圆锥曲线的焦点弦公式及应用(难)

合集下载

圆锥曲线焦点弦的一个优美恒等式及应用

圆锥曲线焦点弦的一个优美恒等式及应用

有I 1 — n - 十 — m I 1 : 。 l 。 1 , 其 中 为 离 心 率 .
分析 : 由于椭 圆是轴对称 图形 , 故只需证 明其过 右焦 点 的情况. 我们 先证 明倾斜 角 为锐 角的情况.
已知椭 圆 + : 1 ( 。 > 6 > 0 ) 的右焦 点 为F , 过腿 倾
过B 作B B 。 垂 直准线于日 。 , 过B 作B A _ L A A 1 于A
由圆锥 曲线统一性定义知
BF = BB1 =n, AF= AA 1 = m,
A I O 榀
图2
= e .—

:e .



BBJ

夕 n A A
, Al
f [ J B Bl : — n —, AA1 : — i n —
e e

 ̄ [ I BB 1 : — m —, AA1 : — n —
e e

n A2 :— m-


彭 A 2 = — n - — m.
I l
则 有 I 1 — r n t - 十 — m I 1 : c o s l , 其 中 为 离 心 率 .
分析 : 由于双曲线是轴对称 图形 , 故 只需证 明其过右 焦点 的情 况. 我们先证 明倾斜角o / 为锐角的情况.
已知 双 曲线 一 : 1 ( n > 0 , 6 > 0 ) 的右焦 点 为F , 过F
I I
证: I — n - — m I : l 。 I , 其中 为 离 心 率 .
I n+, 孔 I
证明: 如 图2 , 作A A 垂直右准线于A ,
证明 : 如图1 , 作A A。 垂 直右 准线 于A , 过B 作B B 垂直右准线 于B , 过 作B A _ I _ A A 于A 》

圆锥曲线焦半径公式及其应用(解析版)

圆锥曲线焦半径公式及其应用(解析版)

