河南省洛阳市2018-2019学年高一数学上学期期末学业水平测试试题

合集下载

2018~2019学年河南省洛阳市洛龙一实小四年级(上)期末数学试卷

2018~2019学年河南省洛阳市洛龙一实小四年级(上)期末数学试卷

2017-2018学年河南省洛阳市洛龙一实小四年级(上)期末数学试卷一.对号入座认真填.(第11题每题1分,其余每空1分,共30分)1.(1分)截止2002年,中国人口总数已经达到十三亿一千四百万人,这个总人数写作,把它改写成用亿作单位的数是.2.(2分)一个数的亿位上是3,千万位和万位上都是9,十万位和千位上都是5,其他各个数位上都是0,这个数写作,省略万位后面的尾数约是.3.(2分)两个因数的积是80,若其中一个因数扩大4倍,另一个因数不变,则积等于;在一个除法算式里,若除数缩小2倍,被除数扩大4倍,则商.4.(2分)两个度数不相等的角组成了一个平角,这两个角中一定有一个是,另一个角是.5.(2分)长方形的相邻两条边互相,对边.6.(3分)计算器上+、﹣、×、÷是键,0、1、2、9是键,C.CE键是键.7.(4分)18个25是,700里面有个25;504是56的倍,是27的12倍.8.(2分)在如图中,如果∠1=127°,那么∠2=,∠3=.9.(1分)在一组平行线间可以画条长度相等的垂线段.10.(2分)钟面9时整,时针和分针组成的角是角;时整,时针和分针组成的角是平角.11.(5分)用一副三角板拼出下面度数的角.180°是由和拼成的.135°是由和拼成的.75°是由和拼成的.105°是由和拼成的.120°是由和拼成的.12.(3分)6930÷21把除数看作去试商比较简便,商是位数,商是.二.火眼金睛辨正误.(对的在横线里打“√”号,错的打“×”号)(5分)13.(1分)用“亿”作单位表示一个数,就只在这个数的末尾添上“亿”字..14.(1分)不相交的两条直线叫平行线..(判断对错)15.(1分)过一点只能画出一条直线..(判断对错)16.(1分)250÷40=6…1..17.(1分)在乘法算式中,如果因数的中间有0,那么积的中间一定有0..三.择优录取用心选.(把正确答案的序号填在括号内)18.(1分)在32°、110°、89°、90°、6°、91°、179°、180°和150°这些角中,钝角有()个.A.1 B.2 C.3 D.419.(1分)要想使553÷5□的商是一位数,□里最小可以填()A.5 B.6 C.9 D.220.(1分)在3和5的中间添上()个0,这个数才能成为三亿零五.A.5 B.6 C.7 D.821.(1分)在同一平面内,两根小棒都和第3根小棒垂直,那么这两根小棒的位置关系是()A.相交B.互相垂直C.互相平行D.不能确定四.神机妙算快又对.(17分)22.(6分)直接写得数.120×50=4×19=101×7=510﹣80=300÷60=320÷40=630÷30=105万﹣38万=96÷8=300×40=75×4=67万+26万=23.(3分)估算.589×28≈345÷65≈447×19≈604÷22≈218×78≈298÷46≈24.(8分)用竖式计算.107×25754÷5836×125456÷57.五.动手实践显身手.(13分)25.(2分)画一条射线,然后在这条射线上截取3厘米长的线段.26.(3分)分别画一个25°和150°的角.27.(3分)过直线外一点A画出已知直线的垂线和平行线.28.(3分)画出下面图形的高.29.(2分)利用下面的这个角画一个直角梯形.六.解决问题我能行.(30分)30.(5分)2008年5月12日,我国四川汶川县发生了7.8级地震,造成许多学校房屋倒塌,为了恢复学校正常上课,需要紧急调用帐篷.一顶帐篷可以容纳32名学生上课,一所学校有926名学生,估计需要多少顶帐篷?31.(5分)2009年10月1日,为庆祝新中国60华诞,天安门广场举行了盛大的阅兵仪式,共有56个方队通过天安门广场接受祖国和人民的检阅.其中徒步方队12个,每个方队有14行,每行25人.徒步方队一共有多少人?32.(5分)师傅每小时加工50个零件,徒弟8小时加工288个零件.徒弟平均每时比师傅少加工多少个零件?33.(5分)一份稿件有2页,每页有400字,方方每分钟可以打字85个.打完这份稿件,至少需要多少分钟?34.(5分)学校举行跳绳比赛,涛涛和亮亮都参加了5分钟耐力跳绳比赛.涛涛一共跳635下,亮亮平均每分钟比涛涛多跳8下.亮亮一共跳了多少下?35.(5分)王大爷有3个种植草莓的大棚,平均每个大棚收草莓264千克.①如果每箱装12千克,一个大棚收获的草莓可装多少箱?3个大棚收获的草莓共可装多少箱?②每千克草莓卖7元钱,王大爷今年的草莓共收入多少元?2017-2018学年河南省洛阳市洛龙一实小四年级(上)期末数学试卷参考答案与试题解析一.对号入座认真填.(第11题每题1分,其余每空1分,共30分)1.(1分)截止2002年,中国人口总数已经达到十三亿一千四百万人,这个总人数写作1314000000,把它改写成用亿作单位的数是13.14亿.【解答】解:十三亿一千四百万写作:1314000000;1314000000=13.14亿;故答案为:1314000000,13.14亿.2.(2分)一个数的亿位上是3,千万位和万位上都是9,十万位和千位上都是5,其他各个数位上都是0,这个数写作390595000,省略万位后面的尾数约是39060万.【解答】解:这个数写作:390595000;390595000≈39060万;故答案为:390595000,39060万.3.(2分)两个因数的积是80,若其中一个因数扩大4倍,另一个因数不变,则积等于320;在一个除法算式里,若除数缩小2倍,被除数扩大4倍,则商扩大8倍.【解答】解:(1)积也应扩大4倍,则积为80×4=320.(2)例如80÷10=8,被除数扩大4倍,由80变成320,除数缩小2倍,由10变成5,则商变为:320÷5=64,商由8变成64,是商扩大了8倍;据此可知:被除数扩大4倍,除数缩小2倍,那么商扩大4×2=8倍.故答案为:320,扩大8倍.4.(2分)两个度数不相等的角组成了一个平角,这两个角中一定有一个是锐角,另一个角是钝角.【解答】解:平角是180度,其中一个角是大于0°,小于90°的角,是锐角;用“180﹣锐角”所得的角的度数大于90度,所以另一个角是钝角;故选:锐角,钝角.5.(2分)长方形的相邻两条边互相垂直,对边互相平行.【解答】解:长方形的相邻两条边互相垂直,对边互相平行;故答案为:垂直,互相平行.6.(3分)计算器上+、﹣、×、÷是运算符号键,0、1、2、9是数字键,C.CE键是清除键.【解答】解:计算器上+、﹣、×、÷是运算符号键;0、1、2、9是数字键;C.CE键是清除键.故答案为:运算符号,数字,清除.7.(4分)18个25是450,700里面有28个25;504是56的9倍,324是27的12倍.【解答】解:18×25=450,700÷25=28,504÷56=9,27×12=324.故答案为:450,28,9,324.8.(2分)在如图中,如果∠1=127°,那么∠2=53°,∠3=127°.【解答】解:因为∠1=127°,那么∠2=180°﹣127°=53°,∠3=180°﹣53°=127°.故答案为:53°,127°.9.(1分)在一组平行线间可以画无数条长度相等的垂线段.【解答】解:由分析知:在一组平行线间能画无数条垂线,并且并且这些垂线段的长度相等;故答案为:无数.10.(2分)钟面9时整,时针和分针组成的角是直角;6时整,时针和分针组成的角是平角.【解答】解:(1)360°÷60×15=6°×15=90°;(2)当6时整时两条针在同一条直线上;故答案是:直,6.11.(5分)用一副三角板拼出下面度数的角.180°是由90°和90°拼成的.135°是由90°和45°拼成的.75°是由45°和30°拼成的.105°是由60°和45°拼成的.120°是由90°和30°拼成的.【解答】解:因为90°+90°=180°,所以180°是由90°和90°拼成的;因为90°+45°=135°,135°是由90°和45°拼成的;因为45°+30°=75°,75°是由45°和30°拼成的;因为60°+45°=105°,105°是由60°和45°拼成的;因为90°+30°=120°,120°是由90°和30°拼成的.故答案为:90°,90°;90°,45°;45°,30°;60°,45°;90°,30°.12.(3分)6930÷21把除数看作20去试商比较简便,商是三位数,商是330.【解答】解:6930÷21把除数看作20去试商比较简便.33021;商是330,是三位数.故答案为:20,三,330.二.火眼金睛辨正误.(对的在横线里打“√”号,错的打“×”号)(5分)13.(1分)用“亿”作单位表示一个数,就只在这个数的末尾添上“亿”字.×.【解答】解:用“亿”作单位表示一个数,就是在亿位数的右下角点上小数点,然后把小数末尾的0去掉,在数的后面带上“亿”字,故用“亿”作单位表示一个数,就只在这个数的末尾添上“亿”字是错误的.故答案为:×.14.(1分)不相交的两条直线叫平行线.×.(判断对错)【解答】解:在同一平面内不相交的两条直线叫做平行线,所以本题成立的前提是:在同一平面内.故答案为:×.15.(1分)过一点只能画出一条直线.错误.(判断对错)【解答】解:如图所示:,过一点能画出无数条直线.所以过一点只能画出一条直线说法错误.故答案为:错误.16.(1分)250÷40=6…1.×.【解答】解:250÷40=6…10;故答案为:×.17.(1分)在乘法算式中,如果因数的中间有0,那么积的中间一定有0.×.【解答】解:根据题意,假设中间有0的因数是204,另一个因数是2或是3;204×2=408;204×3=612;408的中间有0,612的中间没有0;所以,一个因数的中间有0,积的中间可能有0,也可能没有0.故答案为:×.三.择优录取用心选.(把正确答案的序号填在括号内)18.(1分)在32°、110°、89°、90°、6°、91°、179°、180°和150°这些角中,钝角有()个.A.1 B.2 C.3 D.4【解答】解:根据钝角的含义可知:110°、91°、179°、150°是钝角,共4个;故选:D.19.(1分)要想使553÷5□的商是一位数,□里最小可以填()A.5 B.6 C.9 D.2【解答】解:要使553÷5□的商是一位数,那么:55<5□;□里面可以填6、7、8、9,最小是6.故选:B.20.(1分)在3和5的中间添上()个0,这个数才能成为三亿零五.A.5 B.6 C.7 D.8【解答】解:在3和5之间添上7个“0”这个数才能成为是三亿零五.故选:C.21.(1分)在同一平面内,两根小棒都和第3根小棒垂直,那么这两根小棒的位置关系是()A.相交B.互相垂直C.互相平行D.不能确定【解答】解:因为在同一平面内,l1⊥l2,l2⊥l3,所以l1∥l3,即l1与l3的位置关系是平行.故选:C.四.神机妙算快又对.(17分)22.(6分)直接写得数.120×50=4×19=101×7=510﹣80=300÷60=320÷40=630÷30=105万﹣38万=96÷8=300×40=75×4=67万+26万=【解答】解:120×50=6000,4×19=76,101×7=707,510﹣80=430,300÷60=5,320÷40=8,630÷30=21,105万﹣38万=67万,96÷8=12,300×40=12000,75×4=300,67万+26万=93万.23.(3分)估算.589×28≈345÷65≈447×19≈604÷22≈218×78≈298÷46≈【解答】解:589×28≈18000345÷65≈5447×19≈9000604÷22≈30218×78≈16000298÷46≈624.(8分)用竖式计算.107×25754÷5836×125456÷57.【解答】解:(1)107×25=2675;107;(2)754÷58=13;1358;(3)36×125=4500;125;(4)456÷57=8;857.五.动手实践显身手.(13分)25.(2分)画一条射线,然后在这条射线上截取3厘米长的线段.【解答】解:所作图形如下所示:.26.(3分)分别画一个25°和150°的角.【解答】解:根据题干分析画图如下:27.(3分)过直线外一点A画出已知直线的垂线和平行线.【解答】解:根据题干分析画图如下:28.(3分)画出下面图形的高.【解答】解:画图如下:.29.(2分)利用下面的这个角画一个直角梯形.【解答】解:如图所示,过点A作BC的平行线AD,再过点C作BC的垂线CD,AD与CD相交于点D,四边形ABCD就是所要求画的直角梯形.六.解决问题我能行.(30分)30.(5分)2008年5月12日,我国四川汶川县发生了7.8级地震,造成许多学校房屋倒塌,为了恢复学校正常上课,需要紧急调用帐篷.一顶帐篷可以容纳32名学生上课,一所学校有926名学生,估计需要多少顶帐篷?【解答】解:926÷32=28(顶)…30(人),至少:28+1=29(顶);答:估计需要29顶帐篷.31.(5分)2009年10月1日,为庆祝新中国60华诞,天安门广场举行了盛大的阅兵仪式,共有56个方队通过天安门广场接受祖国和人民的检阅.其中徒步方队12个,每个方队有14行,每行25人.徒步方队一共有多少人?【解答】解:25×14×12=4200(人),答:徒步方队一共有4200人.32.(5分)师傅每小时加工50个零件,徒弟8小时加工288个零件.徒弟平均每时比师傅少加工多少个零件?【解答】解:50﹣288÷8,=50﹣36,=14(个);答:徒弟平均每时比师傅少加工14个零件.33.(5分)一份稿件有2页,每页有400字,方方每分钟可以打字85个.打完这份稿件,至少需要多少分钟?【解答】解:400×2÷85,=800÷85,=(分钟),答:打完这份稿件,至少需要分钟.34.(5分)学校举行跳绳比赛,涛涛和亮亮都参加了5分钟耐力跳绳比赛.涛涛一共跳635下,亮亮平均每分钟比涛涛多跳8下.亮亮一共跳了多少下?【解答】解:(635÷5+8)×5,=(127+8)×5,=135×5,=675(下);答:亮亮一共跳了675下.35.(5分)王大爷有3个种植草莓的大棚,平均每个大棚收草莓264千克.①如果每箱装12千克,一个大棚收获的草莓可装多少箱?3个大棚收获的草莓共可装多少箱?②每千克草莓卖7元钱,王大爷今年的草莓共收入多少元?【解答】解:(1)264÷12=22(箱),22×3=66(箱);答:一个大棚收获的草莓可装22箱,3个大棚收获的草莓共可装66箱.(2)264×3×=5544(元);答:王大爷今年的草莓共收入5544元.。

