相似三角形中的辅助线归纳总结

合集下载

相似三角形解题方法、技巧、步骤、辅助线解析.

相似三角形解题方法、技巧、步骤、辅助线解析.

相似三角形解题方法、技巧、步骤、辅助线解析贵有恒何必三更眠五更起,最无益只怕一日曝十日寒。

一、相似、全等的关系全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础.二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要添加适当的辅助线,构造出基本图形,从而使问题得以解决三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单;2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例;3)若无对应角相等,则只考虑三组对应边是否成比例;1、已知一对等角①找另一角,两角对应相等,两三角形相似;②找夹边对应成比例,两边对应成比例且夹角相等,两三角形相似2、已知两边对应成比例①找夹角相等,两边对应成比例且夹角相等,两三角形相似;③找第三边也对应成比例,三边对应成比例,两三角形相似3、已知可能的一个直角三角形①找一个直角,斜边、直角边对应成比例,两个直角三角形相似;②找另一角,两角对应相等,两三角形相似③找两边对应成比例判定定理1或判定定理44、与等腰三角形有关的①找顶角对应相等判定定理1②找底角对应相等判定定理1③找底和腰对应成比例判定定理35、相似形的传递性若△1∽△2,△2∽△3,则△1∽3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

相似三角形的性质及判定知识点总结经典题型总结

相似三角形的性质及判定知识点总结经典题型总结

一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不必然相同.相似图形之间的相互变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”必然是“相似形”,“相似形”不必然是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等A 'B 'C 'CB A中考要求 知识点睛相似三角形的性质及判定如图,ABC △与A B C '''△相似,那么有A A B B C C '''∠=∠∠=∠∠=∠,,.2.相似三角形的对应边成比例 ABC △与A B C '''△相似,那么有AB BC ACk A B B C A C ===''''''(k 为相似比).3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,那么有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比).图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,那么有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,那么有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,那么有AB BC ACk A B B C A C===''''''(k 为相似比).应用比例的等比性质有A 'B 'C 'CB AM 'MA 'B 'C 'C BAH 'H AB C C 'B 'A'D 'D A 'B C 'C B AAB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++. 图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,那么有AB BC AC AH k A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AH S BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所组成的三角形与原三角形相似. 2.若是一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.若是一个三角形的两边和另一个三角形的两边对应成比例,而且夹角相等,那么这两个三角形相似. 4.若是一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.若是一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(经常使用但要证明)7.若是一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;若是它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的要紧方式有“三点定形法”. 1.横向定型法A 'B 'C 'CBAH 'H AB C C 'B 'A '欲证AB BCBE BF =,横向观看,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的极点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个极点.因此只需证ABC EBF △∽△. 2.纵向定型法欲证AB DEBC EF=,纵向观看,比例式左侧的比AB 和BC 中的三个字母A B C ,,恰为ABC △的极点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个极点.因此只需证ABC DEF △∽△. 3.中间比法由于运用三点定形法时常会碰着三点共线或四点中没有相同点的情形,现在可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻觅相似三角形.这种方式确实是等量代换法.在证明比例式时,经常使用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。

相似三角形中的辅助线及动点问题(经典题型)

相似三角形中的辅助线及动点问题(经典题型)
C 中,AB⊥AC,AE⊥BC 于 E,D 在 AC 边上,若 BD=DC=EC=1,求 AC。
动点题型
1、如图正方形 ABCD 的边长为 2,AE=EB,线段 MN 的两端点分别在 CB、CD 上滑动,且 MN=1,当 CM 为何值时△AED 与以 M、N、C 为顶点的三角形相似?
一、作平行线
例 1. 如图, ABC 的 AB 边和 AC 边上各取一点 D 和 E,且使 AD=AE,DE 延长线与 BC 延长线相交于 F, 求证:
BF BD CF CE
例 2. 如图,△ABC 中,AB<AC,在 AB、AC 上分别截取 BD=CE,DE,BC 的延长线相交于点 F, 证明:AB·DF=AC·EF。
1
三、作延长线 例 5. 如图,在梯形 ABCD 中,AD∥BC,若∠BCD 的平分线 CH⊥AB 于点 H,BH=3AH,且四边形 AHCD 的 面积为 21,求△HBC 的面积。
例 6. 如图,Rt ABC 中,CD 为斜边 AB 上的高,E 为 CD 的中点,AE 的延长线交 BC 于 F,FG AB 于 G,求证:FG =CF BF
A P H E D
B
C
1.如图,已知一个三角形纸片 ABC , BC 边的长为 8, BC 边上的高为 6 , B 和 C 都为锐角, M 为 AB 一 动点(点 M 与点 A、B 不重合) ,过点 M 作 MN ∥ BC ,交 AC 于点 N ,在 △ AMN 中,设 MN 的长为 x , MN 上的高为 h . (1)请你用含 x 的代数式表示 h . 使 △ AMN 落在四边形 BCNM 所在平面, 设点 A 落在平面的点为 A1 , △ A1 MN (2) 将 △ AMN 沿 MN 折叠, 与四边形 BCNM 重叠部分的面积为 y ,当 x 为何值时, y 最大,最大值 为多少?

