圆锥曲线有关焦点弦的几个公式定理及应用(老师)

合集下载

圆锥曲线焦点弦的一个优美恒等式及应用

圆锥曲线焦点弦的一个优美恒等式及应用

有I 1 — n - 十 — m I 1 : 。 l 。 1 , 其 中 为 离 心 率 .
分析 : 由于椭 圆是轴对称 图形 , 故只需证 明其过 右焦 点 的情况. 我们 先证 明倾斜 角 为锐 角的情况.
已知椭 圆 + : 1 ( 。 > 6 > 0 ) 的右焦 点 为F , 过腿 倾
过B 作B B 。 垂 直准线于日 。 , 过B 作B A _ L A A 1 于A
由圆锥 曲线统一性定义知
BF = BB1 =n, AF= AA 1 = m,
A I O 榀
图2
= e .—

:e .



BBJ

夕 n A A
, Al
f [ J B Bl : — n —, AA1 : — i n —
e e

 ̄ [ I BB 1 : — m —, AA1 : — n —
e e

n A2 :— m-


彭 A 2 = — n - — m.
I l
则 有 I 1 — r n t - 十 — m I 1 : c o s l , 其 中 为 离 心 率 .
分析 : 由于双曲线是轴对称 图形 , 故 只需证 明其过右 焦点 的情 况. 我们先证 明倾斜角o / 为锐角的情况.
已知 双 曲线 一 : 1 ( n > 0 , 6 > 0 ) 的右焦 点 为F , 过F
I I
证: I — n - — m I : l 。 I , 其中 为 离 心 率 .
I n+, 孔 I
证明: 如 图2 , 作A A 垂直右准线于A ,
证明 : 如图1 , 作A A。 垂 直右 准线 于A , 过B 作B B 垂直右准线 于B , 过 作B A _ I _ A A 于A 》

圆锥曲线有关焦点弦(焦点半径)五个统一性质统一证明

圆锥曲线有关焦点弦(焦点半径)五个统一性质统一证明

圆锥曲线有关焦点弦(焦点半径)的五个统一性质的统一证明中图分类号:g632 文献标识码: c 文章编号:1672-1578(2013)03-0109-02下面分别从四个方面,给出了圆锥曲线有关焦点弦(焦点半径)的4个统一性质,都是采用对圆锥曲线进行分类讨论,用方程的思想,通过比较复杂的运算得到了证明。

本文将用圆锥曲线焦半径的倾角表达式,(本质上圆锥曲线的极坐标方程的直角坐标化)统一证明上述性质1、性质2、性质3和性质4本文给出的性质5,并用这样的思想方法证明巧妙地解答圆锥曲线中的热点问题。

1 圆锥曲线的统一性质1.1圆锥曲线的统一性质1ab是通过圆锥曲线的一个焦点f的一条弦(不与焦点所在的直线重合),a、b在焦点相应的准线l上的射影分别为a1b1,设a1f、b1f的中点分别为m、n,则直线am与bm的交点一定在准线上。

(如图1)1.2给出圆锥曲线的统一性质2过圆锥曲线的一个焦点f的任意一条弦(不与焦点所在的直线重合)ab,和此焦点对应的顶点的c的连线交f对应的准线l于两点m、n,则以mn为直径的圆必过焦点f。

(如图2)如圆锥曲线是有心的圆锥曲线,那么和另外一个焦点对应的顶点c的的连线交f对应的准线l于m、n两点,则以为mn直径的圆必过焦点f。

(如图3)1.3圆锥曲线的统一性质3若圆锥曲线的准线与对称轴的交点为a,过点a作圆锥曲线的一条割线交圆锥曲线于b、c两点,过焦点f作与割线的倾斜角互补的直线交圆锥曲线于m、n两点,则有:1.4圆锥曲线的统一性质4直线l是圆锥曲线?祝的焦点f所对应的准线,过l上一点p作曲线?祝的两条切线pa、pb。

a,b为切点,过pf中点d且平行于直线l的直线l′交直线pa,pb于点m,n。

(如图4)则有:(ⅰ)fm∥pb; fn∥pa;(ⅱ)记△afm,△pmn,△bfn的面积分别为s△afm,s△pmn,s△bgn现给出有心二次曲线的统一性质5:(2012江苏高考19题的推广)过有心二次曲线的两焦点f1,f2作两条射线(同向)交二次曲线于a,b两点,直线f1b和f2a相交于点p,则pf1+pf2为定值。

圆锥曲线焦点弦的一个性质及其应用举例

圆锥曲线焦点弦的一个性质及其应用举例

圆锥曲线焦点弦的一个性质及其应用举例22性质 ⑴过 椭圆 x2 + y2 =1(a >b >0)焦点 F 的直 线交椭圆 于 A 、B 两点 ,设 abAF p, BF =q 。

若 A 、B 两点在双曲线的同一支上(此时称 AB 为双曲线的同支焦点弦)AF p, BF =q , 11 则 + = pq 2a b 2 2 = e 2d 0 ,其中d = b c 2是焦准距,cce= 是离心率。

a⑵过双曲线 22x 2 y 2 122 ab(a > 0,b > 0) 焦点 F 的直线交双曲线于 A 、 B 两点,设1 12 b 2则 + = ,其中 d 0 = 是焦准距; p q ed 0 c若 A 、B 两点分别位于双曲线的左支和右支上 时称 AB 为双曲线的异支焦点弦),则1 - 1pqe 2d 0 ,其中d 0 b 2c 是焦准距, ce= 是离心率。

a(抛物线的类似性质,本文从略) 证明:(只证性质⑴ , 性质⑵的证明从略) 由对称性,不妨取 F 为右焦点。

设右准线 l 与 x 轴交于点 D ,过 A 作 AG ⊥l 于 G ,过 B 作 BH ⊥l 于点 H ,则 AG ∥FD ∥ BH ;且由椭圆的第二定义知, |AG|= AF p,|BH|= BF q。

e e e e令|FE|= m ,|ED|= n ,故由 mq,n = pmnpq p = p+q,q =。

∴e(p q)e e因此, b2 m +n = ? c 2pq b2e(p q) 。

c2∴p q 2c2。

又 ec,从而1 1 p q 2a2= 2 ,其中d0= b就是焦准距。

证毕。

pqeb 2a p q pqb 2ed 0 c[ 说明 ] ①在上述证明过程中出现的“ m = n ”, “即 |FE|=|ED| ”,亦即 E 为线段 FD 的中点(如图 1) 这是椭圆焦点弦的另一条性质。

双曲线与抛物线也则 m +n =|FD|=FEBF,AGBA,BH GB =AB可得:②如图 1,若设∠ AFD =θ,并分别过 A 、F 作 FD 和 BH 的垂线,则可证: p= ba+ ccos θ2ab2; 从 而 得 焦 点 弦 长 公 式 : |AB| = p + q= 2 2 2 q =1 - e cos θa -c cos θ22d0e2,其中d 0 就是焦准距 b。

圆锥曲线焦点弦长公式(极坐标全参数方程)

圆锥曲线焦点弦长公式(极坐标全参数方程)

