相似三角形常用辅助线

合集下载

相似三角形之常用辅助线

相似三角形之常用辅助线

相似三角形之常用辅助线在与相似有关得几何证明、计算得过程中,常常需要通过相似三角形,研究两条线段之间得比例关系,或者转移线段或角。

而有些时候,这样得相似三角形在问题中,并不就是十分明显、因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需得结论。

专题一、添加平行线构造“A"“X”型定理:平行于三角形一边得直线与其它两边(或两边延长线)相交,所构成得三角形与原三角形相似。

定理得基本图形:例1、平行四边形ABCD中,E为AB中点,AF:FD=1:2,求AG:GC变式练习:已知在△ABC中,AD就是∠BAC得平分线.求证:、(本题有多种解法,多想想)例2、如图,直线交△ABC得BC,AB两边于D,E,与CA延长线交于F,若==2,求BE:EA得比值、变式练习:如图,直线交△ABC得BC,AB两边于D,E,与CA延长线交于F,若错误!= 错误!=2,求BE:E A得比值。

例3、BE=AD,求证:EF·BC=AC·DF变式1、如图,△ABC中,AB<AC,在AB、AC上分别截取BD=CE,DE,BC得延长线相交于点F,证明:AB·DF=AC·EF。

例4、已知:如图,在△ABC中,AD为中线,E在AB上,AE=AC,CE交AD于F,EF∶FC=3∶5,EB=8cm,求AB、AC得长、变式:如图,,求。

(试用多种方法解)说明:此题充分展示了添加辅助线,构造相似形得方法与技巧.在解题中方法要灵活,思路要开阔.总结:(1)遇燕尾,作平行,构造字一般行。

(2)引平行线应注意以下几点:1)选点:一般选已知(或求证)中线段得比得前项或后项,在同一直线得线段得端点作为引平行线得EF EF EFEF点。

2)引平行线时尽量使较多已知线段、求证线段成比例。

专题二、作垂线构造相似直角三角形 一、基本图形例1、,,那么吗?试说明AC BD AC BC CA CD ⊥=⋅22理由?(用多种解法)v变式练习:平行四边形ABC D中,CE ⊥A E,CF ⊥AF,求证:A B·AE+AD ·AF=AC 2例2、如图,RtA BC 中,CD 为斜边AB 上得高,E 为CD 得中点,AE 得延长线交B C于F,FG AB 于G,求证:FG =CFBF【练习】1.如图,一直线与△ABC 得边AB,AC 及BC 得延长线分别交于D,E,F 。

相似三角形证明技巧(整理)

相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件: ①;②;③.二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角两角对应相等,两三角形相似找夹边对应成比例两边对应成比例且夹角相等,两三角形相似找夹角相等两边对应成比例且夹角相等,两三角形相似 找第三边也对应成比例三边对应成比例,两三角形相似 找一个直角斜边、直角边对应成比例,两个直角三角形相似找另一角两角对应相等,两三角形相似找两边对应成比例判定定理2 找顶角对应相等判定定理1 找底角对应相等判定定理1 找底和腰对应成比例判定定理3e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。

几何证明题辅助线经典方法

几何证明题辅助线经典方法

几何证明题辅助线经典方法
引言
几何证明题是数学中常见的题型,也是学生们认识几何图形、发现几何规律的重要手段。

辅助线是解决几何证明题时常用的方法之一,本文将介绍几种经典的辅助线方法。

方法一:画垂直平分线
对于某些几何图形中的线段,我们可以通过画垂直平分线来辅助证明。

垂直平分线将线段分成两等分,从而在几何证明过程中起到重要的辅助作用。

方法二:画过顶点的高
在证明三角形相等或等腰三角形时,辅助线中的高是常见的方法之一。

通过画一条从顶点到对边的垂线,我们可以将几何图形转化为更容易处理的形式,从而证明所需结论。

方法三:画过顶点的中位线
在证明平行四边形或矩形时,辅助线中的中位线是一种常见的
方法。

通过画一条从顶点到对边中点的线段,我们可以将问题简化,并且利用矩形或平行四边形的性质得到所需结论。

方法四:画三角形的内切圆
在证明三角形的某些性质时,画三角形的内切圆是一种常见的
辅助线方法。

内切圆与三角形的各边均相切,通过利用内切圆的性质,我们可以得到有关三角形的一些重要结论。

方法五:画过顶点的角平分线
在证明两角相等或证明某些三角形相似时,画过顶点的角平分
线是一种常见的辅助线方法。

通过将角细分为两等分,我们可以得
到有关角度的一些重要关系,从而得到所需结论。

结论
辅助线方法在解决几何证明题时起到了重要的作用。

以上介绍
的几种经典辅助线方法仅是其中的一部分,通过熟练掌握这些方法,并结合具体问题,我们可以更好地解决几何证明题,提高数学水平。

初中数学14种方法教会你给三角形加辅助线!

初中数学14种方法教会你给三角形加辅助线!