思维特训(十一) 相似三角形中的辅助线作法归类

思维特训(十一) 相似三角形中的辅助线作法归类

思维特训(十一) 相似三角形中的辅助线作法归类在添加辅助线时,所添加的辅助线往往能构造出一组或多组相似三角形,或得到成比例的线段,或得出等角、等边,从而为证明三角形相似或进行有关的计算找到等量关系. 作辅助线的方法主要有以下几种:(1)作平行线构造“A ”型或“X ”型相似;(2)作平行线转换线段比;(3)作垂直证明相似.图11-S -1类型一 作平行线构造“A ”型或“X ”型相似1.如图11-S -2,已知平行四边形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 延长线上一点,OE 交BC 于点F ,若AB =a ,BC =b ,BE =c ,求BF 的长.图11-S -22.如图11-S -3,在△ABC 中,AD 为BC 边上的中线,CF 为任一直线,CF 交AD 于点E ,交AB 于点F .求证:AE DE =2AF BF. 图11-S -33.在一节数学课上,老师出示了这样一个问题让学生探究:如图11-S -4,在△ABC中,D 是BA 延长线上一动点,点F 在BC 上,且CF BF =12,连接DF 交AC 于点E . (1)如图△,当E 恰为DF 的中点时,请求出AD AB的值; (2)如图△,当DE EF =a (a >0)时,请求出AD AB的值(用含a 的代数式表示). 思考片刻后,同学们纷纷表达自己的想法:甲:过点F 作FG △AB 交AC 于点G ,构造相似三角形解决问题;乙:过点F 作FG △AC 交AB 于点G ,构造相似三角形解决问题;丙:过点D 作DG △BC 交CA 的延长线于点G ,构造相似三角形解决问题. 老师说:“这三位同学的想法都可以”.请参考上面某一种想法,完成第(1)问的求解过程,并直接写出第(2)问中AD AB的值. 图11-S -4类型二 作平行线转换线段的比4.如图11-S -5,B 为AC 的中点,E 为BD 的中点,求AF AE的值. 图11-S -55.如图11-S -6,已知等边三角形ABC ,D 为AC 边上的一动点,CD =nDA ,连接BD ,M 为线段BD 上一点,∠AMD =60°,连接AM 并延长交BC 于点E .(1)若n =1,则BE CE =______,BM DM=______; (2)若n =2,如图△,求证:BM =6DM ;(3)当n =________时,M 为BD 的中点(直接写出结果,不要求证明).图11-S -66.2019·朝阳 已知:如图11-S -7,在△ABC 中,点D 在AB 上,E 是BC 的延长线上一点,且AD =CE ,连接DE 交AC 于点F .(1)猜想证明:如图△,在△ABC 中,若AB =BC ,学生们发现:DF =EF .下面是两位学生的证明思路:思路1:过点D 作DG △BC ,交AC 于点G ,可通过证△DFG △△EFC 得出结论;思路2:过点E 作EH △AB ,交AC 的延长线于点H ,可通过证△ADF △△HEF 得出结论. 请你参考上面的思路,证明DF =EF (只用一种方法证明即可).(2)类比探究:在(1)的条件下(如图△),过点D 作DM △AC 于点M ,试探究线段AM ,MF ,FC 之间满足的数量关系,并证明你的结论.(3)延伸拓展:如图△,在△ABC 中,若AB =AC ,∠ABC =2△BAC ,AB BC=m ,请你用尺规作图在图△中作出AD 的垂直平分线交AC 于点N (不写作法,只保留作图痕迹),并用含m的代数式直接表示FN AC的值. 图11-S -7类型三 作垂直证相似7.如图11-S -8,在△ABC 中,∠C =90°,D 为边AB 的中点,M ,N 分别为边AC ,CB 上的点,且DM ⊥DN .(1)求证:DM DN =BC AC; (2)若BC =6,AC =8, CM =5,直接写出CN 的长.图11-S -88.如图11-S -9,在△ABC 中,D 是BC 边上的点(不与点B ,C 重合),连接AD . 问题引入:(1)如图△,当D 是BC 边的中点时,S △ABD ∶S △ABC =________;当D 是BC 边上任意一点时,S △ABD ∶S △ABC =________(用图中已有线段表示).探索研究:(2)如图△,在△ABC 中,O 是线段AD 上一点(不与点A ,D 重合),连接BO ,CO ,试猜想S △BOC 与S △ABC 之比应该等于图中哪两条线段之比,并说明理由.拓展应用:(3)如图△,O 是线段AD 上一点(不与点A ,D 重合),连接BO 并延长交AC 于点F ,连接CO 并延长交AB 于点E .试猜想OD AD +OE CE +OF BF的值,并说明理由. 图11-S -99.如图11-S -10,已知一个直角三角形纸片ACB ,其中,∠ACB =90°,AC =4,BC =3,E ,F 分别是AC ,AB 边上的点,连接EF .(1)如图△,若将直角三角形纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且S 四边形ECBF =3S △EDF ,则AE =________;(2)如图△,若将直角三角形纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且MF △CA ,求EF 的长;(3)如图△,若FE 的延长线与BC 的延长线相交于点N ,CN =1,CE =47,求AF BF的值. 图11-S -10详解详析1.解:如图,过点O 作OM △BC 交AB 于点M .∵O 是AC 的中点,OM ∥BC ,∴M 是AB 的中点,即MB =12a , ∴OM 是△ABC 的中位线,OM =12BC =12b . ∵OM ∥BC ,∴△BEF ∽△MEO ,∴BF MO =BE ME , 即BF 12b =c a 2+c ,∴BF =bc a +2c . 2.证明:如图,过点D 作DG △CF 交AB 于点G .∵DG ∥CF ,D 为BC 的中点,∴G 为BF 的中点,FG =BG =12BF . ∵EF ∥DG ,∴AE DE =AF GF =AF 12BF =2AF BF . 3.解:(1)甲同学的想法:如图△,过点F 作FG △AB 交AC 于点G ,∴△AED ∽△GEF ,∴AD GF =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴AD =GF .∵FG ∥AB ,∴△CGF ∽△CAB ,∴GF AB =CF CB. ∵CF BF =12,∴CF CB =13,∴AD AB =GF AB =CF CB =13. 乙同学的想法:如图△,过点F 作FG △AC 交AB 于点G ,∴AD AG =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴AD =AG .∵FG ∥AC ,∴AG AB =CF CB. ∵CF BF =12,∴CF CB =13,∴AD AB =AG AB =CF CB =13. 丙同学的想法:如图③,过点D 作DG △BC 交CA 的延长线于点G ,∴∠C =△G ,∠CFE =△GDE ,∴△GDE ∽△CFE ,∴GD CF =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴GD =CF .∵DG ∥BC ,∴∠C =△G ,∠B =△ADG ,∴△ADG ∽△ABC ,∴AD AB =DG BC .∵CF BF =12,∴CF BC =13. ∴AD AB =DG BC =CF BC =13. (2)如图△,过点D 作DG △BC 交CA 的延长线于点G ,∴∠C =△G ,∠CFE =△GDE ,∴△GDE ∽△CFE ,∴GD CF =ED EF. ∵DE EF =a ,∴ED =aEF , ∴DG =aCF .