2018-2019学年河南省天一大联考高一期末数学试卷

2018-2019学年河南省天一大联考高一期末数学试卷

2018-2019学年河南省天一大联考高一(下)期末数学试卷(总20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2018-2019学年河南省天一大联考高一(下)期末数学试卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)某班现有60名学生,随机编号为0,1,2,…,59.依编号顺序平均分成10组,组号依次为1,2,3,…,10.现用系统抽样的方法抽取一个容量为10的样本,若在第1组中随机抽取的号码为5,则在第7组中随机抽取的号码为()A.41B.42C.43D.442.(5分)在如图所示的茎叶图中,若甲组数据的众数为11,乙组数据的中位数为9,则x+y=()A.6B.5C.4D.33.(5分)设向量=(1,1),=(2,m),若∥(+2),则实数m的值为()A.1B.2C.3D.44.(5分)下列函数中是偶函数且最小正周期为的是()A.y=cos24x﹣sin24x B.y=sin4xC.y=sin2x+cos2x D.y=cos2x5.(5分)从装有4个红球和3个白球的口袋中任取2个球,那么互相对立的两个事件是()A.至少有1个白球;都是白球B.至少有1个白球;至少有1个红球C.恰有1个白球;恰有2个白球D.至少有1个白球;都是红球6.(5分)已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差s2为()A.B.3C.D.47.(5分)已知cosθ=,且θ∈(﹣,0),则tan(+θ)=()A.﹣7B.7C.﹣D.8.(5分)已知,是不共线的非零向量,=+2,=3﹣,=2﹣3,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.菱形9.(5分)执行如图所示的程序框图,则输出的s的值为()A.B.C.D.10.(5分)如图所示,某汽车品牌的标志可看作由两个同心圆构成,其中大、小圆的半径之比为3:2,小圆内部被两条互相垂直的直径分割成四块.在整个图形中任选一点,则该点选自白色部分的概率为()A.B.C.D.11.(5分)已知tanα=2,则=()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻的两个对称中心之间的距离为,且有一条对称轴为直线x=,则下列判断正确的是()A.函数f(x)的最小正周期为4πB.函数f(x)的图象关于直线x=﹣对称C.函数f(x)在区间[,]上单调递增D.函数f(x)的图象关于点(,0)对称二、填空题:本题共4小题,每小题5分,共20分13.(5分)已知变量x,y线性相关,其一组数据如表所示.若根据这组数据求得y关于x的线性回归方程为=+,则=x1245y14.(5分)已知向量=(cos5°,sin5°),=(cos65°,sin65°),则|2+|=15.(5分)执行如图所示的程序框图,则输出的S的值是16.(5分)函数y=sin x cos x+cos2x在区间(0,)上的值域为三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤.17.(10分)已知扇形的面积为,弧长为,设其圆心角为α(Ⅰ)求α的弧度;(Ⅱ)求的值.18.(12分)已知,,是同一平面内的三个向量,其中=(1,2).(Ⅰ)若=(2,λ),且∥,求||;(Ⅱ)若=(1,1),且m﹣与2﹣垂直,求实数m的值19.(12分)为了了解居民用电情况,某地供电局抽查了该市若干户居民月平均用电量(单位:kW•h),并将样本数据分组为[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],其频率分布直方图如图所示.(Ⅰ)若样本中月平均用电量在[240,260)的居民有30户,求样本容量;(Ⅱ)求月平均用电量的中位数;(Ⅲ)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组居民中,用分层抽样法抽取22户居民,则月平均用电量在[260,280)的居民中应抽取多少户?20.(12分)已知函数f(x)=(Ⅰ)求f(x)的定义域;(Ⅱ)设α是第三象限角,且tanα=,求f(α)的值.21.(12分)某电子科技公司由于产品采用最新技术,销售额不断增长,最近5个季度的销售额数据统计如表(其中2018Q1表示2018年第一季度,以此类推):季度2018Q12018Q22018Q32018Q42019Q1季度编号x12345销售额y(百万元)4656678696(Ⅰ)公司市场部从中任选2个季度的数据进行对比分析,求这2个季度的销售额都超过6千万元的概率;(Ⅱ)求y关于x的线性回归方程,并预测该公司2019Q3的销售额.附:线性回归方程:=x+其中==,=﹣参考数据:x i y i=118322.(12分)如图所示,在直角坐标系xOy中,点A(2,0),B(﹣2,0),点P,Q在单位圆上,以x轴正半轴为始边,以射线OP为终边的角为θ,以射线OQ为终边的角为φ,满足φ﹣θ=.(1)若θ=,求•(2)当点P在单位圆上运动时,求函数f(θ)=•的解析式,并求f(θ)的最大值.2018-2019学年河南省天一大联考高一(下)期末数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)某班现有60名学生,随机编号为0,1,2,…,59.依编号顺序平均分成10组,组号依次为1,2,3,…,10.现用系统抽样的方法抽取一个容量为10的样本,若在第1组中随机抽取的号码为5,则在第7组中随机抽取的号码为()A.41B.42C.43D.44【分析】计算分组间隔,利用第1组中抽取的号码求出第7组中抽取的号码数.【解答】解:由题意知分组间隔为=6,又第1组中抽取的号码为5,所以第7组中抽取的号码为6×6+5=41.故选:A.【点评】本题考查了系统抽样方法应用问题,是基础题.2.(5分)在如图所示的茎叶图中,若甲组数据的众数为11,乙组数据的中位数为9,则x+y=()A.6B.5C.4D.3【分析】甲组数据的众数为11,得到x=1,乙组数据中间的两个数分别为6和10+x,由中位数是9,解得y=2,由此能求出x+y.【解答】解:由甲组数据的众数为11,得到x=1,乙组数据中间的两个数分别为6和10+x,∴中位数是:=9,解得y=2,∴x+y=3.故选:D.【点评】本题考查中位数、众数的和的求法,考查众数、中位数、茎叶图等基础知识,考查理解能力、运算求解能力,是基础题.3.(5分)设向量=(1,1),=(2,m),若∥(+2),则实数m的值为()A.1B.2C.3D.4【分析】由平面向量的坐标运算及共线的性质得:因为∥(+2),所以1×(2m+1)﹣5=0,解得m=2,得解.【解答】解:因为向量=(1,1),=(2,m),所以(+2)=(5,2m+1),又∥(+2),所以1×(2m+1)﹣5=0,解得m=2,故选:B.【点评】本题考查了平面向量的坐标运算及共线的性质,属简单题.4.(5分)下列函数中是偶函数且最小正周期为的是()A.y=cos24x﹣sin24x B.y=sin4xC.y=sin2x+cos2x D.y=cos2x【分析】利用三角函数的奇偶性和三角函数的周期公式逐一判断即可.【解答】解:A.y=cos24x﹣sin24x=cos8x,是偶函数,周期T=,符合条件;B.函数是奇函数,不符合条件;C.y=sin2x+cos2x=,是非奇非偶函数,不符合条件;D.函数是偶函数,周期T=,不符合条件.故选:A.【点评】本题考查了三角函数的奇偶性,三角恒等变换和三角函数的周期,属基础题.5.(5分)从装有4个红球和3个白球的口袋中任取2个球,那么互相对立的两个事件是()A.至少有1个白球;都是白球B.至少有1个白球;至少有1个红球C.恰有1个白球;恰有2个白球D.至少有1个白球;都是红球【分析】由已知条件依次分析四个选项中的两个事件,利用对立事件的定义进行判断.【解答】解:从装有4个红球和3个白球的口袋中任取2个球,至少有一个白球和都是白球可以同时发生,故A错误;至少有1个白球一至少有1个红球可以同时发生,故B错误;恰有1个白球和恰有2个白球不能同时发生,但其中一个事件发生时,另一个可能发生也可能不发生,故C是互斥但不对立事件,故C错误;至少有1个白球和都是红球不能同时发生,且其中一个事件发生时,另一个可能发生一定不发生,故D是对立事件,故D正确.故选:D.【点评】本题考查对立事件的判断,是基础题,解题时要认真审题,注意对立事件的定义的合理运用.6.(5分)已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差s2为()A.B.3C.D.4【分析】根据平均数和方差的定义,计算加入一个新数据后,这组数据的平均数和方差.【解答】解:因为7个数据的平均数为5,方差为4,又加入一个新数据5,则这8个数的平均数为==5,方差为s2=×[4×7+(5﹣5)2]=.故选:C.【点评】本题考查了平均数与方差的计算问题,是基础题.7.(5分)已知cosθ=,且θ∈(﹣,0),则tan(+θ)=()A.﹣7B.7C.﹣D.【分析】由已知结合同角基本关系可求sinθ,tanθ,然后利用两角和的正切公式可求tan(+θ).【解答】解:∵cosθ=,且θ∈(﹣,0),∴sinθ=,tan,则tan(+θ)==.故选:D.【点评】本题主要考查了同角三角函数的关系及两角和的正切公式的简单应用,属于基础试题》8.(5分)已知,是不共线的非零向量,=+2,=3﹣,=2﹣3,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.菱形【分析】本题考查了平面向量线性运算及共线的判断可得:=2,所以且||≠||,即四边形ABCD是梯形,得解.【解答】解:因为==()+(3)+(2﹣3)=2(3)=2,所以且||≠||,即四边形ABCD是梯形,故选:C.【点评】本题考查了平面向量线性运算及共线的判断,属中档题.9.(5分)执行如图所示的程序框图,则输出的s的值为()A.B.C.D.【分析】根据程序框图进行模拟运算即可.【解答】解:运行程序框图,s=,k=2,s==,k=3,s==,k=4,此时满足条件,程序结束,输出s=,故选:A.【点评】本题主要考查程序框图的识别和判断.利用模拟运算法是解决本题的关键.10.(5分)如图所示,某汽车品牌的标志可看作由两个同心圆构成,其中大、小圆的半径之比为3:2,小圆内部被两条互相垂直的直径分割成四块.在整个图形中任选一点,则该点选自白色部分的概率为()A.B.C.D.【分析】设大圆半径为3r,则小圆半径为2r,分别求出整个圆形的面积与白色部分的面积,再由测度比是面积比得答案.【解答】解:设大圆半径为3r,则小圆半径为2r,则整个圆形的面积为S=9πr2,白色部分的面积为.∴所求概率为P=.故选:B.【点评】本题考查几何概型概率的求法,明确测度比是面积比是关键,是基础题.11.(5分)已知tanα=2,则=()A.B.C.D.【分析】由已知求得tan2α,再由诱导公式及同角三角函数基本关系式化弦为切求解.【解答】解:∵tanα=2,∴tan2α=.则===.故选:D.【点评】本题考查三角函数的恒等变换与化简求值,考查诱导公式及同角三角函数基本关系式的应用,是基础题.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻的两个对称中心之间的距离为,且有一条对称轴为直线x=,则下列判断正确的是()A.函数f(x)的最小正周期为4πB.函数f(x)的图象关于直线x=﹣对称C.函数f(x)在区间[,]上单调递增D.函数f(x)的图象关于点(,0)对称【分析】根据条件确定函数的解析式,然后根据解析逐一判断,即可得出结论.【解答】解:∵图象相邻的两个对称中心之间的距离为,∴周期,∴,∴f(x)=sin(4x+φ),又f(x)有一条对称轴为直线x=,∴,∴,∵|φ|<,∴φ=,∴f(x)=sin(4x+),对照选项,可得C正确.故选:C.【点评】本题主要考查利用y=A sin(ωx+φ)的图象特征,由函数y=A sin(ωx+φ)的部分图象求解析式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分13.(5分)已知变量x,y线性相关,其一组数据如表所示.若根据这组数据求得y关于x的线性回归方程为=+,则=x1245y【分析】由表中数据计算、,得出样本中心点,代入线性回归方程中求得的值.【解答】解:由表中数据,计算=×(1+2+4+5)=3,=×(+++)=10,把样本中心点(3,10)代入线性回归方程=+中,计算=10﹣×3=.故答案为:.【点评】本题考查了线性回归方程过样本中心点的应用问题,是基础题.14.(5分)已知向量=(cos5°,sin5°),=(cos65°,sin65°),则|2+|=【分析】表示所求向量的表达式,然后求解向量的模即可.【解答】解:向量=(cos5°,sin5°),,=(cos65°,sin65°),,=cos5°cos65°+sin5°sin65°=cos60°=,则|2+|===.故答案为:.【点评】本题考查向量的数量积的应用,考查计算能力.15.(5分)执行如图所示的程序框图,则输出的S的值是4【分析】根据程序框图进行模拟运算即可.【解答】解:第一次循环,S=﹣1,i=2,第二次循环,S=,i=3,第三次循环,S=,i=4,第四次循环,S=4,i=5,……则S是关于以4为周期,最后跳出循环时,i=2021=1+4×505,此时S=4,故答案为:4【点评】本题主要考查程序框图的识别和判断,利用模拟运算法是解决本题的关键.16.(5分)函数y=sin x cos x+cos2x在区间(0,)上的值域为(0,]【分析】y=sin x cos x+cos2x=,然后根据x的取值范围得到的范围从而得到y的值域.【解答】解:y=sin x cos x+cos2x==.∵x∈(0,),∴,∴,∴.故答案为:.【点评】本题考查了三角恒等变换和三角函数的单调性和最值,考查了整体法和整体思想,属基础题.三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤.17.(10分)已知扇形的面积为,弧长为,设其圆心角为α(Ⅰ)求α的弧度;(Ⅱ)求的值.【分析】(Ⅰ)由题意利用任意角的三角函数的定义,扇形面积公式、弧长公式,求得α的弧度数.(Ⅱ)由题意利用诱导公式、两角差的正切公式求得的值.【解答】解:(Ⅰ)∵扇形圆心角为α,设扇形半径为r,弧长为l,根据扇形的面积为=α•r2,弧长为=α•r,解得r=2,α=.(Ⅱ)===tanα=tan(﹣)===2﹣.【点评】本题主要考查任意角的三角函数的定义,扇形面积公式、弧长公式、诱导公式、两角差的正切公式的应用,属于基础题.18.(12分)已知,,是同一平面内的三个向量,其中=(1,2).(Ⅰ)若=(2,λ),且∥,求||;(Ⅱ)若=(1,1),且m﹣与2﹣垂直,求实数m的值【分析】(Ⅰ)根据即可得出4﹣λ=0,从而求出λ=4,从而求出向量的坐标,进而求出;(Ⅱ)可求出,,根据与垂直即可得出,进行数量积的坐标运算即可求出m的值.【解答】解:(Ⅰ)∵;∴4﹣λ=0;∴λ=4;∴;∴;(Ⅱ),;∵与垂直;∴;解得.【点评】考查平行向量的坐标关系,向量垂直的充要条件,根据向量坐标求向量长度的方法,以及向量减法、数乘和数量积的坐标运算.19.(12分)为了了解居民用电情况,某地供电局抽查了该市若干户居民月平均用电量(单位:kW•h),并将样本数据分组为[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],其频率分布直方图如图所示.(Ⅰ)若样本中月平均用电量在[240,260)的居民有30户,求样本容量;(Ⅱ)求月平均用电量的中位数;(Ⅲ)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组居民中,用分层抽样法抽取22户居民,则月平均用电量在[260,280)的居民中应抽取多少户?【分析】(Ⅰ)由频率分布直方图的性质能求出月平均用电量在[240,260)的频率,设样本容量为N,则=30,由此能求出N的值.(Ⅱ)由(++)×20=<,得月平均用电量的中位数[220,240)内,由此能求出中位数.(Ⅲ)月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组频率分别为,,,,由此能求出月平均用电量在[260,280)的用户中应抽取的户数.【解答】解:(Ⅰ)由(++++x++)×20=1,解得x=,∴月平均用电量在[240,260)的频率为×20=,设样本容量为N,则=30,解得N=200.(Ⅱ)∵(++)×20=<,∴月平均用电量的中位数[220,240)内,设中位数a,则+×(a﹣220)=,解得a=224,∴中位数为224.(Ⅲ)月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组频率分别为:,,,,∴月平均用电量在[260,280)的用户中应抽取22×=4户.【点评】本题主要考查样本单元数、中位数的求法,考查频率分布直方图等基础知识,考查运算求解能力,是基础题.20.(12分)已知函数f(x)=(Ⅰ)求f(x)的定义域;(Ⅱ)设α是第三象限角,且tanα=,求f(α)的值.【分析】(Ⅰ)由题意利用诱导公式、三角函数的定义域,求出f(x)的定义域.(Ⅱ)由题意利用同角三角函数的基本关系求得α的正弦值和余弦值,再利用两角和差的三角公式、二倍角公式化简要求的式子,可得结果.【解答】解:(Ⅰ)对于函数f(x)==,应有cos x≠0,即x≠kπ+,k∈Z,故函数的定义域为{x|x≠kπ+,k∈Z}.(Ⅱ)设α是第三象限角,且tanα==,sin2α+cos2α=1,∴sinα=﹣,cosα=﹣,则函数f(α)=====2cosα+2sinα=﹣.【点评】本题主要考查诱导公式、三角函数的定义域,同角三角函数的基本关系,两角和差的三角公式、二倍角公式的应用,属于基础题.21.(12分)某电子科技公司由于产品采用最新技术,销售额不断增长,最近5个季度的销售额数据统计如表(其中2018Q1表示2018年第一季度,以此类推):季度2018Q12018Q22018Q32018Q42019Q1季度编号x12345销售额y(百万元)4656678696(Ⅰ)公司市场部从中任选2个季度的数据进行对比分析,求这2个季度的销售额都超过6千万元的概率;(Ⅱ)求y关于x的线性回归方程,并预测该公司2019Q3的销售额.附:线性回归方程:=x+其中==,=﹣参考数据:x i y i=1183【分析】(Ⅰ)利用列举法写出基本事件数,计算所求的概率值;(Ⅱ)计算平均数和回归系数,写出回归方程,利用回归方程计算x=7时的值,即可预测结果.【解答】解:(Ⅰ)从5个季度的数据中选取2个季度,这2个季度的销售数据有10种情况,(46,56),(46,67),(46,86),(46,96),(56,67),(56,86),(56,96),(67,86),(67,96),(86,96);设这两个季度的销售额都超过6千万元为事件A,则事件A包含(67,86),(67,96),(86,96)共3种情况;则所求的概率为P=;(Ⅱ)计算=×(1+2+3+4+5)=3,=×(46+56+67+86+96)=;====13,∴=﹣=﹣13×3=;∴y关于x的线性回归方程为:=13x+;利用回归方程计算x=7时,=13×7+=(百万元),即预测该公司2019Q3的销售额为百万元.【点评】本题考查了古典概型的概率计算问题,也考查了线性回归分析的应用问题,是基础题.22.(12分)如图所示,在直角坐标系xOy中,点A(2,0),B(﹣2,0),点P,Q在单位圆上,以x轴正半轴为始边,以射线OP为终边的角为θ,以射线OQ为终边的角为φ,满足φ﹣θ=.(1)若θ=,求•(2)当点P在单位圆上运动时,求函数f(θ)=•的解析式,并求f(θ)的最大值.【分析】(Ⅰ)由任意角的定义、平面向量的几何运算得:=•()=2=22﹣2×1×cos=4.(Ⅱ)由三角恒等变换及三角函数的性质得:f(θ)==(cosθ﹣2)(2﹣sinθ)+sinθcosθ=2sin()﹣4,当θ=2kπ(k∈Z)时,f(θ)取最大值2.【解答】解:(Ⅰ)由图可知,∠POA=θ=,∠QOA==,=•()=2=22﹣2×1×cos=4.(Ⅱ)由题意可知P(cosθ,sinθ),Q(cosφ,sinφ),因为cosφ=cos(θ+)=﹣sinθ,sinφ=sin(θ+)=cosθ,所以Q(﹣sinθ,cosθ),所以=(cosθ﹣2,sinθ),=(﹣sinθ+2,cosθ),所以f(θ)==(cosθ﹣2)(2﹣sinθ)+sinθcosθ=2sin()﹣4,当θ=2kπ(k∈Z)时,f(θ)取最大值2,故f(θ)=2sin ()﹣4,最大值为2.【点评】本题考查了任意角的定义、平面向量的几何运算、三角恒等变换及三角函数的性质.21。

洛阳市2018-2019学年第一学期期末考试高一数学试卷

洛阳市2018-2019学年第一学期期末考试高一数学试卷

洛阳市2018-2019学年第一学期期末考试高一数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1已知集合A=,B={x|则()A.{x|x>1}B.{x|02.下列直线中国第一,二,四象限的是()A.y=2x+1B.x-2y+1=0C.y-2=-2(x-1)D.-=13.若a=,b=(,c=,则下列大小关系正确的是()A.cB.cC.aD.4.若圆锥的轴截面(过圆锥轴的一个截面)是一个边长为2的等边三角形,则该圆锥的侧面积为()A. B.2 C.3 D.5.已知直线L1:x+y+=0和直线L2:x+y+=0,下列说法正确的是()A.若则L1∥L2B.若L1∥L2,则=C.若+=0,则L1⊥L2D.若,则=-16.一几何体的三视图如图所示,正视图和侧视图都是半径为2的半圆,俯视图为圆内接一个正方形,则该几何体的体积为()A. B.32 C.16 D.7.给出一下命题(其中a,b,l是空间中不同的直线,是空间中不同的平面);①若a∥b,b,则a∥b;②若a⊥b,b⊥,则a∥;③若⊥,l a,则l⊥;④若l⊥a,l⊥b,a,b,则l⊥⊥,其中正确的个数为()A.0个B.1个C.2个D.3个8.与直线3x+4y+5=0关于y轴对称的直线的方程为()A.3x+4y-5=0B.3x+4y+5=0C.4x+3y-5=0D.4x-3y+5=09.已知f(x)=+-1(a且),f(-1)=2,若实数m满足f(m-1),则实数m的取值范围是()A.,B.,C.,D.,,10.同时与园++6x-7=0和圆+-6y-27=0都相切的直线共有()A.1条B.2条C.3条D.4条11.若函数f(x)=(a且)的值域是,,则实数a的取值范围是()A.(1,)B.(2,)C.,D.,12.如图,在正方体ABCD-中,点F是线段上的动点,则下列说法错误的是()A.无论点F在上怎么移动,异面直线F与CD所成角都不可能是30°B.无论点F在上怎么移动,都有F⊥ DC.当点F移动至中点时,才有F与D相交于一点,记为点E,且=2D.当点F移动至中点时,直线F与平面BD所成角最大且为60二:填空题(本大题共4小题,每小题5分,共20分)13.在空间直角坐标系中,点A(1,0,-2)到点B(-2,4,3)的距离为_______.14.两条平行直线3x-4y-12=0与ax-8y+11=0间的距离是_________.15.在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是矩形,且PA=5,AB=4,AD=3,则该四棱锥外接球的表面积为________.16.已知函数F(x)=,,,若方程f(x)-kx+2k-1=0 有3个实数根,则k的取值范围是_________.三.解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

河南省商丘市九校2018-2019学年高二上学期期末联考数学(理)试题 Word版含解析

河南省商丘市九校2018-2019学年高二上学期期末联考数学(理)试题 Word版含解析

2018-2019学年上期期末联考高二数学(理科)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地)1.命题:地否定是 ( )A. B.C. D.【结果】A【思路】【思路】由全称命题地否定直接改写即可.【详解】因为全称命题地否定为特称命题,所以命题:地否定是:.【点睛】本题主要考查含有一个量词地命题地否定,一般只需要改量词和结论即可,属于基础题型.2.已知,则下面不等式成立地是 ( )A. B. C. D.【结果】B【思路】【思路】利用不等式地基本性质即可得出结果.【详解】因为,所以,所以,故选B【点睛】本题主要考查不等式地基本性质,属于基础题型.3.在单调递增地等差数列中,若,则 ( )A. -1B.C. 0D.【结果】C【思路】【思路】先设等差数列地公差为,由题中款件列出方程组,求解即可.【详解】设等差数列地公差为,因为,所以有:,解方程组得:。

故选C【点睛】本题主要考查等差数列地性质,由题意列方程组求公差和首项即可,属于基础题型.4.△ABC地内角A,B,C地对边分别为a,b,c.已知,,,则 ( )A. B. 3 C. 2 D.【结果】B【思路】【思路】由余弦定理,列出方程,直接求解即可.【详解】因为,,,由余弦定理可得:,解得或,故,选B【点睛】本题主要考查余弦定理,熟记公式即可,属于基础题型.5.设,则“”是“”地 ( )A. 充分而不必要款件B. 既不充分也不必要款件C. 充要款件D. 必要而不充分款件【结果】D【思路】【思路】先解不等式和不等式,然后结合充要款件地定义判断即可.【详解】由得。