初中数学14种方法教会你给三角形加辅助线!1.垂线:对于任意三角形ABC,可以从顶点A引一条垂线AD,垂足D位于BC边上。

通过垂线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。

2.中线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。

通过中线可以将三角形分成三个等边三角形,进而使用等边三角形的性质解决问题。

3.角平分线:对于任意三角形ABC,可以从顶点A引一条角平分线AD,使得∠CAD=∠BAD。

通过角平分线可以将一个角平分成两个相等的角,从而使用相等角的性质解决问题。

4.内切圆:对于任意三角形ABC,可以画出其内切圆,该圆与三角形的三条边都相切。

通过内切圆可以获得三个切点,进而使用切点的性质解决问题。

5.外切圆:对于任意三角形ABC,可以画出其外切圆,该圆与三角形的三条边都相切。

通过外切圆可以获得三个切点,进而使用切点的性质解决问题。

6.高线:对于任意三角形ABC,可以从顶点A引一条高线AH,垂足H位于BC边上。

通过高线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。

7.中位线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中位线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。

通过中位线可以将三角形分成三个面积相等的三角形,进而使用面积相等的性质解决问题。

8.三角形的对称性:对于任意三角形ABC,可以观察到三个顶点关于其中一条边的对称性,根据这种对称性可以找到一些相等的角或边,从而简化问题的解决。

9.倒错:对于任意三角形ABC,可以考虑将这个三角形倒转或翻转,从而改变三角形的位置和形态,进而简化问题的解决。

10.几何图形的组合:对于给定的三角形ABC,可以考虑将它与其他几何图形进行组合,例如,与一个正方形、矩形或平行四边形组合,从而改变问题的形式,解决新问题。

相似三角形添加辅助线的方法举例(有答案)

相似三角形添加辅助线的方法举例(有答案)

类似三角形添加帮助线的办法举例例1: 已知:如图,△ABC 中,AB =AC,BD ⊥AC 于D . 求证: BC 2=2CD ·AC .例2上的一点,(1;(2值例3.如图4-1,已知平行四边ABCD 中,E 是AB 的中点连E.F 交AC 于G .求AG :AC 的值.例4.如图4—5,B 为AC 的中点,E 为BD 的中点,则AF :AE=___________. 例5.如图4-7,已知平行四边形ABCD 中,对角线AC.BD 交于O 点,E 为AB 延伸线上一点,OE 交BC 于F,若AB=a,BC=b,BE=c,求BF 的长. 例6.已知在△ABC 中,AD 是∠BAC类似三角形添加帮助线的办法举例答案例1: 已知:如图,△ABC 中,AB =AC,BD ⊥AC 于D . 求证: BC 2=2CD ·AC . 剖析:欲证BC 2=2CD ·AC,论中有“2”,无法直接找到它们地点的类似三角形,是以须要联合图形特色及结论情势,经由过程添加帮助线,对个中某一线段进行倍.分变形,结构出单一线段后,再证实三角形类似.由“2”所放的地位不合,证法也不合.BCBC证法一(结构2CD ):如图,在AC 截取DE =DC, ∵BD ⊥AC 于D,∴BD 是线段CE 的垂直等分线, ∴BC=BE,∴∠C=∠BEC, 又∵ AB =AC, ∴∠C=∠ABC . ∴△BCE ∽△ACB .∴BC 2=2CD ·AC .证法二(结构2AC ):如图,在CA 的延伸线上截取AE =AC,贯穿连接BE,∵ AB =AC, ∴ AB =AC=AE . ∴∠EBC=90°, 又∵BD ⊥AC .∴∠EBC=∠BDC=∠EDB=90°, ∴∠E=∠DBC, ∴△EBC ∽△BDC∴BC 2=2CD ·AC.