∵DG ∥BC ,∴∠C =△G ,∠B =△ADG ,∴△ADG ∽△ABC ,∴AD AB =DG BC . ∵CF BF =12,∴CF BC =13,即BC =3CF . ∴AD AB =DG BC =aCF 3CF =a 3. 4.解:取CF 的中点G ,连接BG .∵B 为AC 的中点,∴BG AF =12,且BG △AF . 又E 为BD 的中点,∴F 为DG 的中点,△EF BG =12,∴EF AF =14, ∴AF AE =43. 5.解:(1)当n =1时,CD =DA .∵△ABC 是等边三角形,∴BD ⊥AC ,∠BAC =60°,∴∠ADM =90°.又△△AMD =60°,∴∠MAD =30°,∴∠BAE =△BAC -△MAD =30°,即△BAE =△EAD ,∴AE 为△ABC 的中线,∴BE CE=1. 在△AMD 中,DM =12AM (30°角所对的直角边等于斜边的一半). ∵∠BAM =△ABM =30°,∴AM =BM ,∴BM DM=2. (2)证明:△△AMD =△ABD +△BAE =60°,∠CAE +△BAE =60°,∴∠ABD =△CAE .又△BA =AC ,∠BAD =△ACE =60°,∴△BAD △△ACE (ASA),∴AD =CE ,∴CD =BE .如图,过点C 作CF △BD 交AE 的延长线于点F ,∴FC BM =CE BE =AD CD =12①,DM FC =AD AC =13②,由△×△得DM BM =16,∴BM =6DM . (3)△M 为BD 的中点,∴BM =MD .∵△BAD ≌△ACE ,∴AD =CE ,∴CD =BE .∵△AMD ∽△ACE ,△BME ∽△BCD ,△AD AE =MD CE ,BM BC =ME CD, ∴AD =MD ·AE CE ③,CD =BC ·ME BM④, 由△×△得CD =5-12DA ,∴n =5-12. 6.解:(1)思路1:如图△,过点D 作DG △BC ,交AC 于点G .∵AB =BC ,∴∠A =△BCA .∵DG ∥BC ,∴∠DGA =△BCA ,∠DGF =△ECF ,∴∠A =△DGA ,∴DA =DG .∵AD =CE ,∴DG =CE .又△△DFG =△EFC ,∴△DFG ≌△EFC ,∴DF =EF .思路2:如图△,过点E 作EH △AB ,交AC 的延长线于点H .∵AB =BC ,∴∠A =△BCA .∵EH ∥AB ,∴∠A =△H .∵∠ECH =△BCA ,∴∠H =△ECH ,∴CE =EH .∵AD =CE ,∴AD =EH .又△△AFD =△HFE ,∴△DF A ≌△EFH ,∴DF =EF .(2)结论:MF =AM +FC .证明:如图△,由思路1可知:DA =DG ,△DFG ≌△EFC ,∴FG =FC .∵DM ⊥AG ,∴AM =GM .∵MF =FG +GM ,∴MF =AM +FC .(3)AD 的垂直平分线交AC 于点N ,如图△所示.连接DN ,过点D 作DG △CE 交AC 于点G .设DG =a ,BC =b ,则AB =AC =mb ,AD =AG =ma .∵∠ABC =2△BAC ,设△BAC =x ,则△B =△ACB =2x ,∴5x =180°,∴x =36°,∴∠A =36°. ∵NA =ND ,∴∠A =△ADN =36°.∵∠ADG =△B =72°,∴∠NDG =△A =36°.又△△DGN =△AGD ,∴△GDN ∽△GAD ,∴DG 2=GN ·GA .易知DG =DN =AN =a ,∴a 2=(ma -a )·ma ,两边同除以a ,得m 2a -ma -a =0. ∵DG ∥CE ,∴DG ∶CE =FG △FC =DG △DA =1△m .∵CG =mb -ma ,∴FG =1m +1·m (b -a ), ∴FN =GN +FG =ma -a +1m +1m (b -a )=m 2a -a +mb -ma m +1=mb m +1, ∴FN AC =mbm +1mb =1m +1. 7.解:(1)证明:如图,过点D 作DP △BC 于点P ,DQ ⊥AC 于点Q ,∴∠DQM =△DPN =90°.又△△C =90°,∴四边形CPDQ 为矩形,∴∠QDP =90°,即△MDQ +△MDP =90°. ∵DM ⊥DN ,∴∠MDN =90°,即△MDP +△NDP =90°,∴∠MDQ =△NDP ,∴△DMQ ∽△DNP ,∴DM DN =DQ DP. ∵D 为AB 的中点,DQ ∥BC ,DP ∥AC ,∴DQ =12BC ,DP =12AC ,∴DQ DP =BC AC ,∴DM DN=BC AC. (2)由题意得AQ =CQ =4,MQ =CM -CQ =5-4=1,DQ =12BC =3,DP =12AC =4. ∵△DMQ ∽△DNP ,∴MQ NP =DQ DP ,∴NP =43. 又CP =PB =3,∴CN =3-43=53. 8.解:(1)1△2 BD △BC(2)猜想S △BOC 与S △ABC 之比应该等于OD △AD .理由:如图,分别过点O ,A 作BC 的垂线OE ,AF ,垂足分别为E ,F ,∴OE ∥AF ,∴OD ∶AD =OE △AF .∵S △BOC =12BC ·OE ,S △ABC =12BC ·AF , ∴S △BOC ∶S △ABC =⎝⎛⎭⎫12BC ·OE ∶⎝⎛⎭⎫12BC ·AF =OE △AF =OD △AD . (3)猜想OD AD +OE CE +OF BF的值是1.理由如下: 由(2)可知:OD AD +OE CE +OF BF =S △BOC S △ABC +S △BOA S △ABC +S △AOC S △ABC =S △BOC +S △BOA +S △AOC S △ABC =S △ABC S △ABC=1. 9.解:(1)△将△ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF ,∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF ,∴S △ABC =4S △AEF .在Rt △ABC 中,∵∠ACB =90°,AC =4,BC =3,∴AB =5.∵∠EAF =△BAC ,∴Rt △AEF ∽Rt △ABC ,∴S △AEF S △ABC =(AE AB)2,即(AE 5)2=14,∴AE =2.5. (2)连接AM 交EF 于点O ,如图△,∵将△ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,∴AE =EM ,AF =MF ,∠AFE =∠MFE .∵MF ∥CA ,∴∠AEF =△MFE ,∴∠AEF =△AFE ,∴AE =AF ,∴AE =EM =MF =AF ,∴四边形AEMF 为菱形.设AE =x ,则EM =x ,CE =4-x .∵四边形AEMF 为菱形,∴EM ∥AB ,∴△CME ∽△CBA ,∴CM CB =CE CA =EM AB, 即CM 3=4-x 4=x 5,解得x =209,CM =43. 在Rt △ACM 中,AM =AC 2+CM 2=4103. ∵S 菱形AEMF =12EF ·AM =AE ·CM , ∴EF =2×43×2094103=4109. (3)如图△,过点F 作FH △BC 于点H ,∵EC ∥FH ,∴△NCE ∽△NHF , ∴CN ∶NH =CE △FH ,即1△NH =47∶FH ,∴FH ∶NH =4△7. 设FH =4x ,NH =7x ,则CH =7x -1,BH =3-(7x -1)=4-7x .∵FH ∥AC ,∴△BFH ∽△BAC ,∴BH ∶BC =FH △AC ,即(4-7x )△3=4x △4,解得x =0.4,∴FH =4x =85,BH =4-7x =65.第11页/共11页 在Rt △BFH 中,BF =(65)2+(85)2=2, ∴AF =AB -BF =5-2=3,∴AF BF =32.。