圆锥曲线焦点弦长公式(极坐标参数方程)圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。

由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。

本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F ,设倾斜角为α的直线l 经过F ,且与圆锥曲线交于A 、B 两点,记圆锥曲线的离心率为e ,通径长为H ,则(1)当焦点在x 轴上时,弦AB 的长|cos 1|||22αe HAB -=; (2)当焦点在y 轴上时,弦AB 的长|sin 1|||22αe HAB -=.推论:(1)焦点在x 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22cos 1||e HAB -=;当A 、B 不在双曲线的一支上时,1cos ||22-=αe HAB ;当圆锥曲线是抛物线时,α2sin ||HAB =. (2)焦点在y 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22sin 1||e HAB -=;当A 、B 不在双曲线的一支上时,1sin ||22-=αe HAB ;当圆锥曲线是抛物线时,α2cos ||HAB =.典题妙解下面以部分高考题为例说明上述结论在解题中的妙用.例1(06湖南文第21题)已知椭圆134221=+y x C :,抛物线px m y 22=-)((p >0),且1C 、2C 的公共弦AB 过椭圆1C 的右焦点.(Ⅰ)当x AB ⊥轴时,求p ,m 的值,并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ)若34=p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程.2FOABxy例2(07全国Ⅰ文第22题)已知椭圆12322=+y x 的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于B 、D 两点,过2F 的直线交椭圆于A 、C 两点,且BD AC ⊥,垂足为P.(1)设P 点的坐标为),(00y x ,证明:232020yx +<1. (2)求四边形ABCD 的面积的最小值.2FABCD Oxy 1F P例3(08全国Ⅰ理第21题文第22题)双曲线的中心为原点O ,焦点在x 上,两条渐近线分别为1l 、2l ,经过右焦点F 垂直于1l 的直线分别交1l 、2l 于A 、B 两点. 已知||OA 、||AB 、||OB 成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.A ByO F x1l2lN M金指点睛1. 已知斜率为1的直线l 过椭圆1422=+x y 的上焦点F 交椭圆于A 、B 两点,则||AB =_________.2. 过双曲线1322=-y x 的左焦点F 作倾斜角为6π的直线l 交双曲线于A 、B 两点,则||AB =_________.3. 已知椭圆02222=-+y x ,过左焦点F 作直线l 交A 、B 两点,O 为坐标原点,求△AOB 的最大面积.B O xy AF4. 已知抛物线px y 42=(p >0),弦AB 过焦点F ,设m AB =||,△AOB 的面积为S ,求证:mS 2为定值.yO F x AB5.(05全国Ⅱ文第22题)P 、Q 、M 、N 四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点. 已知PF 与FQ 共线,MF 与FN 共线,且0=⋅MF PF .求四边形PQMN 的面积的最大值和最小值.O xNPy MQF6. (07重庆文第22题)如图,倾斜角为α的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点.(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明α2cos ||||FP FP -为定值,并求此定值.yO F xA BDEC lαm P7. 点M 与点)2,0(F 的距离比它到直线03:=+y l 的距离小1.(1)求点M 的轨迹方程;(2)经过点F 且互相垂直的两条直线与轨迹相交于A 、B ;C 、D. 求四边形ACBD 的最小面积.FO xA BD C y8. 已知双曲线的左右焦点1F 、2F 与椭圆1522=+y x 的焦点相同,且以抛物线x y 22-=的准线为其中一条准线. (1)求双曲线的方程;(2)若经过焦点2F 且互相垂直的两条直线与双曲线相交于A 、B ;C 、D. 求四边形ACBD的面积的最小值.y2FAO x1l2l B CD参考答案:证明:设双曲线方程为12222=-by a x (a >0,b >0),通径a b H 22=,离心率a ce =,弦AB 所在的直线l 的方程为)(c x k y +=(其中αtan =k ,α为直线l 的倾斜角),其参数方程为为参数)(,t t y t c x ⎩⎨⎧=+-=.sin cos αα. 代入双曲线方程并整理得:0cos 2cos sin 4222222=-⋅+⋅-b t c b t b a ααα)(. 由t 的几何意义可得:|cos 1|2|cos 1|2|cos sin |2cos sin 4cos sin cos 24||||22222222222222222222222122121αααααααααe a b e a b b a ab b a b b a c b t t t t t t AB -=-=-=-----=-+=-=)()(.|cos 1|22αe H-=例1.解:(Ⅰ)当x AB ⊥轴时,点A 、B 关于x 轴对称,0=∴m ,直线AB 的方程为1=x . 从而点A 的坐标为),(231或),(231-. 点A 在抛物线2C 上,.249p =∴即.89=p此时抛物线2C 的焦点坐标为),(0169,该焦点不在直线AB 上. (Ⅱ)设直线AB 的倾斜角为α,由(Ⅰ)知2πα≠.则直线AB 的方程为)(1tan -⋅=x y α.抛物线2C 的对称轴m y =平行于x 轴,焦点在AB 上,通径382==p H ,离心率1=e ,于是有又 AB 过椭圆1C 的右焦点,通径322==a b H ,离心率21=e . ∴.cos 412|cos 1|||222αα-=-=e H AB∴)(α2cos 138-.cos 4122α-= 解之得:6tan 71cos 2±==αα,.抛物线2C 的焦点),(m F 32在直线)(1tan -⋅=x y α上, ∴αtan 31-=m ,从而36±=m . 当36=m 时,直线AB 的方程为066=-+y x ; 当36-=m 时,直线AB 的方程为066=--y x 例2.(1)证明:在12322=+y x 中,123===c b a ,,. ,︒=∠9021PF F O 是1F 2F 的中点,.1||21||21===∴c F F OP 得.12020=+y x ∴点P 在圆122=+y x 上.显然,圆122=+y x 在椭圆12322=+y x 的内部. 故232020yx +<1.(2)解:如图,设直线BD 的倾斜角为α,由BD AC ⊥可知,直线AC 的倾斜角απ+2..cos 138sin ||22)(αα-==H AB 2FOABxy通径33422==a b H ,离心率33=e . 又 BD 、AC 分别过椭圆的左、右焦点1F 、2F ,于是.sin 3342cos 1||cos 334cos 1||222222ααπαα-=+-=-=-=)(,e H AC e H BD ∴四边形ABCD 的面积.2sin 2496sin 334cos 33421||||21222ααα+=-⋅-⋅=⋅=AC BD S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴42596,S .故四边形ABCD 面积的最小值为2596. 例3,解:(Ⅰ)设双曲线的方程为12222=-by a x (a >0,b >0).||OA 、||AB 、||OB 成等差数列,设m AB =||,公差为d ,则d m OA -=||,d m OB +=||,∴222)()(d m m d m +=+-. 即2222222d dm m m d dm m ++=++-. ∴4m d =. 从而43||m OA =,45||mOB =. 又设直线1l 的倾斜角为α,则α2=∠AOB . 1l 的方程为x aby =. ∴.tan ab=α 而.34||||tan 2tan ==∠=OA AB AOB α 2FABCD Oxy 1F P∴34)(12tan 1tan 222=-⨯=-ab a bαα. 解之得:.21=a b∴.25)(12=+=a b e (Ⅱ)设过焦点F 的直线AB 的倾斜角为θ, 则απθ+=2.∴αθsin cos -=. 而.51)21(1)21(tan 1tan sin 22222=+=+=ααα∴51cos 2=θ.通径b abb a b H =⨯==222. 又设直线AB 与双曲线的交点为M 、N. 于是有:4cos 1||22=-=θe HMN .即451)25(12=⨯-b .解得3=b ,从而6=a .∴所求的椭圆方程为193622=-y x .1. 解:3,1,2===c b a ,离心率23==a c e ,通径122==ab H ,直线l 的倾斜角4πα=.∴58)22()23(11sin 1||2222=⋅-=-=αe HAB . 2. 解:2,3,1===c b a ,离心率2==ace ,通径622==a b H ,直线的倾斜角6πα=. A ByO F x1l2lN M∴3|)23(21|6|cos 1|||2222=⋅-=-=αe HAB .3. 解:1222=+y x ,1,1,2===c b a ,左焦点)0,1(-F ,离心率22==a c e ,通径222==ab H .当直线l 的斜率不存在时,x l ⊥轴,这时22||2===ab H AB ,高1||==c OF ,△AOB 的面积221221=⨯⨯=S . 当直线l 的斜率存在时,设直线l 的倾斜角为α,则其方程为)1(tan +⋅=x y α,即tan tan =+-⋅ααy x ,原点O 到直线AB 的距离ααααααs i n|s e c ||t a n|1t a n |t a n 0ta n 0|2==++-⨯=d . αααα222222sin 122cos 222cos )22(12cos 1||+=-=⋅-=-=e HAB . ∴△AOB 的面积αα2sin 1sin 2||21+=⨯⨯=d AB S . 0<α<π,∴αsin >0. 从而ααsin 2sin 12≥+. ∴22sin 2sin 2=≤ααS .当且仅当1sin =α,即2πα=时,“=”号成立. 故△AOB 的最大面积为22. 4. 解:焦点为)0,(p F ,通径p H 4=.当直线AB 的斜率不存在时,x AB ⊥轴,这时p m AB 4||==,高p OF =||,△AOBBO xy AF的面积22||||21p OF AB S =⨯⨯=. ∴3442444p pp m p m S ===,是定值.当直线AB 的斜率存在时,设直线的倾斜角为α,则其方程为)(tan p x y -⋅=α,即tan tan =+-⋅ααp y x ,原点O 到直线AB 的距离αααααs i n |s e c ||t a n|1t a n |t a n |2p p p d ==+=. αα22sin 4sin ||pH AB ==. ∴△AOB 的面积αsin 2||212p d AB S =⨯⨯=.∴32242424sin sin 41sin 4p pp m p m S =⨯=⨯=ααα. ∴不论直线AB 在什么位置,均有32p m S =(3p 为定值).5. 解:在椭圆1222=+y x 中,.112===c b a ,, 由已知条件,MN 和PQ 是椭圆的两条弦,相交于焦点),(10F ,且PQ MN ⊥. 如图,设直线PQ 的倾斜角为α,则直线MN 的倾斜角απ+2.通径222==ab H ,离心率22=e .于是有.sin 222sin 1||cos 222)2(sin 1||222222ααααπ-=-=-=+-=e H PQ e HMN ,∴四边形PQMN 的面积O xNPy MQFyO F x AB.2sin 816sin 222cos 22221||||21222ααα+=-⋅-⋅=⋅=PQ MN S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴2916,S .故四边形PQMN 面积的最小值和最大值分别为916和2. 6.(Ⅰ)解:4,82==p p ,∴抛物线的焦点F 的坐标为)2,0(, 准线l 的方程为2-=x .(Ⅱ)证明:作l AC ⊥于C ,AC FD ⊥于D. 通径82==p H . 则ααααcos ||||,cos ||||,sin 8sin ||22AF AD FP EF H AB ====.∴4cos ||||||||+=+==αAF p AD AC AF .∴αcos 14||-=AF .∴αααα22sin cos 4sin 4cos 14||21||||||||=--=-=-=AB AF AE AF EF , 从而αα2sin 4cos ||||==EF FP . ∴8sin 2sin 4)2cos 1(||2cos ||||22=⋅=-=-ααααFP FP FP . 故α2cos ||||FP FP -为定值,此定值为8.7. 解:(1)根据题意,点M 与点)2,0(F 的距离与它到直线2:-=y l 的距离相等,∴点M 的轨迹是抛物线,点)2,0(F 是它的焦点,直线2:-=y l 是它的准线.从而22=p,∴4=p . ∴所求的点M 的轨迹方程是y x 82=.(2) 两条互相垂直的直线与抛物线均有两个交点, ∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α, 则直线CD 的倾斜角为α+︒90.y O F xA BDEClαm P BDy抛物线的通径82==p H ,于是有:αααα2222sin 8)90(cos ||,cos 8cos ||=+︒===H CD H AB .∴四边形ACBD 的面积.2sin 128sin 8cos 821||||21222ααα=⋅⋅=⋅=CD AB S 当且仅当α2sin 2取得最大值1时,128min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为128.8. 解:(1)在椭圆1522=+y x 中,2,1,522=-===b a c b a ,∴其焦点为)0,2(1-F 、)0,2(2F .在抛物线x y 22-=中,1=p ,∴其准线方程为212==p x . 在双曲线中,21,22==c a c ,∴3,122=-==a c b a . ∴所求的双曲线的方程为1322=-y x .(2) 两条互相垂直的直线与双曲线均有两个交点,∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α,则直线CD 的倾斜角为α+︒90.双曲线的通径622==a b H ,离心率2==a ce . 于是有: αααα222222sin 416)90(cos 1||,cos 416cos 1||-=+︒-=-=-=e H CD e H AB .∴四边形ACBD 的面积.2sin 4318sin 416cos 41621||||21222ααα+-=-⋅-⋅=⋅=CD AB S =18 y2FAO x1l2l B CD当且仅当α2sin 2取得最大值1时,18min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为18.。

圆锥曲线几种弦长的统一公式

圆锥曲线几种弦长的统一公式

MN I = 2 p

1 +k 一e I
l s e c 0一e c o s 0i o
) 。 ( 9 ) ( 1 0)
( 一 )= O ,
( 1 1 )
证明 以 所在直线为 轴 , F为坐标原点建立直角坐标系 ,因为焦点到相应准线的距离为P ,故得 ,( 0 ,0 ) , E( , 0 ) 所 以经过 的准线方程为 x = - p ,直线 E MN的方程为 y = k( 同定理 1 的证明方法得 ( 1 一 ) 一 2 e 2 p x — P = 0 。
在( 5 ) 中 令y = 0 , 注意到. ) c <0 解得 ( 一 ・ + ) = = > = Y一

, o ) , 则得直线 B A的方程为
将( 、 6 ) 代入( 5 1 +k 2 _e 2 ) 。 一2 e p k y=0 , ( 7 )
( 6 )
收稿 日期 :2 0 1 3 —1 2—1 3
为 解决 圆锥 曲线一些特 殊 弦长 问题提供 了理论依 据 。
关键词 :圆锥曲线弦;计算方法;应用 中图分 类号 :01 2 3 . 3 文献标 识码 : A
文章 编号 :1 6 7 4 — 9 2 0 0( 2 0 1 4) 0 3 — 0 0 5 8 — 0 4
1 焦点弦长统 一公式
第2 7卷 第 3 期 2 0 1 4年 6月
文 山学 院学报
J OURNAL OF WE NS HAN UNI VERS I T Y
V0 1 . 2 7 No . 3
J u n . 2 0 1 4
圆锥 曲线几种弦长的统 一公式
玉 邴 图
( 广南县第一 中学,云南 广南 6 6 3 3 0 0 ) 摘要:圆锥 曲线弦是各类考试的重点和热点,常考常新,角度常变 , 久经不衰,且运算量大,技能性高。 文章运用韦达定理和弦长公式推导 了圆锥 曲线焦 点弦、 顶点弦和准点弦长度的统一计算公 式和几个重要推论 ,