圆锥曲线焦半径公式及其应用一、坐标形式的焦半径公式1.椭圆的坐标形式的焦半径公式(1)设点),(00y x P 是椭圆)0(12222>>=+b a b y a x 上任意一点,21,F F 是其左右焦点,则=1PF 0ex a +,=2PF 0ex a -,记忆方式:长加短减(2)设点),(00y x P 是椭圆)0(12222>>=+b a b x a y 上任意一点,21,F F 是其下上焦点,则=1PF 0ey a +,=2PF 0ey a -,记忆方式:长加短减2.双曲线的坐标形式的焦半径公式(1)设点),(00y x P 是双曲线)0,0(12222>>=-b a by a x 上任意一点,21,F F 是其左、右焦点,则①当点P 在右支上时,=1PF a ex +0,=2PF a ex -0,②当点P 在左支上时,=1PF a ex --0,=2PF a ex +-0,记忆方式:长加短减(2)设点),(00y x P 是双曲线)0,0(12222>>=-b a bx a y 上任意一点,21,F F 是其下、上焦点,则①当点P 在上支上时,=1PF a ey +0,=2PF a ey -0,②当点P 在下支上时,=1PF a ey --0,=2PF a ey +-0,记忆方式:长加短减(3)若弦AB 过左焦点,则=AB a x x e 2)(21-+-;若弦AB 过右焦点,则=AB ax x e 2)(21-+3.抛物线的坐标形式的焦半径公式(1)设),(00y x P 是抛物线)0(22>=p px y 上任意一点,F 为其焦点,则=PF 20p x +(2)设),(00y x P 是抛物线)0(22>-=p px y 上任意一点,F 为其焦点,则=PF 20p x +-(3)设),(00y x P 是抛物线)0(22>=p py x 上任意一点,F 为其焦点,则=PF 20p y +(4)设),(00y x P 是抛物线)0(22>-=p py x 上任意一点,F 为其焦点,则=PF 20p y +-例1.(2021年新高考Ⅰ卷)已知21,F F 是椭圆C :14922=+y x 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.6解法1:(基本不等式)由题意知621=+MF MF ,所以21MF MF ⋅9)2(221=+≤MF MF 当且仅当321==MF MF 时等号成立,所以21MF MF ⋅的最大值为9,故选C 解法2:(焦半径公式)设点),(00y x M ,则由题意知355,2,3=====a c e c b a ,所以9959)353)(353(200021≤-=-+=⋅x x x MF MF ,当且仅当00=x 时等号成立所以21MF MF ⋅的最大值为9,故选C例2.(2019年全国Ⅲ卷理)设21,F F 为椭圆C :1203622=+y x 的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则点M 的坐标为解析:设点),(00y x M ,则由题意知211F F MF =,所以⇒=+c ex a 203832600=⇒=+x x 所以点M 的坐标为)15,3(例3.点),(00y x P 为双曲线C :132422=-y x 的右支上一点,若点P 到右焦点的距离等于02x ,则=0x 解析:由题意知3,6,24,2====e c b a ,222300002=⇒=-=-=x x x a ex PF 例4.双曲线116922=-y x 的两个焦点为21,F F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x轴的距离为解法1:51651645tan 0221=⇒⨯===∆P P F PF y y b S ,即点P 到x 轴的距离为516解法2:设点),(00y x P ,不妨设点P 在右支上,则由21PF PF ⊥得2212221F F PF PF =+25269100)335()335(202020=⇒=-++⇒x x x ,所以25256)14(322020=-=x y 5160=⇒y 即点P 到x 轴的距离为516例5.(2011年辽宁卷)已知F 是抛物线x y =2的焦点,B A ,是该抛物线上两点,3=+BF AF ,则线段AB 的中点到y 轴的距离为A.43 B.1C.45 D.47解析:设点),(),,(2211y x B y x A ,线段AB 的中点),(00y x M ,则25341412121=+⇒=+++=+x x x x BF AF ,从而452210=+=x x x ,故选C 例8.(2013年全国Ⅱ卷)设抛物线C :)0(22>=p px y 的焦点为F ,点M 在C 上,5=MF ,若以MF 为直径的圆过点)2,0(,则C 的方程为()A.x y 42=或x y 82= B.x y 22=或x y 82=C.x y 42=或xy 162= D.x y 22=或xy 162=解法1:设点),(00y x M ,则255200p x p x MF -=⇒=+=,即),25(0y pM -,MF 的中点为)2,25(0y B ,以MF 为直径的圆过点)2,0(,所以MF AB 21=,所以4425)22(425020=⇒=-+y y ,又点M 在抛物线上,所以2)25(216=⇒-=p p p 或8所以抛物线的方程是x y 42=或x y 162=,故选C解法2:设点),(00y x M ,因为以焦半径为直径的圆与y 轴相切,所以MF 的中点的纵坐标为2,所以40=y ,所以p p x 82160==,所以2528=⇒=+=p pp MF 或8所以抛物线的方程是x y 42=或x y 162=,故选C 注:以抛物线的焦半径为直径的圆与y 轴相切二、角度形式的焦半径公式1.椭圆的角度形式的焦半径公式(1)设过椭圆)0(12222>>=+b a b y a x 的焦点F 的弦AB 的倾斜角为θ,则=AF θcos 2c a b -;=BF θcos 2c a b +;焦点弦长=AB θ2222cos 2c a ab -;(2)设过椭圆)0(12222>>=+b a b x a y 的焦点F 的弦AB 的倾斜角为θ,则=AF θsin 2c a b -;=BF θsin 2c a b +;焦点弦长=AB θ2222sin 2c a ab -;2.双曲线的角度形式的焦半径公式设过双曲线)0,0(12222>>=-b a by a x 右焦点)0,(c F 的弦AB 的倾斜角为α,渐近线xa b y ±=的倾斜角为θ,则(1)当θπαθ-<<时,焦点弦AB 在右支上,=AF θcos 2c a b -;=BF θcos 2c a b +;=AB α2222cos 2c a ab -,弦AB 在双曲线一支上时,焦点弦最短为通径(2)当θα<≤0或παθπ<<-焦点弦AB 在两支上,=AF a c b -θcos 2;=BF ac b +θcos 2;=AB 2222cos 2a c ab -α,弦AB 交双曲线两支上时,焦点弦最短为实轴长a23.抛物线的角度形式的焦半径公式(1)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p px y 于B A ,两点,则=AF θcos 1-p ;=BF θcos 1+p;=AB θ2sin 2p (2)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p py x 于B A ,两点,则=AF θsin 1-p ;=BF θsin 1+p ;=AB θ2cos 2p例1.如图,设过椭圆13422=+y x 的右焦点F 的直线l 交椭圆于B A ,两点,线段AB 的垂直平分线交x 轴于点M ,则=ABMF 解法1:(设线韦达定理)略解法2:(点差法)略解法3:(角度形式的焦半径公式)设AB 的倾斜角为θ,则θθcos 23cos 2-=-=c a b AF ,θθcos 23cos 2+=+=c a b BF 所以θθθ2cos 412cos 23cos 23-=++-=+=BF AF AB θθθθ2cos 43cos 2cos 2cos -=-=+-==BF AF BFAF AF NF MF ,所以=AB MF 41例2.如图,过椭圆13422=+y x 的左焦点F 任作一直线交椭圆于B A ,两点,若=+BF AF BF AF λ,则=λ解析:设AB 的倾斜角为θ,则θθcos 23cos 2-=-=c a b AF ,θθcos 23cos 2+=+=c a b BF 所以=λ3411=+BF AF例2.已知椭圆12322=+y x 的左右焦点分别为21,F F ,过1F 的直线交椭圆于D B ,两点,过2F 的直线交椭圆于C A ,两点,且BD AC ⊥,则四边形ABCD 的面积的最小值为解析:设直线AC 的倾斜角为θ,则θθθ222222cos 334cos 3232cos 2-=-⨯⨯=-=c a ab AC θθ202sin 334)90(cos 334-=+-=BD 所以)sin 3)(cos 3(242122θθ--=⋅=BD AC S ABCD 2596)2sin 3cos 3(24222=-+-≥θθ,所以四边形ABCD 的面积的最小值为2596例3.过双曲线)0,0(12222>>=-b a by a x 的一个焦点F 作平行于渐近线的两直线,与双曲线分别交于B A ,两点,若a AB 2=,双曲线的离心率为e ,则[]=e 解析:设θ=∠AFO ,则a b a c a c b a c b AF 2cos 222=+⋅=+=θ所以222sin b a AF a ==θ,又c b=θsin ,所以c b b a =22⇒=-⇒=⇒232234)1(2e e c a b 例4.已知双曲线191622=-y x 的左焦点弦交双曲线左支于B A ,两点,且772=AB ,求直线AB 的方程解析:设AB 的倾斜角为θ,则77216cos 25942cos 222222=-⨯⨯=-=θθa c ab AB 53cos ±=⇒θ所以34tan ±=θ,所以直线AB :)5(34+±=x y 即02034=+-y x 或02034=++y x例5.已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则DE AB +的最小值为解析:设AB 的倾斜角为θ,则θθ22sin 4sin 2==p AB ,所以θθ202cos 4)90(sin 2=+=p DE 所以16)11(4)cos )(sin cos 1sin 1(4)cos 1sin 1(42222222=+⨯≥++=+=+θθθθθθDE AB 当且仅当4πθ=时等号成立,所以16)(min =+DE AB 三、焦半径定比模型(1)设AB 为焦点在x 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θcos e 11+-λλ;=e 21k+11+-λλ(2)设AB 为焦点在y 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则11sin +-=λλθe ;=e 211k +11+-λλ例1.(2010年辽宁理科)设椭圆C :)0(12222>>=+b a by a x 的左焦点为F ,过点F 的直线与椭圆C 相交于B A ,两点,直线l 的倾斜角为060,FB AF 2=,则椭圆的离心率为解析:32121260cos 0=⇒+-=e e 例2.(2010年全国Ⅰ卷)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于D ,FD BF 2=,则C 的离心率为解析:设BD 的倾斜角为θ,则311212cos =+-=θe ,又e a c ==θcos ,所以33312=⇒=e e 例3.(2010年全国Ⅱ卷)已知椭圆)0(12222>>=+b a by a x 的离心率为23,过右焦点F 且斜率为)0(>k k 的直线与C 相交于B A ,两点,若FB AF 3=,则=k ()A.1B.2C.3D.2解析:33cos 211313cos 2311cos =⇒=+-=⇒+-=θθλλθe ,所以2tan ==θk例4.(2014年全国Ⅱ卷理)设21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N ,若直线MN 在y 轴上的截距为2,且N F MN 15=,则椭圆C 的方程为解析:由题意知a b ab MF 44222=⇒==--------------------------------------①由N F MF N F MN 11145=⇒=,所以531414cos =+-=θe ,又2422cos 121-=-==a c a c MF F F θ,所以532=-⋅a c a c -------------------------------------------------------------------------②联立①②得72,7==b a ,所以椭圆的方程为1284922=+y x。