模型总结: 相似三角形模型解析及辅助线作法梳理

模型总结: 相似三角形模型解析及辅助线作法梳理

相似三角形(模型-辅助线)一、本章概述相似作为几何学习的一个重要内容,大量的出现在中考试卷中,它与勾股定理和锐角三角形函数并列为初中几何计算三大工具。

本章重点讲解相似的几个模型,如A字形,8字形,一线三等角等模型。

二、知识回顾1、图形的相似(1)相似图形:形状相同的图形叫做相似图形(2)相似多边形:对应角相等,对应边的比相等。

相似多边形对应边的比为相似比。

2.相似三角形(3)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等。

(4)相似三角形的判定①预备定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等。

②判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

③传递性定理:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(5)相似三角形的性质①相似三角形的对应角相等,对应边成比例②相似三角形的周长的比等于相似比;对应线段的比等于相似比;面积比等于相似比的平方。

3.位似(6)多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心。

(7)在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k。

1.相似基本模型一、本节概述本节重点讲解“A”字形和“8”字形的应用和构造方法,这两个模型是相似三角形中最为基础的两个模型,但应用十分广泛。

1.“A”字形相似2. ”8”字形相似二、典例精析能力目标:1.熟练掌握正A型相似和正8型相似模型:2.借助平行线构造正A型相似和正8型相似模型解决相关问题。

【例1】已知:图下图,AD(1)若E为AD的中点,射线CE交AB于F,则(2)若E为AD上一点,且,射线CE交AB于F,则思维探究:方法一:通过平行线构造相似解析:过A点作A P//BC交CF于点P,“8”字模型A P CD方法二:过A作A H//CF交BC延长线于H,则方法三:作DK//CF交AB于K,则方法四:作DM//AB交CF于M,则AF=DM,( 2 ) 构造平行线,通过线段比解决问题作B P//AD交CF于点P,大家可尝试过其他点作平行线,解答中用了A点和D点,其它的同学们自己尝试。