由得,所以由能推出。

由不能推出,故“”是“”地必要不充分款件.故选D【点睛】本题主要考查充分款件和必要款件,结合概念直接判断即可,属于基础题型.6.曲线在点(1,1)处切线地斜率等于().A. B. C. 2 D. 1【结果】C【思路】试题思路:由,得,故,故切线地斜率为,故选C.考点:导数地集合意义.7.已知向量且互相垂直,则地值是 ( )A. B. 2 C. D. 1【结果】A【思路】【思路】由向量垂直,可得对应向量数量积为0,从而可求出结果.【详解】因为,所以,,又互相垂直,所以,即,即,所以;故选A【点睛】本题主要考查向量地数量积地坐标运算,属于基础题型.8.若实数x,y满足约束款件则地最大值是( )A. 2B. 0C. 1D. -4【结果】C【思路】【思路】先由约束款件作出可行域,化目标函数为直线方程地斜截式,由截距地取值范围确定目标函数地最值即可.【详解】由约束款件作出可行域如图所示,目标函数可化为,所以直线在y轴截距越小,则目标函数地值越大,由图像易知,当直线过点A时,截距最小,所以目标函数最大为.故选C【点睛】本题主要考查简单地线性规划,只需依据约束款件作出可行域,化目标函数为直线地斜截式,求在y轴截距,即可求解,属于基础题型.9.已知AB是抛物线地一款焦点弦,,则AB中点C地横坐标是 ( )A. 2B.C.D.【结果】B【思路】【思路】先设两点地坐标,由抛物线地定义表示出弦长,再由题意,即可求出中点地横坐标.【详解】设,C地横坐标为,则,因为是抛物线地一款焦点弦,所以,所以,故.故选B【点睛】本题主要考查抛物线地定义和抛物线地简单性质,只需熟记抛物线地焦点弦公式即可求解,属于基础题型.10.若不等式地解集为,那么不等式地解集为 ( )A. B.C. D.【结果】D【思路】【思路】依据题中所给地二次不等式地解集,结合三个二次地关系得到,由根与系数地关系求出地关系,再代入不等式,求解即可.【详解】因为不等式地解集为,所以和是方程地两根,且,所以,即,代入不等式整理得,因为,所以,所以,故选D【点睛】本题主要考查含参数地一圆二次不等式地解法,已知一圆二次不等式地解求参数,通常用到韦达定理来处理,难度不大.11.已知双曲线地左.右焦点分别为F1,F2,点P在双曲线上,且满足,则地面积为 ( )A. 1B.C.D.【结果】A【思路】【思路】由双曲线地定义可得,联立可求出地长,进而可求三角形地面积.【详解】由双曲线地定义可得,又,两式联立得:,,又,所以,即为直角三角形,所以.故选A【点睛】本题主要考查双曲线地简单性质,双曲线地焦点三角形问题,一般需要借助抛物线地性质,结合题中款件来处理,难度不大.12.若函数有两个零点,则实数a地取值范围为 ( )A. B. C. D.【结果】C【思路】【思路】先求出函数地导函数,利用导函数求出函数地最小值,再依据函数地零点和最值之间地关系即可求出参数地范围.【详解】因为函数地导函数为,令,得,所以当时,,函数单调递减。

四川省绵阳市2018-2019学年高一上学期期末质量测试数学试题(解析版)

四川省绵阳市2018-2019学年高一上学期期末质量测试数学试题(解析版)

高中2018级第一学期期末教学质量测试数学一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果全集,,则()A. B. C. D.【答案】C【解析】【分析】首先确定集合U,然后求解补集即可.【详解】由题意可得:,结合补集的定义可知.本题选择C选项.【点睛】本题主要考查集合的表示方法,补集的定义等知识,意在考查学生的转化能力和计算求解能力.2.下列图象是函数图象的是()A. B.C. D.【答案】D【解析】【分析】由题意结合函数的定义确定所给图象是否是函数图象即可.【详解】由函数的定义可知,函数的每一个自变量对应唯一的函数值,选项A,B中,当时,一个自变量对应两个函数值,不合题意,选项C中,当时,一个自变量对应两个函数值,不合题意,只有选项D符合题意.本题选择D选项.【点睛】本题主要考查函数的定义及其应用,属于基础题.3.下列函数是奇函数,且在区间上是增函数的是()A. B.C. D.【答案】B【解析】【分析】逐一考查所给函数的单调性和奇偶性即可.【详解】逐一考查所给函数的性质:A.,函数为奇函数,在区间上不具有单调性,不合题意;B.,函数为奇函数,在区间上是增函数,符合题意;C.,函数为非奇非偶函数,在区间上是增函数,不合题意;D.,函数为奇函数,在区间上不具有单调性,不合题意;本题选择B选项.【点睛】本题主要考查函数的单调性,函数的奇偶性等知识,意在考查学生的转化能力和计算求解能力.4.一个扇形的面积是,它的半径是,则该扇形圆心角的弧度数是()A. B. 1 C. 2 D.【答案】C【解析】【分析】由题意首先求得弧长,然后求解圆心角的弧度数即可.【详解】设扇形的弧长为,由题意可得:,则该扇形圆心角的弧度数是.本题选择C选项.【点睛】本题主要考查扇形面积公式,弧度数的定义等知识,意在考查学生的转化能力和计算求解能力.5.如果角的终边在第二象限,则下列结论正确的是()A. B. C. D.【答案】B【解析】【分析】由题意结合三角函数的性质确定所给结论是否正确即可.【详解】角的终边在第二象限,则,AC错误;,B正确;当时,,,D错误.本题选择B选项.【点睛】本题主要考查三角函数的符号,二倍角公式及其应用等知识,意在考查学生的转化能力和计算求解能力.6.设角的终边经过点,那么()A. B. C. D.【答案】D【解析】【分析】由题意首先求得的值,然后利用诱导公式求解的值即可.【详解】由三角函数的定义可知:,则.本题选择D选项.【点睛】本题主要考查由点的坐标确定三角函数值的方法,诱导公式及其应用等知识,意在考查学生的转化能力和计算求解能力.7.已知函数对任意实数都满足,若,则()A. -1B. 0C. 1D. 2【答案】A【解析】【分析】由题意首先确定函数的周期性,然后结合所给的关系式确定的值即可.【详解】由可得,据此可得:,即函数是周期为2的函数,且,据此可知.本题选择A选项.【点睛】本题主要考查函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.8.函数的零点个数是()A. 0B. 1C. 2D. 3【答案】C【解析】【分析】将原问题转化为函数交点个数的问题即可确定函数的零点个数.【详解】函数的零点个数即函数与函数交点的个数,绘制函数图象如图所示,观察可得交点个数为2,则函数的零点个数是 2.本题选择C选项.【点睛】本题主要考查函数零点的定义,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.9.已知,则的值是()A. 1B. 3C.D.【答案】D【解析】【分析】由题意结合对数的运算法则确定的值即可.【详解】由题意可得:,则.【点睛】本题主要考查指数对数互化,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.10.若函数(,且)在上的最大值为4,且函数在上是减函数,则实数的取值范围为()A. B. C. D.【答案】A【解析】【分析】由题意首先确定实数a的值,然后确定实数的取值范围即可.【详解】当时,函数单调递增,据此可知:,满足题意;当时,函数单调递减,据此可知:,不合题意;故,函数单调递增,若函数在上是减函数,则,据此可得.本题选择A选项.【点睛】本题主要考查函数的单调性,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.11.已知函数,若,且当时,则的取值范围是()A. B. C. D.【答案】B【解析】【分析】首先确定函数的解析式,然后确定的取值范围即可.【详解】由题意可知函数关于直线对称,则,据此可得,由于,故令可得,函数的解析式为,则,结合三角函数的性质,考查临界情况:当时,;当时,;则的取值范围是.【点睛】本题主要考查三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.12.已知函数(为自然对数的底数),若对任意,不等式都成立,则实数的取值范围是()A. B. C. D.【答案】C【解析】【分析】由题意结合函数的单调性和函数的奇偶性求解不等式即可.【详解】由函数的解析式可知函数为定义在R上的增函数,且函数为奇函数,故不等式即,据此有,即恒成立;当时满足题意,否则应有:,解得:,综上可得,实数的取值范围是.本题选择C选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题.二、填空题(将答案填在答题纸上)13.___.【答案】【解析】=,故答案为:.=tan(180°+60°)=tan60°tan240°14.设函数即_____.【答案】-1【解析】【分析】结合函数的解析式求解函数值即可.【详解】由题意可得:,则.【点睛】求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.15.已知幂函数的图象经过点,且满足条件,则实数的取值范围是___.【答案】【解析】【分析】首先求得函数的解析式,然后求解实数的取值范围即可.【详解】设幂函数的解析式为,由题意可得:,即幂函数的解析式为:,则即:,据此有:,求解不等式组可得实数的取值范围是.【点睛】本题主要考查幂函数的定义及其应用,属于基础题.16.已知函数,实数,满足,且,若在上的最大值为2,则____.【答案】4【解析】【分析】由题意结合函数的解析式分别求得a,b的值,然后求解的值即可.【详解】绘制函数的图像如图所示,由题意结合函数图像可知可知,则,据此可知函数在区间上的最大值为,解得,且,解得:,故.【点睛】本题主要考查函数图像的应用,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.已知函数的定义域为.(1)求;(2)设集合,若,求实数的取值范围.【答案】(1)A(2)【解析】【分析】(1)由函数的解析式分别令真数为正数,被开方数非负确定集合A即可;(2)分类讨论和两种情况确定实数的取值范围即可.【详解】(1)由,解得,由,解得,∴.(2)当时,函数在上单调递增.∵,∴,即.于是.要使,则满足,解得.∴.当时,函数在上单调递减.∵,∴,即.于是要使,则满足,解得与矛盾.∴.综上,实数的取值范围为.【点睛】本题主要考查函数定义域的求解,集合之间的关系与运算等知识,意在考查学生的转化能力和计算求解能力.18.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益、养鸡的收益与投入(单位:万元)满足.设甲合作社的投入为(单位:万元).两个合作社的总收益为(单位:万元).(1)当甲合作社的投入为25万元时,求两个合作社的总收益;(2)试问如何安排甲、乙两个合作的投入,才能使总收益最大?【答案】(1)88.5万元(2)答案见解析.【解析】【分析】(1)结合所给的关系式求解甲合作社的投入为25万元时,求两个合作社的总收益即可;(2)首先确定函数的定义域,然后结合分段函数的解析式分类讨论确定最大收益的安排方法即可.【详解】(1)当甲合作社投入为25万元时,乙合作社投入为47万元,此时两个合作社的总收益为:(万元).(2)甲合作社的投入为万元,则乙合作社的投入为万元,当,则,.令,得.则总收益为,显然当时,,即此时甲投入16万元,乙投入56万元时,总收益最大,最大收益为89万元.当时,则.,显然在上单调递减,∴.即此时甲、乙总收益小于87万元.对.∴该公司在甲合作社投入16万元,在乙合作社投入56万元,总收益最大,最大总收益为89万元.【点睛】(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.19.已知函数,将函数的图象向左平移个单位,再向上平移2个单位,得到函数的图象.(1)求函数的解析式;(2)求函数在上的最大值和最小值.【答案】(1) (2)见解析【解析】【分析】(1)首先化简三角函数式,然后确定平移变换之后的函数解析式即可;(2)结合(1)中函数的解析式确定函数的最大值即可.【详解】(1).由题意得,化简得.(2)∵,可得,∴.当时,函数有最大值1;当时,函数有最小值.【点睛】本题主要考查三角函数图像的变换,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.20.已知函数.(1)若在上是减函数,求的取值范围;(2)设,,若函数有且只有一个零点,求实数的取值范围.【答案】(1) (2)【解析】【分析】(1)由题意结合函数单调性的定义得到关于a的表达式,结合指数函数的性质确定的取值范围即可;(2)利用换元法将原问题转化为二次方程根的分布问题,然后求解实数的取值范围即可.【详解】(1)由题设,若在上是减函数,则任取,,且,都有,即成立.∵.又在上是增函数,且,∴由,得,即,且.∴只须,解.由,,且,知,∴,即,∴.所以在上是减函数,实数的取值范围是.(2)由题知方程有且只有一个实数根,令,则关于的方程有且只有一个正根.若,则,不符合题意,舍去;若,则方程两根异号或有两个相等的正根.方程两根异号等价于解得;方程有两个相等的正根等价于解得;综上所述,实数的取值范围为.【点睛】本题主要考查函数的单调性,二次方程根的分布等知识,意在考查学生的转化能力和计算求解能力.。

2018-2019学年四川省广安市高二(上)期末数学试卷(理科)(解析版)

2018-2019学年四川省广安市高二(上)期末数学试卷(理科)(解析版)

2018-2019学年四川省广安市高二(上)期末数学试卷(理科)一、选择題(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.(5分)已知空间直角坐标系中A(2,﹣1,﹣2),B(3,2,1),则|AB|=(()A.B.C.D.2.(5分)直线的倾斜角大小为()A.30°B.60°C.120°D.150°3.(5分)以x=1为准线的抛物线的标准方程为()A.y2=2x B.y2=﹣2x C.y2=4x D.y2=﹣4x 4.(5分)“若x<1,则x2﹣3x+2>0”的否命题是()A.若x≥1,则x2﹣3x+2≤0B.若x<l,则x2﹣3x+2≤0C.若x≥1,则x2﹣3x+2>0D.若x2﹣3x+2≤0,则x≥15.(5分)已知直线l:x+ay+1=0与圆N:(x﹣1)2+(y﹣1)2=1相切,则a为()A.﹣B.C.D.﹣6.(5分)设某高中的学生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.67x ﹣60.9,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该高中某学生身高为170cm,则可断定其体重必为53kgD.若该高中某学生身高增加1cm,则其体重约增加0.67kg7.(5分)“2<m<6”是“方程+=1为椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)从甲、乙两种棉花中各抽测了25根棉花的纤维长度(单位:mm)组成一个样本,得到如图所示的茎叶图.若甲、乙两种棉花纤维的平均长度分别用,表示,标准差分别用s1,s2表示,则()A.>,s 1>s2B.>,s1<s2C.<,s 1>s2D.<,s1<s29.(5分)秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,3,则输出v的值为()A.16B.18C.48D.14310.(5分)小华和小明两人约定在7:30到8:30之间在“思源广场”会面,并约定先到者等候另一人30分钟,过时离去,则两人能会面的概率是()A.B.C.D.11.(5分)双曲线C的渐近线方程为y=±x,一个焦点为F(0,﹣6),点A(﹣,0),点P为双曲线第二象限内的点,则当点P的位置变化时,△P AF周长的最小值为()A.16B.7+3C.14+D.1812.(5分)已知A,B是以F为焦点的抛物线y2=4x上两点,且满足=5,则弦AB 中点到准线距离为()A.B.C.D.二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)把二进制数10011(2)转化为十进制的数为.14.(5分)已知双曲线x2﹣y2=1,则它的右焦点到它的渐近线的距离是.15.(5分)若命题“∃x0∈R,x02+(a﹣1)x0+1<0”是假命题,则实数a的取值范围为.16.(5分)已知椭圆C:=1(a>b>0)的左右焦点分别为F1、F2,抛物线y2=4cx(c2=a2﹣b2且c>b)与椭圆C在第一象限的交点为P,若cos∠PF1F2=,则椭圆C的离心率为.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知直线l1:kx﹣2y+k﹣8=0(k∈R),l2:2x+y+1=0.(Ⅰ)若l1∥l2,求l1,l2间的距离;(Ⅱ)求证:直线l1必过第三象限.18.(12分)已知命题p:实数m满m2﹣2am﹣3a2<0,其中a>0;命题q:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣10=0的内部.(Ⅰ)当a=1,p∧q为真时,求m的取值范围;(Ⅱ)若¬p是¬q的充分不必要条件,求a的取值范围.19.(12分)已知线段AB的端点B在圆C1:x2+(y﹣4)2=16上运动,端点A的坐标为(4,0),线段AB中点为M,(Ⅰ)试求M点的轨迹C2方程;(Ⅱ)若圆C1与曲线C2交于C,D两点,试求线段CD的长.20.(12分)随着2018年央视大型文化节目《经典咏流传》的热播,在全民中掀起了诵读诗词的热潮广安某社团调查了广安某校300名学生每天诵读诗词的时间(所有学生诵读时间都在两小时内,并按时间(单位:分钟)将学生分成六个组:[0,20),[20,40),[40,60),[60,80),[80,100),[100,120]经统计得到了如图所示的频率分布直方图.(Ⅰ)求频率分布直方图中a的值,并估计该校学生每天诵读诗词的时间的平均数和中位数.(Ⅱ)若两个同学诵读诗词的时间x,y满足|x﹣y|>60,则这两个同学组成一个“Team”,已知从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,现从这5人中随机选取2人,求选取的两人能组成一个“Team”的概率.21.(12分)已知椭圆C:+y2=1(a>0),过椭圆C右顶点和上顶点的直线l与圆x2+y2=相切.(1)求椭圆C的方程;(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2(1+sin2θ)=2.(Ⅰ)求l的直角坐标方程和C的直角坐标方程;(Ⅱ)若l和C相交于A,B两点,求|AB|的值.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣1|,g(x)=|2x﹣4|.(Ⅰ)求不等式f(x)>g(x)的解集.(Ⅱ)若存在x∈R,使得不等式2f(x+1)+g(x)<ax+1成立,求实数a的取值范围.2018-2019学年四川省广安市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择題(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.【解答】解:∵空间直角坐标系中A(2,﹣1,﹣2),B(3,2,1),∴|AB|==.故选:B.2.【解答】解:由题意,直线的斜率为k=,即直线倾斜角的正切值是又倾斜角大于或等于0°且小于180°,故直线的倾斜角为30°,故选:A.3.【解答】解:以x=1为准线的抛物线,开口向左,可得p=2,所以抛物线的标准方程为:y2=﹣4x.故选:D.4.【解答】解:若p则q的否命题为若¬p则¬q,即命题的否命题为:若x≥1,则x2﹣3x+2≤0,故选:A.5.【解答】解:根据题意,直线l:x+ay+1=0与圆N:(x﹣1)2+(y﹣1)2=1相切,则有=1,解可得:a=﹣;故选:D.6.【解答】解:根据y与x的线性回归方程为=0.67x﹣60.9,则b=0.67>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该高中某学生身高为170cm,则可预测其体重必为53kg,C错误;若该高中某学生身高增加1cm,则其体重约增加0.67kg,D正确.∴不正确的结论是C.故选:C.7.【解答】解:若方程+=1为椭圆方程,则,解得:2<m<6,且m≠4,故“2<m<6”是“方程+=1为椭圆方程”的必要不充分条件,故选:B.8.【解答】解:由茎叶图得:甲的数据相对分散,而乙的数据相对集中于茎叶图的右下方,∴<,s 1>s2.故选:C.9.【解答】解:初始值n=3,x=3,程序运行过程如下表所示:v=1i=2,v=1×3+2=5i=1,v=5×3+1=16i=0,v=16×3+0=48i=﹣1,不满足条件,跳出循环,输出v的值为48.故选:C.10.【解答】解:设记7:30为0,则8:30记为60,设小华到达“思源广场”为x时刻,小明小华到达“思源广场”为y时刻,则0≤x≤60,0≤y≤60,记“两人能会面”为事件A,则事件A:|x﹣y|≤30,由图知:两人能会面的概率是:==,故选:B.11.【解答】解:双曲线C的渐近线方程为y=±x,一个焦点为F(0,﹣6),可得,c==6,a=2,b=4.双曲线方程为,设双曲线的上焦点为F'(0,6),则|PF|=|PF'|+4,△P AF的周长为|PF|+|P A|+|AF|=|PF'|+2a+|P A|+AF,当P点在第二象限时,|PF'|+|P A|的最小值为|AF'|=7,故△P AF的周长的最小值为14+4=18.故选:D.12.【解答】解:设BF=m,由抛物线的定义知AA1=5m,BB1=m,∴△ABC中,AC=4m,AB=6m,kAB=,直线AB方程为y=(x﹣1),与抛物线方程联立消y得5x2﹣26x+5=0,所以AB中点到准线距离为+1=+1=.故选:A.二、填空题:本大题共4个小题,每小题5分,共20分.13.【解答】解:10011(2)=1+1×2+1×24=19故答案为:1914.【解答】解:双曲线x2﹣y2=1,可得a=1,b=1,c=,则右焦点(1,0)到它的渐近线y=x的距离为d==.故答案为:.15.【解答】解:∵命题“∃x0∈R,x+(a﹣1)x0+1<0”是假命题,∴命题“∀x∈R,x2+(a﹣1)x+1≥0”是真命题,即对应的判别式△=(a﹣1)2﹣4≤0,即(a﹣1)2≤4,∴﹣2≤a﹣1≤2,即﹣1≤a≤3,故答案为:[﹣1,3].16.【解答】解:抛物线y2=4cx的焦点为F2(c,0),如下图所示,作抛物线的准线l,则直线l过点F1,过点P作PE垂直于直线l,垂足为点E,由抛物线的定义知|PE|=|PF2|,易知,PE∥x轴,则∠EPF1=∠PF1F2,所以,=,设|PF1|=5t(t>0),则|PF2|=4t,由椭圆定义可知,2a=|PF1|+|PF2|=9t,在△PF1F2中,由余弦定理可得,整理得,解得,或.∵c>b,则c2>b2=a2﹣c2,可得离心率.当时,离心率为,合乎题意;当时,离心率为,不合乎题意.综上所述,椭圆C的离心率为.故答案为:.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.【解答】解:(Ⅰ)若l1∥l2,直线l1:kx﹣2y+k﹣8=0(k∈R),l2:2x+y+1=0,则有=≠,求得k=﹣4,故直线l1即:2x+y+6=0,故l1,l2间的距离为=.(Ⅱ)证明:直线l1:kx﹣2y+k﹣8=0(k∈R),即k(x+1)﹣2y﹣8=0,必经过直线x+1=0和直线﹣2y﹣8=0的交点(﹣1,﹣4),而点(﹣1,﹣4)在第三象限,直线l1必过第三象限.18.【解答】解:(Ⅰ)当a=1,命题p:m2﹣2m﹣3<0,﹣1<m<3,命题q:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣10=0的内部,∴m2﹣4<0,∴﹣2<m<2,∵p∧q为真,∴m的取值范围为(﹣1,3)∩(﹣2,2)=(﹣1,2);(Ⅱ)命题p:(m﹣3a)(m+a)<0,∵a>0,∴﹣a<m<3a,设A=(﹣a,3a)命题q:﹣2<m<2,设B=(﹣2,2)∵¬p是¬q的充分不必要条件,∴¬p⇒¬q,¬q推不出¬p,∴q⇒p,p推不出q,∴B⊊A,∴,∴a≥2,∴a的取值范围为[2,+∞).19.【解答】解:(Ⅰ)设M(x,y),B(x′,y′),则由题意可得:,解得:,∵点B在圆C1:x2+(y﹣4)2=16上,∴(x′)2+(y′﹣4)2=16,∴(2x﹣4)2+(2y﹣4)2=16,即(x﹣2)2+(y﹣2)2=4.∴轨迹C2方程为(x﹣2)2+(y﹣2)2=4;(Ⅱ)由方程组,解得直线CD的方程为x﹣y﹣1=0,圆C1的圆心C1(0,4)到直线CD的距离为,圆C1的半径为4,∴线段CD的长为.20.【解答】解:(Ⅰ)由频率分布直方图得:(a+a+6a+8a+3a+a)×20=1,解得a=0.0025.该校学生每天诵读诗词的时间的平均数为:0.05×10+0.05×30+0.3×50+0.4×70+0.15×90+0.05×110=64.[0,60)的频率为:0.05+0.05+0.3=0.4,[60,80)的频率为:0.4,∴估计该校学生每天诵读诗词的时间的中位数为:60+=65.(Ⅱ)从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,则从每天诵读时间小于20分钟的学生中抽取:5×=1人,从每天诵读时间大于或等于80分钟的所有学生中抽取:5×=4人,现从这5人中随机选取2人,基本事件总数n==10,两个同学诵读诗词的时间x,y满足|x﹣y|>60,则这两个同学组成一个“Team”,选取的两人能组成一个“Team”包含的基本事件个数m==4.∴选取的两人能组成一个“Team”的概率p===.21.【解答】解:(1)椭圆C的右顶点(a,0),上顶点(0,1),设直线l的方程为:+y=1,化为:x+ay﹣a=0,∵直线l与圆x2+y2=相切,∴=,a>0,解得a=.∴椭圆C的方程为.(2)当直线AB的斜率不存在时,设A(x0,y0),则B(x0,﹣y0),由k1+k2=2得,得x0=﹣1.当直线AB的斜率存在时,设AB的方程为y=kx+m(m≠1),A(x1,y1),B(x2,y2),,得,∴,即,由m≠1,(1﹣k)(m+1)=﹣km⇒k=m+1,即y=kx+m=(m+1)x+m⇒m(x+1)=y﹣x,故直线AB过定点(﹣1,﹣1).[选修4-4:坐标系与参数方程]22.【解答】解:(1)∵直线l的参数方程为(t为参数),∴l的直角坐标方程为+=0,∵曲线C的极坐标方程为ρ2(1+sin2θ)=2,即ρ2+ρ2sin2θ=2,∴C的直角坐标方程为x2+y2+y2=2,即=1.(2)联立,得7x2+12x+4=0,△=144﹣4×7×4=32>0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,∴|AB|==.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)由|x﹣1|>|2x﹣4|,得:x2﹣2x+1>4x2﹣16x+16,解得:<x<3,故不等式的解集是(,3);(Ⅱ)若存在x∈R,使得不等式2f(x+1)+g(x)<ax+1成立,即存在x∈R,使得2|x|+|2x﹣4|<ax+1成立,当x<0时,﹣4x+4<ax+1即a<﹣4在(﹣∞,0)上有解,故a<﹣4,当x=0时,4<1不成立,当0<x≤2时,4<ax+1即a>在(0,2]上有解,故a>,当x>2时,4x﹣4<ax+1即a>4﹣在(2,+∞)上有解,故a>,综上,a>或a<﹣4.。

