=+=+=专题解析典型例题解析| 六年级·提高班 教师版 | 第1讲 李斌老师主编暑假Nice Education练习1(1)()()11121+= 有哪几种情况? (2)杯望希11161++= (“希” “望” “杯”代表不同的整数,一种情况即可)(3)赛竞克匹林奥11111121+++++= (不同数代表不同的数,一种情况即可)例2求:+⨯+⨯+⨯+⨯541431321211 (31)30130291⨯+⨯的值 教学建议:用裂项法求)1(1+n n 型分数求和分析:因为=+-++=+-)1()1(1111n n n n n n n n )1(1+n n (n 为自然数) 所以有裂项公式:111)1(1+-=+n n n n分析:a n =111)1(1+-=+n n n n所以 原式311301301291514141313121211-+-+-+-+-+-=31303111=-=练习2(1)91901541431321⨯++⨯+⨯+⨯ (2)121+261+3121+4201+……+204201| 六年级·提高班 教师版 | 第1讲 李斌老师主编暑假 Nice Education(3)99009899970297017271565542413029201912116521++++++++++ (4)1200520043221=⨯++⨯+⨯xx x(5)?,20052004)1(11216121n n n 求已知=+++++例3求1009711071741411⨯++⨯+⨯+⨯ 的值 教学建议:用裂项法求)(1k n n + 型分数求和分析:)(1k n n +型。

六年级分数裂项

六年级分数裂项

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:知识点拨教学目标分数裂项计算1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

六年级奥数分数裂项

六年级奥数分数裂项

六年级奥数分数裂项Prepared on 21 November 2021本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项 一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

六年级+分数裂项

六年级+分数裂项

六年级+分数裂项 work Information Technology Company.2020YEAR本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

六年级 分数裂项

六年级 分数裂项

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:知识点拨教学目标分数裂项计算(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a+=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

六年级数学专题复习:分数的裂项

六年级数学专题复习:分数的裂项

分数的巧算:裂项知识点分析:特殊的分数加法试题,难以运用课本中固有的运算性质与定律进展巧算。

它们有其特殊的规律与性质,对于这些特殊试题,我们通常要用到以下两种方法:①引用公式法:有特殊的分数加法试题,有其固有的求和公式,计算时可以直接运用这些公式使计算简便。

②裂项法:先将算式中的一些分数按规律作适当拆分,使得拆分后的一些分数可以互相抵消,从而到达巧算的目的。

例题精讲例1:1091...431321211⨯++⨯+⨯+⨯ 分析:观察发现每一个分数的分母是两个相邻的自然数相乘,分子1就是它们的差,可以运用裂项公式:()an n a n n a +-=+11,先裂项,再求和。

解答:举一反三①〔1〕21201...871761651⨯++⨯+⨯+⨯〔2〕53494...1394954514⨯++⨯+⨯+⨯〔3〕47425...171251275725⨯++⨯+⨯+⨯109101110191...413131212111091...431321211=-=⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⨯++⨯+⨯+⨯=原式注重:必须弄懂第一种裂项公式:()an n a n n a +-=+11例2:100981...861641421⨯++⨯+⨯+⨯分析:这里的每一个分数的分母虽然不是两个相邻的数,但这些自然数都相差2.如果想方法将分子都变成2,就可以利用例1中的公式计算了。

解答:方法一:将分子都扩大两倍,再将它们的和缩小两倍,结果不变。

方法二:直接运用另一个裂项公式()⎪⎭⎫ ⎝⎛+-⨯=+d n n d d n n 1111举一反三②〔1〕36331...1291961631⨯++⨯+⨯+⨯〔2〕36331...1291961631⨯++⨯+⨯+⨯〔3〕43371...191311371711⨯++⨯+⨯+⨯200492110049211001981 (8)1616141412121100982 (8)62642422=⨯=⨯⎪⎭⎫ ⎝⎛-++-+-+-=⨯⎪⎭⎫ ⎝⎛⨯++⨯+⨯+⨯=原式2004910049211001981...81616141412121100198121...816121614121412121=⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-⨯++⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯=原式例3:4213012011216121+++++〔第二届新起点杯数学竞赛试题〕分析:观察发现题目中的分母都是可以看作是两个连续自然数的积,且分子都是1,将分母加以变形,再利用裂项公式即可求出和。