圆锥曲线焦点弦与准线的相关性

圆锥曲线焦点弦与准线的相关性

圆锥曲线焦点弦与准线的相关性今天,我们要讨论的是圆锥曲线焦点弦与准线的相关性。

圆锥曲线是一种常见的曲线,它以极坐标形式进行参数化。

它有两个焦点F1和F2,以及椭圆弦段AB。

圆锥曲线的参数化公式为:r(θ)= c+ae^(bθ)这里,c,a,b是圆锥曲线的常量参数,可以用来描述特定的类型的圆锥曲线。

焦点弦AB是圆锥曲线的重要部分。

两个参数的变化会导致其形状的变化。

另一个重要的概念是准线,它是圆锥曲线以一定比例放大或缩小的过程中所构成的直线。

那么,圆锥曲线焦点弦与准线是如何相关的呢?首先,圆锥曲线的焦点弦AB与准线在相同的位置上。

它们之间的联系是由“焦点弦”准则定义的。

根据这一准则,以此圆锥曲线的两个焦点为端点的准线的斜率应该等于焦点弦AB的斜率。

其次,准线的方向也和圆锥曲线的焦点弦AB有关。

当焦点弦AB 在椭圆轴上时,准线的方向应该与椭圆轴方向相同。

当焦点弦AB不在椭圆轴上时,准线的方向应该与焦点弦AB的方向相同。

此外,准线还与圆锥曲线的半径有关。

根据焦点弦定理,准线与两个焦点之间的距离应该等于椭圆轴上半径之差。

这个距离可以通过观察焦点弦AB的斜率和长度来计算出来。

最后,圆锥曲线的焦点弦AB的位置也和准线的位置有关。

例如,若所求准线的斜率为k,则焦点弦AB的位置是椭圆轴上等于k/b的位置,其中b为参数化公式中的常量参数。

综上所述,圆锥曲线的焦点弦AB与准线之间存在着一种复杂的相互关系。

参数化的变化会影响圆锥曲线焦点弦AB的形状,从而影响准线的形状。

此外,准线的方向和位置也都和圆锥曲线焦点弦AB 有关。

因此,理解圆锥曲线焦点弦AB与准线的相关性非常重要,不仅可以用来推导圆锥曲线特定参数的变化,而且可以用来计算准线的位置和方向。

圆锥曲线焦半径公式的进一步推导及应用

圆锥曲线焦半径公式的进一步推导及应用

㊀㊀㊀圆锥曲线焦半径公式的进一步推导及应用◉浙江省诸暨市草塔中学㊀金铁强椭圆㊁双曲线的焦点弦或焦半径的问题是解析几何中的常规考点,很多老师在讲解的时候喜欢用 设而不求 来解决问题.但用此法来处理焦点弦问题也有其弊端,一是步骤过多,二是有些问题不能直接用此法求解,必须再要用到 设而求之 才能解决.对于现在的多变题型,已经达不到通解通法的要求,因此有必要对圆锥曲线焦半径公式进行进一步的挖掘和整理,才能适应当前高考题型的发展趋势,让学生能够更直观地解题.图11焦点在x 轴上的椭圆焦半径公式的推导及应用㊀㊀如图1,设椭圆E 为x 2a2+y 2b2=1(a >b >0),F 1,F 2为椭圆E 的焦点,P Q 为椭圆E 过点F 1的焦点弦.当P Q 垂直于x 轴时,弦P Q 为过F 1的所有弦中最短的一条,即通径,满足|P Q |=2b2a;当P Q 垂直于y 轴时,弦P Q 为过F 1的所有弦中最长的一条,即长轴,满足|P Q |=2a .除了这两条特殊的焦点弦,我们任意作一条焦点弦,连接P F 2,构成焦点三角形P F 1F 2,令øP F 1F 2为α,为焦点弦P Q 的倾斜角.设|P F 1|=x ,则|P F 2|=2a -x .在әP F 1F 2中由余弦定理得c o s α=x 2+(2c )2-(2a -x )24x c.整理得到x =a 2-c 2a -c c o s α=b2a -c c o s α,即|P F 1|=b 2a -c c o s α.当α=π2,0时,就是最短弦与最长弦.同样地,在图1中,若我们连结Q F 2,构成焦点三角形Q F 1F 2,可得|Q F 1|=b2a -c c o s (π-α),即|Q F 1|=b2a +c c o s α,得到焦点弦|P Q |=b 2a -c c o s α+b 2a +c c o s α=2a b2a 2-c 2 c o s 2α.这个公式把焦点弦分成上下两部分,每部分的焦半径都有自己的表达式,这样对于条件运用可以更直接明了.例1㊀设F 1,F 2分别为椭圆x 23+y 2=1的左右焦点,点A ,B 在椭圆上,若F 1A ң=5F 2B ң,则点A 的坐标是.图2解析1:(常规解法)如图2,已知椭圆x 23+y 2=1,则焦点F 1(-2,0),F 2(2,0).因为F 1A ң=5F 2B ң,则F 1A ң与F 2B ң共线,即F 1A 与F 2B 平行.延长A F 1与椭圆交于点C ,由椭圆与两个焦点都关于(0,0)对称,可知C F 1ң=F 2B ң,则F 1A ң=5C F 1ң.那么问题就转化到焦点弦A C 了.可验证当点A 在x 轴上时,不满足条件,故设A (x 1,y 1),C (x 2,y 2),直线A C 为x =m y -2,求出A (x 1,y 1)的坐标.到这里,我们发现,该题目其实不能用 设而不求 ,因为最后问的是x 1及y 1的值,最后反而是 设而求之 .联立x =m y -2与x 23+y 2=1,消去x ,得到方程(3+m 2)y 2-22m y -1=0.则y 1+y 2=22m m 2+3,y 1y 2=-1m 2+3.又y 1=-5y 2,解得y 21=1.则A (0,1)或A (0,-1).解析1虽步骤不多,但运算复杂.如果我们用焦半径公式,整个问题就豁然开朗.解析2:(焦半径公式法)首先,利用椭圆与平行线的点对称问题同上解,问题转化到焦点弦A C 中来.设A C 的倾斜角为α,由F 1A ң=5C F 1ң,可直接利用公式得到方程b 2a -c c o s α=5b2a +c c o s α,则6c c o s α=4a ,即c o s α=2a 3c =2332=63.所以直线A C 的斜率k =22,直线A C 方程为y =22x +1,联立椭圆方程x23+y 2=1,易得x =0,y =1.即A (0,1).再利用对称性可得A (0,-1)(此时倾斜角α为352022年9月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀解法探究复习备考Copyright ©博看网. All Rights Reserved.㊀㊀㊀钝角,斜率k=-12).运算可简便很多.综上可知:A(0,1)或A(0,1).分析公式的本源可得出很简单的结论,焦点弦的弦长及被焦点分开的两段焦半径的比例值其实与椭圆的形状(即a,c的值),与焦点弦所在直线的方向(即斜率k或倾斜角α)存在关系,即a,c,α三个量决定了焦点弦的一切,那我们不妨直接利用这样的代数关系来解决问题,解题就方便多了.2焦点在x轴上的双曲线焦半径公式的应用同样地,该公式也适用于双曲线.例2㊀已知双曲线方程:x23-y2=1,左焦点为F,过F作两条相互垂直的直线与双曲线相交于A,B,C,D四点,求四边形A B C D面积的最小值.解析:由条件知,若焦点弦为一条交于双支,一条交于单支,则不能构成四边形,则两条焦点弦都交于左支或都交于双支.(1)若两条焦点弦都交于双支,令一条焦点弦的倾斜角为α,另一条焦点弦的倾斜角为π2+α,则满足不等式t a nα<33,且0>t a nπ2+αæèçöø÷>-33,不存在这样的α.(2)若两条焦点弦都交于左支,令一条焦点弦的倾斜角为α,另一条焦点弦的倾斜角为π2+α,则满足不等式t a nα>33,且t a nπ2+αæèçöø÷<-33,则αɪπ6,π3æèçöø÷.S A B C D=|A C| |B D|2=122a b2(a2-c2 c o s2α)2a b2a2-c2 c o s2α+π2æèçöø÷éëêêùûúú=33-4c o s2α233-4s i n2α=69-4+16c o s2α s i n2α=65+4s i n22αȡ23.当s i n22α=1,即α=π4时,等号成立,此时四边形A B C D面积的最小值为23.利用公式直接代入,解题过程简洁明了,优点显而易见.3焦点在y轴上的圆锥曲线焦半径公式如图3,设椭圆T:y2a2+x2b2=1(a>b>0),F1,F2为椭圆T的焦点,上准线为y=a2c,P Q为椭圆T的焦图3点弦,P Q的倾斜角为α,P H与上准线垂直于H,N为上准线与y轴的交点.由|P F1||P H|=ca,|PH|=a2c+(|P F1|s i nα-c),可以得a|P F1|=c a2c-c+|P F1|s i nαæèçöø÷,即|P F1|=b2a-c s i nα.同理,|Q F1|=b2a+c s i nα,且|P Q|=2a b2a2-c2s i n2α.焦点在y轴上的椭圆的焦半径公式只需把焦点在x轴上的焦半径公式中的c o sα换成s i nα,其他不变.因此,简单总结如下:(1)焦点在x轴上的椭圆或双曲线(双曲线要求焦点弦P Q与双曲线同一支交于两点,即焦点弦的斜率满足k>ba或k<-ba时),其焦点弦为P Q,焦点弦的倾斜角为α.P Q被焦点分成P F1与P F2两段,其中较长的一条为|P F1|=b2a-c c o sα,较短的一条为|Q F1|=b2a+c c o sα;当曲线为双曲线时,若其焦点弦P Q与双曲线两支分别相交一点,即焦点弦的斜率满足-b a<k<b a时,此时较长的一条|P F1|=b2c c o sα-a,较短的一条|Q F1|=b2c c o sα+a(绝对值取决于倾斜角为锐角还是钝角).(2)焦点在y轴上的椭圆或双曲线,把上述公式中的c o sα换成s i nα即可.唯一有变化的是当焦点弦P Q与双曲线同一支交于两点,焦点弦的斜率满足-b a<k<b a;当双曲线的焦点弦P Q与双曲线两支分别相交一点,焦点弦的斜率满足k>ba,或k<-b a.即α的取值范围要求发生变化,而公式的结构不变,只需把公式中的c o sα换成s i nα,而且,由于αɪ[0,π),s i nαȡ0恒成立,有绝对值的部分可以去掉.参考文献:[1]人民教育出版社,课程教材研究所,中学数学课程教材研究开发中心.普通高中课程标准实验教科书 数学 选修2G1(A版)[M].2版.北京:人民教育出版社,2007.[2]丁益民.数学公式的 二次处理 对学生思维的培养.数学通讯,2010(22):1G2.F45复习备考解法探究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年9月上半月Copyright©博看网. All Rights Reserved.。

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式good

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式good

圆锥曲线的极坐标方程知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系.椭圆、双曲线、抛物线统一的极坐标方程为: θρcos 1e ep-=.其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆;当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线;当e=1时,方程表示开口向右的抛物线.引论(1)若 1+cos epe ρθ=则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin epe ρθ=当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin epe ρθ=当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线当 e >1时!方程表示极点在下焦点的双曲线(2)圆锥曲线弦长问题若圆锥曲线的弦MN 经过焦点F ,1、椭圆中,cb c c a p 22=-=,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=.2、双曲线中,(注释:双曲线问题比较特殊,很多参考书上均有误解。

)若M 、N 在双曲线同一支上,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2222cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ.3、抛物线中,θθπθ2sin 2)cos(1cos 1pp p MN =--+-=例1过双曲线22x y -145=的右焦点,引倾斜角为3π的直线,交双曲线与A 、B 两点,求AB ||解:根据题意,建立以双曲线右焦点为极点的极坐标系 即得 所以 又由得 注释:求椭圆和抛物线过焦点的弦长时,无需对 v 加绝对值,但求双曲线的弦长时,一定要加绝对值,这是避免讨论做好的方法。

有关圆锥曲线的四组结论及其应用

有关圆锥曲线的四组结论及其应用

有关圆锥曲线的四组结论及其应用
1、圆锥曲线结论:一条圆锥曲线都可以表示为与轴成一定余角的
正弦曲线,它的焦点和轴向量成正比。

2、平面上的圆锥曲线有两个焦点。

在平面内,它的曲线的几何形状是
自相似的。

3、空间上的圆锥曲线也有两个焦点,它的曲线的几何形状不是自相似的,它的曲线会发生波动。

4、应用:圆锥曲线用于许多工程领域,如机械设计、结构设计和航空
航天等,也常用于几何学和动力学中。

例如,它用于圆锥组件的设计,如螺旋桨叶片、火花塞等,以及高速旋转盘、高精度机械装置、海上
风机等。

圆锥曲线也可以用于工作介质管道结构件的设计,如水管、
燃气管、液压系统等。

圆锥曲线焦点弦的公式及应用

圆锥曲线焦点弦的公式及应用

圆锥曲线有关焦点弦的几个公式及应用如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。

圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。

焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。

本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。

定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。

(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。

证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。

由圆锥曲线的统一定义得,,又,所以。

(1)当焦点内分弦时。

如图1,,所以。

图1(2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以。

图2评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。

例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。

若,则的离心率为()解这里,所以,又,代入公式得,所以,故选。

例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心率为。

过右焦点且斜率为的直线于相交于两点,若,则()解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。

例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为的直线,与抛物线交于两点(点在轴左侧),则有____图3解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,设,又,代入公式得,解得,所以。

例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。

例5(自编题)已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。

用圆锥曲线焦点弦结论巧算高考题

用圆锥曲线焦点弦结论巧算高考题

用圆锥曲线焦点弦结论巧算高考题重庆巴蜀科学城中学校(401331)李兰[摘要]圆锥曲线焦点弦结论具有统一形式,利用焦点弦结论可以快速解决高考题,为考生打开解题思路,提高学生的解题能力。

[关键词]圆锥曲线;焦点弦;高考题[中图分类号]G633.6[文献标识码]A[文章编号]1674-6058(2023)17-0024-03一、公式及其证明圆锥曲线中的焦点弦就是过焦点的弦长,弦长公式AB=1+k2||x1-x2,圆锥曲线有统一方程,思考由抛物线的焦点弦与弦长倾斜角度、离心率(抛物线的离心率为1)有关的弦长公式,类比推导圆锥曲线的另一个统一公式:焦半径=半通径1±e⋅cosθ=b2a1±e⋅cosθ(半通径就是垂直于焦点所在轴的焦半径,抛物线为y2=2px(p>0)中的p)。

证明如下:①椭圆x2a2+y2b2=1中,直线l过右焦点F与椭圆交于A、B两点,其中A(x1,y1),B(x2,y2),l的倾斜角为θ(锐角),则焦半径AF=b2a1+e·cosθ,BF=b2a1-e·cosθ。

(如图1)x=a2cθ图1由A、B两点分别向右准线作垂线,垂足为M、N,由A点向x轴作垂线,垂足为D,由圆锥曲线统一定义,椭圆上点到焦点的距离比到准线的距离等于离心率得||AF||AM=ca,所以||AF=||AM e=e·()a2c-x1=a-ex1,||FD=||AF cosθ。

所以c+||AF cosθ=x1,即c+||AF cosθ=a-||AFe,即||AF(1+e cosθ)=a-c2a=b2a。

所以AF=b2a1+e·cosθ,同理BF=b2a1-e·cosθ。

②双曲线x2a2-y2b2=1中,直线l过焦点F与同一支交于A、B两点,结论同上,证明略。

③抛物线y2=2px(p>0),直线l过右焦点F与抛物线交于A、B两点,则AF=p1-cosθ,BF=p1+cosθ,长短视角度而定。

圆锥曲线(课堂讲义和例题)

圆锥曲线(课堂讲义和例题)

专题1 焦长与焦比体系】过椭圆的一个焦点的弦与另一个焦点围成的三角形的周长是 .【例2】 过椭圆的一个焦点F 作弦AB ,若,,则 的数值为( ) A . B .C .D .与、斜率有关【例3】设直线与椭圆相交于A 、B 两个不同的点,与x 轴相交于点F .(1)证明:;(2)若F 是椭圆的一个焦点,且,求椭圆的方程.【例4】设椭圆中心在坐标原点,焦点在轴上,一个顶点,离心率为. (1)求椭圆的方程;(2)若椭圆左焦点为,右焦点,过且斜率为1的直线交椭圆于,求的面积.秒杀秘籍:椭圆焦长以及焦比问题体:过椭圆的左焦点F 1的弦与右焦点F 2围成的三角形的周长是4a ;焦长公式:A 是椭圆上一点,、是左、右焦点,为,过,c 是椭圆半焦距,则(1);(2);(3).体面积:,. 证明:(1)如图所示,,故; (2)设由余弦定理得 ;整理得 ;整理得则过焦点的弦长.(焦长公式)焦比定理:过椭圆的左焦点F 1的弦,,令,即,代入弦长公式可得.yO F 2AB xF 1【例5】已知椭圆C:的左右顶点为A,B,点P为椭圆C上不同于A,B,的一点,且直线P A,PB的斜率之积为;(1)求椭圆的离心率;(2)设为椭圆C的左焦点,直线l过点F与椭圆C交与不同的两点M,N,且求直线l的斜率.【例6】(2014•安徽)设F1,F2分别是椭圆E:的左、右焦点,过点F1的直线交椭圆E于A、B两点,若,轴,则椭圆E的方程为.【例7】(2011•浙江)设F1,F2分别为椭圆的焦点,点A,B在椭圆上,若,则点A的坐标是.【例8】(2014•安徽)设F1,F2分别是椭圆E:的左、右焦点,过点F1的直线交椭圆E于A,B两点,.(1)若,的周长为16,求;(2)若,求椭圆E的离心率._________.【例10】过双曲线的左焦点F 1作倾斜角为的直线交双曲线于A 、B 两点,则=________.【例11】已知双曲线的左、右焦点分别为,.过的直线与双曲线的右支相交于,两点,若,若是以为顶角的等腰三角形,则双曲线的离心率为( ) A . B .C .D .注意:关于这类型焦比双曲线求离心率的题目很多,通常需要利用双曲线的几何性质把拥有焦比的较长的那段用关于的式子表示出来,再利用(交一支)或者(交两支)得出离心率.证明:1. ;同理. 2..3.设O 到AB 的距离为,则 ,故. 4.,. 5.;;;.关于抛物线的焦长公式及定理(A 为直线与抛物线右交点,B 为左交点,为AB 倾斜角) 1.;2. 3.;4.设,则; 5.设AB 交准线于点P ,.【例12】已知抛物线C :的焦点为F ,直线与C 交于A ,B (A 在x 轴上方)两点,若,则m 的值为( ) A .B .C .D .【例13】已知抛物线的方程为,过其焦点F 的直线与抛物线交于A 、B 两点,且,O 为坐标原点,则的面积和的面积之比为( ) A . B . C . D .【例14】过抛物线的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若,且则此抛物线的方程为( )若交于两支时,,代入弦长公式可得.秒杀秘籍:抛物线焦长公式及性质 1..2..3..4.设,则.5.设AB 交准线于点P ,则;.秒杀秘籍:过焦点的弦与其中垂线的性质 1.设椭圆焦点弦的中垂线与长轴的交点为,则与之比是离心率的一半(如图)。