圆锥曲线专题解析3:焦点弦问题

圆锥曲线专题解析3:焦点弦问题

圆锥曲线专题解析3:焦点弦问题圆锥曲线专题解析3:焦点弦问题Ø方法导读圆锥曲线是高考的必考内容,主要命题点有直线与圆锥曲线的位置关系的应用,圆锥曲线中的弦长、弦中点、面积、定点、定值、最值、取值范围、存在性问题,综合性较强.从近三年高考情况来看,多考查直线与椭圆或抛物线的位置关系,常与向量、圆等知识结合,难度较大.解题时,充分利用数形结合思想,转化与化归思想,同时注重数学思想在解题中的指导作用,以及注重对运算能力的培养.在解题过程中常用到点差法、根与系数的关系、设而不求、整体代换等技巧,注意掌握.如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦.圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识.焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的.Ø高考真题【2018·全国I卷理·19】设椭圆的右焦点为,过的直线与交于,两点,点M的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.Ø解题策略【过程分析】第一问,先求出椭圆的右焦点的坐标,由于与轴垂直,所以可求出直线的方程,从而求出点的坐标,再利用直线方程的两点式,即可求出直线的方程;第二问,对直线分三类讨论:当直线与轴重合时,直接求出.当直线与轴垂直时,可直接证得.当直线与轴不重合也不垂直时,设的方程为,,,利用斜率公式表示出,把直线的方程代入椭圆的方程,消去转化为关于X的一元二次方程,利用根与系数的关系即可证明,从而证得.【深入探究】破解此类解析几何题的关键,一是“图形”引路,一般需画出大致图形,把已知条件翻译到图形中,利用直线方程的点斜式或两点式,即可快速表示出方程;二是“转化”桥梁,即会把要证的两角相等,根据图形的特征,转化为斜率之间的关系,再把直线与椭圆的方程联立,利用根与系数的关系,以及斜率公式即可证得结论.Ø解题过程(1)由已知得,的方程为.由已知可得,点的坐标为或,所以的方程为或.(2)当与轴重合时,.当与轴垂直时,为的垂直平分线,所以.当与轴不重合也不垂直时,设的方程为,,,则,,直线,的斜率之和为.由,得.将代入得.所以,,则.从而,故,的倾斜角互补,所以.综上,.Ø解题分析本题考查椭圆的标准方程及其简单性质、焦点弦斜率问题,考查考生的推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想,考查的核心素养是逻辑推理、直观想象、数学运算.对比2015年全国I卷理科数学第20题:在直角坐标系中,曲线与直线交于,两点.(1)当时,分别求在点和处的切线方程;(2)轴上是否存在点,使得当变动时,总有说明理由.2018年的全国I卷的第19题只是把2015年全国I卷的第20题的“抛物线”变为“椭圆”,仍然考查直线与圆锥曲线有两个交点的位置关系,都是“求方程”与“相交弦的斜率”问题,只是去掉了原来的是否存在型的外包装.在强调命题改革的今天,通过改编、创新等手段来赋予高考典型试题新的生命,这成为高考命题的一种新走向,所以我们在复习备考的过程中要注意对高考真题的训练,把握其实质,掌握其规律,规范其步骤,做到“胸中有高考真题”,那么我们就能做到以不变应万变.Ø拓展推广1.圆锥曲线过焦点的所有弦中最短的弦过焦点且与对称轴垂直的弦称为通径.(1)椭圆过焦点的最短弦为通径,长为.(2)双曲线过焦点的最短弦为通径或实轴长,长为或.注意:对于焦点在轴上的椭圆、双曲线,上述结论仍然成立.(3)抛物线过焦点的最短弦为通径,长为.注意:对于焦点在轴负半轴上,焦点在轴上的抛物线,上述结论仍然成立.2.圆锥曲线的焦半径公式圆锥曲线上任意一点到焦点的距离叫做圆锥曲线关于该点的焦半径,利用圆锥曲线的第二定义很容易得到圆锥曲线的焦半径公式.(1)椭圆的焦半径公式①若为椭圆上任意一点,点,分别为椭圆的左右焦点,则,.②若为椭圆上任意一点,点,分别为椭圆的上下焦点,则,.(2)双曲线的焦半径公式①若为双曲线上任意一点,点,分别为双曲线的左右焦点,当点在双曲线的左支上时,则,;当点在双曲线的右支上时,则,.①若为双曲线上任意一点,点,分别为双曲线的上下焦点,当点在双曲线的下支上时,则,;当点在双曲线的上支上时,则,.(3)抛物线的焦半径公式①若为抛物线上任意一点,则;②若为抛物线上任意一点,则;③若为抛物线上任意一点,则;④若为抛物线上任意一点,则.3.圆锥曲线的焦点弦的两个焦半径倒数之和为定值(1)椭圆的焦点弦的两个焦半径倒数之和为常数,(其中).(2)双曲线的焦点弦的两个焦半径倒数之和为常数,当焦点弦的两个端点,在同支时,;当,在异支时,(其中).注意:对于焦点在轴上的椭圆、双曲线,上述结论仍然成立.(3)抛物线的焦点弦的两个焦半径倒数之和为常数(其中).涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.另外熟记圆锥曲线焦点弦的一些重要结论,可以快速求解与焦点弦有关的最值或范围问题.变式训练1如图,椭圆的右焦点为,过点的直线与椭圆交于、两点,直线与轴相交于点,点在直线上,且满足轴.(1)当直线与轴垂直时,求直线的方程;(2)证明:直线AM经过线段的中点.变式训练2已知抛物线的焦点与椭圆的右焦点重合,抛物线的动弦过点,过点且垂直于弦的直线交抛物线的准线于点.(1)求抛物线的标准方程;(2)求的最小值.变式训练3设抛物线的焦点为,过且斜率为()的直线与交于两点,.(1)求的方程;(2)求过点且与的准线相切的圆的方程.变式训练4已知抛物线的焦点为,过的直线交抛物线于,两点.(1)若以,为直径的圆的方程为,求抛物线的标准方程;(2)过,分别作抛物线的切线,,证明:,的交点在定直线上.变式训练5抛物线的焦点为,是上一点,且.(1)求的方程;(2)过点的直线与抛物线相交于,两点,分别过点,两点作抛物线的切线,,两条切线相交于点,点关于直线的对称点,判断四边形是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由.。