河南省洛阳市第一高级中学2018-2019学年高一5月月考数学试题(pdf版)

河南省洛阳市第一高级中学2018-2019学年高一5月月考数学试题(pdf版)

高一月考数学试题一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求)1.如图给出的是计算12+14+16+…+12 014的值的程序框图,其中判断框内应填入的是( )A .i ≤2 012?B .i >2 012?C .i ≤2 014?D .i >2 014?2.某网站对“双十二”网上购物的情况做了一项调查,收回的有效问卷共50 000份,其中购买下列四种商品的人数统计如下表:已知在购买“家用电器”这一类中抽取了92份问卷,则在购买“服饰鞋帽”这一类中应抽取的问卷份数为( )A .198B .116C .99D .943.如果执行如图的程序框图,那么输出的值是( ) A .2 010 B .-1 C.12 D .24.一个k 进制的三位数与某六进制的二位数等值,则k 不可能是( ) A .3 B .4 C .5 D .75. 以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,86.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:根据上表提供的数据,求出y 关于x 的线性回归方程为y =0.7x +0.35,那么表中t 的值为( )A .3B .3.15C .3.5D .4.5 7.已知流程图如下图所示,该程序运行后,为使输出的b 值为16,则循环体的判断框内①处应填( )A .2B .3C .5D .78.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60)的同学有30人,则n 的值为( )A .100B .1 000C .90D .9009.某班有48名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是( )A .70,25B .70,50C .70,1.04D .65,2510.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.7811.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差12.自平面上一点O 引两条射线OA ,OB ,点P 在OA 上运动,点Q 在OB 上运动且保持PQ 为定值a (点P ,Q 不与点O 重合),已知∠AOB =π3,a =7,则3PQ PO QP QO POQO⋅⋅+的取值范围为( )A .(12,7]B .(72,7]C .(-12,7]D .(-72,7]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.14.在2019年3月15日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,其线性回归直线方程是:y ∧=-3.2 x +a ∧(参考公式:回归方程 y ∧=b ∧x +a ∧ , a ∧=y -b x ),则a =________.15.已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.11sin cos ,1631()()=33().y a x b x c y f x f x f x ππ⎛⎫=++ ⎪⎝⎭= 16.已知图像上有一最低点,若图像上各点纵坐标不变,横坐标缩为原来的倍,再左移个单位得,又的所有根从小到大依次相差个单位,则的解析式为__________ 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.18.(本小题满分12分)高三年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:(1)根据上面图表,①②③④处的数值分别为________、________、________、________;(2)在所给的坐标系中画出[85,155]的频率分布直方图;(3)根据题中信息估计总体平均数,并估计总体落在[129,155]中的频率.19.(本小题满分12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出回归方程y ∧=b ∧x +a ∧;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(注:b ∧=∑ni =1x i y i -n x -y -∑n i =1x i 2-n x -2,a ∧=y --b ∧x -)20.(本小题满分12分)已知关于x 的一元二次方程x 2+2ax +b =0.(1)若a ∈{0,1,2,3},b ∈{0,1,2},求方程x 2+2ax +b =0有实根的概率; (2)若a ∈[0,3],b ∈[0,2],求方程x 2+2ax +b =0有实根的概率.21. (本小题满分12分)已知f (x )=1+cos x -sin x 1-sin x -cos x +1-cos x -sin x 1-sin x +cos x 且x ≠2k π+π2,k ∈Z,且x ≠k π+π,k ∈Z .①化简f (x );②是否存在x ,使得tan x2·f (x )与1+tan 2x2sin x 相等?若存在,求x 的值;若不存在,请说明理由.22.(本小题满分12分)已知向量m =(sin x,1),n =(3A cos x ,A2cos2x )(A >0且A 为常数),函数f (x )=m ·n 的最大值为6. (1)求A 的值;(2)将函数y =f (x )的图像向左平移π12个单位,再将所得图像上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图像,求g (x )在[0,5π24]上的值域.参考答案:一、CABDC ABABC DD二、13. 0.25;14. 40;15. [)1+∞,;16 ()=2sin 33f x x π+.三、17: 答案 (1)14 (2)1529解析 (1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估计概率,所以甲品牌产品寿命小于200小时的概率为14.(2)根据抽样结果,寿命大于200小时的产品有75+70=145个,其中甲品牌产品是75个,所以在样本中,寿命大于200小时的产品是甲品牌的频率是75145=1529,用频率估计概率,所以已使用了200小时的该产品是甲品牌的概率为1529.18. (1)1 0.025 0.1 1(2)略(3)总体平均数约为122.5,总体落在[129,155]上的频率约为0.315. 解析 (1)随机抽出的人数为120.300=40,由统计知识知④处应填1;③处应填440=0.1;②处应填1-0.050-0.1-0.275-0.300-0.200-0.050=0.025;①处应填0.025×40=1. (2)频率分布直方图如图. (3)利用组中值算得平均数:90×0.025+100×0.05+110×0.2+120×0.3+130×0.275+140×0.1+150×0.05=122.5;总体落在[129,155]上的频率为610×0.275+0.1+0.05=0.315.19. 解析 (1)散点图,如图所示.(2)由题意,得∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x -=3+4+5+64=4.5,y -=2.5+3+4+4.54=3.5,∑i =14x i 2=32+42+52+62=86,∴b ∧=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a ∧=y --b ∧x -=3.5-0.7×4.5=0.35.故线性回归方程为y ∧=0.7x +0.35.(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35,故能耗减少了90-70.35=19.65(吨).20. 解析 用(a ,b)表示a ,b 取相应值时所对应的一个一元二次方程.要使x 2+2ax +b =0有实根,则(2a)2-4b ≥0,即a ≥b.(1)(a ,b)的所有可能取值有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中满足a ≥b 的有9个. 故方程x 2+2ax +b =0有实根的概率为912=34.(2)设事件A 表示“一元二次方程x 2+2ax +b =0有实根”,则(a ,b)的所有可能取值构成的区域为{(a ,b)|0≤a ≤3,0≤b ≤2},这是一个长方形区域,面积为2×3=6;构成事件A 的区域为{(a ,b)|0≤a ≤3,0≤b ≤2,a ≥b},如图中阴影部分,面积为2×3-12×22=4.故方程x 2+2ax +b =0有实根的概率为46=23.21.【解析】 ①∵1+cos x -sin x 1-sin x -cos x =2cos 2x 2-2sin x 2cos x 22sin 2x 2-2sin x 2cosx 2 =2cos x 2(cos x 2-sin x 2)-2sin x 2(cos x 2-sin x 2)=-cos x2sin x 2, 同理得1-cos x -sin x 1-sin x +cos x =-sin x2cos x 2.∴f (x )=-cos x 2sin x 2-sin x 2cos x 2=-cos 2x 2+sin 2x 2sin x 2·cos x 2=-2sin x .且x ≠2k π+π2,k ∈Z.②若tan x2·f (x )=1+tan 2x 2sin x ,则-2tan x 2sin x =1+tan 2x2sin x . ∴2tan x 21+tan 2x2=-1,即sin x =-1. 此时x =2k π+3π2,(k ∈Z ),即为存在的值.22. 解析 (1)f (x )=m ·n =3A sin x cos x +A2cos2x =A (32sin2x +12cos2x )=A sin(2x +π6).因为A >0,由题意知A =6. (2)由(1)知f (x )=6sin(2x +π6).将函数y =f (x )的图像向左平移π12个单位后得到 y =6sin[2(x +π12)+π6]=6sin(2x +π3)的图像;再将得到图像上的各点横坐标缩短为原来的12倍,纵坐标不变,得到y =6sin(4x +π3)的图像. 因此g (x )=6sin(4x +π3).因为x ∈[0,5π24],所以4x +π3∈[π3,7π6]. 故g (x )在[0,5π24]上的值域为[-3,6].。

2018-2019学年河南省天一大联考高一(上)期中数学试卷(精编含解析)

2018-2019学年河南省天一大联考高一(上)期中数学试卷(精编含解析)

=
������ |������|
C. ������(������) = ������,������(������) = 10������������������
D. ������(������) = 2������,������(������) = 22������
4. 某班共 50 名同学都选择了课外兴趣小组,其中选择音乐的有 25 人,选择体育的有 20 人,音乐、体
2018-2019 学年河南省天一大联考高一(上)期中
数学试卷
一、选择题(本大题共 12 小题,共 60.0 分)
1. 已知集合������ = {������|������ = 1������},������ = {������|������ = 1������},������ = {(������,������)|������ = 1������},下列结论正确的是( )
16. 函数 f(x)是定义在 R 上的偶函数,且在(0,+∞)上递增,若 f(1)=0,f(0)<0,则不等式
xf(x-1)<0 的解集是______.
三、解答题(本大题共 6 小题,共 70.0 分)
17.
(33)

1 9
+
(
2 × 3 3)6 ‒ ( ‒ 0.9)0 ‒
计算:(1) 8
2
(2)3 3;
2

12������) 的定义域为集合
A,函数������(������)
=
(1)������
2

1(

1

������

1)的值域为集合
B.
(1)求 A∩B;
(2)设集合 C={x|a≤x≤3a-2},若 C∩A=C,求实数 a 的取值范围.

2018-2019学年第二学期期末考试高一年级数学试卷(含答案)

2018-2019学年第二学期期末考试高一年级数学试卷(含答案)

2018-2019学年第二学期期末考试高一年级数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如表所示:电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为()A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,82.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.10403. 在中,,,则等于()A. 3B.C. 1D. 24.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣25.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥997. 已知直线平面,直线平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则8.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.19.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::( +1),试用以上给出的公式求得△ABC的面积为()A. B. C. D.10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1511.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A.B.C.D.12.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增D.在[﹣,]单调递减二、填空题(共4小题,每小题5分,满分20分)13.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(x)的解析式为.14.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA﹣acosB=0,则A+C= .15. 已知直线的倾斜角为,则直线的斜率为__________.16.已知正实数x,y满足x+2y﹣xy=0,则x+2y的最小值为8y的取值范围是.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.某同学用“五点法”画函数f (x )=Asin (ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f (x )的解析式;(2)将y=f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x )的图象.若y=g (x )图象的一个对称中心为(,0),求θ的最小值.18. 在中,内角所对的边分别为,且.(1)求;(2)若,且的面积为,求的值.19.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围.20.已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.21.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.22.(12分)(2016秋•德化县校级期末)已知f(x)=sin2(2x﹣)﹣2t•sin(2x﹣)+t2﹣6t+1(x∈[,])其最小值为g(t).(1)求g(t)的表达式;(2)当﹣≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.参考答案:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.D3.D4.A5.C6.B7. B8.C9.A10.B11.C12.C二、填空题(共4小题,每小题5分,满分20分)13..14.120°. 15. 16. 8;(1,+∞).三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.18. (1) ;(2). 19.(﹣4,0].20.(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z..21.1) P==.(2)a=0.00422.(1)∵x∈[,],∴sin(2x﹣)∈[﹣,1],∴f(x)=[sin(2x﹣﹣t]2﹣6t+1,当t<﹣时,则当sinx=﹣时,f(x)min=;当﹣≤t≤1时,当sinx=t时,f(x)min=﹣6t+1;当t>1时,当sinx=1时,f(x)min=t2﹣8t+2;∴g(t)=(2)k≤﹣8或k≥﹣5.。

2018-2019学年洛阳市第一学期期末考试高一数学试卷及答案

2018-2019学年洛阳市第一学期期末考试高一数学试卷及答案

%!若 函 数/!$"# *
!*$"且*-#"的值域是)(#) 4"#则实数*的
,')+12*$#$ $!
取值范围是
-!!##) 4"
.!!!#) 4"
/!!##槡!*
0!!槡)!#!*
#"!同时与圆$! )&! )*$'3#"和圆$! )&! '*&'!3#"都相切的直线共有
-!# 条
.!! 条
/!' 条
方程
/!+2$"'0
# " 有 解 #求
0
的取值范围!
!#!!本 小 题 满 分 #! 分 "
-((! 若-(*#-(+#* )#+) 则- (!其中正确的个数为
-!" 个
.!# 个
/!! 个
0!' 个
$!与直线'$'(&))#"关于& 轴对称的直线的方程为
-!'$ )(&') # "
.!'$ )(&)) # "
/!($ )'&') # "
0!($ ''&)) # "
+$'!$#$ %!#
-!若 "#(! '"!(# #"则-# '-!
.;! (!
#
"# (#
/!若 "#"! )(#(! #"则-# (-!
0!若-#

河南省洛阳市2018-2019学年高一上学期期末数学测试(解析版)

河南省洛阳市2018-2019学年高一上学期期末数学测试(解析版)