证法三,取BC 的中点E,贯穿连接BCEBCAE,则又∵AB=AC,∴AE ⊥BC,∠ACE=∠C ∴∠AEC=∠BDC=90° ∴△ACE ∽△BCD .∴BC 2=2CD ·AC .证法四,取BC 中点E,贯穿连接DE,.∵BD ⊥AC,∴BE=EC=EB, ∴∠EDC=∠C又∵AB=AC,∴∠ABC=∠C, ∴△ABC ∽△EDC .∴BC 2=2CD ·AC .解释:此题充分展现了添加帮助线,结构类似形的办法和技能.在解题中办法要灵巧,思绪要坦荡.例2,贯穿连接(1;(2B值(1解法1如图,解法2如图同解法1解法3如图以下同解法1解法4如图,且,解法5如图得平行四边形,,解法6如图(补形法),,(注:此外可用三角形类似.等腰三角形三线合和一.等积法等)(2解法1(补形法)如图解法2(补形法)如图,解法3(补形法)如图1)2)由(1).(2解法4(割补法)如图如图,解释本题分解考核了等腰三角形的性质,类似三角形的剖断和性质,解题症结是作帮助线,结构类似三角形.例3.如图4-1,已知平行四边ABCD中,E是AB的中点连E.F交AC于G.求AG:AC的值.解法1:延伸FE交CB的延伸线于H,∵四边形ABCD是平行四边形,∴∠H=∠AFE,∠DAB=∠HBE又AE=EB,∴△AEF≌△BEH,即AF=BH,∵ AD∥CH,∠AGF=∠CGH,∠AFG=∠BHE,∴△AFG∽△CGH.∴ AG:GC=AF:CH,∴ AG:GC=1:4,∴ AG:AC=1:5.解法2:如图4—2,延伸EF与CD的延伸线交于M,由平行四边形ABCD可知即AB∥MC,∴ AF:FD=AE:MD,AG:GC=AE:MC.∴ AF:FD=1:2,∴ AE:MD=1:2.AE:MC=1:4,即AG:GC=1:4,∴ AG:AC=1:5例4.如图4—5,B为AC的中点,E为BD的中点,则AF:AE=___________.解析:取CF的中点G,衔接BG.∵ B为AC的中点,∴ BG:AF=1:2,且BG∥AF,又E为BD的中点,∴ F为DG的中点.∴ EF:BG=1:2.故EF:AF=1:4,∴ AF:AE=4:3.例5.如图4-7,已知平行四边形ABCD中,对角线AC.BD交于O点,E为AB延伸线上一点,OE交BC于F,若AB=a,BC=b,BE=c,求BF的长.解法1:过O点作OM∥CB交AB于M,∵ O是AC中点,OM∥CB,∴ M是AB的中点,∴ OM是△ABC的中位线且OM∥BC,∠EFB=∠EOM,∠EBF=∠EMO.∴△BEF∽△MOE,解法2:如图4-8,延伸EO与AD交于点G,则可得△AOG≌△COF,∴ AG=FC=b-BF,∵ BF∥AG,解法3:延伸EO与CD的延伸线订交于N,则△BEF与△CNF的对应边成比例,例6.已知在△ABC中,AD是∠BAC剖析 1 比例线段常由平行线而产生,因而研讨比例线段问题,常应留意平行线的感化,在没有平行线时,可以添加平行线而促成比例线段的产生.此题中AD为△ABC内角A的等分线,这里不消失平行线,于是可斟酌过定点作某定直线的平行线,添加了如许的帮助线后,就可以应用平行关系找出响应的比例线段,再比较所证的比例式与这个比例式的关系,去寻找问题的解决.证法1:如图4—9,过C点作CE∥AD,交BA的延伸线于E.在△BCE中,∵ DA∥CE,又∵ CE∥AD,∴∠1=∠3,∠2=∠4,且AD等分∠BAC,∵∠1=∠2,于是∠3=∠4,∴ AC=AE剖析2 因为BD.CD是点D分BC而得,故可过火点D作平行线.证法2:如图4—10,过D作DE∥AC交AB于E,则∠2=∠3.∵∠1=∠2,∴∠1=∠3.于是EA=ED.剖析3 欲证式子左边为AB:AC,而AB.AC不在统一向线上,又不服行,故斟酌将AB转移到与AC平行的地位.证法3:如图4—11,过B作BE∥AC,交AD的延伸线于E,则∠2=∠E.∵∠1=∠2,∴∠1=∠E,AB=BE.剖析4 因为AD是∠BAC的等分线,故可过D分离作AB.AC的平行线,结构类似三角形求证.证法4 如图4—12,过D点作DE∥AC交AB于E,DF∥AB交AC于F.易证四边形AEDF是菱形.则 DE=DF.由△BDE∽△DFC,。