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程关于直线与圆锥曲线相交求弦长,通用方法是将直线b kx y +=代入曲线方程,化为关于x 的一元二次方程,设出交点坐标()(),,,,2211y x B y x A 利用韦达定理及弦长公式]4))[(1(212212x x x x k -++求出弦长,这种整体代换、设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷.一、椭圆的焦点弦长若椭圆方程为)0(12222>>=+b a by a x ,半焦距为c>0,焦点)0,(),0,(21c F c F -,设过1F 的直线l 的倾斜角为l ,α交椭圆于两点()(),,,,2211y x B y x A 求弦长AB .解:连结B F A F 22,,设y B F x A F ==11,,由椭圆定义得y a B F x a A F -=-=2,222,由余弦定理得222)2(cos 22)2(x a c x c x -=⋅⋅-+α,整理可得αcos 2⋅-=c a b x ,同理可求得αcos 2⋅+=c a b y ,则ααα222222cos 2cos cos c a ab c a b c a b y x AB -=⋅++⋅-=+=;同理可求得焦点在y 轴上的过焦点弦长为α2222sin 2c a ab AB -=(a 为长半轴,b 为短半轴,c 为半焦距).结论:椭圆过焦点弦长公式:⎪⎪⎩⎪⎪⎨⎧⋅-⋅-=).(sin2),(cos222222222轴上焦点在轴上焦点在ycaabxcaabABαα二、双曲线的焦点弦长设双曲线(),0,012222>>=-babyax其中两焦点坐标为)0,(),0,(21cFcF-,过F1的直线l的倾斜角为α,交双曲线于两点()(),,,,2211yxByxA求弦长|AB|.解:(1)当ababarctanarctan-<<πα时,(如图2)直线l与双曲线的两个交点A、B在同一支上,连BFAF22,,设,,11yBFxAF==,由双曲线定义可得ayBFaxAF2,222+=+=,由余弦定理可得222222)2()cos(22)2(,)2(cos22)2(aycycyaxcxcx+=-⋅⋅-++=⋅⋅-+απα整理可得αcos2⋅+=cabx,αcos2⋅-=caby,则可求得弦长;cos2coscos222222αααcaabcabcabyxAB-=⋅-+⋅+=+=(2)时或当παπα<<-<≤ababarctanarctan0,如图3,直线l 与双曲线交点()()2211,,,y x B y x A 在两支上,连F 2A,F 2B,设,,11y B F x A F == 则a y B F a x A F 2,222-=+=,由余弦定理可得222)2(cos 22)2(a x c x c x +=⋅⋅-+α,222)2(cos 22)2(a y c y c y -=⋅⋅-+α,整理可得,则,cos ,cos 22a c b y a c b x -⋅=+⋅=αα .cos 2cos cos 222222a c ab a c b a c b x y AB -⋅=+⋅--⋅=-=ααα因此焦点在x 轴的焦点弦长为⎪⎪⎩⎪⎪⎨⎧<<-<≤--<<-=).arctan arctan 0(cos 2),arctan (arctan cos 222222222παπααπααa b a b ac ab a ba b c a ab AB 或 同理可得焦点在y 轴上的焦点弦长公式⎪⎪⎩⎪⎪⎨⎧-<<-<<-<≤-=).arctan (arctan sin 2),arctan arctan 0(sin 222222222a b a b a c ab a ba b c a ab AB πααπαπαα或 其中a 为实半轴,b 为虚半轴,c 为半焦距,α为AB 的倾斜角.三、 抛物线的焦点弦长若抛物线)0(22>=p px y 与过焦点)0,2(pF 的直线l 相交于两点()()2211,,,y x B y x A ,若l 的倾斜角为α,求弦长|AB|.(图4)解:过A 、B 两点分别向x 轴作垂线AA 1、BB 1,A 1、B 1为垂足,y FB x FA ==,设,则点A 的横坐标为αcos 2⋅+x p ,点B 横坐标为αcos 2⋅-y p,由抛物线定。

圆锥曲线焦点弦的八大结论

圆锥曲线焦点弦的八大结论

圆锥曲线焦点弦的八大结论圆锥曲线是几何学中的一类重要的曲线,包括圆、椭圆、双曲线和抛物线。

在圆锥曲线的研究中,焦点和弦是两个重要的概念,它们之间有着许多有趣的关系。

本文将介绍圆锥曲线焦点弦的八大结论。

一、椭圆的焦点弦椭圆有两个焦点,分别为F1和F2。

对于任意一条经过椭圆两个焦点的弦AB,有以下结论:1. 弦中点M在线段F1F2上;2. 焦点到弦的距离之和等于弦长,即AF1 + BF2 = AB;3. 焦点到弦的距离之差等于弦段所在直线与椭圆长轴的距离之差,即AF1 - BF2 = PM - PN,其中P和N分别为弦AB的两个端点在椭圆上的垂足;4. 焦点到弦的距离之比等于弦段所在直线与椭圆焦点连线的斜率,即AF1/AF2 = MF/MG,其中M为弦中点,G为椭圆长轴的中点;5. 弦中点M到椭圆两个焦点的距离之差等于弦段所在直线与椭圆长轴的距离之差,即MF1 - MF2 = PM - PN;6. 弦端点P和N到椭圆两个焦点的距离之差相等,即PF1 - PF2 = NF1 - NF2;7. 椭圆的两个焦点到弦的距离之积等于椭圆长轴的平方减去弦长的平方,即AF1·BF2 = AC - AB,其中AC为椭圆长轴的长度;8. 弦段所在直线与椭圆中心连线的斜率等于椭圆长轴和短轴的比值,即PG/PM = b/a,其中a和b分别为椭圆长轴和短轴的长度。

二、双曲线的焦点弦双曲线有两个焦点,分别为F1和F2。

对于任意一条经过双曲线两个焦点的弦AB,有以下结论:1. 弦中点M在线段F1F2的延长线上;2. 焦点到弦的距离之差等于弦长,即AF1 - BF2 = AB;3. 焦点到弦的距离之和等于弦段所在直线与双曲线渐近线的距离之和,即AF1 + BF2 = PM + PN,其中P和N分别为弦AB的两个端点在双曲线上的垂足;4. 焦点到弦的距离之比等于弦段所在直线与双曲线渐近线的斜率,即AF1/AF2 = MF/MG,其中M为弦中点,G为双曲线渐近线的中点;5. 弦中点M到双曲线两个焦点的距离之和等于弦段所在直线与双曲线渐近线的距离之和,即MF1 + MF2 = PM + PN;6. 弦端点P和N到双曲线两个焦点的距离之差相等,即PF1 - PF2 = NF2 - NF1;7. 双曲线的两个焦点到弦的距离之积等于双曲线的常数c的平方减去弦长的平方,即AF1·BF2 = c - AB,其中c为双曲线的常数;8. 弦段所在直线与双曲线中心连线的斜率等于双曲线焦点之间的距离和双曲线渐近线的斜率之和的倒数,即PG/PM = (F1F2/c) + (c/PN)。

圆锥曲线二级结论及证明

圆锥曲线二级结论及证明

圆锥曲线二级结论及证明
圆锥曲线的二级结论是指在圆锥曲线中,一些经过推导和证明的特殊性质和定理。

这些结论通常用于简化解题过程和提高解题效率。

以下是一些圆锥曲线的二级结论及证明:
焦点弦长公式:对于过圆锥曲线焦点的直线与圆锥曲线交于两点A和B,有AB=2ex1ex2*sin(θ),其中e为离心率,x1和x2为A、B两点对应的横坐标,θ为直线AB的倾斜角。

证明:设直线AB的方程为x=my+n,联立直线和圆锥曲线方程,得到二次方程。

利用韦达定理得到x1+x2和x1*x2的值,再利用弦长公式得到AB的长度。

切线与法线的关系:对于圆锥曲线上的点P(x0,y0),其切线方程可以表示为y-y0=k(x-x0),其中k为切线的斜率。

同时,该点的法线方程可以表示为y-y0=-1/k(x-x0)。

证明:设点P处的切线斜率为k,则切线方程可以表示为
y-y0=k(x-x0)。

求出该点处的导数即为切线的斜率。

利用点斜式方程得到切线方程,然后利用法线和切线的垂直关系得到法线方程。

离心率与曲线的形状关系:对于椭圆,离心率e越小,曲线越扁;对于双曲线,离心率e越大,曲线越扁。

证明:利用椭圆的焦点距离公式和半轴长公式,可以得到离心率
e与半轴长之间的关系。

对于双曲线,同样利用焦点距离公式和半轴长公式,可以得到离心率e与半轴长之间的关系。

以上是一些圆锥曲线的二级结论及证明,这些结论可以应用于具体的解题过程中,提高解题效率。

圆锥曲线焦点弦长的公式求法

圆锥曲线焦点弦长的公式求法

1= f =“ n :2 ・ 誓 l+ a 。一=一 + =一j l, 一+ “ “ a l )