六年级分数计算技巧一 裂项

六年级分数计算技巧一 裂项

小学数学六年级数学分数计算技巧1目录1.分数的计算技巧--裂项法1.11n n +1=1n -1n +1分母是两个数乘积,分子为这两个数的差 1.2d n (n +d )=1n -1n +d 分母是两个数的乘积,分子=这两个数的差 1.31n n +d=1d 1n -1n +d 分母是两个数的乘积,分子=1 1.41n n +1 n +2 =121n n +1 -1n +1 n +2分子为1,分母是三个连续自然数乘积 1.51n n +1 n +2 (n +3)=13⋅[1n n +1 n +2 -1n +1 n +2 n +31.6a +b a ×b =a a ×b +b a ×b =1b +1a =1a +1b 例题1.12+16+112+⋅⋅⋅+19900分母是两个数乘积,分子为这两个数的差 =1-12 +12-13 +13-14 +⋅⋅⋅+199-1100=1-12 +12-13 +13-14 +⋅⋅⋅+198-199 +199-1100(通过裂项,除了首位中间的所有项都消去了)=1-1100=99100例题2.31×4+34×7+37×10+⋅⋅⋅+397×100分母是两个数的乘积,分子=这两个数的差 =1-14 +(14-17)+(17-110)+∙∙∙+(194-197)+(197-1100)=1-14 +(14-17)+(17-110)+∙∙∙+(194-197)+(197-1100)=1-1100=99100例题3.215+235+263+⋅⋅⋅+2143有些时候分母不会直接给出两个数相乘,需要你去仔细观察 =23×5+25×7+27×9+⋅⋅⋅+211×13=13-15 +15-17 +17-19 +⋅⋅⋅+19-111 +111-113 =13-15 +15-17 +17-19 +⋅⋅⋅+19-111 +111-113=13-113=13-339=1039例题4.11×2+12×3+23×5+25×7+37×10+310×13这题看上去分子不怎么统一,但每个分数完全符合分子=分母两数的差 过程同学自己动手操作,最后结果为1-113=1213例题5.32×3+33×4+34×5+⋅⋅⋅+349×50提示:把分子3提到前面来就跟我们之前的题目一样的操作了。