高中数学圆锥曲线弦长公式

高中数学圆锥曲线弦长公式

高中数学圆锥曲线弦长公式
摘要:
1.圆锥曲线的定义和重要性
2.圆锥曲线弦长公式的推导和应用
3.圆锥曲线弦长公式的简化方法
4.圆锥曲线弦长公式在实际问题中的应用
正文:
一、圆锥曲线的定义和重要性
圆锥曲线是一种重要的几何图形,它包括椭圆、双曲线、抛物线和它们的简化形式:圆和直线。

圆锥曲线可以通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到。

在数学和几何学中,圆锥曲线有着广泛的应用,它们是许多重要理论和问题的基础。

二、圆锥曲线弦长公式的推导和应用
圆锥曲线弦长公式是指直线与圆锥曲线相交所得弦长的公式。

求解圆锥曲线弦长公式的通用方法是将直线方程代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长。

这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的。

三、圆锥曲线弦长公式的简化方法
然而,对于过焦点的圆锥曲线弦长求解,利用上述方法相比较而言有点繁琐。

这时,可以利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式,以简化运算过程。

例如,椭圆弦长公式为d(1k)x1-x2,双曲线弦长公式为
d(1k2)/a2,抛物线弦长公式为d(1k2)/a。

四、圆锥曲线弦长公式在实际问题中的应用
掌握圆锥曲线弦长公式,可以帮助我们更好地解决实际问题。

例如,在研究某个卫星绕地球的运动轨迹时,我们可以通过圆锥曲线弦长公式来计算卫星与地球之间的距离,从而更准确地预测卫星的运行轨迹。

此外,在光学、力学、天文学等领域,圆锥曲线弦长公式也有着广泛的应用。

圆锥曲线公式大全

圆锥曲线公式大全

(一)圆锥曲线公式大全1、椭圆的定义、椭圆的方程、椭圆的性质F1(c, 0 ), F2( c, 0 )F1(0,c, ), F2( 0, c )(a, 0 ), ( 0, b )(0, a ), ( b, 0 )2、判断椭圆是 x 型还是y 型只要看2x 对应的分母大还是2y 对应的分母大,若2x 对应的分母大则x 型,若2y 对应的分母大则y 型.3、求椭圆方程一般先判定椭圆是x 型还是y 型,若为x 型则可设为12222=+b y a x ,若为y型则可设为12222=+bx a y ,若不知什么型且椭圆过两点,则设为稀里糊涂型:221mx ny +=4、双曲线的定义、双曲线的方程、椭圆的性质双曲线定义若M 为双曲线上任意一点,则有12MF MF 2a -=(2a<2c)若12MF MF 2a -==2c,则点M 的轨迹为两条射线 若12MF MF 2a -=>2c, 则点M 无轨迹焦点位置x 轴y 轴图形方程 12222=-by a x 12222=-bx a y 焦点坐标 F1(c, 0 ), F2( c, 0 )F1(0,c, ), F2( 0, c )焦距 |F1F2| = 2c顶点坐标 (a, 0 )(0, a )a, b, c 的关系式椭圆形状长的像a,所以a 是老大,a2 = b2 + c2; 双曲线形状长的像c,所以c 是老大,c2 = a2 + b2 实轴、虚轴 实轴长=2a, 虚轴长=2b ,实半轴长=a, 虚半轴长=b 无论双曲线是x 型还是y 型,双曲线的焦点总是落在实轴上对称轴 关于x 轴、y 轴和原点对称离心率 ace =( e>1) 范围 ,a x a y R ≤≤-∈或x a y a ≤≤-或y ,x R ∈渐近线b y x a=±a y x b=±2、判断双曲线是 x 型还是y 型只要看2x 前的符号是正还是2y 前的符号是正,若2x 前的符号为正则x 型,若2y 前的符号为正则y 型,同样的,哪个分母前的符号为正,则哪个分母就为2a3、求双曲线方程一般先判定双曲线是x 型还是y 型,若为x 型则可设为12222=-by a x ,若为y 型则可设为12222=-b x a y ,若不知什么型且双曲线过两点,则设为稀里糊涂型:221(0)mx ny mn -=<6、若已知双曲线一点坐标和渐近线方程y mx =,则可设双曲线方程为222(0)y m x λλ-=≠,而后把点坐标代入求解7、椭圆、双曲线、抛物线与直线:l y kx b =+的弦长公式:AB ==8、椭圆、双曲线、抛物线与直线问题出现弦的中点往往考虑用点差法 9、椭圆、双曲线、抛物线与直线问题的解题步骤:(1)假化成整(把分式型的椭圆方程化为整式型的椭圆方程),联立消y 或x (2)求出判别式,并设点使用伟大定理 (3)使用弦长公式1、抛物线的定义:平面内有一定点F 及一定直线l(F 不在l 上)P 点是该平面内一动点,当且仅当点P 到F 的距离与点P 到直线l 距离相等时,那么P 的轨迹是以F 为焦点,l 为准线的一条抛物线.————见距离想定义!!!2、(1)抛物线方程左边一定是x 或y 的平方(系数为1),右边一定是关于x 和y 的一次项,如果抛物线方程不,立即化为方程!(2)抛物线的一次项为x 即为x 型,一次项为y 即为y 型!(3)抛物线的焦点坐标为一次项系数的四分之一,准线与焦点坐标互为相反数!一次项为x ,则准线为”x=多少”,一次项为y ,则准线为”y=多少”!(4)抛物线的开口看一次项的符号,一次项为正,则开口朝着正半轴,一次项为负,则开口朝着负半轴!(5)抛物线的题目强烈建议画图,有图有真相,无图无真相!3、求抛物线方程,如果只知x 型,则设它为2y ax =(0)a ≠,a>o,开口朝右;a<0,开口朝左; 如果只知y 型,则设它为2(0)x ay a =≠,a>o,开口朝上;a<0,开口朝下。

焦点弦的常用公式

焦点弦的常用公式

当前位置:首页>>高中数学>>学生中心>>解题指导圆锥曲线有关焦点弦的几个公式及应用湖北省阳新县高级中学邹生书如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。

圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。

焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。

本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。

定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。

(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。

证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。

由圆锥曲线的统一定义得,,又,所以。

(1)当焦点内分弦时。

如图1,,所以。

图1(2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以。

图2评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。

例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。

若,则的离心率为()解这里,所以,又,代入公式得,所以,故选。

例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心率为。

过右焦点且斜率为的直线于相交于两点,若,则()解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。

例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为的直线,与抛物线交于两点(点在轴左侧),则有____图3解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,设,又,代入公式得,解得,所以。

例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。

【高考数学】圆锥曲线20个速算公式和结论

【高考数学】圆锥曲线20个速算公式和结论
a2 b2
( ) a(a2+b2)
且以AB为直径的圆过双曲线的右顶点,则直线L过定点
,0
a2-b2
⑮ 中点弦结论:
x2 y2 已知双曲线 - =1(a>0,b>0),直线L:y=kx+m与双曲线交于A、B两点,
a2 b2
且AB中点为M(x0,y0),则有k=
b2 a2
x0 ·
y0
三、 抛物线 1、方程的公式、结论 ⑯ 切线方程、切点弦所在方程:
( ) a(a2-b2)
且以AB为直径的圆过椭圆的右顶点,则直线L过定点
,0
a2+b2
⑨ 中点弦结论:
x2 y2 已知椭圆 + =1(a>b>0),直线L:y=kx+m与椭圆交于A、B两点,
a2 b2
且AB中点为M(x0,y0),则有k=-
b2 a2
x0 ·
y0
二、 双曲线
1、方程、离心率的公式、结论
【高考数学】 圆锥曲线20个速算公式
【考纲解读】
15.圆锥曲线与方程(理) (1)圆锥曲线 ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中 的作用。 ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质。 ④了解圆锥曲线的简单应用。 ⑤理解数形结合的思想。 (2)曲线与方程 了解方程的曲线与曲线的方程的对应关系。
过抛物线y2=2px(p>0)上一点P(x0,y0)的切线方程为:y0y=p(x+x0)
过抛物线y2=2px(p>0)外一点P(x0,y0)往抛物线作两条切线 分别切抛物线于A、B,则AB所在直线的方程为:y0y=p(x+x0)

圆锥曲线八大方法2

圆锥曲线八大方法2

常用的八种方法(二)4、弦长公式法弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 20++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·||12a k △·+,若直接用结论,能减少配方、开方等运算过程。

若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则 弦长221221)()(y y x x AB -+-= 221221)]([)(b kx b kx x x +-++-=2121x x k -+=2122124)(1x x x x k-++= 同理:|AB|=122121224)(||11y y y y y y k-+-+特殊的,在如果直线AB 经过抛物线的焦点,则|AB|=?一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 20++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·||12a k △·+,若直接用结论,能减少配方、开方等运算过程。

例 求直线x y -+=10被椭圆x y 22416+=所截得的线段AB 的长。

② 结合图形的特殊位置关系,减少运算在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。

例题:已知直线1+=x y 与双曲线14:22=-y x C 交于A 、B 两点,求AB 的弦长 解:设),(),,2211y x B y x A (由⎪⎩⎪⎨⎧=-+=14122y x x y 得224(1)40x x -+-=得23250x x --=则有⎪⎪⎩⎪⎪⎨⎧-==+35322121x x x x 得,2383209424)(1212212=+=-++=x x x x k AB 练习1:已知椭圆方程为1222=+y x 与直线方程21:+=x y l 相交于A 、B 两点,求AB 的弦长 练习2:设抛物线x y 42=截直线m x y +=2所得的弦长AB 长为53,求m 的值分析:联立直线与抛物线的方程,化简,根据根与系数的关系,求弦长 解:设 ),(),,2211y x B y x A (联立方程⎪⎪⎩⎪⎪⎨⎧=++=122122y x x y 得03462=-+x x则⎪⎪⎩⎪⎪⎨⎧-=-=+21322121x x x x3112)21(4)32(24)(12212212=-⨯--=-++=∴x x x x k AB 解: 设),(),,2211y x B y x A (联立方程:⎩⎨⎧+==m x y xy 242得0)44(422=+-+m x m x则⎪⎩⎪⎨⎧=-=+4122121m x x m x x 53)1(54)(122212212=--=-++=m m x x x x kAB4-=∴m例题2:已知抛物线32+-=x y 上存在关于直线0=+y x 对称相异的两点A 、B ,求弦长AB分析:A 、B 两点关于直线0=+y x 对称,则直线AB 的斜率与已知直线斜率的积为1-且AB 的中点在已知直线上解:B A 、 关于0:=+y x l 对称 1-=⋅∴AB l k k 1-=l k 1=∴AB k设直线AB 的方程为b x y += ,),(),,2211y x B y x A (联立方程⎩⎨⎧+-=+=32x y b x y 化简得032=-++b x x 121-=+∴x x AB ∴中点)21,21(b M +--在直线0=+y x 上 1=∴b 022=-+∴x x则 ⎩⎨⎧-=-=+212121x x x x238)1(24)(12212212=+-=-++=∴x x x x k AB小结:在求直线与圆锥曲线相交的弦长时一般采用韦达定理设而不求的方法,在求解过程中一般采取步骤为:设点→联立方程→消元→韦达定理→弦长公式作业:(1) 过抛物线24y x =的焦点,作倾斜角为α的直线交抛物线于A ,B 两点,且316=AB ,求α的值 (2) 已知椭圆方程1222=+y x 及点)2,0(-B ,过左焦点1F 与B 的直线交椭圆于C 、D 两点,2F 为椭圆的右焦点,求2CDF ∆的面积。