手= ,
故综上所述 : : 述 = I
9时 魁 。 0也
= =
( 其中。 :=a —b) i 2

当直线A 的倾斜角为 0 0 9‘ ,由 k t O B 且 ≠ 0时 =a 及三角公式 s n i0 n
当直线A 的倾斜角为 0时 ,同公式I B 的证法 ,也

情况2 当直线A 与双曲线的两交点 ) , B (,) I I ( y) , 均在 同一支上时 ,不失 一般性 ,如图二 一 2 所示,不妨设都在左支上 , 直线A 过双曲线的 且 B 左焦点 , -. (c ),仍 由 曲线 的焦半径公式 , 0 双 得
线的焦半径公式,得 l 一 a,l “: a 卅= “ — 丑 = +

/。一√ \
H ' 于, Y J;
由 般 弦 公 : 一 的 长 式I 叫
解 ( 解 )求 七后结双线程把 ; 二公 法 :得值 ,合曲方 , = 式 ,
2 l ( )( +1 × × : ) 3 。
关键词 圆锥 曲线 焦点 弦 长 焦点 弦 长公 式
求直线被 二次曲线截得的弦长 ,通常是将直线与二次曲线方 程联 立 ,得到关于 或 Y 的一元二次方程 ,然后利用韦达定理 及弦长公式
求解。 过圆锥曲线焦点的弦长问题不 同于一般的弦长计算 , 根据 圆锥 曲 线的定义和几 何性质 ,可得出求过 圆锥 曲线焦点的弦长计算公式 ,即 焦点弦长公式 。 设A 为圆锥 曲线C B 的一条焦点弦 ,直线A 的斜 率为 k。倾斜角 B 为 2 公式1若曲线C 为椭 圆, =(> > ) I b 0,则 a

圆锥曲线焦半径公式的进一步推导及应用

圆锥曲线焦半径公式的进一步推导及应用

㊀㊀㊀圆锥曲线焦半径公式的进一步推导及应用◉浙江省诸暨市草塔中学㊀金铁强椭圆㊁双曲线的焦点弦或焦半径的问题是解析几何中的常规考点,很多老师在讲解的时候喜欢用 设而不求 来解决问题.但用此法来处理焦点弦问题也有其弊端,一是步骤过多,二是有些问题不能直接用此法求解,必须再要用到 设而求之 才能解决.对于现在的多变题型,已经达不到通解通法的要求,因此有必要对圆锥曲线焦半径公式进行进一步的挖掘和整理,才能适应当前高考题型的发展趋势,让学生能够更直观地解题.图11焦点在x 轴上的椭圆焦半径公式的推导及应用㊀㊀如图1,设椭圆E 为x 2a2+y 2b2=1(a >b >0),F 1,F 2为椭圆E 的焦点,P Q 为椭圆E 过点F 1的焦点弦.当P Q 垂直于x 轴时,弦P Q 为过F 1的所有弦中最短的一条,即通径,满足|P Q |=2b2a;当P Q 垂直于y 轴时,弦P Q 为过F 1的所有弦中最长的一条,即长轴,满足|P Q |=2a .除了这两条特殊的焦点弦,我们任意作一条焦点弦,连接P F 2,构成焦点三角形P F 1F 2,令øP F 1F 2为α,为焦点弦P Q 的倾斜角.设|P F 1|=x ,则|P F 2|=2a -x .在әP F 1F 2中由余弦定理得c o s α=x 2+(2c )2-(2a -x )24x c.整理得到x =a 2-c 2a -c c o s α=b2a -c c o s α,即|P F 1|=b 2a -c c o s α.当α=π2,0时,就是最短弦与最长弦.同样地,在图1中,若我们连结Q F 2,构成焦点三角形Q F 1F 2,可得|Q F 1|=b2a -c c o s (π-α),即|Q F 1|=b2a +c c o s α,得到焦点弦|P Q |=b 2a -c c o s α+b 2a +c c o s α=2a b2a 2-c 2 c o s 2α.这个公式把焦点弦分成上下两部分,每部分的焦半径都有自己的表达式,这样对于条件运用可以更直接明了.例1㊀设F 1,F 2分别为椭圆x 23+y 2=1的左右焦点,点A ,B 在椭圆上,若F 1A ң=5F 2B ң,则点A 的坐标是.图2解析1:(常规解法)如图2,已知椭圆x 23+y 2=1,则焦点F 1(-2,0),F 2(2,0).因为F 1A ң=5F 2B ң,则F 1A ң与F 2B ң共线,即F 1A 与F 2B 平行.延长A F 1与椭圆交于点C ,由椭圆与两个焦点都关于(0,0)对称,可知C F 1ң=F 2B ң,则F 1A ң=5C F 1ң.那么问题就转化到焦点弦A C 了.可验证当点A 在x 轴上时,不满足条件,故设A (x 1,y 1),C (x 2,y 2),直线A C 为x =m y -2,求出A (x 1,y 1)的坐标.到这里,我们发现,该题目其实不能用 设而不求 ,因为最后问的是x 1及y 1的值,最后反而是 设而求之 .联立x =m y -2与x 23+y 2=1,消去x ,得到方程(3+m 2)y 2-22m y -1=0.则y 1+y 2=22m m 2+3,y 1y 2=-1m 2+3.又y 1=-5y 2,解得y 21=1.则A (0,1)或A (0,-1).解析1虽步骤不多,但运算复杂.如果我们用焦半径公式,整个问题就豁然开朗.解析2:(焦半径公式法)首先,利用椭圆与平行线的点对称问题同上解,问题转化到焦点弦A C 中来.设A C 的倾斜角为α,由F 1A ң=5C F 1ң,可直接利用公式得到方程b 2a -c c o s α=5b2a +c c o s α,则6c c o s α=4a ,即c o s α=2a 3c =2332=63.所以直线A C 的斜率k =22,直线A C 方程为y =22x +1,联立椭圆方程x23+y 2=1,易得x =0,y =1.即A (0,1).再利用对称性可得A (0,-1)(此时倾斜角α为352022年9月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀解法探究复习备考Copyright ©博看网. All Rights Reserved.㊀㊀㊀钝角,斜率k=-12).运算可简便很多.综上可知:A(0,1)或A(0,1).分析公式的本源可得出很简单的结论,焦点弦的弦长及被焦点分开的两段焦半径的比例值其实与椭圆的形状(即a,c的值),与焦点弦所在直线的方向(即斜率k或倾斜角α)存在关系,即a,c,α三个量决定了焦点弦的一切,那我们不妨直接利用这样的代数关系来解决问题,解题就方便多了.2焦点在x轴上的双曲线焦半径公式的应用同样地,该公式也适用于双曲线.例2㊀已知双曲线方程:x23-y2=1,左焦点为F,过F作两条相互垂直的直线与双曲线相交于A,B,C,D四点,求四边形A B C D面积的最小值.解析:由条件知,若焦点弦为一条交于双支,一条交于单支,则不能构成四边形,则两条焦点弦都交于左支或都交于双支.(1)若两条焦点弦都交于双支,令一条焦点弦的倾斜角为α,另一条焦点弦的倾斜角为π2+α,则满足不等式t a nα<33,且0>t a nπ2+αæèçöø÷>-33,不存在这样的α.(2)若两条焦点弦都交于左支,令一条焦点弦的倾斜角为α,另一条焦点弦的倾斜角为π2+α,则满足不等式t a nα>33,且t a nπ2+αæèçöø÷<-33,则αɪπ6,π3æèçöø÷.S A B C D=|A C| |B D|2=122a b2(a2-c2 c o s2α)2a b2a2-c2 c o s2α+π2æèçöø÷éëêêùûúú=33-4c o s2α233-4s i n2α=69-4+16c o s2α s i n2α=65+4s i n22αȡ23.当s i n22α=1,即α=π4时,等号成立,此时四边形A B C D面积的最小值为23.利用公式直接代入,解题过程简洁明了,优点显而易见.3焦点在y轴上的圆锥曲线焦半径公式如图3,设椭圆T:y2a2+x2b2=1(a>b>0),F1,F2为椭圆T的焦点,上准线为y=a2c,P Q为椭圆T的焦图3点弦,P Q的倾斜角为α,P H与上准线垂直于H,N为上准线与y轴的交点.由|P F1||P H|=ca,|PH|=a2c+(|P F1|s i nα-c),可以得a|P F1|=c a2c-c+|P F1|s i nαæèçöø÷,即|P F1|=b2a-c s i nα.同理,|Q F1|=b2a+c s i nα,且|P Q|=2a b2a2-c2s i n2α.焦点在y轴上的椭圆的焦半径公式只需把焦点在x轴上的焦半径公式中的c o sα换成s i nα,其他不变.因此,简单总结如下:(1)焦点在x轴上的椭圆或双曲线(双曲线要求焦点弦P Q与双曲线同一支交于两点,即焦点弦的斜率满足k>ba或k<-ba时),其焦点弦为P Q,焦点弦的倾斜角为α.P Q被焦点分成P F1与P F2两段,其中较长的一条为|P F1|=b2a-c c o sα,较短的一条为|Q F1|=b2a+c c o sα;当曲线为双曲线时,若其焦点弦P Q与双曲线两支分别相交一点,即焦点弦的斜率满足-b a<k<b a时,此时较长的一条|P F1|=b2c c o sα-a,较短的一条|Q F1|=b2c c o sα+a(绝对值取决于倾斜角为锐角还是钝角).(2)焦点在y轴上的椭圆或双曲线,把上述公式中的c o sα换成s i nα即可.唯一有变化的是当焦点弦P Q与双曲线同一支交于两点,焦点弦的斜率满足-b a<k<b a;当双曲线的焦点弦P Q与双曲线两支分别相交一点,焦点弦的斜率满足k>ba,或k<-b a.即α的取值范围要求发生变化,而公式的结构不变,只需把公式中的c o sα换成s i nα,而且,由于αɪ[0,π),s i nαȡ0恒成立,有绝对值的部分可以去掉.参考文献:[1]人民教育出版社,课程教材研究所,中学数学课程教材研究开发中心.普通高中课程标准实验教科书 数学 选修2G1(A版)[M].2版.北京:人民教育出版社,2007.[2]丁益民.数学公式的 二次处理 对学生思维的培养.数学通讯,2010(22):1G2.F45复习备考解法探究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年9月上半月Copyright©博看网. All Rights Reserved.。