5种辅助线的做法

5种辅助线的做法

1.截取一条线段等于已知线段。

(1)在已知线段上
(2)已知线段的延长线上
(3)在平面内截取
2. 过一个已知点做一条线段垂直于已知“直线”
3.连接两个已知点形成一条新的线段。

有时可能会取某条已知线段的中点然后再连接形成新的线段(主要是形成中位线)。

4.过一个已知点做一条线段平行于已知“直线”
5.做一个角等于已知角。

(所做的角其中有一条边必须是已知边,所做角的顶点是已知点)。

注:
(一)做辅助线的目的:
(1)构造全等三角形,构造相似三角形。

(2)构造特殊三角形(等腰三角形,等边三角形,等腰直角三角形)
(3)构造特殊四边形(平行四边形,矩形,菱形,正方形等)
(二)用辅助线所构造出来的三角形可能与原图中的某个三角形形成旋转型的,中心对称型的,轴对称型的全等(或相似)。

思维特训(十一) 相似三角形中的辅助线作法归类

思维特训(十一) 相似三角形中的辅助线作法归类

思维特训(十一) 相似三角形中的辅助线作法归类在添加辅助线时,所添加的辅助线往往能构造出一组或多组相似三角形,或得到成比例的线段,或得出等角、等边,从而为证明三角形相似或进行有关的计算找到等量关系. 作辅助线的方法主要有以下几种:(1)作平行线构造“A ”型或“X ”型相似;(2)作平行线转换线段比;(3)作垂直证明相似.图11-S -1类型一 作平行线构造“A ”型或“X ”型相似1.如图11-S -2,已知平行四边形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 延长线上一点,OE 交BC 于点F ,若AB =a ,BC =b ,BE =c ,求BF 的长.图11-S -22.如图11-S -3,在△ABC 中,AD 为BC 边上的中线,CF 为任一直线,CF 交AD 于点E ,交AB 于点F .求证:AE DE =2AF BF. 图11-S -33.在一节数学课上,老师出示了这样一个问题让学生探究:如图11-S -4,在△ABC中,D 是BA 延长线上一动点,点F 在BC 上,且CF BF =12,连接DF 交AC 于点E . (1)如图△,当E 恰为DF 的中点时,请求出AD AB的值; (2)如图△,当DE EF =a (a >0)时,请求出AD AB的值(用含a 的代数式表示). 思考片刻后,同学们纷纷表达自己的想法:甲:过点F 作FG △AB 交AC 于点G ,构造相似三角形解决问题;乙:过点F 作FG △AC 交AB 于点G ,构造相似三角形解决问题;丙:过点D 作DG △BC 交CA 的延长线于点G ,构造相似三角形解决问题. 老师说:“这三位同学的想法都可以”.请参考上面某一种想法,完成第(1)问的求解过程,并直接写出第(2)问中AD AB的值. 图11-S -4类型二 作平行线转换线段的比4.如图11-S -5,B 为AC 的中点,E 为BD 的中点,求AF AE的值. 图11-S -55.如图11-S -6,已知等边三角形ABC ,D 为AC 边上的一动点,CD =nDA ,连接BD ,M 为线段BD 上一点,∠AMD =60°,连接AM 并延长交BC 于点E .(1)若n =1,则BE CE =______,BM DM=______; (2)若n =2,如图△,求证:BM =6DM ;(3)当n =________时,M 为BD 的中点(直接写出结果,不要求证明).图11-S -66.2019·朝阳 已知:如图11-S -7,在△ABC 中,点D 在AB 上,E 是BC 的延长线上一点,且AD =CE ,连接DE 交AC 于点F .(1)猜想证明:如图△,在△ABC 中,若AB =BC ,学生们发现:DF =EF .下面是两位学生的证明思路:思路1:过点D 作DG △BC ,交AC 于点G ,可通过证△DFG △△EFC 得出结论;思路2:过点E 作EH △AB ,交AC 的延长线于点H ,可通过证△ADF △△HEF 得出结论. 请你参考上面的思路,证明DF =EF (只用一种方法证明即可).(2)类比探究:在(1)的条件下(如图△),过点D 作DM △AC 于点M ,试探究线段AM ,MF ,FC 之间满足的数量关系,并证明你的结论.(3)延伸拓展:如图△,在△ABC 中,若AB =AC ,∠ABC =2△BAC ,AB BC=m ,请你用尺规作图在图△中作出AD 的垂直平分线交AC 于点N (不写作法,只保留作图痕迹),并用含m的代数式直接表示FN AC的值. 图11-S -7类型三 作垂直证相似7.如图11-S -8,在△ABC 中,∠C =90°,D 为边AB 的中点,M ,N 分别为边AC ,CB 上的点,且DM ⊥DN .(1)求证:DM DN =BC AC; (2)若BC =6,AC =8, CM =5,直接写出CN 的长.图11-S -88.如图11-S -9,在△ABC 中,D 是BC 边上的点(不与点B ,C 重合),连接AD . 问题引入:(1)如图△,当D 是BC 边的中点时,S △ABD ∶S △ABC =________;当D 是BC 边上任意一点时,S △ABD ∶S △ABC =________(用图中已有线段表示).探索研究:(2)如图△,在△ABC 中,O 是线段AD 上一点(不与点A ,D 重合),连接BO ,CO ,试猜想S △BOC 与S △ABC 之比应该等于图中哪两条线段之比,并说明理由.拓展应用:(3)如图△,O 是线段AD 上一点(不与点A ,D 重合),连接BO 并延长交AC 于点F ,连接CO 并延长交AB 于点E .试猜想OD AD +OE CE +OF BF的值,并说明理由. 