(完整版)六年级分数裂项法.doc

(完整版)六年级分数裂项法.doc

第二讲分数 1.2NT1.2 分数计算(裂项法)知要点和基本方法分数算是小学数学的重要内容,也是数学的重要内容之一。

分数算同整数算一既有知要求又有能力要求。

法、定律、性是行算的依据,要使算快速、准确,关是掌握运算技巧。

算式真察,剖析算是的特点及个数之的关系,巧妙、灵活的运用运算定律,合理改运算序,使算便易行,启迪思,培养合分析、推理能力和灵活的运算能力,都有很大的帮助。

公式:( 1)平方差公式:a2 b2 ( a b) ( a b)( 2)等差数列求和公式:a1 a2 a3 an 1 a n1a1 a n n2( 3)分数的拆分公式:① 11) =1- 1n(n n n 1② 1d) =1×(1- 1 )n(n d n n d 裂项法:例1. 算: 1 + 1 + 1 +⋯⋯+99 11 2 2 3 3 4 10011 1例4.算:++⋯⋯+10×1111×1219× 20例2.1 1 1算:10× 11+11×12+⋯⋯+59× 60例5.1 1 1 1算2×3+3×4 +⋯⋯+6× 7+7× 8例3.算:21+16+121+201+301+421六年级第一学期NT例6. 算: 1+1+1+1+126 12 20例 10. 算:22 2 2 23 15 35 63 99例7. 算:1 1 1 1 1 1 16+12+20+30+42+56+72例 11. 算:11 1 1 1 18 24 48 80 120 168例 8.算:1+1+1+1+1+1 315 3563 99 143例 9. 算:14 1711011311 4 7 10 13 16例 12. 算:1+1+2+1+1+2+3+2+1+⋯⋯+ 1 +2+⋯⋯+100 +99+⋯⋯+ 1 1 2 2 2 3 3 3 3 3 100 100 100 100 100例 13. 算: 1+ 1 +1 1 +113+⋯⋯+1 2 311 2 2 3 2 4 2005例 14.算: 2×( 1- 1 2)×( 1- 1 2)×( 1-12)×⋯⋯×(1-12)2005 2004 2003 2第二讲分数 1.2NT六年级 第一学期NT综合计算例 1.计算 : 2005120032003 2004例 2. 计算 : ( 1 5 × 1 1 × 6 )÷( 3 × 6 × 5)7 9 11 11 7 9例 3.计算 : 98+ 99 8 + 999 8+⋯⋯+ 9999899999个 9例 4.计算 : ( 1+1)×( 1+1)×( 1+1)×( 1+1)×( 1-1)×( 1- 1 )×( 1-1)×( 1- 1)2468357 9例 5. 计算 : 2004 1 - 1 1 +2002 1 -3 1 +2000 1 -5 1 +⋯⋯+ 4 1 -2001 1 +2 1 - 200312 3 2 3 2 3 2 3 2 3例 6.计算 : ( 1+ 1 +1 + 1 )÷( 1 + 1 + 1 + 1 )979797979797 97979797868686868686 86868686第二讲 分数 1.2NT例 7.计算 : 11 1 11 111 111 11 1=.2 4 610359例 8.计算 :567345 566 =.567 345 222例 9.计算 : 7116 61 1 5 511 4 41 1 3 31 12 = .6 7 5 6 4 5 3 4 2 3例 10. 计算 :11 1 1 1 1 1 1 = .3 6 10 15 21 28 36 451 29 1 29 1 291 29 1 29例 11. 计算 :2 3 30 31 = .1 31 1 31 1 311 31 1 312 328 29计算 :12 3 4 5 6 21 2 3 4 5 6 1例 12.2 3 4 5 6 72 3 4 5 6 7211 2 3 4 5 6 2 3 4 5 62 345 673 456 =7六年级第一学期NT能力训练:1、分数化成最分数:12 =18 = 4 =13 =8 = 2 =18 27 20 65 32 82、小数化成最分数:0.75= 4.8= 1.25=0.36= 3.2= 5.4=3、算:1) 51 2 ÷1 2 + 71 3÷1 3 + 914÷1 4 2005 2005 2005 20053 34 45 51 2 + 2 3 + 3 4 +⋯⋯+ 2004 20054)2)1 1 1 156 +72 +90+1102222 25)21 + 77 + 165 +⋯⋯+ 1677 + 20213) 1 1 1 1 18+24+48+80+120 1 5 11 19 1096) 2 + 6 + 12 + 20 +⋯⋯+ 1101111111 17)1+ 26+ 312+ 420+ 530+ 642+ 756+ 872+ 990第二讲分数 1.2NT137 1531 631272555118) 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 5121 1 1 1 1 19) 3 45 + 4 56 + 5 67 + 6 78 + 7 89 + 8 9 10。

六年级分数简算——分数裂项

六年级分数简算——分数裂项

分数裂项分数裂项是分数加减法计算的逆向过程分数裂差a与b互质1a-1b=1×b a×b-1×a b×a=b-a a×b反过来看,如果一个分数分母可以写成两个数的积,分子是这两个数的差,那么这个分数就可以写成两个分数单位相减的形式。

b-a a×b=b a×b-a b×a=1a-1b分数裂和a与b互质1a+1b=1×b a×b+1×a b×a=b+a a×b反过来看,如果一个分数分母可以写成两个数的积,分子是这两个数的和,那么这个分数就可以写成两个分数单位相加的形式。