一、选择题(本大题共12小题,共60.0分)已知集合,,则 A ={x|x <2}B ={x|3‒2x >0}()B. ∩B ={x|x <32}A ∩B =⌀D. B ={x|x <32}A ∪B =R解:集合,,∵A ={x|x <2}B ={x|3‒2x >0}={x|x <32},故A 正确,B 错误;{x|x <32},故C ,D 错误;{x||x <2}解不等式求出集合B ,结合集合交集和并集的定义,可得结论.本题考查的知识点集合的交集和并集运算,难度不大,属于基础题.已知圆:与圆:,则两圆的公切线条数为 C 1x 2+y 2‒2x =0C 2x 2+y 2‒4y +3=0()条 B. 2条 C. 3条 D. 4条解:圆:化为标准形式是,C 1x 2+y 2‒2x =0(x ‒1)2+y 2=1,半径是;(1,0)r 1=1化为标准形式是,+y 2‒4y +3=0x 2+(y ‒2)2=1,半径是;(0,2)r 2=1,5>r 1+r 2求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条.本题考查了两圆的一般方程与位置关系应用问题,是基础题.a=70.3b=0.37c=ln0.3()3.三个数,,大小的顺序是 a>b>c a>c>b b>a>c c>a>bA. B. C. D.【答案】A【解析】解:由指数函数和对数函数的图象可知:70.3>10<0.37<1ln0.3<0,,,所以ln0.3<0.37<70.3故选:A.a=70.3b=0.37c=ln0.3a=70.3由指数函数和对数函数的图象可以判断,,和0和1的大小,从而可以判断,b=0.37c=ln0.3,的大小.本题考查利用插值法比较大小、考查指数函数、对数函数的图象和性质,属基础知识、基本题型的考查.α()4.已知m,n表示两条不同直线,表示平面,下列说法正确的是 m//αn//αm//n m⊥αn⊂αm⊥nA. 若,,则B. 若,,则m⊥αm⊥n n//αm//αm⊥n n⊥αC. 若,,则D. 若,,则【答案】BA.m//αn//α【解析】解:若,,则m,n相交或平行或异面,故A错;m⊥αn⊂αm⊥nB.若,,则,故B正确;m⊥αm⊥n n//αn⊂αC.若,,则或,故C错;m//αm⊥n n//αn⊂αn⊥αD.若,,则或或,故D错.故选:B.A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;关键,注意观察空间的直线与平面的模型.在四面体的四个面中,是直角三角形的至多有 P ‒ABC ()个B. 2个C. 3个D. 4个解:如图,平面ABC ,PA ⊥,故四个面均为直角三角形.作出图形,能够做到PA 与AB ,AC 垂直,BC 与BA ,BP 垂直,得解.此题考查了线面垂直等问题,难度不大.上有且仅有两个点到直线的距离为1,则半径r 的取值范围是(x ‒3)2+(y +5)2=r 24x ‒3y ‒2=0B. C. D. (4,6)[4,6)(4,6][4,6]解:依题意可知圆心坐标为,到直线的距离是5,(3,‒5)距离是1的直线有两个和,3y ‒2=04x ‒3y ‒7=04x ‒3y +3=0距离为到距离是.3y ‒7=0|12+15‒7|16+9=44x ‒3y +3=0|12+15+3|16+9=6相交,那么圆也肯定与相交,4x ‒3y +3=04x ‒3y ‒7=0交点个数多于两个,于是圆上点到的距离等于1的点不止两个,4x ‒3y ‒2=0不相交,4x ‒3y +3=04<r<6所以.故选:A.4x‒3y‒2=0先根据圆的方程求得圆心坐标和圆心到已知直线的距离,进而可推断出与直线距离是1的两个直线4x‒3y+3=04x‒3y‒7=0方程,分别求得圆心到这两直线的距离,分析如果与相交那么圆也肯定与相交交点4x‒3y‒2=04x‒3y+3=0个数多于两个,则到直线的距离等于1的点不止2个,进而推断出圆与不相交;同4x‒3y‒7=04x‒3y‒7=04x‒3y+3=0时如果圆与的距离小于等于1那么圆与和交点个数和至多为1个也不4x‒3y‒7=04x‒3y+3=0符合题意,最后综合可知圆只能与相交,与相离,进而求得半径r的范围...本题主要考查了圆与圆的位置关系和判定考查了学生分析问题和数形结合思想的运用要求学生有严密的逻辑思维能力.f(x)f(‒x)=‒f(x)f(3‒x)=f(x)f(2019)=()7.已知定义在R上的函数满足,,则 ‒3A. B. 0 C. 1 D. 3【答案】Bf(x)f(‒x)=‒f(x)f(0)=0【解析】解:定义在R上的函数满足,可知函数是奇函数,.f(3‒x)=f(x)f(3+x)=f(‒x)=‒f(x),可得,f(x+6)=‒f(x+3)=f(x)所以,函数的周期是6.f(2019)=f(336×6+3)=f(3)=f(3‒3)=f(0)=0.故选:B.判断函数的奇偶性以及函数的周期性,化简求解函数值即可.本题考查抽象函数的应用,函数的奇偶性以及函数的周期性的应用,考查计算能力.()8.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为 22322B. C. D. 2解:由三视图可得直观图,‒ABCD中,最长的棱为PA,PB2+PC2=22+(22)2根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.本题考查了三视图的问题,关键画出物体的直观图,属于基础题.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重..△ABC A(2,0)B(0,4)△心到垂心距离的一半这条直线被后人称之为三角形的欧拉线若的顶点,,且x‒y+2=0()拉线的方程为,则顶点C的坐标为 4,0)(‒4,‒2)(‒2,2)(‒3,0)B. C. D.C(m,n)解:设,由重心坐标公式得,的中点为,直线AB 的斜率,(1,2)k =4‒00‒2=‒2的中垂线方程为,即.y ‒2=12(x ‒1)x ‒2y +3=0,解得.2y +3=0+2=0{x =‒1y =1的外心为.(‒1,1),+(n ‒1)2=32+12=102+n 2+2m ‒2n =8②得:,或,.m =‒4n =0m =0n =4时B ,C 重合,舍去.n =4的坐标是.(‒4,0)的坐标,由重心坐标公式求得重心,代入欧拉线得一方程,求出AB 的垂直平分线,和欧拉线方程联立求得三角形的外心,由外心到两个顶点的距离相等得另一方程,两方程联立求得点C 的坐标.本题考查直线方程的求法,训练了直线方程的点斜式,考查了方程组的解法.设函数的最小值为,则实数a 的取值范围是 f(x)={x 2‒2x +a,x <124x ‒3,x ≥12‒1()B. C. D. ≥‒2a >‒2a ≥‒14a >‒14解:当时,,x ≥12f(x)=4x ‒3≥2‒3=‒1时,取得最小值;‒1时,,f(x)=x 2‒2x +a =(x ‒1)2+a ‒1运用指数函数的单调性和二次函数的单调性,分别求出当时,当时,函数的值域,由题意可得x ≥12x <12式,计算即可得到.本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题.由直线上的点向圆引切线,则切线长的最小值为 y =x +2(x ‒4)2+(y +2)2=1()B. C. D. 30314233解:要使切线长最小,必须直线上的点到圆心的距离最小,此最小值即为圆心y =x +2(4,‒2)由点到直线的距离公式得,m =|4+2+2|2=42由勾股定理求得切线长的最小值为.m 2‒r 2=32‒1=31要使切线长最小,必须直线上的点到圆心的距离最小,此最小值即为圆心到直线的距离y =x +2(4,‒2),由勾股定理可求切线长的最小值.本题考查直线和圆的位置关系,点到直线的距离公式、勾股定理得应用.已知函数与的图象关于y 轴对称,当函数和在区间同时递增或同时递减y =f(x)y =F(x)y =f(x)y =F(x)[a,b]时,把区间叫做函数的“不动区间”若区间为函数的“不动区间”,则实数[a,b]y =f(x).[1,2]f(x)=|2x ‒t|的取值范围是 ()B. C. D. (0,2][12,+∞)[12,2][12,2]∪[4,+∞)为函数的“不动区间”,f(x)=|2x‒t|F(x)=|2‒x‒t|[1,2]和函数在上单调性相同,t y=2‒x‒t和函数的单调性相反,2‒x‒t)≤0[1,2]在上恒成立,+2‒x)+t2≤0[1,2]在上恒成立,≤2x[1,2]在上恒成立,,[1,2]f(x)=|2x‒t|f(x)=|2x‒t|F(x)=|2‒x‒t|[1,2]为函数的“不动区间”,则函数和函数在上单调性相‒t)(2‒x‒t)≤0[1,2]在上恒成立,进而得到答案.本题考查的知识点是函数恒成立问题,指数函数的图象和性质,正确理解不动区间的定义,是解答的关键.二、填空题(本大题共4小题,共20.0分)f(x)x∈(‒∞,0)f(x)=2x3+x2f(2)=已知函数是定义在R上的奇函数,当时,,则______.12∵x∈(‒∞,0)f(x)=2x3+x2解:当时,,=‒12,f(x)是定义在R上的奇函数,12,故答案为:12x∈(‒∞,0)f(x)=2x3+x2f(‒2)由已知中当时,,先求出,进而根据奇函数的性质,可得答案.本题考查的知识点是函数奇偶性的性质,函数求值,难度不大,属于基础题.,,,,+z 2=32该点到原点的距离是.x 2+y 2+z 2=32=62故答案为:.62设出该点的坐标,根据题意列方程组,从而求得该点到原点的距离.本题考查了空间中点的坐标与应用问题,是基础题.的单调递增区间是______.f(x)=ln (x 2‒2x ‒8)(4,+∞)解:由得或,x 2‒2x ‒8>0x <‒2x >4,则是增函数,2x ‒8y =lnt 的单调递增区间,f(x)=ln (x 2‒2x ‒8)等价为求函数的递增区间,t =x 2‒2x ‒8的递增区间为,2x ‒8(4,+∞)的递增区间为,f(x)(4,+∞)故答案为:(4,+∞)求出函数的定义域,结合复合函数单调性的性质进行求解即可.本题主要考查复合函数单调区间的求解,利用换元法结合复合函数单调性之间的关系是解决本题的关键.如图,矩形ABCD 中,,,平面ABCD ,若在BC 上只有一个AB =1BC =a PA ⊥满足,则a 的值等于______.PQ ⊥DQ平面ABCD ,,PQ ⊥DQ 由三垂线定理的逆定理可得.DQ ⊥AQ 在以线段AD 的中点O 为圆心的圆上,上有且仅有一个点Q 满足,与圆O 相切,否则相交就有PQ ⊥DQ ∴BC (两点满足垂直,矛盾.),,,,∴OQ =AB =1∴BC =AD =2故答案为:2.利用三垂线定理的逆定理、直线与圆相切的判定与性质、矩形的性质、平行线的性质即可求出.本题体现转化的数学思想,转化为BC 与以线段AD 的中点O 为圆心的圆相切是关键,属于中档题.三、解答题(本大题共6小题,共70.0分):,:,分别求m 的值,使得和:x +my +6=0l 2(m ‒2)x +3y +2m =0l 1l 2垂直;平行;重合;相交.解:若和垂直,则(1)l 1l 2m ‒2+3m =0若和平行,则(2)l 1l 2m ‒21=3m ≠2m 6若和重合,则3=0±3∴m =‒1(3)l 1l 2m ‒21=3m =2m6若和相交,则由可知且(4)l 1l 2(2)(3)m ≠3m ≠‒1若和垂直,则(1)l 1l 2m ‒2+3m =0本题主要考查了两直线的位置关系的应用,解题的关键是熟练掌握直线的不同位置的条件一般式方程的表示有两直线和,当a 在区间内变化时,求直线与两坐标轴围ax ‒2y ‒2a +4=02x ‒(1‒a 2)y ‒2‒2a 2=0(0,2)成的四边形面积的最小值.解:,∵0<a <2,与坐标轴的交点,.‒2y =2a ‒4A(0,‒a +2)B(2‒4a ,0),与坐标轴的交点,‒a 2)y ‒2‒2a 2=0C(a 2+1,0)).和,都经过定点2y ‒2a +4=02x ‒(1‒a 2)y ‒2‒2a 2=0.E =2OCEA =S △BCE ‒S △OAB =12|BC|⋅y E ‒12|OA|⋅|OB|=12(a 2+4a ‒1)×2‒12(2‒a)×(4a ‒2)=a 2‒,当时取等号.+114≥114a =12与坐标轴围成的四边形面积的最小值为.114利用直线方程,求出相关点的坐标,利用直线系解得根据即可得出.y E =2.S 四边形OCEA =S △BCE ‒S △OAB 本题考查了相交直线、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.如图,在圆锥PO 中,已知,圆O 的直径,C 是弧AB 的中点,PO =2AB =2AC 的中点.求异面直线PD 和BC 所成的角求直线OC 和平面PAC 所成角的正弦值.中,,C 是AB 的中点,D 为AC 的中点,AB =2,=2 ,OD =22,面ABC ,2PO ⊥,tan∠PDO =POOD =2异面直线PD 和BC 所成的角为.arctan 2,D 是AC 的中点,,OC ∴AC ⊥OD 底面ABC ,底面ABC ,,AC ⊂∴AC ⊥PO ,平面POD ,=O ∴AC ⊥平面PAC ,平面平面PAC ,∴POD ⊥POD 中,过O 作于H ,OH ⊥PD 平面PAC ,连结CH ,则CH 是OC 在平面PAC 上的射影,是直线OC 和平面PAC 所成的角.中,,POD OH =PO ⋅ODPO 2+OD 2=2×122+14=23中,.OHC sin∠OCH =OHOC =23和平面PAC 所成角的正弦值为.23由已知得,从而异面直线PD 和BC 所成的角为,由此能求出异面直线PD 和(1)OD//BC ∠PDO POD 中,过O 作于H ,由已知得是直线OC 和平面PAC 所成的角由此能求出直线OH ⊥PD ∠OCH .PAC 所成角的正弦值.本题考查异面直线所成角的大小的求法,考查线面解的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.2,.图象的对称轴方程是.f(x)=x 2‒4x +a +3x =2,即时,,解得:;≤2a ≤1f(x )max =f(a)=a 2‒3a +3=3a =0,即时,a +11≤a ≤2,,f(a +1)=a 2‒a ,‒f(a)=3a ‒3>0,解得:,=a 2‒a =3a =1±132即时,,2a >2f(x)max =f(a +1)=a 2‒a =3,1+132或.0a =1+132由函数在R 上至少有一个零点方程至少有一个实数根(1)y =f(x)⇔f(x)=x 2‒4x +a +3=0⇔解出即可;通过对区间端点与对称轴顶点的横坐标2的大小比较,再利用二次函数的单调性即可得出.[a,a +1]本题考查了二次函数零点与一元二次方程的实数根的关系、一元二次方程的实数根与判别式的关系、二次函数△的单调性、分类讨论等基础知识与基本技能方法.如图,已知正三棱柱的底面边长为2,侧棱长为,点E 在侧棱上,点FABC ‒A 1B 1C 132AA 1在侧棱上,且,.BB 1AE =22BF =2求证:;CF ⊥C 1E 求二面角的大小.E ‒CF ‒C 1解:由已知可得,,(I)CC 1=32CE =C 1F =23,,+(AE ‒BF )2EF =C 1E =6,,+C 1E 2=C 1F 2CE 2+C 1E 2=C 1C 2,又,C 1E C 1E ⊥CE.EF ∩CE =E 平面CEF平面CEF ,故CF ;⊥C 1E 中,由可得,,CEF (I)EF =CF =6CE =23,所以,+CF 2=CE 2CF ⊥EF ,且,所以平面CF ⊥C 1E EF ∩C 1E =E CF ⊥C 1EF平面,故CF C 1EF ⊥C 1F即为二面角的平面角1E ‒CF ‒C 1是等腰直角三角形,所以,即所求二面角的大小为C 1EF ∠EFC 1=45∘E ‒CF ‒C 145∘欲证平面CEF ,根据直线与平面垂直的判定定理可知只需证与平面CEF 内两相交直线垂直,(I)C 1E ⊥C 1E 根据勾股定理可知,,又,满足线面垂直的判定定理,最后根据线面垂直的性质可EF ⊥C 1E C 1E ⊥CE EF ∩CE =E ;E 根据勾股定理可知,根据线面垂直的判定定理可知平面,而平面,则CF ⊥EF CF ⊥C 1EF C 1F ⊂C 1EF CF 即为二面角的平面角,在是等腰直角三角形,求出此角即可.1E ‒CF ‒C 1△C 1EF 本题主要考查了空间直线与平面的位置关系和二面角的求法,同时考查了空间想象能力和推理论证的能力.已知直线l :与x 轴交于A 点,动圆M 与直线l 相切,并且和圆O :相外切.x =m(m <‒2)x 2+y 2=4求动圆圆心M 的轨迹C 的方程.若过原点且倾斜角为的直线与曲线C 交于M 、N 两点,问是否存在以MN 为直径的圆过点A ?若存在,求π3出实数m 的值;若不存在,说明理由.解:设动圆的圆心M 坐标,(1)(x 0,y 0)与直线l 相切,并且和圆O :相外切,x 2+y 2=4,即.=x 20+y 20‒2x 0+2‒m =x 20+y 20.20=(4‒2m)x 0+(2‒m )2动圆圆心M 的轨迹C 的方程为.y 2=(4‒2m)x +(2‒m )2MN 为直径的圆过点A .事实上,过原点倾斜角为的直线方程为.π3y =3x ,得.y =3x (4‒2m)x +(2‒m )23x 2‒(4‒2m)x ‒(2‒m )2=0,,N(x 2,y 2),=4‒2m 3,x 1x 2=‒(2‒m )23.x 2=‒(2‒m )2MN 为直径的圆过点A ,则,⃗AM ⋅⃗AN =0m,y 1)⋅(x 2‒m,y 2),解得:m(x 1+x 2)+m 2+y 1y 2=‒(2‒m )23‒m ⋅4‒2m 3+m 2‒(2‒m )2=m 2+12m ‒163=0,舍去.213m 2=‒6+213()时,存在以MN 为直径的圆过点A .‒213设出动圆圆心坐标,由动圆圆心到切线的距离等于动圆与定圆的圆心距减定圆的半径列式求解动圆圆(1)列式求解m 的值,结合m 的范围说明存在以MN 为直径的圆过点A .⃗AM ⋅⃗AN =0本题考查了轨迹方程的求法,考查了直线与圆锥曲线的关系,训练了利用数量积判断两个向量的垂直关系,考查了学生的计算能力,是有一定难度题目.。

2018-2019学年河南省天一大联考高一下学期期末数学试题(解析版)

2018-2019学年河南省天一大联考高一下学期期末数学试题(解析版)
5.从装有4个红球和3个白球的袋中任取2个球,那么下列事件中,是对立事件的是()
A.至少有1个白球;都是红球B.至少有1个白球;至少有1个红球
C.恰好有1个白球;恰好有2个白球D.至少有1个白球;都是白球
【答案】A
【解析】根据对立事件的定义判断.
【详解】
从装有4个红球和3个白球的袋内任取2个球,在A中,“至少有1个白球”与“都是红球”不能同时发生且必有一个事件会发生,是对立事件.在B中,“至少有1个白球”与“至少有1个红球”可以同时发生,不是互斥事件.在C中,“恰好有1个白球”与“恰好有2个白球”是互斥事件,但不是对立事件.在D中,“至少有1个白球”与“都是白球”不是互斥事件.
【答案】(1)200 (2)224 (3)4户
【解析】(1)因为 ,所以月均用电量在 的频率为 ,即可求得答案;
(2)因为 ,设中位数为 , ,即可求得答案;
(3)月均用电量为 , , , 的频率分别为, 即可求得答案.
【详解】
(1) ,
得 .
月均用电量在 的频率为 .
设样本容量为N,则 ,
.
(2) ,
A. B. C. D.
【答案】D
【解析】由正切二倍角公式求得 ,求值式由诱导公式和正弦的二倍角公式化角为 ,再弦化切后代入 可得结论.
【详解】
, ,
∴原式 .
故选:D.
【点睛】
本题考查正切的二倍角公式,正弦的二倍角公式,考查诱导公式及同角间的三角函数关系.三角函数化简求值时,遇到关于 的齐次式时可能用到弦化切后再求值.
月均用电量的中位数在 内.
设中位数为 ,
,
解得 ,即中位数为 .
(3)月均用电量为 , , , 的频率分别为

河南省洛阳市2018-2019学年高一上学期期末数学试卷(解析版)

河南省洛阳市2018-2019学年高一上学期期末数学试卷(解析版)

河南省洛阳市2018-2019学年高一上学期期末数学测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第I卷1至2页,第Ⅱ卷3至4页.共150分.考试时间120分钟第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A=,B=,则A. A B=B. A BC. A BD. A B=R【答案】A【解析】由得,所以,选A.点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.2.已知圆:与圆:,则两圆的公切线条数为A. 1条B. 2条C. 3条D. 4条【答案】D【解析】【分析】求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条.【详解】圆C1:x2+y2﹣2x=0化为标准形式是(x﹣1)2+y2=1,圆心是C1(1,0),半径是r1=1;圆C2:x2+y2﹣4y+3=0化为标准形式是x2+(y﹣2)2=1,圆心是C2(0,2),半径是r2=1;则|C1C2|r1+r2,∴两圆外离,公切线有4条.故选:D.【点睛】本题考查了两圆的一般方程与位置关系应用问题,是基础题.3.三个数大小的顺序是()A. B. C. D.【答案】A【解析】试题分析:,所以.考点:比较大小.4.已知表示两条不同直线,表示平面,下列说法正确的是()A. 若则B. 若,,则C. 若,,则D. 若,,则【答案】B【解析】试题分析:若则或相交或异面,故A错;若,,,由直线和平面垂直的定义知,,故B正确;若,,则或,故C错;若,,则与位置关系不确定,故D错.考点:空间直线和平面的位置关系.5.在四面体的四个面中,是直角三角形的至多有()A. 0个B. 2个C. 3个D. 4个【答案】D【解析】【分析】作出图形,能够做到P A与AB,AC垂直,BC与BA,BP垂直,得解.【详解】如图,P A⊥平面ABC,CB⊥AB,则CB⊥BP,故四个面均为直角三角形.故选:D.【点睛】本题考查了四面体的结构与特征,考查了线面的垂直关系,属于基础题.6.若圆上有且仅有两个点到直线的距离为1,则半径r的取值范围是()A. B. C. D.【答案】A【解析】【分析】先利用点到直线的距离求出圆心到直线的距离,由题意得,解此不等式求得半径r的取值范围.【详解】由圆的方程可知圆心为,圆心到直线的距离因为圆上有且仅有两个点到直线的距离为1,所以,解得,故选A.【点睛】本题主要考查了直线与圆的位置关系,点到直线的距离,绝对值不等式的解法,属于中档题.7.已知定义在上的函数满足,,则()A. B. C. D.【答案】B【解析】试题分析:,且,又,,由此可得,,是周期为的函数,,,故选B.考点:函数的奇偶性,周期性,对称性,是对函数的基本性质的考察.【易错点晴】函数满足则函数关于中心对称,,则函数关于轴对称,常用结论:若在上的函数满足,则函数以为周期.本题中,利用此结论可得周期为,进而,需要回到本题利用题干条件赋值即可.8.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A. 3B. 2C. 2D. 2【答案】B【解析】由三视图还原原几何体如图,四棱锥A﹣BCDE,其中AE⊥平面BCDE,底面BCDE为正方形,则AD=AB=2,AC=.∴该四棱锥的最长棱的长度为.故选:.9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线.已知的顶点,若其欧拉线方程为,则顶点C的坐标是()A. B.C.D.【答案】A 【解析】 【分析】设C 的坐标,由重心坐标公式求重心,代入欧拉线得方程,求出AB 的垂直平分线,联立欧拉线方程得三角形外心,外心到三角形两顶点距离相等可得另一方程,两方程联立求得C 点的坐标. 【详解】设C(m ,n),由重心坐标公式得重心为,代入欧拉线方程得: ① AB 的中点为,, 所以AB 的中垂线方程为 联立,解得所以三角形ABC 的外心为, 则,化简得: ② 联立①②得:或,当时,B,C 重合,舍去,所以顶点C 的坐标是故选A.【点睛】本题主要考查了直线方程的各种形式,重心坐标公式,属于中档题.10.设函数的最小值为-1,则实数的取值范围是( )A. B.C.D.【答案】C 【解析】试题分析:当时,为增函数,最小值为,故当时,,分离参数得,函数开口向下,且对称轴为,故在递增,,即.考点:分段函数的最值.【思路点晴】本题主要考查分段函数值域问题,由于函数的最小值为,所以要在两段函数图象都要讨论最小值.首先考虑没有参数的一段,当时,为增函数,最小值为.由于这一段函数值域已经包括了最小值,故当时,值域应该不小于,分离常数后利用二次函数图象与性质可求得参数的取值范围.11.过直线上的点向圆引切线,则切线长的最小值为()A. B. C. D.【答案】C【解析】【分析】要使切线长最小,则直线上的点到圆心的距离最小,此最小值即为圆心到直线的距离,求出后再利用勾股定理求得切线长的最小值.【详解】要使切线长最小,必须直线上的点到圆心的距离最小,此最小值为圆心到直线的距离d,由点到直线的距离可得根据勾股定理知切线长的最小值为,故选C.【点睛】本题主要考查了直线与圆的位置关系,点到直线的距离公式,勾股定理,属于中档题.12.已知函数与的图象关于轴对称,当函数和在区间同时递增或同时递减时,把区间叫做函数的“不动区间”,若区间为函数的“不动区间”,则实数的取值范围是A. B. C. D.【答案】C【解析】试题分析:易知与在上单调性相同,当两个函数单调递增时,与的图象如图1所示,易知,解得;当两个函数单调递减时,的图象如图2所示,此时关于轴对称的函数不可能在上为减函数.综上所述,,故选C.考点:1、新定义;2、函数的图象.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知函数是定义在上的奇函数,当时,,则__________. 【答案】12【解析】函数是定义在上的奇函数,,则,.14.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________. 【答案】【解析】【分析】设出点的坐标,根据题意列出方程组,从而求得该点到原点的距离.【详解】设该点的坐标因为点到三个坐标轴的距离都是1所以,,,所以故该点到原点的距离为,故填.【点睛】本题主要考查了空间中点的坐标与应用,空间两点间的距离公式,属于中档题. 15.函数的单调递增区间是_________。