图11-S -99.如图11-S -10,已知一个直角三角形纸片ACB ,其中,∠ACB =90°,AC =4,BC =3,E ,F 分别是AC ,AB 边上的点,连接EF .(1)如图△,若将直角三角形纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且S 四边形ECBF =3S △EDF ,则AE =________;(2)如图△,若将直角三角形纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且MF △CA ,求EF 的长;(3)如图△,若FE 的延长线与BC 的延长线相交于点N ,CN =1,CE =47,求AF BF的值. 图11-S -10详解详析1.解:如图,过点O 作OM △BC 交AB 于点M .∵O 是AC 的中点,OM ∥BC ,∴M 是AB 的中点,即MB =12a , ∴OM 是△ABC 的中位线,OM =12BC =12b . ∵OM ∥BC ,∴△BEF ∽△MEO ,∴BF MO =BE ME , 即BF 12b =c a 2+c ,∴BF =bc a +2c . 2.证明:如图,过点D 作DG △CF 交AB 于点G .∵DG ∥CF ,D 为BC 的中点,∴G 为BF 的中点,FG =BG =12BF . ∵EF ∥DG ,∴AE DE =AF GF =AF 12BF =2AF BF . 3.解:(1)甲同学的想法:如图△,过点F 作FG △AB 交AC 于点G ,∴△AED ∽△GEF ,∴AD GF =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴AD =GF .∵FG ∥AB ,∴△CGF ∽△CAB ,∴GF AB =CF CB. ∵CF BF =12,∴CF CB =13,∴AD AB =GF AB =CF CB =13. 乙同学的想法:如图△,过点F 作FG △AC 交AB 于点G ,∴AD AG =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴AD =AG .∵FG ∥AC ,∴AG AB =CF CB. ∵CF BF =12,∴CF CB =13,∴AD AB =AG AB =CF CB =13. 丙同学的想法:如图③,过点D 作DG △BC 交CA 的延长线于点G ,∴∠C =△G ,∠CFE =△GDE ,∴△GDE ∽△CFE ,∴GD CF =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴GD =CF .∵DG ∥BC ,∴∠C =△G ,∠B =△ADG ,∴△ADG ∽△ABC ,∴AD AB =DG BC .∵CF BF =12,∴CF BC =13. ∴AD AB =DG BC =CF BC =13. (2)如图△,过点D 作DG △BC 交CA 的延长线于点G ,∴∠C =△G ,∠CFE =△GDE ,∴△GDE ∽△CFE ,∴GD CF =ED EF. ∵DE EF =a ,∴ED =aEF , ∴DG =aCF .∵DG ∥BC ,∴∠C =△G ,∠B =△ADG ,∴△ADG ∽△ABC ,∴AD AB =DG BC . ∵CF BF =12,∴CF BC =13,即BC =3CF . ∴AD AB =DG BC =aCF 3CF =a 3. 4.解:取CF 的中点G ,连接BG .∵B 为AC 的中点,∴BG AF =12,且BG △AF . 又E 为BD 的中点,∴F 为DG 的中点,△EF BG =12,∴EF AF =14, ∴AF AE =43. 5.解:(1)当n =1时,CD =DA .∵△ABC 是等边三角形,∴BD ⊥AC ,∠BAC =60°,∴∠ADM =90°.又△△AMD =60°,∴∠MAD =30°,∴∠BAE =△BAC -△MAD =30°,即△BAE =△EAD ,∴AE 为△ABC 的中线,∴BE CE=1. 在△AMD 中,DM =12AM (30°角所对的直角边等于斜边的一半). ∵∠BAM =△ABM =30°,∴AM =BM ,∴BM DM=2. (2)证明:△△AMD =△ABD +△BAE =60°,∠CAE +△BAE =60°,∴∠ABD =△CAE .又△BA =AC ,∠BAD =△ACE =60°,∴△BAD △△ACE (ASA),∴AD =CE ,∴CD =BE .如图,过点C 作CF △BD 交AE 的延长线于点F ,∴FC BM =CE BE =AD CD =12①,DM FC =AD AC =13②,由△×△得DM BM =16,∴BM =6DM . (3)△M 为BD 的中点,∴BM =MD .∵△BAD ≌△ACE ,∴AD =CE ,∴CD =BE .∵△AMD ∽△ACE ,△BME ∽△BCD ,△AD AE =MD CE ,BM BC =ME CD, ∴AD =MD ·AE CE ③,CD =BC ·ME BM④, 由△×△得CD =5-12DA ,∴n =5-12. 6.解:(1)思路1:如图△,过点D 作DG △BC ,交AC 于点G .∵AB =BC ,∴∠A =△BCA .∵DG ∥BC ,∴∠DGA =△BCA ,∠DGF =△ECF ,∴∠A =△DGA ,∴DA =DG .∵AD =CE ,∴DG =CE .又△△DFG =△EFC ,∴△DFG ≌△EFC ,∴DF =EF .思路2:如图△,过点E 作EH △AB ,交AC 的延长线于点H .