b+a a×b=b a×b+a b×a=1a+1b例1:11×2+12×3+13×4+14×5+⋯⋯+19×10=11-12+12-13+13-14+14-15+⋯⋯+19-110=1-110=91021×3+23×5+25×7+27×9+29×11=11-13+13-15+15-17+17-19+19-111=1-111=1011例3:11×3+13×5+15×7+17×9+19×11=21×3×12+23×5×12+25×7×12+27×9×12+29×11×12=12×21×3+23×5+25×7+27×9+29×11=12×11-13+13-15+15-17+17-19+19-111=12×1-111=12×1011=511例4:31×2-52×3+73×4-94×5+115×6=11+12-12+13+13+14-14+15+15+16=1+12-12-13+13+14-14-15+15+16=1+16=116+16+112+120+130+142+156+172+190+1110(1)12(2)11×2+12×3+13×4+⋯⋯+149×50(3)1-14+120+130+142+156(4)20021×3+20023×5+20025×7+20027×9+20029×11(5)12×5+15×8+18×11+⋯⋯+120×23(6)113-712+920-1130+1342-1556(7)712-920+1130-1342练习答案:(1)12+16+112+120+130+142+156+172+190+1110=11×2+12×3+13×4+14×5+15×6+16×7+17×8+18×9+19×10+110×11=1-12+12-13+13-14+⋯⋯+19-110+110-111=1-111=1011(2)11×2+12×3+13×4+⋯⋯+149×50=11-12+12-13+13-14+⋯⋯+149-150=1-150=4950(3)1-14+120+130+142+156=1-14+14×5+15×6+16×7+17×8=1-14+14-15+15-16+16-17+17-18=1-18=78(4)20021×3+20023×5+20025×7+20027×9+20029×11观察发现,每一个分数的分子都是2002,分母都是差值位2的两个数的乘积。

(完整版)六年级分数裂项法

(完整版)六年级分数裂项法

1.2分数计算(裂项法)知识要点和基本方法分数计算是小学数学的重要内容,也是数学竞赛的重要内容之一。

分数计算同整数计算一样既有知识要求又有能力要求。

法则、定律、性质是进行计算的依据,要使计算快速、准确,关键是掌握运算技巧。

对算式认真观察,剖析算是的特点及个数之间的关系,巧妙、灵活的运用运算定律,合理改变运算顺序,使计算简便易行,这对启迪思维,培养综合分析、推理能力和灵活的运算能力,都有很大的帮助。

公式:(1)平方差公式:)()(22b a b a b a -⨯+=-(2)等差数列求和公式:()n a a a a a a a n n n +=++⋅⋅⋅⋅⋅⋅+++-1132121(3)分数的拆分公式:①=-)1(1+n n n 111+n ②=×(-))(1d n n +d1n 1d n +1裂项法:例1.计算:+++……+211⨯321⨯431⨯100991⨯例2.计算:++……+110×11111×12159×60例3.计算:+++++ 1216112120130142例4.计算:++……+110×11111×12119×20例5.计算++……++12×313×416×717×8例6.计算:1++++1216112120例7.计算:++++++16112120130142156172例8.计算:+++++311513516319911431例9.计算:11111144771010131316++++⨯⨯⨯⨯⨯例10.计算:22222315356399++++例11.计算:1111118244880120168+++++例12.计算:+++++++++……+++……+++……+11212221313233323110011002100100100991001例13.计算:1++++……+211+3211++43211+++20053211+⋅⋅⋅⋅⋅⋅⋅+++例14.计算:2×(1-)×(1-)×(1-)×……×(1-)220051220041220031221综合计算例1.计算:20042003200312005例2.计算:(××)÷(××)7519111161137695例3.计算:+++……+98998999899999989999个例4.计算:(1+)×(1+)×(1+)×(1+)×(1-)×(1-)×(1-)21416181315171×(1-)91例5.计算:2004-1+2002-3+2000-5+……+4-2001+2-200321312131213121312131例6.计算:(+++)÷(+++)971979719797971979797971861868618686861868686861例7.计算:= .⎪⎭⎫⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211例8.计算:= .222345567566345567+⨯⨯+例9.计算:= .322131433141544151655161766171⨯+⨯+⨯+⨯+⨯例10.计算:= .4513612812111511016131+++++++例11.计算:= .()()⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++293112831133112311311312913029132912291291例12.计算:217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++ = ⎪⎭⎫⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-76655443327665544332211能力训练:1、分数化成最简分数:= = = = = =181227182046513328822、小数化成最简分数:0.75=4.8=1.25=0.36=3.2=5.4=3、计算:1)51÷1+71÷1+91÷13232434354542)+++15617219011103)++++1812414818011204)212005⨯+322005⨯+432005⨯+……+200520042005⨯5)212+772+1652+……+16772+202126)21+65+1211+2019+……+1101097)1+2+3+4+5+6+7+8+9161121201301421561721908)21+43+87+1615+3231+6463+128127+256255+5125119)5431⨯⨯+6541⨯⨯+7651⨯⨯+8761⨯⨯+9871⨯⨯+10981⨯⨯。