全等三角形六种辅助线方法及例题

全等三角形六种辅助线方法及例题

全等三角形六种辅助线方法及例题全等三角形是初中数学中一个非常重要的概念,掌握全等三角形的判定方法和辅助线方法对于解题至关重要。

本文将介绍全等三角形的六种辅助线方法,并结合例题进行详细讲解。

一、辅助线法1.等角分线法:将三角形内角的平分线相互交点构成的点与三角形的另外一个顶点相连,得到一条辅助线。

这条辅助线将三角形分成两个等角的小三角形,从而得到相似或全等三角形。

2.中线法:将三角形任意两边的中点相连,得到三角形的中线。

相等的中线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

3.高线法:将三角形内任意一条边的垂线向另外两边引出,得到三角形的高线。

相等的高线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

4.角平分线法:将三角形内角的平分线相互交点构成的点相连,得到三角形的角平分线。

相等的角平分线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

5.角平分线中垂线法:将三角形内角的平分线的中垂线相互交点构成的点相连,得到三角形的角平分线中垂线。

相等的角平分线中垂线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

6.外心连线法:将三角形外接圆心与三角形三个顶点分别相连,得到三条辅助线。

这三条辅助线相等,将三角形分成三个面积相等的小三角形,从而得到相似或全等三角形。

二、例题解析1.已知△ABC,点D,E分别为BC,AB边上的中点,连接AD,BE相交于点F,求证:△DEF≌△ABC。

解析:由题意可知,△ABC是由两个等腰三角形组成的,因此可使用中线法证明两个三角形的全等。

由于D,E分别是BC,AB边上的中点,因此DE是AC中线,即DE=1/2AC;同理,AE是BC中线,AF=1/2BC。

因此,△ADB和△AEC是等腰三角形,且AD=EC,AB=AB,∠BAC=∠BAC,因此△ADB≌△AEC。

又因为DE是AC中线,BF是AE中线,因此DE=1/2AC,BF=1/2AE。

三角形画辅助线的技巧总结

三角形画辅助线的技巧总结

三角形画辅助线的技巧总结
1. 哎呀呀,碰到三角形一边的中点,那就要想到中位线呀!这不,在三角形 ABC 中,点 D 是 AB 的中点,那咱就赶紧把 CD 中位线给画上呀,那解决问题可就容易多啦,懂了不?
2. 嘿哟,如果有等腰三角形,那就在底边上画个高呀!比如在等腰三角形ABC 中,AB=AC,那就在底边 BC 上画个高 AD 呀,这一画,很多问题不就一目了然啦?
3. 哇塞,如果三角形里有角平分线,那就在角平分线上找点做垂线呀!就像在三角形 ABC 中,AD 是角平分线,咱就在上面找个点 E 作 BC 的垂线,这不就找到突破点啦?
4. 你看呀,当三角形里有直角的时候,可别忘记画斜边中线呀!像是在直角三角形 ABC 中,角 C 是直角,那赶紧把斜边 AB 的中线画出来呀,是不是很妙呀?
5. 嘿,要是有两个相似三角形在一起,那就连接对应点呀!比如三角形ABC 和三角形 A'B'C'相似,那把 AA',BB',CC'连接起来呀,会有新发现哦!
6. 哎呀呀,如果想证明线段相等,那就找全等三角形呀,然后把辅助线画上帮助证明呀!就好像知道 AB=CD,那就通过画辅助线找到对应的全等三角形呀,是不是很机智?
7. 哇哦,三角形里有特殊角度的时候,也可以通过画辅助线构造特殊图形呀!像三角形中有 30 度角,那是不是可以构造直角三角形呀,很神奇吧?
8. 嘿哟,如果需要把三角形拆分或组合,那就大胆地画辅助线呀!比如把一个大三角形分成几个小三角形来分析呀,多有趣呀!
9. 总之呢,画辅助线可是解决三角形问题的一把利器呀!要根据具体情况灵活运用呀,学会这些技巧,三角形问题都不怕啦!。