∵AB =BC ,∴∠A =△BCA .∵EH ∥AB ,∴∠A =△H .∵∠ECH =△BCA ,∴∠H =△ECH ,∴CE =EH .∵AD =CE ,∴AD =EH .又△△AFD =△HFE ,∴△DF A ≌△EFH ,∴DF =EF .(2)结论:MF =AM +FC .证明:如图△,由思路1可知:DA =DG ,△DFG ≌△EFC ,∴FG =FC .∵DM ⊥AG ,∴AM =GM .∵MF =FG +GM ,∴MF =AM +FC .(3)AD 的垂直平分线交AC 于点N ,如图△所示.连接DN ,过点D 作DG △CE 交AC 于点G .设DG =a ,BC =b ,则AB =AC =mb ,AD =AG =ma .∵∠ABC =2△BAC ,设△BAC =x ,则△B =△ACB =2x ,∴5x =180°,∴x =36°,∴∠A =36°. ∵NA =ND ,∴∠A =△ADN =36°.∵∠ADG =△B =72°,∴∠NDG =△A =36°.又△△DGN =△AGD ,∴△GDN ∽△GAD ,∴DG 2=GN ·GA .易知DG =DN =AN =a ,∴a 2=(ma -a )·ma ,两边同除以a ,得m 2a -ma -a =0. ∵DG ∥CE ,∴DG ∶CE =FG △FC =DG △DA =1△m .∵CG =mb -ma ,∴FG =1m +1·m (b -a ), ∴FN =GN +FG =ma -a +1m +1m (b -a )=m 2a -a +mb -ma m +1=mb m +1, ∴FN AC =mbm +1mb =1m +1. 7.解:(1)证明:如图,过点D 作DP △BC 于点P ,DQ ⊥AC 于点Q ,∴∠DQM =△DPN =90°.又△△C =90°,∴四边形CPDQ 为矩形,∴∠QDP =90°,即△MDQ +△MDP =90°. ∵DM ⊥DN ,∴∠MDN =90°,即△MDP +△NDP =90°,∴∠MDQ =△NDP ,∴△DMQ ∽△DNP ,∴DM DN =DQ DP. ∵D 为AB 的中点,DQ ∥BC ,DP ∥AC ,∴DQ =12BC ,DP =12AC ,∴DQ DP =BC AC ,∴DM DN=BC AC. (2)由题意得AQ =CQ =4,MQ =CM -CQ =5-4=1,DQ =12BC =3,DP =12AC =4. ∵△DMQ ∽△DNP ,∴MQ NP =DQ DP ,∴NP =43. 又CP =PB =3,∴CN =3-43=53. 8.解:(1)1△2 BD △BC(2)猜想S △BOC 与S △ABC 之比应该等于OD △AD .理由:如图,分别过点O ,A 作BC 的垂线OE ,AF ,垂足分别为E ,F ,∴OE ∥AF ,∴OD ∶AD =OE △AF .∵S △BOC =12BC ·OE ,S △ABC =12BC ·AF , ∴S △BOC ∶S △ABC =⎝⎛⎭⎫12BC ·OE ∶⎝⎛⎭⎫12BC ·AF =OE △AF =OD △AD . (3)猜想OD AD +OE CE +OF BF的值是1.理由如下: 由(2)可知:OD AD +OE CE +OF BF =S △BOC S △ABC +S △BOA S △ABC +S △AOC S △ABC =S △BOC +S △BOA +S △AOC S △ABC =S △ABC S △ABC=1. 9.解:(1)△将△ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF ,∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF ,∴S △ABC =4S △AEF .在Rt △ABC 中,∵∠ACB =90°,AC =4,BC =3,∴AB =5.∵∠EAF =△BAC ,∴Rt △AEF ∽Rt △ABC ,∴S △AEF S △ABC =(AE AB)2,即(AE 5)2=14,∴AE =2.5. (2)连接AM 交EF 于点O ,如图△,∵将△ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,∴AE =EM ,AF =MF ,∠AFE =∠MFE .∵MF ∥CA ,∴∠AEF =△MFE ,∴∠AEF =△AFE ,∴AE =AF ,∴AE =EM =MF =AF ,∴四边形AEMF 为菱形.设AE =x ,则EM =x ,CE =4-x .∵四边形AEMF 为菱形,∴EM ∥AB ,∴△CME ∽△CBA ,∴CM CB =CE CA =EM AB, 即CM 3=4-x 4=x 5,解得x =209,CM =43. 在Rt △ACM 中,AM =AC 2+CM 2=4103. ∵S 菱形AEMF =12EF ·AM =AE ·CM , ∴EF =2×43×2094103=4109. (3)如图△,过点F 作FH △BC 于点H ,∵EC ∥FH ,∴△NCE ∽△NHF , ∴CN ∶NH =CE △FH ,即1△NH =47∶FH ,∴FH ∶NH =4△7. 设FH =4x ,NH =7x ,则CH =7x -1,BH =3-(7x -1)=4-7x .∵FH ∥AC ,∴△BFH ∽△BAC ,∴BH ∶BC =FH △AC ,即(4-7x )△3=4x △4,解得x =0.4,∴FH =4x =85,BH =4-7x =65.第11页/共11页 在Rt △BFH 中,BF =(65)2+(85)2=2, ∴AF =AB -BF =5-2=3,∴AF BF =32.。