(完整版)六年级奥数-分数裂项(最新整理)

(完整版)六年级奥数-分数裂项(最新整理)

2
2
2
2
2
2
2
2
= 16 × ( +
+
+
+
+
+
+)
1×2 2×3 3×4 4×5 5×6 6×7 7×8 8×9
1 11
11
= 16 × 2 × (1 ‒ 2 + 2 ‒ 3 + … + 8 ‒ 9)
【巩固】 1 1 1 1 1 1 1 1 _______ 6 12 20 30 42 56 72 90
【巩固】 1 1 1 1 1 20 10 26 38 27 2 3 30 31 41 51 119 120 123 124
10 17 - 7 26 30 - 4
=
=
119 17 × 7 120 30 × 4
38 41 - 3 27 31 - 4
=
=
123 41 × 3 124 31 × 4
教师版
page 7 of 8
【巩固】计算: 1 3 2 5 7 9 10 11 19 3 4 5 7 8 20 21 24 35
1 3 2 5 7 4+5 3+7 3+8 5+7+7 = 3 + 4 + 5 + 7 + 8 + 4×5 + 3×7 + 3×8 + 5×7
【巩固】 1 2 3 7 9 11 17 25 3 5 7 12 20 28 30 42
23
1
25
【巩固】 251 251 251 251 251
4 8 8 12 12 16
2000 2004 2004 2008

六年级+分数裂项

六年级+分数裂项

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:裂差型裂项的三大关键特征:知识点拨教学目标分数裂项计算(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

六年级分数裂项法

六年级分数裂项法

六年级分数裂项法
同学,今天咱们来唠唠六年级的分数裂项法,这可是个超有趣的数学小技巧呢!
比如说啊,有这么个分数相加的式子,像1/1×2 + 1/2×3 + 1/3×4 + ……这种。

你要是直接通分去算,那可就太麻烦啦,就像你要穿过一片满是荆棘的树林,很容易就被困住。

这时候分数裂项法就像一把神奇的小剪刀,“咔嚓”一下就把这些分数变得简单了。

你看啊,1/1×2就可以写成1 - 1/2,1/2×3呢就等于1/2 - 1/3,1/3×4就等于1/3 - 1/4,以此类推。

为啥能这么写呢?你想啊,1/1×2就是1除以2,那不就是把1分成两份嘛,一份是1,另一份就是 - 1/2,加起来就是1/1×2啦。

那把这些变形后的式子一加,就特别神奇。

前面的1和后面的 - 1/2, - 1/2和后面的1/2就都抵消了,最后就只剩下1减去最后一个分数的小尾巴,比如在1/1×2 + 1/2×3 + 1/3×4这个式子中,最后就剩下1 - 1/4,结果就是3/4,是不是超级简单?
再比如说那种分母是三个数相乘的,像1/1×2×3这种。

它可以写成1/2×(1/1×2 - 1/2×3)。

你要是不太理解为啥这么写,你可以自己动手算一算,把右边这个式子通分一下,就会发现真的等于1/1×2×3。

分数裂项法就像是数学里的魔法,把那些看起来很复杂的分数加法,变得像搭积木一样简单又有趣。

只要你掌握了这个小魔法,再遇到这种分数相加的题,就可以轻松搞定啦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 分数计算(裂项法)知识要点和基本方法
分数计算是小学数学的重要内容,也是数学竞赛的重要内容之一。

分数计算同整数计算一样既有知识要求又有能力要求。

法则、定律、性质是进行计算的依据,要使计算快速、准确,关键是掌握运算技巧。

对算式认真观察,剖析算是的特点及个数之间的关系,巧妙、灵活的运用运算定律,合理改变运算顺序,使计算简便易行,这对启迪思维,培养综合分析、推理能力和灵活的运算能力,都有很大的帮助。