与焦半径相关的圆锥曲线的解题技巧

与焦半径相关的圆锥曲线的解题技巧

焦半径、焦点弦、焦点三角形的巧妙应用提示:会推导、会运用,可以简化运算(一)焦半径有两种计算方式:根据离心率、坐标;根据离心率、焦准距、倾斜角。

1)焦半径 根据离心率、坐标计算,焦半径的代数形式椭圆: (图1) (图2)F1、F2为椭圆的焦点,椭圆的一点A (x ,y ),A 与F1、F2的线段AF1、AF2叫做焦半径,分别设为r1、r2,根据椭圆第二定义有:2111'()''AF r a e r AA e x e a ex AA AA c ==⇒=⋅=+⋅=+ 左焦半径2222'()''AF r a e r AA e x e a ex AA AA c==⇒=⋅=-⋅=- 右焦半径椭圆的焦半径:左加右减。

长轴在y 轴上可以比照,易得上减下加。

左边下边都为负,不足都要加。

双曲线:(图3)(图4)双曲线为双支,焦半径可能在一支上,也可能在两支上。

在一支上时,称之为焦半径,通常也叫焦半径。

在两支上叫外焦半径。

以焦点在左支上为例,推导左焦半径公式。

设焦半径AF1为r1,根据双曲线第二定义有:2111'(''''')()''F A r a e r AA e AA A A e x e a ex AA AA c ==⇒=⋅=-=--⋅=--同理,右支2211'()''F A r a e r AA e x e a ex AA AA c==⇒=⋅=-⋅=-+ 双曲线焦半径,与椭圆有两点相反,左减右加,半长轴取反。

实轴在y 轴上,可以比照,易得上加下减。

联想特征:左边下边都为负,要减一起减。

可以从图形上理解,双曲线的左半支相当于抛物线的右半支。

以左焦点为起点的外焦半径,根据双曲线第二定义有:2122'(""')()''F B r a e r BB e BB B B e x e a ex BB BB c==⇒=⋅=+⋅=+⋅=+同理,以右焦点为起点的外焦半径公式:2222'()''F B r a e r BB e x e a ex BB BB c==⇒=⋅=-+⋅=-双曲线外焦半径,与椭圆相同。