相似三角形证明技巧(整理)

相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;② ;③ . 二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2 找顶角对应相等 判定定理1找底角对应相等 判定定理1找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。

九年级数学上册第6讲相似三角形的判定及性质第4课时成比例线段的证明和计算的五种常用作辅助线的方法

九年级数学上册第6讲相似三角形的判定及性质第4课时成比例线段的证明和计算的五种常用作辅助线的方法

解:过点 D 作 AB 的平行线,交 AC 于点 G. ∵BDDC=EFDE=2,∴CCDB=13,FEDF=23. 易证得△FAE∽△FGD,△CGD∽△CAB. ∴DAEG=FEDF=23,DABG=CCDB=13. ∴AE=23DG,AB=3DG. ∴BE=73DG. ∴BE∶AE=7∶2=72.

又∵DC=1,MC=12BC,∴AC=MCD·CBC=12BC2.① 又易知 Rt△AEC∽Rt△BAC,∴ABCC=EACC. 又∵EC=1,∴AC2=CE·BC=BC.②
由①②得 AC=12AC4,∴AC=3 2.
5.如图,直线DF分别交△ABC的BC,AB两边于D,E,与
CA的延长线交于F,若 BDDC=EFDE =2,求BE∶AE.
证明:过点 P 作 PE⊥AC 于点 E,PF⊥CB 于点 F,易得四边形 CEPF 为矩形.∴PF EC. ∴∠A=∠FPB. ∵∠AEP=∠PFB=90°,∴Rt△AEP∽Rt△PFB,∴PPAB=BPEF. 易得 PF=BF=EC,∴PPAB=EPEC.① ∵CP⊥MN 于 Q,∴∠QCN+∠QNC=90°. 又∵∠QCN+∠QCM=90°,∴∠QCM=∠QNC.
∵∠PEC=∠MCN=90°, ∴Rt△PEC∽Rt△MCN. ∴CEMP =CENC,即EECP=CCMN.② 由①②得PPAB=CCMN , 即 PA∶PB=CM∶CN.
3.如图,在Rt△ABC中,CD为斜边AB上的高,E为CD的 中点,AE的延长线交BC于点F,FG⊥AB于点G.求证: FG2=CF·BF.
证明:延长GF与AC,交于点H. ∵CD⊥AB,FG⊥AB, ∴CD∥FG, ∴∠ACE=∠H,∠AEC=∠AFH,∠AED=∠AFG, ∠ADE=∠AGF, ∴△AED∽△AFG,△AEC∽△AFH,

相似三角形证明技巧(整理)

相似三角形证明技巧(整理)

相似三角形证明技巧(整理)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(相似三角形证明技巧(整理))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为相似三角形证明技巧(整理)的全部内容。

12相似三角形解题方法、技巧、步骤、辅助线解析 一、相似三角形 (1)三角形相似的条件:① ;② ;③ 。

二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单;2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例;3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似 找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2b )己知两边对应c)己知一个a)已知一对3找顶角对应相等 判定定理1找底角对应相等 判定定理1找底和腰对应成比例 判定定理3e )相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

(word完整版)相似三角形证明技巧(整理)

(word完整版)相似三角形证明技巧(整理)

1相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:① ;② ;③ 。

二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决。

三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例; 找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似 找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2a )已知一对b)己知两边对应成c)己知一个2找顶角对应相等 判定定理1找底角对应相等 判定定理1找底和腰对应成比例 判定定理3e )相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB ,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )例2、如图,CD 是Rt △ABC 的斜边AB 上的高,∠BAC 的 平分线分别交BC 、CD 于点E 、F ,AC ·AE=AF ·AB 吗? 说明理由。