圆锥曲线焦点弦长公式(极坐标全参数方程)

圆锥曲线焦点弦长公式(极坐标全参数方程)

圆锥曲线焦点弦长公式(极坐标参数方程)圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。

由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。

本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F ,设倾斜角为α的直线l 经过F ,且与圆锥曲线交于A 、B 两点,记圆锥曲线的离心率为e ,通径长为H ,则(1)当焦点在x 轴上时,弦AB 的长|cos 1|||22αe HAB -=; (2)当焦点在y 轴上时,弦AB 的长|sin 1|||22αe HAB -=.推论:(1)焦点在x 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22cos 1||e HAB -=;当A 、B 不在双曲线的一支上时,1cos ||22-=αe HAB ;当圆锥曲线是抛物线时,α2sin ||HAB =. (2)焦点在y 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22sin 1||e HAB -=;当A 、B 不在双曲线的一支上时,1sin ||22-=αe HAB ;当圆锥曲线是抛物线时,α2cos ||HAB =.典题妙解下面以部分高考题为例说明上述结论在解题中的妙用.例1(06湖南文第21题)已知椭圆134221=+y x C :,抛物线px m y 22=-)((p >0),且1C 、2C 的公共弦AB 过椭圆1C 的右焦点.(Ⅰ)当x AB ⊥轴时,求p ,m 的值,并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ)若34=p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程.2FOABxy例2(07全国Ⅰ文第22题)已知椭圆12322=+y x 的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于B 、D 两点,过2F 的直线交椭圆于A 、C 两点,且BD AC ⊥,垂足为P.(1)设P 点的坐标为),(00y x ,证明:232020yx +<1. (2)求四边形ABCD 的面积的最小值.2FABCD Oxy 1F P例3(08全国Ⅰ理第21题文第22题)双曲线的中心为原点O ,焦点在x 上,两条渐近线分别为1l 、2l ,经过右焦点F 垂直于1l 的直线分别交1l 、2l 于A 、B 两点. 已知||OA 、||AB 、||OB 成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.A ByO F x1l2lN M金指点睛1. 已知斜率为1的直线l 过椭圆1422=+x y 的上焦点F 交椭圆于A 、B 两点,则||AB =_________.2. 过双曲线1322=-y x 的左焦点F 作倾斜角为6π的直线l 交双曲线于A 、B 两点,则||AB =_________.3. 已知椭圆02222=-+y x ,过左焦点F 作直线l 交A 、B 两点,O 为坐标原点,求△AOB 的最大面积.B O xy AF4. 已知抛物线px y 42=(p >0),弦AB 过焦点F ,设m AB =||,△AOB 的面积为S ,求证:mS 2为定值.yO F x AB5.(05全国Ⅱ文第22题)P 、Q 、M 、N 四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点. 已知PF 与FQ 共线,MF 与FN 共线,且0=⋅MF PF .求四边形PQMN 的面积的最大值和最小值.O xNPy MQF6. (07重庆文第22题)如图,倾斜角为α的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点.(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明α2cos ||||FP FP -为定值,并求此定值.yO F xA BDEC lαm P7. 点M 与点)2,0(F 的距离比它到直线03:=+y l 的距离小1.(1)求点M 的轨迹方程;(2)经过点F 且互相垂直的两条直线与轨迹相交于A 、B ;C 、D. 求四边形ACBD 的最小面积.FO xA BD C y8. 已知双曲线的左右焦点1F 、2F 与椭圆1522=+y x 的焦点相同,且以抛物线x y 22-=的准线为其中一条准线. (1)求双曲线的方程;(2)若经过焦点2F 且互相垂直的两条直线与双曲线相交于A 、B ;C 、D. 求四边形ACBD的面积的最小值.y2FAO x1l2l B CD参考答案:证明:设双曲线方程为12222=-by a x (a >0,b >0),通径a b H 22=,离心率a ce =,弦AB 所在的直线l 的方程为)(c x k y +=(其中αtan =k ,α为直线l 的倾斜角),其参数方程为为参数)(,t t y t c x ⎩⎨⎧=+-=.sin cos αα. 代入双曲线方程并整理得:0cos 2cos sin 4222222=-⋅+⋅-b t c b t b a ααα)(. 由t 的几何意义可得:|cos 1|2|cos 1|2|cos sin |2cos sin 4cos sin cos 24||||22222222222222222222222122121αααααααααe a b e a b b a ab b a b b a c b t t t t t t AB -=-=-=-----=-+=-=)()(.|cos 1|22αe H-=例1.解:(Ⅰ)当x AB ⊥轴时,点A 、B 关于x 轴对称,0=∴m ,直线AB 的方程为1=x . 从而点A 的坐标为),(231或),(231-. 点A 在抛物线2C 上,.249p =∴即.89=p此时抛物线2C 的焦点坐标为),(0169,该焦点不在直线AB 上. (Ⅱ)设直线AB 的倾斜角为α,由(Ⅰ)知2πα≠.则直线AB 的方程为)(1tan -⋅=x y α.抛物线2C 的对称轴m y =平行于x 轴,焦点在AB 上,通径382==p H ,离心率1=e ,于是有又 AB 过椭圆1C 的右焦点,通径322==a b H ,离心率21=e . ∴.cos 412|cos 1|||222αα-=-=e H AB∴)(α2cos 138-.cos 4122α-= 解之得:6tan 71cos 2±==αα,.抛物线2C 的焦点),(m F 32在直线)(1tan -⋅=x y α上, ∴αtan 31-=m ,从而36±=m . 当36=m 时,直线AB 的方程为066=-+y x ; 当36-=m 时,直线AB 的方程为066=--y x 例2.(1)证明:在12322=+y x 中,123===c b a ,,. ,︒=∠9021PF F O 是1F 2F 的中点,.1||21||21===∴c F F OP 得.12020=+y x ∴点P 在圆122=+y x 上.显然,圆122=+y x 在椭圆12322=+y x 的内部. 故232020yx +<1.(2)解:如图,设直线BD 的倾斜角为α,由BD AC ⊥可知,直线AC 的倾斜角απ+2..cos 138sin ||22)(αα-==H AB 2FOABxy通径33422==a b H ,离心率33=e . 又 BD 、AC 分别过椭圆的左、右焦点1F 、2F ,于是.sin 3342cos 1||cos 334cos 1||222222ααπαα-=+-=-=-=)(,e H AC e H BD ∴四边形ABCD 的面积.2sin 2496sin 334cos 33421||||21222ααα+=-⋅-⋅=⋅=AC BD S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴42596,S .