相似三角形的判定方法总结

相似三角形的判定方法总结

相似三角形的判定方法总结相似三角形是指具有相同形状但不一定相等的三角形,它们对应角相等,对应边成比例。

相似三角形的判定方法是数学中的重要知识点,下面将对相似三角形的判定方法进行总结。

一、AA判定法AA判定法是指当两个三角形的两个对应角分别相等时,这两个三角形相似。

具体来说,如果两个三角形有两对对应角相等,则这两个三角形相似。

这是由于相等的对应角可以确定相似三角形的对应边成比例。

二、SAS判定法SAS判定法是指当两个三角形的一个对应边成比例,同时夹在这两个边之间的两个对应角分别相等时,这两个三角形相似。

具体说来,如果两个三角形有一个对应边成比例,且夹在这两个边之间的两个对应角分别相等,则这两个三角形相似。

三、SSS判定法SSS判定法是指当两个三角形的三对对应边成比例时,这两个三角形相似。

具体说来,如果两个三角形的三对对应边长度成比例,则这两个三角形相似。

四、辅助线法辅助线法是指通过引入辅助线,使得两个三角形之间存在相等的对应角或对应边长度成比例的关系来判定相似。

常用的辅助线有角平分线、中位线、高、垂线等。

五、等角三角形判定法等角三角形是指拥有相同大小的三个角的三角形,对应的边长成比例。

如果两个三角形中有一个角相等,且另两个角分别相等,则这两个三角形相似。

六、勾股定理及其逆定理勾股定理及其逆定理也可以用来判定两个三角形是否相似。

勾股定理指出若两个三角形的两条直角边比例相等,则这两个三角形相似;逆定理则指出若两个三角形相似,则它们的两条直角边比例相等。

七、相似三角形的性质相似三角形具有一些特殊的性质,包括对应角相等、对应边成比例、周长比例相等、面积比例相等等。

通过以上总结,我们可以看到不同的判定方法适用于不同的情况。

在解决问题时,我们可以根据已知条件选择合适的判定方法,从而得出结论。

熟练掌握相似三角形的判定方法,对于解决相关的几何问题具有重要的指导意义。

初中在三角形中辅助线添加规律归纳总结

初中在三角形中辅助线添加规律归纳总结

初中在三角形中辅助线添加规律归纳总结
几何最难的地方就是辅助线的添加了,但是对于添加辅助线,还是有规律可循的。

现在将三角形添加辅助线的规律为大家总结成顺口溜:
图中有角平分线,可向两边作垂线
也可将图对折看,对称以后关系现
角平分线平行线,等腰三角形来添
角平分线加垂线,三线合一试试看
线段垂直平分线,常向两端把线连
要证线段倍与半,延长缩短可试验
三角形中两中点,连接则成中位线
三角形中有中线,延长中线等中线
具体解释如下:
一、三角形中辅助线的添加
1. 与角平分线有关的
(1)可向两边作垂线。

(2)可作平行线,构造等腰三角形
(3)在角的两边截取相等的线段,构造全等三角形
2. 与线段长度相关的
(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可
(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可
(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

(4)遇到中点,考虑中位线或等腰等边中的三线合一。

3. 与等腰等边三角形相关的
(1)考虑三线合一
(2)旋转一定的度数,构造全等三角形,等腰一般旋转顶角的度数,等边旋转60 °。

相似三角形之常用辅助线-精选.pdf

相似三角形之常用辅助线-精选.pdf

【练习】
1.如图,一直线与△ ABC的边 AB,AC 及 BC 的延长线分别交于 D, E, F。求证:若 AE EC
是 AB的中点。 A
BF
,则 D
CF
D E
B
C
F
2.如图,在△ ABC中, AB=AC, D 在 AB上, E 在 AC的延长线上, BD=3CE, DE交 BC于 F,求 DF: FE 的 值。
A
D
3. 已知: AM: MD=4: 1, BD: DC=2: 3,求 AE: EC。
B
C F
E
A
E M
B
D
C
4、 如图, ABC 的 AB 边和 AC 边上各取一点 D 和 E,且使 AD =AE ,DE 延长线与 BC
BF BD 延长线相交于 F,求证: CF CE
B D
A
C
E
F
CD
例 2、如图,直线交△ ABC的 BC,AB两边于 D,E, 与 CA延长线交于 F, 若 BD = FC =2, 求 BE:EA 的比值 . DC FA
F
A E
B
D
C
BD FE
变式练习: 如图,直线交△
ABC的 BC,AB 两边于 D,E, 与 CA延长线交于
F, 若 DC =
=2, ED
求 BE:EA 的比
1)选点:一般选已知(或求证)中线段的比的前项或后项,在同一直线的线段的端点作为引平行 线的点。
2)引平行线时尽量使较多已知线段、求证线段成比例。
专题二、作垂线构造相似直角三角形 一、基本图形
A
C
D E
F
C
B
A
D
B