全等三角形六种辅助线方法

全等三角形六种辅助线方法

全等三角形六种辅助线方法全等三角形是指具有相同形状和大小的三角形。

在解决与全等三角形相关的问题时,辅助线是一种常用的方法,可以帮助我们更好地理解和解决问题。

下面将介绍全等三角形的六种辅助线方法。

一、垂直辅助线法垂直辅助线法是指通过某个顶点引一条垂直线与对边相交,从而将三角形分割成两个直角三角形。

利用直角三角形的性质,我们可以更方便地求解各种问题。

二、角平分线法角平分线法是指通过某个顶点引一条角平分线与对边相交,将三角形分割成两个等角的三角形。

利用等角三角形的性质,我们可以更容易地求解各种问题。

三、高线法高线法是指通过某个顶点引一条垂直于底边的线段,将三角形分割成一个直角三角形和一个等腰三角形。

利用这两个三角形的性质,我们可以更快速地解决问题。

四、中线法中线法是指连接三角形的两个顶点和底边中点,将三角形分割成三个相似的三角形。

利用相似三角形的性质,我们可以更高效地解决问题。

五、中垂线法中垂线法是指通过三角形的每条边的中点引一条垂直于对边的线段,将三角形分割成三个直角三角形。

利用直角三角形的性质,我们可以更轻松地解决问题。

六、对称线法对称线法是指通过三角形的某个顶点引一条对称线,将三角形分割成两个全等的三角形。

利用全等三角形的性质,我们可以更直接地解决问题。

通过以上六种辅助线方法,我们可以更灵活地分析和解决与全等三角形相关的问题。

这些方法使得计算更加简便,推理更加直观,提高了问题解决的效率。

同时,这些方法也加深了我们对全等三角形的理解,拓宽了我们的数学思维。

在实际应用中,我们可以根据具体问题的要求选择合适的辅助线方法,以便更好地解决问题。

全等三角形的六种辅助线方法是垂直辅助线法、角平分线法、高线法、中线法、中垂线法和对称线法。

这些方法在解决与全等三角形相关的问题时起到了重要的作用,使我们能够更快速、准确地解决问题。

希望通过这篇文章的介绍,能够帮助大家更好地理解和应用这些方法。

常见三角形辅助线口诀

常见三角形辅助线口诀

初二几何常见辅助线口诀三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,倍长中线得全等。

四边形平行四边形出现,对称中心等分点。

梯形问题巧转换,变为三角或平四。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

由角平分线想到的辅助线一、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全等自已证明。

此题的证明也可以延长BE与CD的延长线交于一点来证明。

自已试一试。

二、角分线上点向两边作垂线构全等如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。

求证:∠ADC+∠B=180分析:可由C向∠BAD的两边作垂线。

近而证∠ADC与∠B之和为平角。

三、三线合一构造等腰三角形如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。

分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。

四、角平分线+平行线如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

分析:AB上取E使AC=AE,通过全等和组成三角形边边边的关系可证。

由线段和差想到的辅助线五、截长补短法AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。

分析:过C点作AD垂线,得到全等即可。

相似三角形添加辅助线的方法举例

相似三角形添加辅助线的方法举例

相似三角形添加辅助线的方法举例1.垂直角辅助线:当三角形中存在垂直角时,我们可以通过添加一条垂直角辅助线来将问题简化。

例如,在一个直角三角形中,我们可以通过从直角顶点到斜边的任意一点画一条垂直辅助线,这样可以将原问题转化为两个相似的直角三角形的求解。

2.中位线辅助线:在一个任意三角形中,我们可以通过连接每个顶点与对边中点的线段来得到三条中位线。

这些中位线的交点被称为三角形的重心。

通过画三角形重心与其他顶点的连线,可以将原问题转化为多个相似的三角形的求解。

3.等角辅助线:当我们需要证明两个三角形相似时,可以通过添加等角辅助线来帮助我们得到一些相等的角度。

例如,在两个直角三角形中,如果我们能找到一个等角辅助线使得两个直角形成的角相等,那么我们可以推断这两个三角形相似。

4.比例辅助线:当我们需要求解相似三角形的长边与短边的比例时,可以利用比例辅助线。

例如,在两个相似三角形中,我们可以通过添加比例辅助线,将两个相似三角形分割成若干个相似的小三角形,并且利用小三角形的边长比例来求解长边与短边的比例关系。

5.平行辅助线:当我们需要证明两个三角形相似时,可以通过添加平行辅助线来帮助我们得到一些对应边平行的关系。

例如,在两个直角三角形中,如果我们能找到一条边使得它与另一个直角三角形的对边平行,那么我们可以推断这两个三角形相似。

以上是一些常见的相似三角形添加辅助线的方法,它们可以帮助我们更好地理解问题、简化问题以及找到解决问题的方法。

在实际解题过程中,根据问题的不同,我们可以选择适合的辅助线方法来解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形之常用辅助线
在与相似有关的几何证明、计算的过程中,常常需要通过相似三角形,研究两条线段之间的比例关系,或者转移线段或角。

而有些时候,这样的相似三角形在问题中,并不是十分明显。

因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需的结论。

专题一、添加平行线构造“A ”“X ”型
定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.
定理的基本图形:
例1、平行四边形ABCD 中,E 为AB 中点,AF :FD =1:2,求AG :GC
变式练习: 已知在△ABC 中,AD 是∠BAC 的平分线.求证:. (本题有多种解法,多想想)
G F E
D C
B
A
G
F E
D
C
B
A
CD
BD AC AB
例2、如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若
DC
BD =FA FC
=2,求BE:EA 的比值.
变式练习:如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若BD DC = FE
ED =2,求BE:EA 的比
值.
例3、BE =AD ,求证:EF ·BC =AC ·DF
变式1、如图,△ABC 中,AB<AC ,在AB 、AC 上分别截取BD=CE ,DE ,BC 的延长线相交于点F ,证明:AB·DF=AC·EF 。

A
C
F
E
B D A
C
F
E
B D E
D
C
B
A
例4、已知:如图,在△ABC 中,AD 为中线,E 在AB 上,AE=AC ,CE 交AD 于F ,EF ∶FC=3∶5,EB=8cm, 求AB 、AC 的长.
变式:如图,21==DE AE CD BD ,求
BF
AF。

(试用多种方法解)
说明:此题充分展示了添加辅助线,构造相似形的方法和技巧.在解题中方法要灵活,思路要开阔. 总结:
(1)遇燕尾,作平行,构造 字一般行。

(2)引平行线应注意以下几点:
1)选点:一般选已知(或求证)中线段的比的前项或后项,在同一直线的线段的端点作为引平行线的点。

2)引平行线时尽量使较多已知线段、求证线段成比例。

A B C
D
E
F
A B C
D
E
F
A B C
D
E
F
A B C
D
E
F
专题二、作垂线构造相似直角三角形 一、基本图形
例1、理由?(用多种
解法)
v
变式练习:平行四边形ABCD 中,CE ⊥AE ,CF ⊥AF ,求证:AB ·AE +AD ·AF =AC 2
例2、如图,Rt ∆ABC 中,CD 为斜边AB 上的高,E 为CD 的中点,AE 的延长线交BC 于F ,FG ⊥AB 于G ,求证:FG 2
=CF •BF
A
B
C
D
A
B D
E
F C A B C D E F
【练习】
1.如图,一直线与△ABC 的边AB ,AC 及BC 的延长线分别交于D ,E ,F 。

求证:若
CF
BF
EC AE
,则D 是AB 的中点。

2.如图,在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,BD=3CE ,DE 交BC 于F ,求DF :FE 的值。

3.已知:AM :MD=4:1,BD :DC=2:3,求AE :EC 。

4、 如图,的AB 边和AC 边上各取一点D 和E ,且使AD =AE ,DE 延长线与BC
延长线相交于F ,求证:
A B C D E
F
A
B C D
M E
B
D
A C
F
E。

相关文档
最新文档