故四边形ABCD 面积的最小值为2596. 例3,解:(Ⅰ)设双曲线的方程为12222=-by a x (a >0,b >0).||OA 、||AB 、||OB 成等差数列,设m AB =||,公差为d ,则d m OA -=||,d m OB +=||,∴222)()(d m m d m +=+-. 即2222222d dm m m d dm m ++=++-. ∴4m d =. 从而43||m OA =,45||mOB =. 又设直线1l 的倾斜角为α,则α2=∠AOB . 1l 的方程为x aby =. ∴.tan ab=α 而.34||||tan 2tan ==∠=OA AB AOB α 2FABCD Oxy 1F P∴34)(12tan 1tan 222=-⨯=-ab a bαα. 解之得:.21=a b∴.25)(12=+=a b e (Ⅱ)设过焦点F 的直线AB 的倾斜角为θ, 则απθ+=2.∴αθsin cos -=. 而.51)21(1)21(tan 1tan sin 22222=+=+=ααα∴51cos 2=θ.通径b abb a b H =⨯==222. 又设直线AB 与双曲线的交点为M 、N. 于是有:4cos 1||22=-=θe HMN .即451)25(12=⨯-b .解得3=b ,从而6=a .∴所求的椭圆方程为193622=-y x .1. 解:3,1,2===c b a ,离心率23==a c e ,通径122==ab H ,直线l 的倾斜角4πα=.∴58)22()23(11sin 1||2222=⋅-=-=αe HAB . 2. 解:2,3,1===c b a ,离心率2==ace ,通径622==a b H ,直线的倾斜角6πα=. A ByO F x1l2lN M∴3|)23(21|6|cos 1|||2222=⋅-=-=αe HAB .3. 解:1222=+y x ,1,1,2===c b a ,左焦点)0,1(-F ,离心率22==a c e ,通径222==ab H .当直线l 的斜率不存在时,x l ⊥轴,这时22||2===ab H AB ,高1||==c OF ,△AOB 的面积221221=⨯⨯=S . 当直线l 的斜率存在时,设直线l 的倾斜角为α,则其方程为)1(tan +⋅=x y α,即tan tan =+-⋅ααy x ,原点O 到直线AB 的距离ααααααs i n|s e c ||t a n|1t a n |t a n 0ta n 0|2==++-⨯=d . αααα222222sin 122cos 222cos )22(12cos 1||+=-=⋅-=-=e HAB . ∴△AOB 的面积αα2sin 1sin 2||21+=⨯⨯=d AB S . 0<α<π,∴αsin >0. 从而ααsin 2sin 12≥+. ∴22sin 2sin 2=≤ααS .当且仅当1sin =α,即2πα=时,“=”号成立. 故△AOB 的最大面积为22. 4. 解:焦点为)0,(p F ,通径p H 4=.当直线AB 的斜率不存在时,x AB ⊥轴,这时p m AB 4||==,高p OF =||,△AOBBO xy AF的面积22||||21p OF AB S =⨯⨯=. ∴3442444p pp m p m S ===,是定值.当直线AB 的斜率存在时,设直线的倾斜角为α,则其方程为)(tan p x y -⋅=α,即tan tan =+-⋅ααp y x ,原点O 到直线AB 的距离αααααs i n |s e c ||t a n|1t a n |t a n |2p p p d ==+=. αα22sin 4sin ||pH AB ==. ∴△AOB 的面积αsin 2||212p d AB S =⨯⨯=.∴32242424sin sin 41sin 4p pp m p m S =⨯=⨯=ααα. ∴不论直线AB 在什么位置,均有32p m S =(3p 为定值).5. 解:在椭圆1222=+y x 中,.112===c b a ,, 由已知条件,MN 和PQ 是椭圆的两条弦,相交于焦点),(10F ,且PQ MN ⊥. 如图,设直线PQ 的倾斜角为α,则直线MN 的倾斜角απ+2.通径222==ab H ,离心率22=e .于是有.sin 222sin 1||cos 222)2(sin 1||222222ααααπ-=-=-=+-=e H PQ e HMN ,∴四边形PQMN 的面积O xNPy MQFyO F x AB.2sin 816sin 222cos 22221||||21222ααα+=-⋅-⋅=⋅=PQ MN S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴2916,S .故四边形PQMN 面积的最小值和最大值分别为916和2. 6.(Ⅰ)解:4,82==p p ,∴抛物线的焦点F 的坐标为)2,0(, 准线l 的方程为2-=x .(Ⅱ)证明:作l AC ⊥于C ,AC FD ⊥于D. 通径82==p H . 则ααααcos ||||,cos ||||,sin 8sin ||22AF AD FP EF H AB ====.∴4cos ||||||||+=+==αAF p AD AC AF .∴αcos 14||-=AF .∴αααα22sin cos 4sin 4cos 14||21||||||||=--=-=-=AB AF AE AF EF , 从而αα2sin 4cos ||||==EF FP . ∴8sin 2sin 4)2cos 1(||2cos ||||22=⋅=-=-ααααFP FP FP . 故α2cos ||||FP FP -为定值,此定值为8.7. 解:(1)根据题意,点M 与点)2,0(F 的距离与它到直线2:-=y l 的距离相等,∴点M 的轨迹是抛物线,点)2,0(F 是它的焦点,直线2:-=y l 是它的准线.从而22=p,∴4=p . ∴所求的点M 的轨迹方程是y x 82=.(2) 两条互相垂直的直线与抛物线均有两个交点, ∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α, 则直线CD 的倾斜角为α+︒90.y O F xA BDEClαm P BDy抛物线的通径82==p H ,于是有:αααα2222sin 8)90(cos ||,cos 8cos ||=+︒===H CD H AB .∴四边形ACBD 的面积.2sin 128sin 8cos 821||||21222ααα=⋅⋅=⋅=CD AB S 当且仅当α2sin 2取得最大值1时,128min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为128.8. 解:(1)在椭圆1522=+y x 中,2,1,522=-===b a c b a ,∴其焦点为)0,2(1-F 、)0,2(2F .在抛物线x y 22-=中,1=p ,∴其准线方程为212==p x . 在双曲线中,21,22==c a c ,∴3,122=-==a c b a . ∴所求的双曲线的方程为1322=-y x .(2) 两条互相垂直的直线与双曲线均有两个交点,∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α,则直线CD 的倾斜角为α+︒90.双曲线的通径622==a b H ,离心率2==a ce . 于是有: αααα222222sin 416)90(cos 1||,cos 416cos 1||-=+︒-=-=-=e H CD e H AB .∴四边形ACBD 的面积.2sin 4318sin 416cos 41621||||21222ααα+-=-⋅-⋅=⋅=CD AB S =18 y2FAO x1l2l B CD当且仅当α2sin 2取得最大值1时,18min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为18.。