圆锥曲线中二级结论的应用 解析版

圆锥曲线中二级结论的应用 解析版

圆锥曲线中二级结论的应用圆锥曲线是高中数学的重要内容之一,知识的综合性较强,因而解题时需要运用多种基础知识,采用多种数学手段,熟记各种定义、基本公式.法则固然很重要,但要做到迅速、准确地解题,还要掌握一些常用结论,理解各结论之间的联系与区别,正确灵活地运用这些结论,一些复杂的问题便能迎刃而解.知识导图考点分类讲解 焦点弦问题1.已知F 1,F 2分别为椭圆的左、右焦点,直线l 过左焦点F 1与椭圆(焦点在x 轴上)交于A ,B 两点,设∠AF 1F 2=α,e 为椭圆的离心率,p 为椭圆的焦点到对应准线的距离,则p =a 2c -c =b 2c.(1)椭圆焦半径公式:|AF 1|=ep 1-e ·cos α,|BF 1|=ep 1+e ·cos α,1|AF 1|+1|BF 1|=2ep .(2)椭圆焦点弦弦长公式:|AB |=|AF 1|+|BF 1|=2ep1-e 2·cos 2α.(3)焦点三角形的面积公式:P 为椭圆上异于长轴端点的一点,F 1,F 2为其左、右焦点且∠F 1PF 2=θ,则S △PF 1F 2=b 2·tan θ2.2.已知F 1,F 2分别为双曲线的左、右焦点,直线l 过左焦点F 1与双曲线(焦点在x 轴上)交于A ,B 两点,设∠AF 1F 2=α,e 为双曲线离心率,p 为双曲线的焦点到对应准线的距离,则p =c -a 2c =b 2c.图1 图2(1)若直线与双曲线交于一支(如图1),则|AF 1|=ep 1+e ·cos α,|BF 1|=ep 1-e ·cos α,1|AF 1|+1|BF 1|=2ep .若直线与双曲线交于两支(如图2),则|AF 1|=ep e ·cos α+1,|BF 1|=ep e ·cos α-1,1|AF 1|-1|BF 1|=2ep.(2)双曲线焦点弦弦长公式:若直线与双曲线交于一支,则|AB |=|AF 1|+|BF 1|=2ep1-e 2·cos 2α.若直线与双曲线交于两支,则|AB |=||AF 1|-|BF 1||=2epe 2·cos 2α-1.(3)焦点三角形的面积公式:P 为双曲线上异于实轴端点的一点,F 1,F 2为其左、右焦点且∠F 1PF 2=θ,则S △PF 1F 2=b 2tan θ2.3.已知直线l 过焦点F 与抛物线(焦点在x 轴上)交于A ,B 两点,设∠AFx =α,e 为抛物线离心率,p 为抛物线的焦点到对应准线的距离.(1)抛物线焦半径公式:|AF |=ep 1-e ·cos α=p 1-cos α,|BF |=ep 1+e ·cos α=p 1+cos α,1|AF |+1|BF |=2ep =2p.(2)抛物线焦点弦弦长公式:|AB |=|AF |+|BF |=2ep 1-e 2·cos 2α=2psin 2α.4.焦点弦定理已知焦点在x 轴上的椭圆或双曲线或抛物线,经过其焦点F 的直线交曲线于A ,B 两点,直线AB 的倾斜角为α,AF =λFB ,则曲线的离心率满足等式|e cos α|=λ-1λ+1 .易错提醒 (1)要注意公式中α的含义.(2)公式中的加减符号易混淆.(3)直线与双曲线交于一支和两支的公式不一样.1(23-24高三上·北京海淀·阶段练习)已知抛物线C :y 2=4x 的焦点为F ,A ,B 两点在C 上,AF =2,BF =5,则直线AB 斜率的最小值和最大值分别是()A.-23,23B.-23,2 C.-2,23D.-2,2【答案】D【分析】利用焦半径公式求得A ,B 两点坐标,从而得到直线AB 斜率的情况,由此得解.【详解】由题意知F 1,0 ,设A x 1,y 1 ,B x 2,y 2 ,则由AF =2,得x 1+1=2,得x 1=1,代入C :y 2=4x ,得y 1=±2,所以A 1,2 或A 1,-2 ;由BF =5,得x 2+1=5,得x 2=4,代入C :y 2=4x ,得y 2=±4,所以B 4,4 或B 4,-4 ;所以直线AB 斜率有4-24-1=23,4+24-1=2,-4-24-1=-2,-4+24-1=-23四种情况,则直线AB 斜率的最小值为-2,最大值为2.故选:D .2(22-23高三上·四川广安·阶段练习)双曲线x 2a 2-y 2b2=1a >0,b >0 的一条渐近线方程为y =-3x ,F 1、F 2分别为双曲线的左、右焦点,双曲线左支上的点到F 2的距离最小值为3,则双曲线方程为()A.x 23-y 2=1B.x 2-y 23=1 C.x 29-y 23=1D.x 23-y 29=1【答案】B【分析】求出双曲线左支上的点到F 2的距离最小值,可得出关于a 、b 、c 的方程组,解出这三个量的值,即可得出该双曲线的方程.【详解】双曲线左支上一点为P x 0,y 0 ,则x 0≤-a ,且y 20=b 2x 20a2-b 2,则PF 2 =x 0-c2+y 20=x 20-2cx 0+c 2+b 2x 20a2-b 2=c 2x 20a2-2cx 0+a 2=a -ca x 0≥a +c ,则a +c =3,由已知可得b a =3a +c =3b 2=c 2-a 2,解得a =1b =3c =2,因此,双曲线方程为x 2-y 23=1.故选:B .3(2024·江苏·一模)已知抛物线E :x 2=4y 的焦点为F ,过F 的直线l 1交E 于点A x 1,y 1 ,B x 2,y 2 ,E 在B 处的切线为l 2,过A 作与l 2平行的直线l 3,交E 于另一点C x 3,y 3 ,记l 3与y 轴的交点为D ,则()A.y 1y 2=1B.x 1+x 3=3x 2C.AF =DFD.△ABC 面积的最小值为16【答案】ACD【分析】A 选项,求出焦点坐标与准线方程,设直线l 1的方程为y =kx +1,联立抛物线方程,得到两根之积,从而求出y 1y 2=1;B 选项,求导,得到切线方程,联立抛物线方程,得到x 1+x 3=2x 2;C 选项,求出D 0,y 1+2 ,DF =y 1+1,结合焦半径公式求出AF =y 1+1,C 正确;D 选项,作出辅助线,结合B 选项,得到S △ABC =2S △ABM ,表达出S △ABM ,利用基本不等式求出最小值,从而得到△ABC 面积最小值.【详解】A 选项,由题意得F 0,1 ,准线方程为y =-1,直线l 1的斜率存在,故设直线l 1的方程为y =kx +1,联立x 2=4y ,得x 2-4k -4=0,x 1x 2=-4,故y 1y 2=116x 21x 22=1,A 正确;B 选项,y =12x ,直线l 2的斜率为12x 2,故直线l 3的方程为y -y 1=x 22x -x 1 ,即y =x 22x +y 1+2,联立x 2=4y ,得x 2-2x 2x -2y 1+2 =0,故x 1+x 3=2x 2,所以B 错误;C 选项,由直线l 3的方程y -y 1=x 22x -x 1 ,令x =0得y =x22-x 1 +y 1,又x 1x 2=-4,所以y =y 1+2,故D 0,y 1+2 ,故DF =y 1+1,又由焦半径公式得AF =y 1+1,所以C 正确;D 选项,不妨设x 1<x 2,过B 向l 3作垂线交l 3于M ,根据B 选项知,x 1+x 3=2x 2,故S △ABC =2S △ABM ,根据直线l 3的方程y -y 1=x 22x -x 1 ,当x =x 2时,y =x 22x 2-x 1 +y 1=x 222+y 1-x 1x 22=x 222+y 1+2,故M x 2,x 222+y 1+2,故BM =x 222+y 1+2-y 2=x 222+x 214-x 224=x 214+164x 21+2=14x 1+4x 12,故S △ABM =12x 1-x 2 ⋅14⋅x 1+4x 12=18x 1+4x 1⋅x 1+4x 12=18x 1+4x 13≥182x 1⋅4x 13=8,当且仅当x 1=4x 1,即x 1=2时,等号成立,故△ABC 的面积最小值为16,D 正确.故选:ACD【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.4已知双曲线x 2-y 2=2,点F 1,F 2为其左、右焦点,点P 为双曲线上一点,若∠F 1PF 2=60°,则△F 1PF 2的面积为()A.2B.22C.3D.23【答案】 D【解析】方法一 设θ=∠F 1PF 2=60°,则S △F 1PF 2=12|PF 1||PF 2|sin θ,而cos θ=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(|PF 1|-|PF 2|)2+2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|,且||PF 1|-|PF 2||=2a ,|F 1F 2|=2c ,所以|PF 1||PF 2|=2b 21-cos θ,故S △F 1PF 2=b 2sin θ1-cos θ=2 3.方法二 双曲线焦点三角形的面积S △F 1PF 2=b 2tan θ2=2 3.考点二等角的性质1.已知椭圆x 2a 2+y 2b2=1(a >b >0),过长轴上任意一点N (t ,0)的弦的端点A ,B 与对应的点G a 2t ,0 的连线所成的角被焦点所在的直线平分,即∠OGA =∠OGB (如图1).图1 图2 图32.已知双曲线x 2a 2-y 2b2=1(a >0,b >0),过实轴所在直线上任意一点N (t ,0)的弦的端点A ,B 与对应点G a 2t ,0 的连线所成的角被焦点所在的直线平分,即∠NGA =∠NGB (如图2).3.已知抛物线y 2=2px (p >0),过抛物线对称轴上任意一点N (a ,0)的一条弦的端点A ,B 与对应点G (-a ,0)的连线所成角被对称轴平分,即∠OGA =∠OGB (如图3).规律方法 根据等角性质,存在某定点满足条件,快速算出此点的坐标,这给算出准确答案提供了依据.1(23-24高三上·天津南开·阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,若椭圆的焦距为4且经过点-2,2,过点T-6,0的直线交椭圆于P,Q两点.(1)求椭圆方程;(2)求△OPQ面积的最大值,并求此时直线PQ的方程;(3)若直线PQ与x轴不垂直,在x轴上是否存在点S s,0使得∠PST=∠QST恒成立?若存在,求出s的值;若不存在,说明理由.【答案】(1)x28+y24=1(2)面积最大值为22,直线PQ:x+y+6=0或x-y+6=0(3)存在,S-463,0【分析】(1)由焦距是4求出c,将-2,2代入椭圆方程求出a,b,得到答案;(2)根据题意设直线PQ:x=my-6,与椭圆方程联立可得y1+y2,y1y2,由S△OPQ=12×OT×y1-y2,代入运算化简,利用不等式求出△OPQ面积的最大值;(3)根据题意有k PS+k QS=0,转化为2my1y2-6+sy1+y2=0,由第二问代入运算得解.【详解】(1)由题意,c=2,将点-2,2代入椭圆方程得a2-b2=44a2+2b2=1 ,解得a2=8,b2=4,所以椭圆C的方程为x28+y24=1.(2)根据题意知直线PQ的斜率不为0,设直线PQ:x=my-6,P x1,y1,Q x2,y2,联立x=my-6x28+y24=1,消去x整理得m2+2y2-26my-2=0,∴y1+y2=26mm2+2,y1y2=-2m2+2,且Δ=32m2+16>0,∴S△OPQ=S△OTP+S△OTQ=12×OT×y1-y2=62×y1+y22-4y1y2=26×2m2+1m2+2,令t=2m2+1,t≥1,∴S△OPQ=46tt2+3=46t+3t≤4623=22,当且仅当t=3t,即t=3,即m=±1时,等号成立,所以△OPQ面积的最大值为22,此时直线PQ的方程为x+y+6=0或x-y+6=0.(3)在x 轴上存在点S -463,0 使得∠PST =∠QST ,理由如下:因为∠PST =∠QST ,所以k PS +k QS =0,即y 1x 1-s +y 2x 2-s=0,整理得y 1x 2-s +y 2x 1-s =0,即y 1my 2-6-s +y 2my 1-6-s =0,即2my 1y 2-6+s y 1+y 2 =0,则2m ×-2m 2+2-6+s×26m m 2+2=0,又m ≠0,解得s =-463,所以在x 轴上存在点S -463,0 使得∠PST =∠QST .2(2024·云南昆明·模拟预测)已知双曲线E :x 2a2-y 23=1a >0 的右焦点为F 2c ,0 ,一条渐近线方程为y =23cx .(1)求双曲线E 的方程;(2)是否存在过点F 2的直线l 与双曲线E 的左右两支分别交于A ,B 两点,且使得∠F 1AB =∠F 1BA ,若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)x 2-y 23=1(2)存在,15x ±5y -215=0.【分析】(1)根据渐近线方程和c 2=a 2+b 2求a ,c 的值,即可得到双曲线E 的方程;(2)假设存在直线l ,由∠F 1AB =∠F 1BA 得F 1A =F 1B ,取AB 的中点M ,则k F 1M ⋅k MF 2=-1,进而得x 20+y 20=4;又利用x 21-y 213=1x 22-y 223=1得y 20=3x 20-6x 0,于是联立方程组可得M 的坐标,从而得到直线l 的斜率并得出直线l 的方程.【详解】(1)因为双曲线E 的一条渐近线方程为y =23c x ,所以b a =23c,又b 2=3,因此c =2a ,又a 2+b 2=c 2,a =1,c =2;则E 的方程为x 2-y 23=1.(2)假设存在过点F 2的直线l 与双曲线E 的左右两支分别交于A ,B 两点,且使得∠F 1AB =∠F 1BA ,设A x 1,y 1 ,B x 2,y 2 ,AB 中点为M x 0,y 0 ,又F 1-2,0 ,F 22,0 ,由∠F 1AB =∠F 1BA 可知△F 1AB 为等腰三角形,F 1A =F 1B ,且直线l 不与x 轴重合,于是F 1M ⊥AB ,即F 1M ⊥MF 2,因此k F 1M ⋅k MF 2=-1,y 0x 0+2⋅y 0x 0-2=-1,x 20+y 20=4(Ⅰ)点A ,B 在双曲线E 上,所以x 21-y 213=1①x 22-y 223=1②,①-②化简整理得:y 1+y 2x 1+x 2⋅y 1-y 2x 1-x 2=3,y 0x 0⋅y 1-y 2x 1-x 2=3,即k OM ⋅k AB =3,可得y 0x 0⋅y 0x 0-2=3,y 20=3x 20-6x 0(Ⅱ)联立(Ⅰ)(Ⅱ)得:x 20+y 20=4y 20=3x 20-6x 0 ,2x 20-3x 0-2=0,x 0-2 2x 0+1 =0,解得x 0=2y 0=0 (舍去),x 0=-12y 0=±152适合题意,则M -12,±152 ;由k OM ⋅k AB =3得k AB =3×±115=±155,所以直线l 的方程为:y =±155x -2 ,即15x ±5y -215=0.3(23-24高二下·河北秦皇岛·开学考试)已知抛物线D 的顶点是椭圆x 24+y 23=1的中心,焦点与该椭圆的右焦点重合.(1)求抛物线D 的方程;(2)已知动直线l 过点P 4,0 ,交抛物线D 于A 、B 两点,坐标原点O 为PQ 中点,求证:∠AQP =∠BQP ;(3)是否存在垂直于x 轴的直线m 被以AP 为直径的圆所截得的弦长恒为定值?如果存在,求出m 的方程;如果不存在,说明理由.【答案】(1)y 2=4x (2)证明见解析(3)存在,x =3【分析】(1)由题意,设抛物线方程y 2=2px (p >0),由a 2-b 2=4-3=1,得c =1.由此能求出抛物线D 的方程;(2)设A x 1,y 1 ,B x 2,y 2 ,由于O 为PQ 中点,则Q -4,0 ,故当l ⊥x 轴时由抛物线的对称性知∠AQP =∠BQP ,当l 不垂直x 轴时,设l :y =k x -4 ,由y =k x -4y 2=4x,得k 2x 2-42k 2+1 x +16k 2=0,由此能够证明∠AQP =∠BQP .(3)设存在直线m :x =t 满足题意,则圆心M x 1+42,y 12,过M 作直线x =t 的垂线,垂足为E ,故|EG |2=|MG |2-|ME |2,由此能够推出存在直线m :x =3满足题意.【详解】(1)由题意,可设抛物线方程为y 2=2px (p >0).由a 2-b 2=4-3=1,得c =1.∴抛物线的焦点为1,0 ,∴p =2.∴抛物线D 的方程为y 2=4x (2)证明:设A x 1,y 1 ,B x 2,y 2 ,由于O 为PQ 中点,则Q -4,0 ,故当l ⊥x 轴时,由抛物线的对称性知,一定有∠AQP =∠BQP ,当l 不垂直x 轴时,设l :y =k x -4 ,由y =k x -4y 2=4x,得k 2x 2-42k 2+1 x +16k 2=0,则x 1+x 2=4(2k 2+1)k 2x 1x 2=16则k AQ =y 1x 1+4=k x 1-4 x 1+4,k BQ =y 2x 2+4=k x 2-4 x 2+4k AQ +k BQ =k x 1-4 x 1+4+k x 2-4 x 2+4=2k x 1x 2-16x 1+4 x 2+4=0则∠AQP =∠BQP ,综上证知,∠AQP =∠BQP ,(3)设存在直线m :x =t 满足题意,则圆心M x 1+42,y 12,过M 作直线x =t 的垂线,垂足为E ,∴|EG |2=|MG |2-|ME |2,即EG 2=MA 2-ME 2=x 1-42+y 214-x 1+42-t2 =14y 21+x 1-4 2+x 1+4 24+t x 1+4 -t 2=x 1-4x 1+t (x 1+4)-t 2=t -3 x 1+4t -t 2,当t =3时,|EG |2=3,此时直线m 被以AP 为直径的圆截得的弦长恒为定值2 3.因此存在直线m :x =3满足题意.4椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行于x 轴时,直线l 被椭圆C 截得的线段长为26.(1)求椭圆C 的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.【解析】解 (1)∵e=2 2,e2=c2a2=12,∴a2=2c2=b2+c2,∴b2=c2,a2=2b2,椭圆方程化为x22b2+y2b2=1,由题意知,椭圆过点6,1,∴6 2b2+1b2=1,解得b2=4,a2=8,∴椭圆C的方程为x28+y24=1.(2)当直线l的斜率存在时,设直线l的方程为y=kx+1,由x2+2y2=8,y=kx+1,得(2k2+1)x2+4kx-6=0,Δ=16k2+24(2k2+1)>0,设A(x1,y1),B(x2,y2),x1+x2=-4k2k2+1,x1x2=-62k2+1,假设存在定点Q(0,t)(t≠1)符合题意,∵∠PQA=∠PQB,∴k QA=-k QB,∴k QA+k QB=y1-tx1+y2-tx2=x2y1+x1y2-t(x1+x2)x1x2=x2(kx1+1)+x1(kx2+1)-t(x1+x2)x1x2=2kx1x2+(1-t)(x1+x2)x1x2=2k+(1-t)-4k-6=2k(4-t)3=0,∵上式对任意实数k 恒等于零,∴4-t =0,即t =4,∴Q (0,4),当直线l 的斜率不存在时,A ,B (不妨设点A 在x 轴上方)两点分别为椭圆的上下顶点(0,2),(0,-2),显然此时∠PQA =∠PQB ,综上,存在定点Q (0,4)满足题意.考点三切线、切点弦方程1.已知点P (x 0,y 0)为椭圆(或双曲线)上任一点,则过点P 与圆锥曲线相切的切线方程为椭圆中x 0xa 2+y 0yb 2=1,双曲线中x 0xa 2-y 0yb 2=1.2.若点P (x 0,y 0)是椭圆(或双曲线)外一点,过点P (x 0,y 0)作椭圆(或双曲线)的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程是椭圆中x 0x a 2+y 0y b 2=1,双曲线中x 0xa 2-y 0y b2=1.规律方法 运用联想,由过已知圆上和圆外的点的切线方程联想到过圆锥曲线上和圆锥曲线外的切线方程,触类旁通,实现知识的内迁,使知识更趋于系统化,取得事半功倍的效果.1(2024·湖北·二模)如图,O 为坐标原点,F 为抛物线y 2=2x 的焦点,过F 的直线交抛物线于A ,B 两点,直线AO 交抛物线的准线于点D ,设抛物线在B 点处的切线为l .(1)若直线l 与y 轴的交点为E ,求证:DE =EF ;(2)过点B 作l 的垂线与直线AO 交于点G ,求证:|AD |2=AO ⋅AG .【答案】(1)证明见解析(2)证明见解析【分析】(1)根据抛物线方程可得焦点坐标和准线方程,设直线AB 的方程为x =my +12,A x 1,y 1 ,B x 2,y 2 ,联立直线和抛物线方程求得D -12,y 2 ,E 0,y 22,即可得DE =EF ,得证;(2)写出过点B 的l 的垂线方程,解得交点G 的纵坐标为y G =y 2y 22+2 ,再由相似比即可得y 2-y 1 2=y 1 ⋅y G -y 1 ,即证得|AD |2=AO ⋅AG .【详解】(1)易知抛物线焦点F 12,0,准线方程为x =-12;设直线AB 的方程为x =my +12,A x 1,y 1 ,B x 2,y 2 ,联立x =my +12y 2=2x得y 2-2my -1=0,可得Δ=4m 2+4>0y 1+y 2=2m y 1y 2=-1,所以y 1=-1y 2;不妨设A 在第一象限,B 在第四象限,对于y =-2x ,y =-12x;可得l 的斜率为-12x 2-1y 22=1y 2所以l 的方程为y -y 2=1y 2x -x 2 ,即为y =1y 2x +y 22.令x =0得E 0,y 22直线OA 的方程为y =y 1x 1x =2y 1x =-2y 2x ,令x =-12得D -12,y 2 .又F 12,0 ,所以DE =EF即DE =EF 得证.(2)方法1:由(1)中l 的斜率为1y 2可得过点B 的l 的垂线斜率为-y 2,所以过点B 的l 的垂线的方程为y -y 2=-y 2x -x 2 ,即y =-y 2x +y 21+y 222,如下图所示:联立y =-y 2x +y 21+y 222y =-2y 2x,解得G 的纵坐标为y G =y 2y 22+2要证明|AD |2=AO ⋅AG ,因为A ,O ,D ,G 四点共线,只需证明y 2-y 1 2=y 1 ⋅y G -y 1 (*).∵y 2-y 1 2=y 2+1y 22=1+y 222y 22,y 1 ⋅y G -y 1 =-1y 2y 2y 22+2 -y 1 =1+y 22 2y 22.所以(*)成立,|AD |2=AO ⋅AG 得证.方法2:由D -12,y 2 ,B x 2,y 2 知DB 与x 轴平行,∴AF AB=AO AD①又DF 的斜率为-y 2,BG 的斜率也为-y 2,所以DF 与BG 平行,∴AF AB=AD AG②,由①②得∴AO AD=AD AG,即|AD |2=AO ⋅AG 得证.【点睛】关键点点睛:本题第二问的关键是采用设点法,从而得到y =-y 2x +y 21+y 222 y =-2y 2x,解出点G 的坐标,从而转化为证明y 2-y 1 2=y 1 ⋅y G -y 1 即可.2(2024高三·全国·专题练习)已知点P 是抛物线x 2=4y 上一个动点,过点作圆x 2+(y -4)2=1的两条切线,切点分别为M 、N ,则线段MN 长度的最小值为.【答案】333/1333【分析】设P x 0,x 204 ,由圆的切线方程可得MN 方程为xx 0+y -4 x 204-4=1,结合点到直线的距离公式以及二次函数的性质可求得MN 的最小值.【详解】圆x 2+(y -4)2=1的圆心C 0,4 ,半径r =1.设P x 0,x 204 ,故MN 方程为xx 0+y -4 x 204-4=1,弦心距d =1x 20+x 204-42=1x 4016-x 20+16,当x 20=8时,d 取得最大值为36,则MN 取得最小值12-362=333.