河南省平顶山市、许昌市、汝州九校联盟2018-2019学年高一上学期第三次联考数学试题

河南省平顶山市、许昌市、汝州九校联盟2018-2019学年高一上学期第三次联考数学试题

河南省平顶山市、许昌市、汝州九校联盟2018-2019学年高一上学期第三次联考数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合A={x∈N|x<4},B={x|x≥−1},则A∩B=()A. {x|0≤x<4}B. {1,2,3}C. {0,1,2,3,4}D. {0,1,2,3}【答案】D【解析】【分析】可解出集合A,然后进行交集的运算即可.考查描述法、列举法的定义,以及交集的运算.【解答】解:A={0,1,2,3};∴A∩B={0,1,2,3}.故选D.2.函数f(x)=lgx+√3−x的定义域为()A. [−3,0)B. [−3,0]C. [0,3]D. (0,3]【答案】D【解析】解:由题意得:{3−x≥0x>0,解得:0<x≤3,故选:D.根据对数函数以及二次根式的性质求出函数的定义域即可.本题考查了求函数的定义域问题,考查对数函数以及二次根式的性质,是一道基础题.3.若函数f(x)={log12(x+1),x∈N∗3x,x∉N∗,则f(f(0))=()A. 0B. −1C. 13D. 1【答案】B【解析】解:根据题意,函数f(x)={log12(x+1),x∈N∗3x,x∉N∗,则f(0)=30=1,则f(f(0))=f(1)=log122=−1;故选:B.根据题意,由函数的解析式可得f(0)=1,结合解析式可得f(f(0))=f(1),计算可得答案.第2页,共11页本题考查分段函数的函数值的计算,关键是理解分段函数的解析式的形式,属于基础题.4. 已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A. 若m//α,n//α,则m//nB. 若α//β,α//γ,则β//γC. 若m ⊂α,n ⊂β,m//n ,则α//βD. 若m ⊂α,n ⊂β,α//β,则m//n【答案】B【解析】解:由m ,n 是两条不同的直线,α,β,γ是三个不同的平面,知: 在A 中,若m//α,n//α,则m 与n 相交、平行或异面,故A 错误;在B 中,若α//β,α//γ,则由平面与平面平行的判定及其性质得β//γ,故B 正确; 在C 中,若m ⊂α,n ⊂β,m//n ,则α与β相交或平行,故C 错误; 在D 中,若m ⊂α,n ⊂β,α//β,则m 与n 平行或异面,故D 错误. 故选:B .由平面与平面平行的判定及其性质能求出正确结果.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.5. 下列函数中与函数y =2x 值域相同的是( )A. y =√x 2B. y =log 2(x +1)C. y =x −2D. y =x 2−3x +9【答案】C【解析】解:y =2x 的值域为(0,+∞); A .y =√x 2的值域为[0,+∞),∴该选项错误; B .y =log 2(x +1)的值域为R ,∴该选项错误; C .y =x −2的值域为(0,+∞),∴该选项正确; D .y =x 2−3x +9=(x −32)2+274≥274,∴该函数的值域为[274,+∞),∴该选项错误. 故选:C .可以看出y =2x 的值域为(0,+∞),而选项A 的函数的值域为[0,+∞),B 的函数的值域都是R ,配方可求出选项D 的函数的值域为[274,+∞),从而判断出A ,B ,D 都错误,只能选C .考查函数值域的概念及求法,指数函数和对数函数的值域,配方求二次函数值域的方法.6. 函数f(x)=4−x −x2的零点所在区间是( )A. (−1,0)B. (0,14)C. (14,12)D. (12,1)【答案】D【解析】解:易知函数f(x)为减函数,又f(12)=4−12−14=12−14>0,f(1)=14−12<0,根据零点存在性原理,可知函数f(x)=4−x −x2的零点所在的区间是(12,1). 故选:D .利用函数的零点判断定理,通过f(12)f(1)<0,推出结果即可. 本题考查函数的零点的判断定理的应用,考查转化思想以及计算能力.7. 如图所示为一个简单几何体的三视图,则其对应的几何体是()A.B.C.D.【答案】A【解析】解:对于A ,该几何体的三视图恰好与已知图形相符,故A 符合题意; 对于B ,该几何体的正视图的矩形中,对角线应该是虚线,故不符合题意;对于C ,该几何体的正视图的矩形中,对角线应该是从左上到右下的方向,故不符合题意;对于D ,该几何体的侧视图的矩形中,对角线应该是虚线,不符合题意 故选:A .根据题意,B 、D 两项的视图中都应该有对角线为虚线的矩形,故不符合题意;C 项的正视图矩形的对角线方向不符合,也不符合题意,而A 项符合题意,得到本题答案. 本题给出三视图,要求我们将其还原为实物图,着重考查了对三视图的理解与认识,考查了空间想象能力,属于基础题.8. 如图,已知函数f(x)的图象关于坐标原点对称,则函数f(x)的解析式可能是( )第4页,共11页A. f(x)=x 2ln|x|B. f(x)=xlnxC. f(x)=ln|x|xD. f(x)=e |x|x【答案】C【解析】解:∵f(x)的图象关于原点对称; ∴函数f(x)是奇函数;f(x)=x 2ln|x|为偶函数,f(x)=xlnx 是非奇非偶函数,∴A ,B 都错误; ∵x >0时,f(x)=e |x|x>0,∴D 错误.故选:C .据题意可知f(x)是奇函数,从而可以排除A ,B ;当x >0时,f(x)=e |x|x>0,从而排除选项D ,只能选C .考查奇函数、偶函数和非奇非偶函数的定义,奇函数图象的对称性,以及指数函数的值域.9. 已知a =ln0.5,b =50.1,c =0.60.2,则a ,b ,c 的大小关系是( )A. b >c >aB. a >b >cC. b >a >cD. c >b >a【答案】A【解析】解:∵a =ln0.5<0,b =50.1>1,0<c =0.60.2<1, ∴a <c <b . 故选:A .直接利用有理指数幂及对数的运算性质分别比较a ,b ,c 与0和1的大小得答案. 本题考查对数值的大小比较,考查有理指数幂及对数的运算性质,是基础题.10. 已知偶函数f(x)在区间[0,+∞)上单调递减,则满足f(lnx −1)>f(−1)的x 的取值范围是( )A. (1,e 2)B. (0,e 2)C. (1e ,e)D. (0,1)∪(1,e 2)【答案】A【解析】解:根据题意,偶函数f(x)在区间[0,+∞)上单调递减,则f(lnx −1)>f(−1)⇒f(|lnx −1|)>f(1)⇒|lnx −1|<1⇒−1<lnx −1<1, 解可得:1<x <e 2, 则x 的取值范围是(1,e 2). 故选:A .根据题意,由函数的奇偶性与单调性可得原不等式可以转化为|lnx −1|<1,解可得x 的取值范围,即可得答案.本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,关键是得到关于x 的不等式.11. 如图,四棱台ABCD −A′B′C′D′的底面为正方形,M 为CC′的中点,点N 在线段AB 上,AB =4BN.若MN//平面ADD′A′,则此棱台上下底面边长的比值为( )A. 15 B. 14 C. 13 D. 12【答案】D【解析】解:设E 为CD 的中点,G 为EC 的中点, 连接MG ,NG ,C′E ,则NG//AD , 则平面MNG//平面ADD′A′,又平面DCC′D′分别交平面MNG 和平面ADD′A′于直线MG ,DD′,则MG//DD′.因为E 位CD 的中点,G 为EC 的中点, M 为CC′的中点,所以DD′//C′E//MG .所以DEC′D′为平行四边形,棱台上下底面边长的比值为12.故选:D .设E 为CD 的中点,G 为EC 的中点,连接MG ,NG ,C′E ,则NG//AD ,平面MNG//平面ADD′A′,推导出MG//DD′.从而E 位CD 的中点,G 为EC 的中点,M 为CC′的中点,进而DD′//C′E//MG.由此能求出棱台上下底面边长的比值.本题考查棱台上、下比值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.12. 已知函数f(x)=log 13(x 2−ax −a)对任意两个不相等的实数x 1,x 2∈(−∞,−12),都满足不等式f(x 2)−f(x 1)x 2−x 1>0,则实数a 的取值范围是( )A. [−1,+∞)B. (−∞,−1]C. [−1,12]D. [−1,12)【答案】C第6页,共11页【解析】解:由题意可知u =x 2−ax −a 在(−∞,−12)上单调递减, 且u =x 2−ax −a >0在(−∞,−12)上恒成立,所以{a2≥−12(−12)2−(−12)a −a ≥0, 解得−1≤a ≤12. 故选:C .利用复合函数的单调性以及二次函数的单调性,列出不等式组,求解即可. 本题考查复合函数的单调性以及分析问题解决问题的能力.二、填空题(本大题共4小题,共20.0分)13. 设集合U ={−2,12,2,3},A ={x|2x 2−5x +2=0},B ={3a ,ba },若∁U A =B ,b =______. 【答案】−2【解析】解:A ={x|2x 2−5x +2=0}={12,2}, 因为集合U ={−2,12,2,3}, 故B ={−2,3}, 则3a =3,ba =−2, 所以b =−2. 故答案为:−2先求出集合A ,再根据补集的定义求出集合B ,即可求出b 的值. 本题考查了集合的化简与运算问题,是中档题.14. 已知幂函数y =(|m|−2)x m 在(0,+∞)上是减函数,则m =______. 【答案】−3【解析】解:由题意知,|m|−2=1,解得m =−3或m =3; 当m =3时,y =x 3在(0,+∞)上是增函数,不满足题意; 当m =−3时,y =x −3在(0,+∞)上是减函数,所以m =−3. 故答案为:−3.根据幂函数的定义与性质,即可求出m 的值.本题考查了幂函数的定义与性质的应用问题,是基础题.15. 若函数f(x)=|3x −a|在[1,+∞)上单调递增,则a 的取值范围为______. 【答案】(−∞,3]【解析】解:根据题意,分2种情况讨论:①,当a ≤0时,f(x)=3x −a ,f(x)在R 上单调递增,成立;②,当a >0时,函数f(x)={−3x +a,x <log3a3x −a,x≥log 3a,函数f(x)的单调递增区间为[log 3a,+∞),所以log 3a ≤1,则0<a ≤3; 综合可得:a ≤3;即a 的取值范围为:(−∞,3]; 故答案为:(−∞,3].根据题意,分2种情况讨论:①,当a ≤0时,f(x)=3x −a ,②,当a >0时,函数f(x)={−3x +a,x <log3a3x −a,x≥log 3a,分析可得f(x)的单调递增区间,求出a 的范围,综合即可得答案.本题考查分段函数的单调性,涉及参数的讨论,注意讨论a 的取值范围,属于基础题.16. 在长方体ABCD −A 1B 1C 1D 1中,AB =2,BC =√5,点M 在棱CC 1上,当MD 1+MA取得最小值时,MD 1⊥MA ,则棱CC 1的长为______. 【答案】5√63【解析】解:把长方形DCC 1D 1展开到长方形ACC 1A 1所在平面,如图所示,当A ,M ,D 1在同一条直线上时,MD 1+MA 取得最小值, 此时MA MD 1=ACC1D 1=32,令MA =3x ,MA =3x ,MD 1=2x ,CC 1=ℎ,则{(5x)2=ℎ2+52(3x)2+(2x)2=ℎ2+5,解得ℎ=5√63. 故答案为:5√63. 把长方形DCC 1D 1展开到长方形ACC 1A 1所在平面,当A ,M ,D 1在同一条直线上时,MD 1+MA 取得最小值,由此能求出结果.本题考查棱长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.三、解答题(本大题共6小题)17. 如图,在等腰梯形ABCD 中,AB//CD ,BC ⊥CD ,CD =2AB =2√3,∠ADC =45∘,梯形绕着直线AB 旋转一周. (1)求所形成的封闭几何体的表面积; (2)求所形成的封闭几何体的体积.【答案】解:依题意旋转后形成的几何体可以看作一个圆柱中挖去了一个圆锥后形成的,(1)其表面积S=圆柱侧面积+圆锥侧面积+圆柱底面积=12π+3√2π+3π=(15+3√2)π.(2)其体积V=圆柱体积−圆锥体积=6√3π−√3π=5√3π.【解析】(1)画出几何体的旋转后的图形,然后求所形成的封闭几何体的表面积;(2)利用几何体的旋转求所形成的封闭几何体的体积.本题考查三视图求解几何体的体积以及表面积,考查空间想象能力以及计算能力.(4−x)},B={y|y=−x2+6x−6,x∈A},C={x|m+ 18.已知集合A={x|y=log121≤x≤2m−1}.(1)求A∩∁R B;(2)若A∪C=A,求m的取值范围.【答案】解:(1)A=(−∞,4);y=−x2+6x−6=−(x−3)2+3,且x<4;∴y≤3;∴B=(−∞,3];∴∁R B=(3,+∞);∴A∩∁R B=(3,4);(2)∵A∪C=A;∴C⊆A;∴①C=⌀时,m+1>2m−1;∴m<2;m≥2;②C≠⌀时,{2m−1<4解得2≤m<5;2;综上,m<52).∴m的取值范围为(−∞,52【解析】(1)可求出A=(−∞,4),B=(−∞,3],然后进行交集、补集的运算即可;(2)根据A∪C=A即可得出C⊆A,从而可讨论C是否为空集:C=⌀时,m+1>2m−1;m≥2,解出m的范围即可.C≠⌀时,{2m−1<4考查描述法的定义,配方求二次函数值域的方法,以及交集、补集的运算,并集和子集第8页,共11页的定义.19.如图,在正方体ABCD−A1B1C1D1中:(1)证明:平面A1BD//平面D1B1C;(2)求异面直线A1B与B1D1所成角的大小.【答案】证明:(1)因为A1D//B1C,A1D⊂平面A1BD,B1C⊄平面A1BD,所以B1C//平面A1BD.因为BD//B1D1,BD⊂平面A1BD,B1D1⊄平面A1BD,所以B1D1//平面A1BD.又B1D1∩B1C=B1,所以平面A1BD//平面D1B1C.解:(2)因为BD//B1D1,所以∠A1BD就是异面直线A1B与B1D1所成角或其补角.又因为A1B=BD=A1D,所以∠A1BD=60∘,所以异面直线A1B与B1D1所成角的大小为60∘.【解析】(1)由A1D//B1C,得到B1C//平面A1BD,由BD//B1D1,得到B1D1//平面A1BD,由此能证明平面A1BD//平面D1B1C.(2)由BD//B1D1,得到∠A1BD就是异面直线A1B与B1D1所成角或其补角,由此能求出异面直线A1B与B1D1所成角的大小.本题考查面面平行的证明,考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.20.二次函数f(x)满足f(x)=f(−x)+12x+f(0)−6,且f(−1)=1.(1)求f(x)的解析式;(2)当x∈[−3,0]时,不等式f(2x)>4x+m恒成立,求m的取值范围.【答案】解:(1)设f(x)=ax2+bx+c,则f(−x)=ax2−bx+c,f(0)=c.所以ax2+bx+c=ax2−bx+c+12x+c−6,即2bx=12x+c−6.2b=12得b=6,c=6.所以{c−6=0又f(1)=a−b+c=1,得a=1,所以f(x)=x2+6x+6.(2)由(1)及f(2x)>4x+m,得4x2+8x+6>m,令g(x)=4x2+8x+6,x∈[−3,0],所以x=−1时,g(x)min=g(−1)=2,从而要使不等式f(2x)>4x+m恒成立,则m<2.【解析】(1)设出二次函数,利用已知条件求解二次函数的解析式即可.(2)转化不等式的表达式,求出函数的最小值,即可求解m的范围.本题考查函数恒成立问题的应用,二次函数的简单性质的应用,考查计算能力.21.如图所示,四棱锥S−ABCD中,SA⊥底面ABCD,∠ABC=90∘,AB=√3,BC=1,AD=2√3,∠ACD=60∘,E为CD的中点.(1)求证:BC//平面SAE;(2)求三棱锥S−BCE与四棱锥S−BEDA的体积比.【答案】(1)证明:因为AB=√3,BC=1,∠ABC=90∘,所以AC=2,∠BCA=60∘,在△ACD中,AD=2√3,AC=2,∠ACD=60∘,由余弦定理可得:AD2=AC2+CD2−2AC⋅CDcos∠ACD,解得:CD=4,所以AC2+AD2=CD2,所以△ACD是直角三角形,又E为CD的中点,所以AE=12CD=CE,又∠ACD=60∘,所以△ACE为等边三角形,所以∠CAE=60∘=∠BCA,所以BC//AE,又AE⊂平面SAE,BC⊄平面SAE,所以BC//平面SAE.(2)解:因为SA⊥平面ABCD,所以SA同为三棱锥S−BCE与四棱锥S−ABED的高.由(1)可得∠BCE=120∘,CE=12CD=2,所以S△BCE=12BC×CE×sin∠BCE=12×1×2×√32=√32.S四边形ABED =S四边形ABCD−S△BCE=S△ABC+S△ACD−S△BCD=12×√3×1+12×2×2√3−√32=2√3.所以S△BCE:S四边形ABED =√32:2√3=1:4故:三棱锥S−BCE与四棱锥S−BEDA的体积比为1:4.【解析】(1)通过余弦定理以及勾股定理证明BC//AE,利用直线与平面平行的判定定理证明BC//平面SAE.(2)通过S四边形ABED=S四边形ABCD−S△BCE=S△ABC+S△ACD−S△BCD转化求解体积的比第10页,共11页例即可.本题考查直线与平面平行的判定定理的应用,几何体的体积的求法,考查转化思想以及计算能力.22.已知函数f(x)=log2(x+2),g(x)=−x2−2x+a.(1)解不等式f(x)<4;(2)设函数ℎ(x)=f(x)−g(x),若ℎ(x)在[2,6]上有零点,求a的取值范围.【答案】解:(1)因为f(x)<4,所以log2(x+2)<4,即0<x+2<16,解得−2<x<14.故不等式f(x)<4的解集为(−2,14).(2)ℎ(x)在[2,6]上有零点等价于ℎ(x)=0在[2,6]上有解,即log2(x+2)+x2+2x=a在[2,6]上有解,设F(x)=log2(x+2)+x2+2x(2≤x≤6).∵y=log2(x+2)与y=x2+2x在[2,6]上均为增函数,∴F(x)在[2,6]上为增函数,则F(x)min=log2(2+2)+22+2×2=10,F(x)max=log2(6+2)+62+2×6=51,从而10≤F(x)≤51,故a的取值范围为[10,51].【解析】(1)直接利用对数函数的性质,求解不等式即可.(2)ℎ(x)在[2,6]上有零点等价于ℎ(x)=0在[2,6]上有解,设F(x)=log2(x+2)+x2+2x(2≤x≤6).求出函数的最值,推出结果.本题考查函数与方程的应用,函数的单调性以及函数的最值的求法,考查计算能力.。