常见三角形辅助线口诀

常见三角形辅助线口诀

初二几何常见辅助线口诀三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,倍长中线得全等。

四边形平行四边形出现,对称中心等分点。

梯形问题巧转换,变为三角或平四。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

由角平分线想到的辅助线一、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全等自已证明。

此题的证明也可以延长BE与CD的延长线交于一点来证明。

自已试一试。

二、角分线上点向两边作垂线构全等如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。

求证:∠ADC+∠B=180分析:可由C向∠BAD的两边作垂线。

近而证∠ADC与∠B之和为平角。

三、三线合一构造等腰三角形如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。

分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。

四、角平分线+平行线如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

分析:AB上取E使AC=AE,通过全等和组成三角形边边边的关系可证。

由线段和差想到的辅助线五、截长补短法AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。

分析:过C点作AD垂线,得到全等即可。

相似三角形添加辅助线的方法举例

相似三角形添加辅助线的方法举例

相似三角形添加辅助线的方法举例1.垂直角辅助线:当三角形中存在垂直角时,我们可以通过添加一条垂直角辅助线来将问题简化。

例如,在一个直角三角形中,我们可以通过从直角顶点到斜边的任意一点画一条垂直辅助线,这样可以将原问题转化为两个相似的直角三角形的求解。

2.中位线辅助线:在一个任意三角形中,我们可以通过连接每个顶点与对边中点的线段来得到三条中位线。

这些中位线的交点被称为三角形的重心。

通过画三角形重心与其他顶点的连线,可以将原问题转化为多个相似的三角形的求解。

3.等角辅助线:当我们需要证明两个三角形相似时,可以通过添加等角辅助线来帮助我们得到一些相等的角度。

例如,在两个直角三角形中,如果我们能找到一个等角辅助线使得两个直角形成的角相等,那么我们可以推断这两个三角形相似。

4.比例辅助线:当我们需要求解相似三角形的长边与短边的比例时,可以利用比例辅助线。

例如,在两个相似三角形中,我们可以通过添加比例辅助线,将两个相似三角形分割成若干个相似的小三角形,并且利用小三角形的边长比例来求解长边与短边的比例关系。

5.平行辅助线:当我们需要证明两个三角形相似时,可以通过添加平行辅助线来帮助我们得到一些对应边平行的关系。

例如,在两个直角三角形中,如果我们能找到一条边使得它与另一个直角三角形的对边平行,那么我们可以推断这两个三角形相似。

以上是一些常见的相似三角形添加辅助线的方法,它们可以帮助我们更好地理解问题、简化问题以及找到解决问题的方法。

在实际解题过程中,根据问题的不同,我们可以选择适合的辅助线方法来解决问题。

直角三角形中的常见辅助线

直角三角形中的常见辅助线

直角三角形中的常见辅助线
直角三角形是一种特殊的三角形,其中一个角度为90度。

在解决直角三角形问题时,常常使用辅助线来帮助我们找到所需的长度或角度。

以下是在直角三角形中常见的辅助线:
1. 高线:直角三角形的高线是从直角顶点到对边的垂直线段。

它将三角形分成两个相似的三角形,可以用来计算三角形的面积或找到缺失的边长。

2. 中线:直角三角形的中线是连接斜边的中点和直角顶点的线段。

它将直角三角形分成两个相等的直角三角形,并且中线的长度等于斜边的一半。

中线可用于找到直角三角形的重心或计算斜边的长度。

3. 角平分线:直角三角形的角平分线是从直角顶点到斜边上的一点,将直角顶点的角分成两个相等的角。

它可以帮助我们计算三角形的角度或找到未知的边长。

4. 媒线:直角三角形的媒线是连接斜边的中点和对边中点的线段。

媒线将直角三角形分成两个相似的三角形,并且媒线的长度等于斜边的一半。

媒线可用于计算三角形的面积或找到三角形的中点坐标。

这些常见的辅助线在解决直角三角形问题时非常有用,可以使问题变得更加简单和直观。

无论是计算边长、角度、面积还是寻找三角形的特殊点,这些辅助线都可以提供宝贵的帮助。

注意:在使用辅助线时,我们可以根据具体问题的需要选择适当的辅助线来解决问题,并结合三角函数等相关知识进行计算。

希望这份文档对您在解决直角三角形问题时有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形中的辅助线
在解相似三角形问题时,常需要作辅助线来沟通已知条件和未知条件,
在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或得出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。

主要的辅助线有以下几种:
一、作平行线
例1. 如图,∆ABC 的AB 边和AC 边上各取一点D 和E ,且使AD =AE ,DE 延长线与BC 延长线相交于F ,求证:
BF CF BD
CE
=
B
D
A C
F
E
证明:过点C 作CG//FD 交AB 于G
F

=
AD AG AE
AC
又 AD AE =,∴=AG AC ∴=DG CE
GC DF //,∴=
BD DG BF
CF
∴=
BD CE BF CF
小结:本题关键在于AD =AE 这个条件怎样使用。

由这道题还可以增加一种证明线段相等的方法:相似、成比例。

例2. 如图,△ABC 中,AB<AC ,在AB 、AC 上分别截取BD=CE ,DE ,BC 的延长线相交于点F ,证明:AB ·DF=AC ·EF 。

分析:证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明。

欲证,需证
,而这四条线段所在的两个三角形显然AB DF AC EF AB AC EF
DF
⋅=⋅=不相似,因而要通过两组三角形相似,运用中间比代换得到,为构造相似三角形,需添加平行线。

方法一:过E 作EM//AB ,交BC 于点M ,则△EMC ∽△ABC (两角对应相等,两三角形相似)。


=⋅=⋅EM AB EC
AC EM AC AB EC 即, ∴=
AB AC EM EC
同理可得∆∆EMF DBF ~ ∴
=EF DF EM
BD
, 又, BD EC EM EC EM
BD
=∴=

为中间比),EM
BD
∴=AB AC EF DF

∴⋅=⋅AB DF AC EF
方法二:如图,过D 作DN//EC 交BC 于N
则有,,∆∆BDN BAC ~

=⋅=⋅BD AB DN
AC BD AC AB DN ,即(比例的基本性质) ∴=
AB AC BD DN
同理,∆∆ECF DNF ~

==EC DN EF
DF BD EC ,而(已知) ∴=BD DN EC DN EC DN (为中间比),
∴=∴⋅=⋅AB AC EF DF
AB DF AC EF ,
二、作垂线
3. 已知:如图两个等积ABC ∆、DBC ∆,若AC 、BD 交于E ,EF ∥AB ,EG ∥CD ,分别交BC 于F 、G ,求证:CF=BG 。

证明:
∵ EF ∥AB ∴
AC CE BC CF = EG ∥CD ∴ BD
BE
BC BG =
∵ DBC ABC S S ∆∆= ∴ EDC ABE S S ∆∆= ∴ EN CD ME AB ⋅=⋅

EM EN CD AB = ∴ AE CE
DE BE = ∴ AC CE BD BE = ∴ BC
BG
BC CF = ∴ CF=BG
4. 顶点C 向AB 和AD 的延长线引垂线CE 和CF ,垂足分别为E 、F ,
又 BCM ADN ∆≅∆ ∴ AN=CM
∴ 2
)(AC CM AM AC AF AD AE AB =+=⋅+⋅
三、作延长线
例5. 如图,在梯形ABCD 中,AD ∥BC ,若∠BCD 的平分线CH ⊥AB 于点H ,BH=3AH ,且四边形AHCD 的面积为21,求△HBC 的面积。