公式:
( 1)平方差公式:a2b2( a b) ( a b)
( 2)等差数列求和公式:a1 a2a3a
n 1a n
1
a1 a n n
2
( 3)分数的拆分公式:①1
1)=
1
-1
n(n n n 1
②1
d)=
1
×(
1
-1)
n(n d n n d 裂项法:
例1.计算: 1 +1+1+⋯⋯+1例3.计算:1
11111
12233499 1002+6+
12

20

30

42
例2.
111
例4.
111计算:
10× 11

11×12
+⋯⋯+
59× 60
计算:
10×11

11×12
+⋯⋯+
19× 20
例5.计算1+1
+⋯⋯+1+
1
例 9.计算:
11
111
2× 3 3×46×7 7× 814 47 710 1013 1316
例6.计算: 1+1
111例 10.计算:
2
2222 2+6

12

20315356399
例7.计算:1111111例 11.计算:
1
11111 6

12

20

30

42

56

728244880120168
例 8.计算:1
+ 1 + 1 + 1 + 1 + 1 315356399143
例 12.计算:1

1

2

1

1

2

3

2

1
+⋯⋯+1+
2
+⋯⋯+100 +
99
+⋯⋯+1 122233333100100100100100
例 13.计算: 1+ 1 +
11+
1
1
3
+⋯⋯+
123
1
1223242005
例 14.计算: 2×( 1-12)×( 1-12)×( 1-1
2)×⋯⋯×(1-
1
2)
2005200420032
综合计算
例 1.
计算 : 2005
1
2003
2003 2004
例2. 计算:(15 ×1
1× 6
÷ 3 × 6× 5

7
9
11
11
7
9
例 3.
计算: 9
8
+99
8
+9998
+⋯⋯+ 999
9
8
9
9
9
9
9个 9
例 4.
计算:(1+
1
)×( 1+
1
)×( 1+
1
)×( 1+
1
)×( 1-
1
)×( 1- 1 )×( 1-
1
)×( 1-
1

2 4 6 8
3 5
7 9
例5. 计算 : 2004 1 -1 1 +2002 1 -3 1 +2000 1 -5 1 +⋯⋯+ 4 1 -2001 1 +2 1 -2003
1
2 3 2 3 2 3 2 3 2 3
例 6.
计算:( 1
+ 1 +
1 + 1 ÷ 1 + 1 + 1 + 1

97
9797
979797 97979797
86
8686
868686 86868686
例 7.
计算: 1
1 1 1
1 1
1
1 1
1
1 1
1 1
=.
2
4
6
10
3
5
9
例 8.
计算 :
567
345 566=.
567
345 222
例 9.
计算 : 71
1
6 61 1 5 511 4 41 1 3 31 1
2 = .
6
7 5 6 4 5 3 4 2 3
例 10.
计算:
1
1 1 1 1 1 1 1 = .
3
6 10 15 21 28 36 45
1 29 1 29
1 29
1 29 1 29
例 11.
计算 :
2
3
30 31 = .
1 31 1 31
1 31
1 31 1 31
2 3
28 29
计算:
1
2 3 4 5 6 2
1 2 3 4 5 6 1
例 12.
2
3
4 5
6 7
2
3
4
5
6 7
2
1 1 2
3
4 5
6
2
3
4
5 6
=
2 3 4 5 6 7 3 4 5 6
7
能力训练:
1、分数化成最简分数:
12 =18 = 4 =13 =8 = 2 =182********
2、小数化成最简分数:
0.75= 4.8= 1.25=0.36= 3.2= 5.4=3、计算:
1) 512÷12+71 3
÷13+91
4
÷142005 200520052005
334455
12+23+ 3 4+⋯⋯+ 2004 2005
4)
2)
1111
56+72+90+110
22222
5)21 + 77 + 165 +⋯⋯+ 1677 + 2021
3)11111
8

24

48

80

120 1 51119109
6) 2 + 6+ 12+ 20 +⋯⋯+ 110
11111111
7)1+ 26+ 312+ 420+ 530+ 642+ 756+ 872+ 990
137 1531 63127255511
8)2+ 4+ 8+16+ 32+ 64+128+ 256+ 512
111111
9) 34
5+4 56+5 67+6 7 8+789+8 9 10。

相关文档
最新文档