故答案为:333.3(2023·锦州模拟)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点0,2 ,且离心率为63.F 为椭圆E 的左焦点,点P 为直线l :x =3上的一点,过点P 作椭圆E 的两条切线,切点分别为A ,B ,连接AB ,AF ,BF .(1)求证:直线AB 过定点M ,并求出定点M 的坐标;(2)记△AFM ,△BFM 的面积分别为S 1和S 2,当|S 1-S 2|取最大值时,求直线AB 的方程.【解析】(1)证明 如图,由题意可得b =2,c a =63,又因为a2=b2+c2,所以a2=6,b2=2,椭圆E的方程为x26+y22=1.设A(x1,y1),B(x2,y2),P(3,y0),过点P且切点在A处的椭圆E的切线方程为x1x6+y1y2=1,同理,过点P且切点在B处的椭圆E的切线方程为x2x6+y2y2=1.因为点P在直线P A,PB上,所以x12+y1y02=1,x22+y2y02=1,所以直线AB的方程为x2+y0y2=1,则直线AB过定点M(2,0).(2)解 设直线AB的方程为x=ty+2,联立方程x=ty+2,x26+y22=1,得(t2+3)y2+4ty-2=0,故y1+y2=-4tt2+3,y1y2=-2t2+3,|S1-S2|=2||y1|-|y2||=2|y1+y2|=8|t| t2+3=8 |t|+3|t|≤823=433,当且仅当|t|=3|t|,即t=±3时取等号,此时直线AB的方程为x=±3y+2.4过点Q(-1,-1)作已知直线l:y=14x+1的平行线,交双曲线x24-y2=1于点M,N.(1)证明:Q是线段MN的中点;(2)分别过点M,N作双曲线的切线l1,l2,证明:三条直线l,l1,l2相交于同一点;(3)设P为直线l上一动点,过P作双曲线的切线P A,PB,切点分别为A,B,证明:点Q在直线AB上.【解析】证明 (1)直线MN的方程为y=14(x-3).代入双曲线方程x24-y2=1,得3x2+6x-25=0.设M(x1,y1),N(x2,y2),则x1,x2是方程的两根,故x1+x2=-2.于是,y1+y2=14(x1+x2-6)=-2.故Q(-1,-1)是线段MN的中点.(2)双曲线x24-y2=1过点M,N的切线方程分别为l1:x14x-y1y=1,l2:x24x-y2y=1.两式相加并将x1+x2=-2,y1+y2=-2代入得y=14x+1.这说明,直线l1,l2的交点在直线l:y=14x+1上,即三条直线l,l1,l2相交于同一点.(3)设P(x0,y0),A(x3,y3),B(x4,y4),则P A,PB的方程分别为x3 4x-y3y=1和x44x-y4y=1.因为点P在两条直线上,所以x34x0-y3y0=1,x44x0-y4y0=1.这表明,点A,B都在直线x04x-y0y=1上,即直线AB的方程为x04x-y0y=1.又y0=x04+1,代入整理得x04(x-y)-(y+1)=0,显然,无论x0取什么值(即无论P为直线l上哪一点),点Q(-1,-1)都在直线AB上.强化训练一、单选题1(2024·山东济南·一模)与抛物线x2=2y和圆x2+(y+1)2=1都相切的直线的条数为()A.0B.1C.2D.3【答案】D【分析】设出切点坐标,利用导数的几何意义求出抛物线的切线方程,再由圆的切线性质列式计算即得.【详解】设直线与抛物线x2=2y相切的切点坐标为t,1 2 t2,由y=12x2,求导得y =x,因此抛物线x2=2y在点t,1 2 t2处的切线方程为y-12t2=t(x-t),即tx-y-12t2=0,依题意,此切线与圆x 2+(y +1)2=1相切,于是1-12t 2t 2+1=1,解得t =0或t =±22,所以所求切线条数为3.故选:D2(2024·广东·模拟预测)抛物线y 2=4x 的焦点为F ,过F 的直线交抛物线于A ,B 两点.则AF +4BF 的最小值为()A.6 B.7C.8D.9【答案】D【分析】利用抛物线的焦点弦性质结合基本不等式计算即可.【详解】由题意可知F 1,0 ,设l AB :x =ky +1,A x 1,y 1 ,B x 2,y 2 ,联立直线AB 与抛物线方程y 2=4x x =ky +1 ⇒y 2-4ky -4=0⇒y 1y 2=-4,所以x 1x 2=y 214⋅y 224=1,而AF +4BF =x 1+1+4x 2+1 =x 1+4x 2+5≥2x 1⋅4x 2+5=9.当且仅当x 1=2,x 2=12时取得等号.故选:D3(2022·河南·模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,一条渐近线方程为y =2x ,过双曲线C 的右焦点F 2作倾斜角为π3的直线l 交双曲线的右支于A ,B 两点,若△AF 1B 的周长为36,则双曲线C 的标准方程为()A.x 22-y 24=1B.x 24-y 22=1C.x 2-y 22=1 D.x 22-y 2=1【答案】C【分析】由题意可得b =2a ,则双曲线方程为x 2a 2-y 22a2=1(a >0),F 1(-3a ,0),F 2(3a ,0),可得直线l 为y =3(x -3a ),代入双曲线方程中,利用弦长公式求出AB ,再由双曲线的定义和△AF 1B 的周长为36,可求出a ,从而可求出双曲线的方程【详解】因为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =2x ,所以b =2a ,则双曲线方程为x 2a 2-y 22a 2=1(a >0),F 1(-3a ,0),F 2(3a ,0),所以直线l 为y =tanπ3(x -3a )=3(x -3a ),设A (x 1,y 1),B (x 2,y 2),由x 2a 2-y 22a2=1y =3(x -3a ),得x 2-63ax +11a 2=0,则x 1+x 2=63a ,x 1x 2=11a 2,所以AB =1+3⋅(x 1+x 2)2-4x 1x 2=2108a 2-44a 2=16a ,因为AF 1 =AF 2 +2a ,BF 1 =BF 2 +2a ,所以AF 1 +BF 1 =AF 2 +BF 2 +4a =AB +4a =20a ,因为△AF 1B 的周长为36,所以AF 1 +BF 1 +AB =36,所以20a +16a =36,得a =1,所以双曲线方程为x 2-y 22=1,故选:C4(2023·河南·二模)已知动点P 在双曲线C :x 2-y 23=1上,双曲线C 的左、右焦点分别为F 1,F 2,则下列结论:①C 的离心率为2;②C 的焦点弦最短为6;③动点P 到两条渐近线的距离之积为定值;④当动点P 在双曲线C 的左支上时,PF 1 PF 2 2的最大值为14.其中正确的个数是()A.1个 B.2个C.3个D.4个【答案】B【分析】①由性质可得;②用特殊值可判定;③设点坐标计算化简即可,④利用双曲线的焦半径办公计算即可.【详解】由题意可得e =41=2,即①正确;显然当双曲线的焦点弦过左、右焦点时,该弦长为实轴,长度为2<6,即②错误;易知双曲线的渐近线方程为y =±3x ,设点P x 0,y 0 ,则3x 02-y 02=3,且到两条双曲线的距离之积为3x 0-y 02⋅3x 0+y 0 2=3x 02-y 024=34是定值,故③正确;对于④,先推下双曲线的焦半径公式:对双曲线x 2a 2-y 2b 2=1上任意一点P x 0,y 0 及双曲线的左右焦点F 1-c ,0 、F 2c ,0 ,则PF 1 =x 0+c2+y 02=x 0+c2+b2x 02a 2-1=c 2a 2x 02+2cx 0+a 2=a +ex 0,同理PF 2 =a -ex 0 ,所以PF 1 =a +ex 0 ,PF 2 =a -ex 0 ,此即为双曲线的焦半径公式.设点P x 0,y 0 x 0≤-1 ,由双曲线的焦半径公式可得PF 1 =1+2x 0 =-1-2x 0,PF 2 =1-2x 0,故PF 1 PF 22=-1+2x 01-2x 02=11-2x 0 -211-2x 02,其中1-2x 0≥3,则11-2x 0∈0,13,由二次函数的性质可得其最大值为18,当且仅当11-2x 0=14,即x 0=-1.5时取得,故④错误;综上正确的是①③两个.故选:B5(2024·全国·一模)新材料是现代高新技术的基础和先导,亦是提升传统产业技术能级的关键.某科研小组研发的新材料水滴角测试结果如图所示(水滴角可看作液、固、气三相交点处气-液两相界面的切线与液-固两相交线所成的角),圆法和椭圆法是测量水滴角的常用方法,即将水滴轴截面看成圆或者椭圆(长轴平行于液-固两相交线)的一部分.设圆法和椭圆法测量所得水滴角分别为θ1,θ2,则()附:椭圆x 2a 2+y 2b 2=1 (a >b >0)上一点(x 0,y 0)处的切线方程为x 0x a 2+y 0y b 2=1.A.θ1<θ2B.θ1=θ2C.θ1>θ2D.θ1和θ2的大小关系无法确定【答案】A【分析】理解题意,根据测量水滴角的圆法和椭圆法,以及运用圆和椭圆的切线方程的表示即可得出结论.【详解】由题意知,圆法和椭圆法是测量水滴角的常用方法,即将水滴轴截面看成圆或者椭圆的一部分.设圆法和椭圆法测量所得水滴角分别为θ1,θ2;由题意可知,若将水滴轴截面看成圆的一部分,圆的半径为R ,如图1,则有R 2=(R -1)2+4,解得R =52,所以tan θ1=2R -1=43;若将水滴轴截面看成椭圆的一部分,如图2,切点坐标为-2,b -1 ,则椭圆x 2a 2+y 2b 2=1 上一点-2,b -1 处的切线方程为-2x a 2+b -1 y b 2=1 ,此时椭圆的切线方程的斜率设为k 2,则k 2=tan θ2=2b 2a 2b -1;将切点坐标为-2,b -1 代入切线方程-2x a 2+b -1 y b 2=1 可得4a 2+b -1 2b 2=1 ,解得4b 2a2=2b -1,所以tan θ2=2b 2a 2b -1=122b -1b -1=122+1b -1 ;因为短半轴b <R =52,所以tan θ2=122+1b -1>43=tan θ1即tan θ2>tan θ1,所以θ1<θ2.故选:A .6(23-24高二上·北京东城·期中)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是()A.13,23B.12,1C.13,23∪23,1 D.13,12∪12,1 【答案】D【分析】分等腰三角形PF 1F 2以F 1F 2为底或一腰两种情况讨论,在第一种情况下,直接确定点P 为椭圆短轴的端点,在第二种情况下,分析可知,在每个象限内均存在点P ,使得PF 1 =F 1F 2 或PF 2 =F 1F 2 ,设点P x ,y 在第一象限,结合两点间的距离公式可得出关于a 、c 的不等式,即可求出该椭圆离心率的取值范围.【详解】如下图所示:(1)当点P 与椭圆短轴的顶点重合时,△PF 1F 2是以F 1F 2为底边的等腰三角形,此时,有2个满足条件的等腰△PF 1F 2;(2)当△PF 1F 2构成以F 1F 2为一腰的等腰三角形时,以F2P 为底边为例,则PF 1 =F 1F 2 或PF 2 =F 1F 2 ,此时点P 在第一或第四象限,由对称性可知,在每个象限内,都存在一个点P ,使得△PF 1F 2是以F 1F 2为一腰的等腰三角形,不妨设点P x ,y 在第一象限,则y 2=b 2-b 2a2x 2,其中0<x <a ,则PF 1 =x +c2+y 2=x 2+2cx +c 2+b 2-b 2a 2x 2=c 2a 2x 2+2cx +a 2=c a x +a =2c ,或PF 2 =x -c 2+y 2=x 2-2cx +c 2+b 2-b 2a2x 2=c 2a 2x 2-2cx +a 2=a -c a x =2c ,由c a x +a =2c 可得x =2ac -a 2c ,所以,0<2ac -a 2c <a ,解得12<e =c a <1,由a -c a x =2c 可得x =a 2-2ac c ,所以,0<a 2-2ac c <a ,解得13<e =c a <12,综上所述,该椭圆的离心率的取值范围是13,12 ∪12,1 .故选:D .【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.7(23-24高三下·重庆·开学考试)设F 为抛物线C :x 2=2y 的焦点,P 为C 上一点且在第一象限,C 在点P 处的切线交x 轴于N ,交y 轴于T ,若∠FPT =30°,则直线NF 的斜率为()A.-2 B.-3C.-12D.-33【答案】D【分析】设P 点坐标,利用导数的几何意义求得切线方程可先含参表示N ,T 坐标,再根据抛物线的定义可判定△FPT 为等腰三角形,根据其性质计算即可.【详解】易知F 0,12 ,y =x 22⇒y=x ,设P a ,a 22,则C 在点P 处的切线方程为y =a x -a +a 22⇒y =ax -a 22,所以N a 2,0 ,T 0,-a 22 ,显然N 为TP 中点,由抛物线定义可知PF =a 22+12=FT ,即△FPT 为以F 为顶点的等腰三角形,所以FN ⊥PT ,即∠FNO =∠FPT =30°,所以直线NF 的斜率为tan 180°-30° =-33.故选:D【点睛】思路点睛:本题通过设P 点坐标,利用抛物线的切线方程含参表示N ,T 坐标,再根据抛物线的定义可判定△FPT 为等腰三角形,根据其性质计算即可.解析几何问题首先是几何题,所以利用几何特征可减少计算量,提高效率.8(2024·四川南充·二模)已知椭圆C :x 24+y 23=1的左右焦点分别为F 1,F 2.过点F 1倾斜角为θ的直线l 与椭圆C 相交于A ,B 两点(A 在x 轴的上方),则下列说法中正确的有( )个.①AF 1 =32+cos θ②1AF 1 +1BF 1=43③若点M 与点B 关于x 轴对称,则△AMF 1的面积为9sin2θ7-cos2θ④当θ=π3时,△ABF 2内切圆的面积为12π25A.1 B.2 C.3 D.4【答案】B【分析】首先推导出椭圆的焦半径公式及相关性质,从而判断①②③,得到直线l 的方程,联立直线与椭圆方程,求出y A +y B ,y A y B ,设△ABF 2内切圆的半径为r ,由S △ABF 2=12F 1F 2 y A -y B =12r AB +AF 2 +BF 2 求出r ,即可判断④.【详解】在△AF 1F 2中,由余弦定理AF 1 2+F 1F 2 2-2AF 1 ⋅F 1F 2 ⋅cos θ=AF 2 2,即AF 1 2+4c 2-4c AF 1 ⋅cos θ=2a -AF 1 2,整理得AF 1 =b 2a -c ⋅cos θ,同理可得BF 1 =b 2a +c ⋅cos θ,所以AB =AF 1 +BF 1 =2ab 2a 2-c 2⋅cos 2θ,1AF 1 +1BF 1 =a -c ⋅cos θb 2+a +c ⋅cos θb 2=2ab 2,对于椭圆C :x 24+y 23=1,则a =2、b =3、c =1,所以AF 1 =32-cos θ,BF 1 =32+cos θ,故①错误;1AF 1 +1BF 1 =2a b 2=43,故②正确;所以AB =2ab 2a 2-c 2⋅cos 2θ=124-cos 2θ,S △AMF 1=AF 1 ABS △ABM ,又S △ABM =12BM x A -x B =BF 1 sin θ⋅AB ⋅cos θ=32+cos θ⋅sin θ⋅12cos θ4-cos 2θ=32+cos θ⋅12sin θcos θ4-cos 2θ=32+cos θ⋅6sin2θ4-1+cos2θ2=32+cos θ⋅12sin2θ7-cos2θ,又AF 1 AB=32-cos θ124-cos 2θ=2+cos θ4,所以S △AMF 1=2+cos θ4×32+cos θ⋅12sin2θ7-cos2θ =9sin2θ7-cos2θ,故③错误;当θ=π3时直线l 的方程为x =33y -1,由x =33y -1x 24+y23=1,消去x 整理得5y 2-23y -9=0,显然Δ>0,所以y A +y B =235,y A y B =-95,又AF 1 =2,BF 1 =65,则AF 2 =2a -AF 1 =2,BF 2 =2a -BF 1 =145,设△ABF 2内切圆的半径为r ,则S △ABF 2=12F 1F 2 y A -y B =12r AB +AF 2 +BF 2 ,所以22352+4×95=r 2+65+2+145 ,解得r =235,所以△ABF 2内切圆的面积S =πr 2=π×2352=12π25,故④正确;故选:B【点睛】关键点点睛:本题关键是推导出椭圆焦半径公式(倾斜角形式),利用结论直接解决问题.二、多选题9(2024·河南·一模)已知双曲线E :x 2a2-y 224=1a >0 的左、右焦点分别为F 1、F 2,F 1F 2 =10,过F 1的直线l与E的右支交于点P,若∠F1PF2=π2,则()A.E的渐近线方程为y=±26xB.3PF1=4PF2C.直线l的斜率为±43D.P的坐标为75,245或75,-245【答案】ABD【分析】利用双曲线的焦距求出a的值,结合双曲线的渐近线方程,可判断A选项;利用勾股定理结合双曲线的定义求出PF1、PF2的值,可判断B选项;利用直线斜率的定义可判断C选项;利用双曲线焦半径公式求出点P的坐标,可判断D选项.【详解】对于A选项,F1F2=2a2+24=10,且a>0,解得a=1,又因为b=26,故双曲线E的渐近线方程为y=±bax=±26x,A对;对于B选项,因为点P在右支上,则PF1-PF2=2a=2,①又因为∠F1PF2=π2,则PF12+PF22=F1F22=100,②联立①②可得PF1=8,PF2=6,所以,3PF1=4PF2,B对;对于C选项,若点P在第一象限,则直线l的斜率为k PF1=tan∠PF1F2=PF2PF1=68=34,若点P在第四象限,由对称性可知,直线l的斜率为k PF1=-34.综上所述,直线l的斜率为±34,C错;对于D选项,设点P x,y,则x≥1,且x2-y224=1,可得y2=24x2-24,所以,PF1=x+52+y2=x2+10x+25+24x2-24=25x2+10x+1=5x+1=8,解得x=75,则y2=24×752-24=24225,可得y=±245,即点P75,±245,D对.故选:ABD.10(23-24高三上·福建泉州·阶段练习)已知椭圆x29+y2=1与双曲线x2a2-y2b2=1共焦点F1,F2,设它们在第一象限的交点为P ,且PF 1 ⋅PF 2=0,则()A.双曲线的实轴长为27B.双曲线的离心率为2147C.双曲线的渐近线方程为y =±73x D.双曲线在P 点处切线的斜率为377【答案】ABD【分析】A 选项,求出椭圆的焦点坐标,设左焦点为F 1,故PF 1 +PF 2 =6,由向量数量积为0得到向量垂直,进而由勾股定理求出PF 1 ⋅PF 2 =2,求出PF 1 -PF 2 =27,得到A 正确;B 选项,由离心率公式直接求解;C 选项,求出b =1,由双曲线渐近线公式进行求解;D 选项,设出P 点处切线方程,联立双曲线方程,由根的判别式等于0求出切线斜率.【详解】A 选项,由题意得椭圆x 29+y 2=1的焦点坐标为±22,0 ,设左焦点为F 1,则F 1-22,0 ,PF 1 +PF 2 =6,因为PF 1 ⋅PF 2 =0,所以PF 1 ⊥PF 2 ,由勾股定理得PF 1 2+PF 2 2=F 1F 2 2=32,PF 1 +PF 2 =6两边平方得PF 12+PF 2 2+2PF 1 ⋅PF 2 =36,故PF 1 ⋅PF 2 =2,则PF 1 -PF 2 =PF 12+PF 2 2-2PF 1 ⋅PF 2 =27,故2a =27,解得a =7,双曲线的实轴长为27,A 正确;B 选项,因为c =22,所以双曲线的离心率为c a =227=2147,B 正确;C 选项,因为b =c 2-a 2=8-7=1,故双曲线的渐近线方程为y =±b a x =±77x ,C 错误;D 选项,联立x 29+y 2=1与x 27-y 2=1,可得x =±3144,y =±24,故P 3144,24,当过P 点的直线斜率不存在时,不是双曲线的切线,舍去,设在P 点处切线方程为y -24=k x -3144,联立x 27-y 2=1得x 2-724+k x -31442=7,化简得1-7k 2 x 2-72k 2-21142k 2 x -4418k 2+217k 4-638=0,由Δ=0得72k 2-21142k 2 2-41-7k 2 -4418k 2+217k 4-638=0,解得k =377,故双曲线在P 点处切线的斜率为377,D 正确.故选:ABD11(23-24高三上·湖北武汉·期末)已知P x P ,y P ,Q x Q ,y Q 是曲线C :6x 2-6x +7y 2-21+y 2+6x -3 =0上不同的两点,O 为坐标原点,则()A.x 2Q +y 2Q 的最小值为1B.4≤x P -12+y 2P +x P +12+y 2P ≤6C.若直线y =k x -3 与曲线C 有公共点,则k ∈-33,33D.对任意位于y 轴左侧且不在x 轴上的点P ,都存在点Q ,使得曲线C 在P ,Q 两点处的切线垂直【答案】AD【分析】根据题中曲线表达式去绝对值化简,根据几何意义判断A ,举出反例判断B ,数形结合判断C ,根据图形特征以及切线概念判断D .【详解】当y 2+6x -3≥0时,原方程即6x 2-6x +7y 2-21+y 2+6x -3 =0,化简为x 24+y 23=1,轨迹为椭圆.将y 2=3-34x 2代入y 2+6x -3≥0,则0≤x ≤8,则此时0≤x ≤2,即此部分为椭圆的一半.同理当y 2+6x -3<0时,原方程即6x 2-6x +7y 2-21-y 2+6x -3 =0,化简为x -1 2+y 2=4.将y 2=4-x -1 2代入y 2+6x -3<0,则x <0或x >8,则此时-1≤x <0,即此部分为圆的一部分.作出曲线的图形如下:对于A ,x 2Q +y 2Q 最小值表示曲线上一点到原点的最小距离的平方,当x ≥0时,x 2Q +y 2Q 最小值为3,当y =±3时取得,当x <0时,x 2Q +y 2Q 最小值为1,当y =0时取得,则x 2Q +y 2Q 最小值为1,故A 正确;对于B ,当x P =-1,y P =0时,x P -1 2+y 2P +x P +12+y 2P =2,显然B 选项错误;对于C ,直线y =k x -3 经过定点3,0 ,当k =33时,直线经过椭圆下顶点,如图,显然,存在k >33,使得直线与曲线有两个公共点,故C 错误;对于D ,如图,对任意位于y 轴左侧且不在x 轴上的点P ,则曲线C 在P 点处的切线斜率可以取任何非零实数,曲线C 在椭圆部分切线斜率也可以取到任何非零实数,使得两切线斜率为负倒数,所以对任意位于y 轴左侧且不在x 轴上的点P ,都存在点Q ,使得曲线C 在P ,Q 两点处的切线垂直,故D 正确.故选:AD【点睛】方法点睛:本题考查解析几何的综合问题,此类问题常见的处理方法为:(1)几何法:通过图形特征转化,结合适当的辅助线与图形关系进而求解;(2)坐标法:在平面直角坐标系中,通过坐标的运算与转化,运用方程联立与韦达定理等知识,用坐标运算求解答案.三、填空题12(23-24高二上·福建泉州·期中)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)焦距为10,左、右焦点分别为F 1,F 2,点A 在C 上且AF 2⊥x 轴,△AF 1F 2的面积为454,点P 为双曲线右支上的任意一点,则1PF 1 -1PF 2的取值范围是【答案】-89,0 【分析】先计算双曲线的标准方程,再由焦半径公式计算即可.【详解】由题意可知F1-5,0 ,F 25,0 ,A 5,y A ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线有关焦点弦的几个公式及应用
如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。

圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。

焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。

本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。

定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。

(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。

证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。

由圆锥曲线的统一定义得,,又,所以。

(1)当焦点内分弦时。

如图1,,所以。

图1
(2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以。

图2
评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。

例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。

若,则的离心率为()
解这里,所以,又,代入公式得,所以,故选。

例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离
心率为。

过右焦点且斜率为的直线于相交于两点,若,则()
解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。

例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为
的直线,与抛物线交于两点(点在轴左侧),则有____
图3
解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,设,又,代入公式得,解得,所以。

例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___
解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。

例5(自编题)已知双曲线的离心率为,过左焦点
且斜率为的直线交的两支于两点。

若,则___解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。

定理2已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准距(焦点到对应准线的距离)为。

过点的弦与曲线的焦点所在的轴的夹角为
,则有。

证明设点在准线上的射影分别为,过点作轴的垂线交直线
于点,交直线于点。

由圆锥曲线的统一定义得,,所以。

图4
(1)当焦点内分弦时。

如图4,,。

,所以较长焦半径,较短焦半径。

所以。

(2)当焦点外分弦时(此时曲线为双曲线)。

图5
如图5,,。

所以,
所以较长焦半径,较短焦半径。

所以。

综合(1)(2)知,较长焦半径,较短焦半径。

焦点弦的弦长公式为。

特别地,当曲线为无心曲线即为抛物线时,焦准距就是径之半,较长焦半径,较短焦半径,焦点弦的弦长公式为。

当曲线为有心曲线即为椭圆或双曲线时,焦准距为。

注由上可得,当焦点内分弦时,有。

当焦点外分弦时,有。

例6 (2009年高考福建卷理科第13题)过抛物线的焦点作倾斜角为的直线,交抛物线于两点,若线段的长为8,则___
解由抛物线焦点弦的弦长公式为得,,解得。

例7(2010年高考辽宁卷理科第20题)已知椭圆的右焦点为,经过且倾斜角为的直线与椭圆相交于不同两点,已知。

(1)求椭圆的离心率;(2)若,求椭圆方程。

解(1)这里,,由定理1的公式得,解得。

(2)将,代入焦点弦的弦长公式得,,解得,即,所以①,又,设,代入①得,所以,所以,故所求椭圆方程为。

例8(2007年重庆卷第16题)过双曲线的右焦点作倾斜角为的直线,交双曲线于两点,则的值为___
解易知均在右支上,因为,离心率,点准距,因倾斜角为,所以。

由焦半径公式得,。

例9(由2007年重庆卷第16题改编)过双曲线的右焦点作倾斜角为的直线,交双曲线于两点,则的值为___
解因为,离心率,点准距,因倾斜角为,所以。

注意到分别在双曲线的两支上,由焦半径公式
得,。

例10 (2007年高考全国卷Ⅰ)如图6,已知椭圆的左、右焦点分别为,过的直线交椭圆于两点,过的直线交椭圆于两点,且。

求四边形面积的最小值。

图6
解由方程可知,,则。

设直线与轴的夹角为,因为,所以直线与轴
的夹角为。

代入弦长公式得,
,。

故四边形的面积为,。

,. 所以四边形面积的最小值为。

相关文档
最新文档