四川省宜宾市2018-2019学年高一上学期期末考试数学试题(解析版)

四川省宜宾市2018-2019学年高一上学期期末考试数学试题(解析版)

四川省宜宾市2018-2019学年高一上学期期末考试数学试题一、选择题。

1.已知集合,,则A. B.C. D.【答案】C【解析】【分析】求解一元一次不等式化简集合B,然后直接利用交集运算得答案.【详解】,.故选:C.【点睛】本题考查了交集及其运算,考查了一元一次不等式的解法,是基础题.2.下列函数中与表示同一函数的是A. B. C. D.【答案】B【解析】【分析】逐一检验各个选项中的函数与已知的函数是否具有相同的定义域、值域、对应关系,只有这三者完全相同时,两个函数才是同一个函数.【详解】A项中的函数与已知函数的值域不同,所以不是同一个函数;B项中的函数与已知函数具有相同的定义域、值域和对应关系,所以是同一个函数;C项中的函数与已知函数的定义域不同,所以不是同一个函数;D项中的函数与已知函数的定义域不同,所以不是同一函数;故选B.【点睛】该题考查的是有关同一函数的判断问题,注意必须保证三要素完全相同才是同一函数,注意对概念的正确理解.3.已知角的顶点在坐标原点,始边与x轴的非负半轴重合,为其终边上一点,则( )A. B. C. D.【答案】A【解析】【分析】首先根据题中所给的角的终边上的一点P的坐标,利用三角函数的定义,求得其余弦值,用诱导公式将式子进行化简,求得最后的结果.【详解】因为在角的终边上,所以,从而求得,所以,而,故选A.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有三角函数的定义,诱导公式,正确使用公式是解题的关键.4.函数的定义域是A. B. C. D.【答案】B【解析】试题分析:由得:,所以函数的定义域为(。

考点:函数的定义域;对数不等式的解法。

点评:求函数的定义域需要从以下几个方面入手:(1)分母不为零;(2)偶次根式的被开方数非负;(3)对数中的真数部分大于0;(4)指数、对数的底数大于0,且不等于1 ;(5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等;( 6 )中。

河南省洛阳市2018-2019学年高一上学期期末考试数学试卷-

河南省洛阳市2018-2019学年高一上学期期末考试数学试卷-

河南省洛阳市2018-2019学年高一上学期期末数学测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第I卷1至2页,第Ⅱ卷3至4页.共150分.考试时间120分钟第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A=,B=,则A. A B=B. A BC. A BD. A B=R【答案】A【解析】由得,所以,选A.点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.2.已知圆:与圆:,则两圆的公切线条数为A. 1条B. 2条C. 3条D. 4条【答案】D【解析】【分析】求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条.【详解】圆C1:x2+y2﹣2x=0化为标准形式是(x﹣1)2+y2=1,圆心是C1(1,0),半径是r1=1;圆C2:x2+y2﹣4y+3=0化为标准形式是x2+(y﹣2)2=1,圆心是C2(0,2),半径是r2=1;则|C1C2|r1+r2,∴两圆外离,公切线有4条.故选:D.【点睛】本题考查了两圆的一般方程与位置关系应用问题,是基础题.3.三个数大小的顺序是()A. B. C. D.【答案】A【解析】试题分析:,所以.考点:比较大小.4.已知表示两条不同直线,表示平面,下列说法正确的是()A. 若则B. 若,,则C. 若,,则D. 若,,则【答案】B【解析】试题分析:若则或相交或异面,故A错;若,,,由直线和平面垂直的定义知,,故B正确;若,,则或,故C错;若,,则与位置关系不确定,故D错.考点:空间直线和平面的位置关系.5.在四面体的四个面中,是直角三角形的至多有()A. 0个B. 2个C. 3个D. 4个【答案】D【解析】【分析】作出图形,能够做到PA与AB,AC垂直,BC与BA,BP垂直,得解.【详解】如图,PA⊥平面ABC,CB⊥AB,则CB⊥BP,故四个面均为直角三角形.故选:D.【点睛】本题考查了四面体的结构与特征,考查了线面的垂直关系,属于基础题.6.若圆上有且仅有两个点到直线的距离为1,则半径r的取值范围是()A. B. C. D.【答案】A【解析】【分析】先利用点到直线的距离求出圆心到直线的距离,由题意得,解此不等式求得半径r的取值范围.【详解】由圆的方程可知圆心为,圆心到直线的距离因为圆上有且仅有两个点到直线的距离为1,所以,解得,故选A.【点睛】本题主要考查了直线与圆的位置关系,点到直线的距离,绝对值不等式的解法,属于中档题.7.已知定义在上的函数满足,,则( )A. B. C. D.【答案】B【解析】试题分析:,且,又,,由此可得,,是周期为的函数,,,故选B.考点:函数的奇偶性,周期性,对称性,是对函数的基本性质的考察.【易错点晴】函数满足则函数关于中心对称,,则函数关于轴对称,常用结论:若在上的函数满足,则函数以为周期.本题中,利用此结论可得周期为,进而,需要回到本题利用题干条件赋值即可.8.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A. 3B. 2C. 2D. 2【答案】B【解析】由三视图还原原几何体如图,四棱锥A﹣BCDE,其中AE⊥平面BCDE,底面BCDE为正方形,则AD=AB=2,AC=.∴该四棱锥的最长棱的长度为.故选:.9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线.已知的顶点,若其欧拉线方程为,则顶点C的坐标是()A. B.C. D.【答案】A【解析】【分析】设C的坐标,由重心坐标公式求重心,代入欧拉线得方程,求出AB的垂直平分线,联立欧拉线方程得三角形外心,外心到三角形两顶点距离相等可得另一方程,两方程联立求得C点的坐标.【详解】设C(m,n),由重心坐标公式得重心为,代入欧拉线方程得:①AB的中点为,,所以AB的中垂线方程为联立,解得所以三角形ABC的外心为,则,化简得:②联立①②得:或,当时,B,C重合,舍去,所以顶点C的坐标是故选A.【点睛】本题主要考查了直线方程的各种形式,重心坐标公式,属于中档题.10.设函数的最小值为-1,则实数的取值范围是()A. B.C. D.【答案】C【解析】试题分析:当时,为增函数,最小值为,故当时,,分离参数得,函数开口向下,且对称轴为,故在递增,,即.考点:分段函数的最值.【思路点晴】本题主要考查分段函数值域问题,由于函数的最小值为,所以要在两段函数图象都要讨论最小值.首先考虑没有参数的一段,当时,为增函数,最小值为.由于这一段函数值域已经包括了最小值,故当时,值域应该不小于,分离常数后利用二次函数图象与性质可求得参数的取值范围.11.过直线上的点向圆引切线,则切线长的最小值为()A. B. C. D.【答案】C【解析】【分析】要使切线长最小,则直线上的点到圆心的距离最小,此最小值即为圆心到直线的距离,求出后再利用勾股定理求得切线长的最小值.【详解】要使切线长最小,必须直线上的点到圆心的距离最小,此最小值为圆心到直线的距离d,由点到直线的距离可得根据勾股定理知切线长的最小值为,故选C.【点睛】本题主要考查了直线与圆的位置关系,点到直线的距离公式,勾股定理,属于中档题.12.已知函数与的图象关于轴对称,当函数和在区间同时递增或同时递减时,把区间叫做函数的“不动区间”,若区间为函数的“不动区间”,则实数的取值范围是A. B. C. D.【答案】C【解析】试题分析:易知与在上单调性相同,当两个函数单调递增时,与的图象如图1所示,易知,解得;当两个函数单调递减时,的图象如图2所示,此时关于轴对称的函数不可能在上为减函数.综上所述,,故选C.考点:1、新定义;2、函数的图象.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知函数是定义在上的奇函数,当时,,则__________. 【答案】12【解析】函数是定义在上的奇函数,,则,.14.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________. 【答案】【解析】【分析】设出点的坐标,根据题意列出方程组,从而求得该点到原点的距离.【详解】设该点的坐标因为点到三个坐标轴的距离都是1所以,,,所以故该点到原点的距离为,故填.【点睛】本题主要考查了空间中点的坐标与应用,空间两点间的距离公式,属于中档题. 15.函数的单调递增区间是_________。

2018-2019学年河南省洛阳市高一上学期期末考试数学试题

2018-2019学年河南省洛阳市高一上学期期末考试数学试题

河南省洛阳市2018-2019学年高一上学期期末数学测试★祝考试顺利★注意事项:1、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

3、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

5、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题(本大题共12小题,共60.0分)1.已知集合A=,B=,则A. A B=B. A BC. A BD. A B=R【答案】A【解析】由得,所以,选A.点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.2.已知圆:与圆:,则两圆的公切线条数为A. 1条B. 2条C. 3条D. 4条【答案】D【解析】【分析】求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条.【详解】圆C1:x2+y2﹣2x=0化为标准形式是(x﹣1)2+y2=1,圆心是C1(1,0),半径是r1=1;圆C2:x2+y2﹣4y+3=0化为标准形式是x2+(y﹣2)2=1,圆心是C2(0,2),半径是r2=1;则|C1C2|r1+r2,∴两圆外离,公切线有4条.故选:D.【点睛】本题考查了两圆的一般方程与位置关系应用问题,是基础题.3.三个数大小的顺序是()A. B. C. D.【答案】A【解析】试题分析:,所以.考点:比较大小.4.已知m,n表示两条不同直线,表示平面,下列说法正确的是()A. 若则B. 若,,则C. 若,,则D. 若,,则【答案】B【解析】试题分析:若A.若则与可能平行、相交、异面,故A错误; B.若,,则,显然成立;C.若,,则或故C错误;D.若,,则或或与相交.考点:1.命题的真假;2.线面之间的位置关系.视频5.在四面体的四个面中,是直角三角形的至多有A. 0个B. 2个C. 3个D. 4个【答案】D【解析】【分析】作出图形,能够做到PA与AB,AC垂直,BC与BA,BP垂直,得解.【详解】如图,PA⊥平面ABC,CB⊥AB,则CB⊥BP,故四个面均为直角三角形.故选:D.【点睛】本题考查了四面体的结构与特征,考查了线面的垂直关系,属于基础题.6.若圆上有且只有两个点到直线的距离等于1,则半径的取值范围是()A. (4,6)B.C.D.【答案】A【解析】因为圆心(3,-5)到直线4x-3y-2=0的距离为5,所以要使圆上有且只有两个点到直线的距离等于1,r须满足.7.已知定义在上的函数满足,,则( )A. B. C. D.【答案】B【解析】试题分析:,且,又,,由此可得,,是周期为的函数,,,故选B.考点:函数的奇偶性,周期性,对称性,是对函数的基本性质的考察.【易错点晴】函数满足则函数关于中心对称,,则函数关于轴对称,常用结论:若在上的函数满足,则函数以为周期.本题中,利用此结论可得周期为,进而,需要回到本题利用题干条件赋值即可.8.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A. 3B. 2C. 2D. 2【答案】B【解析】由三视图还原原几何体如图,四棱锥A﹣BCDE,其中AE⊥平面BCDE,底面BCDE为正方形,则AD=AB=2,AC=.∴该四棱锥的最长棱的长度为.故选:.9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半这条直线被后人称之为三角形的欧拉线若的顶点,,且的欧拉线的方程为,则顶点C的坐标为A. B. C. D.【答案】A【解析】【分析】设出点C的坐标,由重心坐标公式求得重心,代入欧拉线得一方程,求出AB的垂直平分线,和欧拉线方程联立求得三角形的外心,由外心到两个顶点的距离相等得另一方程,两方程联立求得点C的坐标.【详解】设C(m,n),由重心坐标公式得,三角形ABC的重心为(,),代入欧拉线方程得:2=0,整理得:m﹣n+4=0 ①AB的中点为(1,2),直线AB的斜率k2,AB的中垂线方程为y﹣2(x﹣1),即x﹣2y+3=0.联立,解得.∴△ABC的外心为(﹣1,1).则(m+1)2+(n﹣1)2=32+12=10,整理得:m2+n2+2m﹣2n=8 ②联立①②得:m=﹣4,n=0或m=0,n=4.当m=0,n=4时B,C重合,舍去.∴顶点C的坐标是(﹣4,0).故选:A.【点睛】本题考查直线方程的求法,训练了直线方程的点斜式,考查了方程组的解法.10.设函数的最小值为-1,则实数的取值范围是()A. B.C. D.【答案】C【解析】试题分析:当时,为增函数,最小值为,故当时,,分离参数得,函数开口向下,且对称轴为,故在递增,,即.考点:分段函数的最值.【思路点晴】本题主要考查分段函数值域问题,由于函数的最小值为,所以要在两段函数图象都要讨论最小值.首先考虑没有参数的一段,当时,为增函数,最小值为.由于这一段函数值域已经包括了最小值,故当时,值域应该不小于,分离常数后利用二次函数图象与性质可求得参数的取值范围.11.由直线上的点向圆引切线,则切线长的最小值为()A. B. C. D.【答案】B【解析】过圆心向已知直线引垂线,垂足为M,过点M做圆的切线,切线长最短,先求圆心到直线的距离,圆的半径为1,则切线长的最小值为,选B.12.已知函数与的图象关于轴对称,当函数和在区间同时递增或同时递减时,把区间叫做函数的“不动区间”,若区间为函数的“不动区间”,则实数的取值范围是A. B. C. D.【答案】C【解析】试题分析:易知与在上单调性相同,当两个函数单调递增时,与的图象如图1所示,易知,解得;当两个函数单调递减时,的图象如图2所示,此时关于轴对称的函数不可能在上为减函数.综上所述,,故选C.考点:1、新定义;2、函数的图象.二、填空题(本大题共4小题,共20.0分)13.已知函数是定义在上的奇函数,当时,,则__________. 【答案】12【解析】函数是定义在上的奇函数,,则,.14.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是______.【答案】【答案】【解析】【分析】设出该点的坐标,根据题意列方程组,从而求得该点到原点的距离.【详解】设该点的坐标是(x,y,z),∵该点到三个坐标轴的距离都是1,∴x2+y2=1,x2+z2=1,y2+z2=1,∴x2+y2+z2,∴该点到原点的距离是.故答案为:.【点睛】本题考查了空间中点的坐标与应用问题,是基础题.15.函数的单调递增区间是______.【答案】(4,+∞)【解析】由得,,令,则,时,为减函数;时,为增函数;为增函数,故函数的单调区间是,答案为.【方法点睛】本题主要考查对数函数的性质、复合函数的单调性,属于中档题.复合函数的单调性的判断可以综合考查两个函数的单调性,因此也是命题的热点,判断复合函数单调性要注意把握两点:一是要同时考虑两个函数的的定义域;二是同时考虑两个函数的单调性,正确理解“同增异减”的含义(增增增,减减增,增减减,减增减).16.如图,矩形中,,⊥平面,若在上只有一个点满足,则的值等于________.【答案】【解析】试题分析:利用三垂线定理的逆定理、直线与圆相切的判定与性质、矩形的性质、平行线的性质即可求出.解:连接AQ,取AD的中点O,连接OQ.∵PA⊥平面ABCD,PQ⊥DQ,∴由三垂线定理的逆定理可得DQ⊥AQ.∴点Q在以线段AD的中点O为圆心的圆上,又∵在BC上有且仅有一个点Q满足PQ⊥DQ,∴BC与圆O相切,(否则相交就有两点满足垂直,矛盾.)∴OQ⊥BC,∵AD∥BC,∴OQ=AB=1,∴BC=AD=2,即a=2.故答案为:2.考点:直线与平面垂直的性质.三、解答题(本大题共6小题,共70.0分)17.已知:,:,分别求m的值,使得和:垂直;平行;重合;相交.【答案】(1);(2)-1;(3)3;(4)且.【解析】【分析】(1)若l1和l2垂直,则m﹣2+3m=0(2)若l1和l2平行,则(3)若l1和l2重合,则(4)若l1和l2相交,则由(2)(3)的情况去掉即可【详解】若和垂直,则,若和平行,则,,若和重合,则,若和相交,则由可知且【点睛】本题主要考查了两直线的位置关系的应用,解题的关键是熟练掌握直线的不同位置的条件一般式方程的表示18.有两直线和,当a在区间内变化时,求直线与两坐标轴围成的四边形面积的最小值.【答案】.【解析】【分析】利用直线方程,求出相关点的坐标,利用直线系解得y E=2.根据S四边形OCEA=S△BCE﹣S△OAB即可得出.【详解】∵0<a<2,可得l1:ax﹣2y=2a﹣4,与坐标轴的交点A(0,﹣a+2),B(2,0).l2:2x﹣(1﹣a2)y﹣2﹣2a2=0,与坐标轴的交点C(a2+1,0),D(0,).两直线ax﹣2y﹣2a+4=0和2x﹣(1﹣a2)y﹣2﹣2a2=0,都经过定点(2,2),即y E=2.∴S四边形OCEA=S△BCE﹣S△OAB|BC|•y E|OA|•|OB|(a21)×2(2﹣a)×(2)=a2﹣a+3=(a)2,当a时取等号.∴l1,l2与坐标轴围成的四边形面积的最小值为.【点睛】本题考查了相交直线、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.如图,在圆锥中,已知PO=,圆O的直径AB=2,C是弧AB的中点,D为AC的中点.(1)求异面直线PD和BC所成的角的正切值;(2)求直线和平面所成角的正弦值.【答案】(1)2;(2)【解析】试题分析:(1)异面直线所成的角,往往通过平移转化到一个三角形内求解.本题转化到直角三角形PDO中求解.(2)直线与平面所成的角,应先作出直线在平面内的射影,则斜线与射影所成的角即为所求.本题过点O向平面PAC作垂线,则即为直线与平面所成的角,进而求出其正弦值.试题解析:(1)O,D分别是AB和AC的中点OD//BC异面直线PD和BC所成的角为∠PDO在△ABC中,的中点又(2)因为又所以又所以平面在平面中,过作则连结,则是上的射影,所以是直线和平面所成的角.在在考点:异面直线所成的角、斜线与平面所成的角.20.已知函数.(1)若函数在上至少有一个零点,求的取值范围;(2)若函数在上的最大值为3,求的值.【答案】(1);(2)或.【解析】试题分析:(1)由函数在至少有一个零点,方程至少有一个实数根,,解出即可;(2)通过对区间端点与对称轴顶点的横坐标的大小比较,再利用二次函数的单调性即可得出函数在上的最大值,令其等于可得结果.试题解析:(1)由.(2)化简得,当,即时,;当,即时,,,(舍);当,即时,,综上,或.21.如图,已知正三棱柱的底面边长为2,侧棱长为,点在侧棱上,点在侧棱上,且.(1)求证:;(2)求二面角的大小.【答案】(1)证明见解析;(2).【解析】试题分析:(1)根据几何体的结构特征,可以为坐标原点,分别为轴和轴建立空间直角坐标系,写出各个点的坐标.(1)证明即即可;(2)分别求出平面的一个法向量为和侧面的一个法向量为,根据求出的法向量的夹角来求二面角的大小.试题解析:建立如图所示的空间直角坐标系,则由已知可得(1)证明:,所以.(2),设平面的一个法向量为,由,得,即,解得,可取设侧面的一个法向量为,由,及可取.设二面角的大小为,于是由为锐角可得所以.即所求二面角的大小为.考点:空间向量证明直线与直线垂直及求解二面角.22.已知直线l:与x轴交于A点,动圆M与直线l相切,并且和圆O:相外切.求动圆圆心M的轨迹C的方程.若过原点且倾斜角为的直线与曲线C交于M、N两点,问是否存在以MN为直径的圆过点A?若存在,求出实数m的值;若不存在,说明理由.【答案】(1)()(2)故不存在以为直径的圆恰好过点【解析】试题分析:(1)设出动圆圆心坐标,由动圆圆心到切线的距离等于动圆与定圆的圆心距减定圆的半径列式求解动圆圆心的轨迹方程;(2)求出过原点且倾斜角为的直线方程,和曲线C联立后利用根与系数关系得到M,N的横纵坐标的和与积,由,得列式求解m的值,结合m的范围说明不存在以MN为直径的圆过点A.试题解析:(1)设动圆圆心为,则,化简得(),这就是动圆圆心的轨迹的方程.(2)直线的方程为,代入曲线的方程得显然.设,,则,,而若以为直径的圆过点,则,∴由此得∴,即.解得>-2故不存在以为直径的圆过点点睛:本题考查了轨迹方程的求法,考查了直线与圆锥曲线的关系,训练了利用数量积判断两个向量的垂直关系,考查了学生的计算能力.。