分析:因为问题涉及四边形AHCD ,所以可构造相似三角形。

把问题转化为相似三角形的面积比而加以解决。

解:延长BA 、CD 交于点P ∵CH ⊥AB ,CD 平分∠BCD ∴CB=CP ,且BH=PH ∵BH=3AH ∴PA :AB=1:2 ∴PA :PB=1:3 ∵AD ∥BC ∴△PAD ∽△PBC ∴::△△S S PAD PBC =19
∵△△S S
PCH PBC
=
1
2 ∴:△四边形S S PAD AHCD ==27 ∵四边形S AHCD =21 ∴△S PAD =6 ∴S PBC △=54 ∴△△S S HBC PBC =
=1
2
27 例6. 如图,Rt ∆ABC 中,CD 为斜边AB 上的高,E 为CD 的中点,AE 的延长线交BC
于F ,FG ⊥AB 于G ,求证:FG 2=CF •BF
解析:欲证式即
FG
CF
BF FG =
由“三点定形”,ΔBFG 与ΔCFG 会相似吗?显然不可能。

(因为ΔBFG 为Rt Δ),但由E 为CD 的中点,∴可设法构造一个与ΔBFG 相似的三角形来求解。

不妨延长GF 与AC 的延长线交于H

EC FH
ED FG AE AF =
= ∴EC
FH
ED FG = 又ED=EC ∴FG=FH
又易证Rt ΔCFH ∽Rt ΔGFB

BF
FH
FG CF = ∴FG ·FH=CF ·BF ∵FG=FH ∴FG 2=CF ·BF
四、作中线
例7 如图,ABC ∆中,AB ⊥AC ,AE ⊥BC 于E ,D 在AC 边上,若BD=DC=EC=1,求AC 。

解:取BC 的中点M ,连AM ∵ AB ⊥AC ∴ AM=CM ∴ ∠1=∠C
又 BD=DC ∴ DCB DBC ∠=∠ ∴ DBC C ∠=∠=∠1 ∴ MAC ∆∽DBC ∆ ∴ BC AC DC MC =
又 DC=1 MC=2
1
BC ∴ 22
1
BC DC BC MC AC =⋅=
(1)
又 AEC Rt ∆∽BAC Rt ∆ 又 ∵ EC=1 ∴ BC BC CE AC =⋅=2
(2) 由(1)(2)得,42
1
AC AC =
∴ 32=AC 小结:利用等腰三角形有公共底角,则这两个三角形相似,取BC 中点M ,构造MAC ∆与DBC ∆相似是解题关键
综合练习题
1、在△ABC 中,D 为AC 上的一点,E 为CB 延长线上的一点,BE=AD ,DE 交AB 于F 。

求证:EF ×BC=AC ×DF
2、ABC ∆中,︒=∠90ACB ,AC=BC ,P 是AB 上一点,Q 是PC 上一点(不是中点),MN 过Q 且MN ⊥CP ,交AC 、BC 于M 、N ,求证:CN CM PB PA ::=。

3、. 如图,中,,,那么吗?试说明∆ABC AB AC BD AC BC CA CD =⊥=⋅2
2理由?(用三种解法)
1、证明:
过D 作DG ∥BC 交AB 于G ,则△DFG 和△EFB 相似, ∴
DG DF BE EF =∵BE =AD,∴DG DF
AD EF
=
① 由DG ∥BC 可得△ADG 和△ACB 相似,

DG AD BC AC = ∴DG BC
AD AC
=
② 由①②得,DF BC
EF AC
=
∴EF ×BC =AC ×DF 2、证明:
过P 作PE ⊥AC 于E ,PF ⊥CB 于F ,则CEPF 为矩形
∴ PF =//EC ∵ ︒=∠=∠45B A ∴ AEP Rt ∆∽PFB Rt ∆ ∴ PF PE PB AP ::= ∵ EC=PF ∴
EC
PE
PF PE PB PA =
=(1) 在ECP ∆和CNM ∆中:CP ⊥MN 于Q ∴ ︒=∠+∠90QNC QCN 又 ∵ ︒=∠+∠90QCM QCN ∴ CNQ MCQ ∠=∠ ∴ PEC Rt ∆∽MCN Rt ∆ ∴ CN EC CM EP = 即 CN
CM
EC EP =(2) 由(1)(2)得
CN
CM
PB PA = 3、
方法一:如图(1),设BC 中点为E ,连接AE 。

图(1)
AB AC BE CE AE BC AEC BDC C C BDC AEC ==⎫⎬
⎭⇒⊥⇒∠=∠=∠=∠⎫⎬⎪⎭⎪⇒~90
∆∆
BC AC CD CE BC CE AC CD CE BC BC CA CD =⇒⋅=⋅=⎫
⎬⎪
⎪⎭
⎪⎪⇒=⋅1
222
方法二:如图(2),在DA 上截取
DE=DC
图(2)
在△BED 与△BCD 中,
BD CE BDE BDC DE DC BD BD BED BCD BEC C AB AC ABC C ⊥⇒∠=∠===⎫


⎭⎪⇒≅⇒∠=∠=⇒∠=∠⎫⎬⎪⎪⎭

⎪90 ∆∆ ∆∆ABC BCE AC BC BC
EC
BC AC EC AC CD ~⇒
=⇒=⋅=⋅22 方法三:如图(3),过B 作BE ⊥BC 于B ,交CA 的延长线于E 。

图(3)
AB AC C ABC C E ABC ABE E ABE AB AE AB AC AE AC =⇒∠=∠∠+∠=∠+∠=⎫


⎭⎪⇒∠=∠⇒==⎫⎬⎪⎪⎭

⎪⇒=9090 易得Rt CBD Rt CEB BC CD CE CE CA BC CA CD ∆∆~⇒=⋅=⎫⎬⎭
⇒=⋅22
22。

相关文档
最新文档