2018-2019学年第一学期(期末)数学学科试题

2018-2019学年第一学期(期末)数学学科试题

湖北省麻城市(思源实验学校)2018-2019学年第一学期(期末)数学学科试题1.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>32.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A .B .C .D .3.如图,直线AB、AD与⊙O相切于点B、D,C为⊙O上一点,且∠BCD=140°,则∠A的度数是()A.70°B.105°C.100°D.110°4.关于x的方程(a﹣1)x2+x+1=0是一元二次方程,则a的取值范围是()A.a≠1 B.a>﹣1且a≠1 C.a≥﹣1且a≠1 D.a为任意实数5.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个B.1个C.2个D.1个或2个6.若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是()A.8 B.10 C.5或4 D.10或87.已知x1,x2是方程x2﹣x+1=0的两根,则x12+x22的值为()A.3 B.5 C.7 D.48.如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=∠B=60°,则AB的长为()A.5cm B.6cm C.7cm D.8cm9.已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a﹣b+c<0;⑤3a+c>0;则正确的结论是()A.①②⑤ B.③④⑤ C.②③④ D.①④⑤10.如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3 B.4 C .D .③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④B.①④C.①②③D.③④12.二次函数y=x2+bx+c的图象向左平移2个单位,再向上平移3个单位,得到函数解析y=x2﹣2x+1则b与c分别等于()A.2,﹣2 B.﹣8,14 C.﹣6,6 D.﹣8,1813.关于二次函数y=ax2+bx+c的图象有下列命题:①当c=0时,函数的图象经过原点;②当c>0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;③函数图象最高点的纵坐标是;④当b=0时,函数的图象关于y轴对称.其中正确命题的个数是()A.1个B.2个C.3个D.4个14.若A(﹣4,y l),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y l,y2,y3的大小关系是.(用<号连接)15.抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),若平移该抛物线使其顶点移动到点P1(2,﹣2),那么得到的新抛物线的一般式是.16.抛物线y=2x2+3上有两点A(x1,y1)、B(x2,y2),且x1≠x2,y1=y2,当x=x1+x2时,y=.17.若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k=.18.如图,矩形纸片ABCD,BC=2,∠ABD=30度.将该纸片沿对角线BD翻折,点A落在点E处,EB交DC于点F,则点F到直线DB的距离为.19.已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是.20.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为.21.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?22.小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?23.某加油站销售一批柴油,平均每天可售出20桶,每桶盈利40元,为了支援我市抗旱救灾,加油站决定采取降价措施.经市场调研发现:如果每桶柴油降价1元,加油站平均每天可多售出2桶.(1)假设每桶柴油降价x 元,每天销售这种柴油所获利润为y 元,求y 与x 之间的函数关系式;(2)每桶柴油降价多少元后出售,农机服务站每天销售这种柴油可获得最大利润?此时,与降价前比较,每天销售这种柴油可多获利多少元?(3)请分析并回答该种柴油降价在什么范围内,加油站每天的销售利润不低于1200元?24.如图,在△ABC 中,AB=AC ,以AB 为半径的⊙O 交AC 于点E ,交BC 于点D ,过点D 作⊙O的切线DF ,交AC 于点F .(1)求证:DF ⊥AC ;(2)若CE=2,CD=3,求AB 的长;(3)若⊙O 的半径为4,∠CDF=22.5°,求阴影部分的面积.25.如图,以等腰△ABC 的一腰AB 上的点O 为圆心,以OB 为半径作圆,⊙O 交底边BC 于点D .过D 作⊙O 的切线DE ,交AC 于点E .(1)求证:DE ⊥AC ;(2)若AB=BC=CA=2,问圆心O 与点A 的距离为多少时,⊙O 与AC 相切?26.某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm )在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价(1)(2)40cm 的薄板,获得的利润是26元(利润=出厂价﹣成本价). ①求一张薄板的利润与边长之间满足的函数关系式; ②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少? 27.如图,在平面直角坐标系中,二次函数y=x 2+bx+c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,﹣3)点,点P是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式. (2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由. (3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积. 28.如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点. (1)求抛物线的解析式; (2)点M 是线段BC 上的点(不与B ,C 重合),过M 作NM∥y 轴交抛物线于N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长; (3)在(2)的条件下,连接NB ,NC ,是否存在点m ,使△BNC 的面积最大?若存在,求m 的值;若不存在,说明理由.29.如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连结AD,作BE⊥AD,垂足为E,连结CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)若∠A=45°,试判断四边形ACFE的形状,并说明理由;(3)当∠A在什么范围取值时,线段DE上存在点G,满足条件DG=DA.30.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)31.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q(元)与时间t (月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2).(1)一件商品在3月份出售时的利润是多少元?(利润=售价﹣成本)(2)求图2中表示一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30 000件,请你计算一下该公司在一个月内最少获利多少元?32.如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.(1)求该抛物线的解析式及点E的坐标;(2)若D点运动的时间为t,△CED的面积为S,求S关于t的函数关系式,并求出△CED的面积的最大值.。

河南省郑州市2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

河南省郑州市2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

河南省郑州市2018-2019学年上期期末考试高二数学(理)第Ⅰ卷(选择题,共60分)一,选择题:本大题共有12个小题,每小题5分,共60分。

在每小题所给出地四个选项中,只有一项是符合题目要求地。

1.已知命题那么为()A. B.C. D.【结果】B【思路】【思路】依据全称命题地否定是特称命题即可写出结果.【详解】命题则为故选:B【点睛】本题考全称命题地否定形式,属于简单题.2.已知数列是等比数列,若则地值为()A. 4B. 4或-4C. 2D. 2或-2【结果】A【思路】【思路】设数列{a n}地公比为q,由等比数列通项公式可得q4=16,由a3=a1q2,计算可得.【详解】因故选:A【点睛】本题考查等比数列地性质以及通项公式,属于简单题.3.已知是实数,下面命题结论正确地是()A. “”是“”地充分款件B. ”是“”地必要款件C. “ac2>bc2”是“”地充分款件D. ” 是“”地充要款件【思路】【思路】依据不等式地性质,以及充分款件和必要款件地定义分别进行判断即可.【详解】对于,当时,满足,却,所以充分性不成立。

对于,当时,满足,却,所以必要性不成立。

对于,当时,成立,却,所以充分性不成立,当时,满足,却,所以必要性也不成立,故“” 是“”地既不充分也不必要款件,故选:C【点睛】本题主要考查不等式地性质以及充分款件,必要款件地判断,属于基础题.4.已知双曲线地一款渐近线与直线垂直,则双曲线地离心率为()A. B. C. D.【结果】A【思路】【思路】双曲线地渐近线方程为,由渐近线与直线垂直,得地值,从而得到离心率.【详解】由于双曲线地一款渐近线与直线垂直,所以双曲线一款渐近线地斜率为,又双曲线地渐近线方程为,所以,双曲线地离心率.故选:A【点睛】本题主要考查双曲线地渐近线方程和离心率,以及垂直直线斜率地关系.5.若等差数列地前项和为,且,则()A. B. C. D.【结果】C【思路】由得,再由等差数列地性质即可得到结果.【详解】因为为等差数列,所以,解得,故.故选:C【点睛】本题主要考查等差数列地前项和公式,以及等差数列性质(其中m+n= p+q)地应用.6.地内角地对边分别为,,, 则=()A. B. C. D.【结果】D【思路】【思路】先由二倍角公式得到cosB,然后由余弦定理可得b值.【详解】因为,所以由余弦定理,所以故选:D【点睛】本题考查余弦二倍角公式和余弦定理地应用,属于简单题.7.椭圆与曲线地()A. 焦距相等B. 离心率相等C. 焦点相同D. 准线相同【结果】A【思路】【思路】思路两个曲线地方程,分别求出对应地a,b,c即可得结果.【详解】因为椭圆方程为,所以,焦点在x轴上,曲线,因为,所以,曲线方程可写为,,所以曲线为焦点在y轴上地椭圆,,所以焦距相等.【点睛】本题考查椭圆标准方程及椭圆简单地几何性质地应用,属于基础题.8.在平行六面体(底面是平行四边形地四棱柱)ABCD-A1B1C1D1中,AB=AD=AA1=1,,则地长为()A. B. 6 C. D.【结果】C【思路】【思路】依据空间向量可得,两边平方即可得出结果.【详解】∵AB=AD=AA1=1,∠BAD=∠BAA1=∠DAA1=60°,∴===,∵,∴=6,∴|=.故选:C.【点睛】本题考查平行四面形法则,向量数量积运算性质,模地计算公式,考查了推理能力与计算能力.9.已知不等式地解集是,若对于任意,不等式恒成立,则t地取值范围()A. B. C. D.【结果】B【思路】【思路】由不等式地解集是,可得b,c地值,代入不等式f(x)+t≤4后变量分离得t≤2x2﹣4x﹣2,x ∈[﹣1,0],设g (x )=2x 2﹣4x ﹣2,求g(x)在区间[﹣1,0]上地最小值可得结果.【详解】由不等式地解集是可知-1和3是方程地根,,解得b=4,c=6,,不等式化为 ,令g (x )=2x 2﹣4x ﹣2,,由二次函数图像地性质可知g(x)在上单调递减,则g(x )地最小值为g(0)=-2,故选:B【点睛】本题考查一圆二次不等式地解法,考查不等式地恒成立问题,常用方式是变量分离,转为求函数最值问题.10.在中,角所对地边分别为,表示地面积,若,则( )A.B.C.D.【结果】D 【思路】【思路】由正弦定理,两角和地正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理,三角形面积公式可求角C,从而得到B 地值.【详解】由正弦定理及得,因为,所以。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省洛阳市2018-2019学年高一数学上学期期末学业水平测试试题一、选择题1.同一总体的两个样本,甲样本的方差是ln2,乙样本的方差是1,则( ) A .甲的样本容量比乙小 B .甲的波动比乙大 C .乙的波动比甲大D .乙的平均数比甲小2.已知随机变量ξ服从正态分布()21,N σ,若()20.66P ξ≤=,则()0P ξ≤=( )A.0.84B.0.68C.0.34D.0.163.由①安梦怡是高三(2)班的学生,②安梦怡是独生子女,③高三(2)班的学生都是独生子女.写一个“三段论”形式的推理,则大前提、小前提和结论分别为( ) A .②①③ B .③①② C .①②③ D .②③①4.如图是某年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )A .B .C .D .5.下列关于回归分析与独立性检验的说法正确的是() A.回归分析和独立性检验没有什么区别;B.回归分析是对两个变量准确关系的分析,而独立性检验是分析两个变量之间的不确定性关系;C.独立性检验可以100%确定两个变量之间是否具有某种关系.D.回归分析研究两个变量之间的相关关系,独立性检验是对两个变量是否具有某种关系的一种检验; 6.袋中装有6个红球和4个白球,不放回的依次摸出两球,在第一次摸到红球的条件下,第二次摸到红球的概率是 A .35B .25C .13D .597.一个盒子里有7只好的晶体管、5只坏的晶体管,任取两次,每次取一只,每一次取后不放回,在第一次取到好的条件下,第二次也取到好的概率( )A .38B .722C .611D .7128.设函数()(1)xf x x e =+,则'(1)f =( )A .1B .2C .3+eD .3e9.如图所示,在一个边长为1的正方形AOBC 内,曲线2y x =和曲线y =(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A.13B.16C.14D.1210.下列命题中,,m n 表示两条不同的直线,α、β、γ表示三个不同的平面. ①若m α⊥,//n α,则m n ⊥; ②若αγ⊥,βγ⊥,则//αβ; ③若//m α,//n α,则//m n ; ④若//αβ,2,35a b =-=,m α⊥,则m γ⊥. 正确的命题是( ) A .①③ B .②③C .①④D .②④11.已知与曲线相切,则的值为A .B .C .D .12.设等差数列{}n a 的前n 项和为n S .若13515a a a ++=,416S =,则4(a = ) A.9 B.8 C.7 D.2二、填空题13.给出下列结论:(1)当p 是真命题时,“p 且q”一定是真命题; (2)当p 是假命题时,“p 且q”一定是假命题; (3)当“p 且q”是假命题时,p 一定是假命题; (4)当“p 且q”是真命题时,p 一定是真命题. 其中正确结论的序号是________.14.命题若x y +≠220,则x ,y 不全为零的逆否命题是______.15.在四面体ABCD 中,90ACB ∠=,2AB AD AC ===4,BD CD ==ABCD 外接球的体积为______.16.集合{}{}20,2,,1,A a B a ==,若{}0,1,2,3,9A B =U ,则的值为_______.三、解答题17.在如图所示的几何体中,四边形为正方形,四边形为直角梯形,,.(1)求与平面所成角的正弦值;(2)线段或其延长线上是否存在点,使平面平面?证明你的结论.18.设直角坐标系原点与极坐标极点重合, x 轴非负半轴与极轴重合,若已知曲线C 的极坐标方程为,点F 1、F 2为其左、右焦点,直线l 的参数方程为(I )求直线l 的普通方程和曲线C 的直角坐标方程; (II )求曲线C 上的动点P 到直线l 的最大距离。

19.已知抛物线的焦点为,为坐标原点,是抛物线上异于的两点. (1)求抛物线的方程;(2)若直线的斜率之积为,求证:直线过定点.20.已知点,圆(1)过点的圆的切线只有一条,求的值及切线方程; (2)若过点且在两坐标轴上截距相等的直线被圆截得的弦长为,求的值.21.统计表明某型号汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数为.(1)当千米/小时时,行驶千米耗油量多少升?(2)若油箱有升油,则该型号汽车最多行驶多少千米?22.用分析法证明:.【参考答案】***试卷处理标记,请不要删除 一、选择题13.(2)(4)14.若x ,y 全为零,则220x y +=15.323π 16.3 三、解答题 17.(1);(2)见解析【解析】【试题分析】(1)以为坐标原点、方向为轴、方向为轴、方向为轴建立空间直角坐标系.通过计算直线的方向向量和平面的法向量来求线面角的正弦值.(2)设点的坐标为,计算平面和平面的法向量,通过两个向量垂直数量积为零建立方程,求得的值.【试题解析】 (1)解:以为坐标原点、方向为轴、方向为轴、方向为轴建立空间直角坐标系,则点的坐标为、点的坐标为、点的坐标为、点的坐标为,点的坐标为,点的坐标为,由,,,设平面的法向量为由,取,则故与平面所成角的正弦值.(2)证明:设点的坐标为,则,设平面的法向量为由,取,则,若平面平面,则,解得:,故点在的延长线上,且.【点睛】本小题主要考查利用空间向量法求直线与平面所成角的正弦值,和利用空间向量法探求面面垂直的问题.由于题目所给条件中以为顶点的三条直线相互垂直,故可以直接建立空间直角坐标系来求解.要求直线与平面所成的角,则只需计算出直线的方向向量,和平面的法向量,代入公式即可求得.18.(1),(2)【解析】分析:(I)消去参数,可得直线的普通方程和曲线的直角坐标方程(II)设动点,则到直线的距离,即可求得曲线上的动点到直线的最大距离详解:(I)直线l普通方程为椭圆C的普通方程为(II)由椭圆的普通方程可以得到其参数方程为则动点的距离为由于点睛:本题考查的是点的极坐标和直角坐标的互化,以及利用平面几何知识解决最值问题。

利用直角坐标与极坐标间的关系,即利用,,,进行代换即可得到答案19.(1)y2=4x;(2)直线AB过x轴上一定点(8,0).【解析】【分析】(I)利用抛物线的焦点坐标,求出,然后求抛物线的方程;(Ⅱ)通过直线的斜率是否存在,设出直线方程,与抛物线方程联立,利用韦达定理以及斜率乘积关系,转化求解即可.【详解】(Ⅰ)因为抛物线的焦点坐标为,所以,所以.所以抛物线的方程为.(Ⅱ)证明:①当直线的斜率不存在时,设,,因为直线,的斜率之积为,所以,化简得.所以,,此时直线的方程为.②当直线的斜率存在时,设其方程为,,,联立得化简得.根据根与系数的关系得,因为直线,的斜率之积为,所以,即.即,解得(舍去)或.所以,即,所以,即.综上所述,直线过轴上一定点.【点睛】本题主要考查直线与抛物线的位置关系的应用直线过定点问题,抛物线的方程的求法,考查分析问题解决问题的能力,设而不求整体代换方法的应用,分类讨论的思想,联立直线与抛物线的方程,结合韦达定理是常用手段,属于中档题.20.(1)时,切线方程为x+y-4=0,时,切线方程为x-y-4=0(2)【解析】【详解】试题分析:若过点A的圆的切线只有一条,说明点在圆上,点A的坐标满足圆的方程求出;由于直线在两坐标轴上的截距相等,所以可用直线的截距式巧设直线的方程;求圆的弦长,一般先求出圆心到直线的距离,然后利用勾股定理计算弦长,利用待定系数法,列方程,解方程组求出.试题解析:(1)由于过点A的圆的切线只有一条,则点A在圆上,故12+a2=4,∴a=±.当a=时,A(1,),切线方程为x+y-4=0;当a=-时,A(1,-),切线方程为x-y-4=0,∴a=时,切线方程为x+y-4=0,a=-时,切线方程为x-y-4=0.(2)设直线方程为 x+y=b,由于直线过点A,∴1+a=b,a=b-1.又圆心到直线的距离d=,∴()2+()2=4.∴b=± .∴a=±-1.21.(1)11.95(升) .(2) 千米.【解析】分析:(1)由题意可得当x=64千米/小时,要行驶千米需要小时,代入函数y的解析式,即可得到所求值;(2)设22.5升油能使该型号汽车行驶a千米,代入函数y的式子,可得.令,求出导数和单调区间,可得h(x)的最小值,进而得到a的最大值.详解:(1)当千米/小时时,要行驶千米需要小时,要耗油 (升) .(2)设升油能使该型号汽车行驶千米,由题意得,,所以,设则当最小时,取最大值,令当时,,当时,故当时,函数为减函数,当时,函数为增函数,所以当时,取得最小值,此时取最大值为所以若油箱有升油,则该型号汽车最多行驶千米.点睛:解决函数模型应用的解答题,还有以下几点容易造成失分:①读不懂实际背景,不能将实际问题转化为函数模型.②对涉及的相关公式,记忆错误.③在求解的过程中计算错误.另外需要熟练掌握求解方程、不等式、函数最值的方法,才能快速正确地求解.含有绝对值的问题突破口在于分段去绝对值,分段后在各段讨论最值的情况.22.证明见解析【解析】【分析】用分析法证明即可得出结论成立.【详解】要证成立,只需证成立;即证成立;即证成立;即证成立,因为成立,所以原不等式成立.【点睛】本题主要考查不等式的证明,分析法是一种常用的方法,逐步推出结论的充分条件,直到得到显然成立的结论即可,属于基础题型.。

相关文档
最新文档