专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用

专题16  圆锥曲线焦点弦  微点3  圆锥曲线焦点弦长公式及其应用
15.过双曲线 的右焦点F作倾斜角为 的直线,交双曲线于P、Q两点,则 的值为__________.
16.过双曲线 的右焦点 作倾斜角为 的直线,交双曲线于 两点,则 的值为________.
17.过抛物线 的焦点 作倾角为 的直线,与抛物线分别交于 、 两点( 在 轴左侧),则 _______________________.
注意:夹角不是直线的倾斜角,而是直线与焦点所在轴的夹角,这样就不需要区的右焦点F作倾斜角为 的直线,交双曲线于 两点,求弦长 .
三、圆锥曲线坐标式焦点弦长公式
1.椭圆的坐标式焦点弦长公式
例9
9.已知椭圆 ,若过左焦点的直线交椭圆于 两点,求 .
【结论6】椭圆的坐标式焦点弦长公式:
我们有如下结论:
【结论6】双曲线的坐标式焦点弦长公式:
(1)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: ;
(2)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: .
3.抛物线的坐标式焦点弦长公式
由抛物线的定义易得
【结论7】抛物线的坐标式焦点弦长公式:
(1)抛物线 的焦点弦长公式: ;
(2)抛物线 的焦点弦长公式: ;
说明:特殊情形,当倾斜角为 时,即为椭圆的通径,通径长 .
2.双曲线的倾斜角式焦点弦长公式
例2
2.设双曲线 ,其中两焦点坐标为 ,过 的直线 的倾斜角为 ,交双曲线于 , 两点,求弦长 .
可得如下结论2:
【结论2】双曲线的倾斜角式焦点弦长公式:
(1) 为双曲线 的左、右焦点,过 倾斜角为 的直线 与双曲线 交于 两点,则 .
专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用
专题16圆锥曲线焦点弦

圆锥曲线焦点弦公式及应用

圆锥曲线焦点弦公式及应用

圆锥曲线焦点弦公式及应用湖北省阳新县高级中学邹生书焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。

定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。

(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。

证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。

由圆锥曲线的统一定义得,,又,所以。

(1)当焦点内分弦时。

如图1,,所以。

图1(2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以。

图2评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。

例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。

若,则的离心率为()解这里,所以,又,代入公式得,所以,故选。

例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心率为。

过右焦点且斜率为的直线于相交于两点,若,则()解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。

例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为的直线,与抛物线交于两点(点在轴左侧),则有____图3解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,设,又,代入公式得,解得,所以。

例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。

例5(自编题)已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。

若,则___解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。

定理2已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准距(焦点到对应准线的距离)为。

焦点弦的常用公式

焦点弦的常用公式

当前位置:首页>>高中数学>>学生中心>>解题指导圆锥曲线有关焦点弦的几个公式及应用湖北省阳新县高级中学邹生书如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。

圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。

焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。

本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。

定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。

(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。

证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。

由圆锥曲线的统一定义得,,又,所以。

(1)当焦点内分弦时。

如图1,,所以。

图1(2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以。

图2评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。

例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。

若,则的离心率为()解这里,所以,又,代入公式得,所以,故选。

例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心率为。

过右焦点且斜率为的直线于相交于两点,若,则()解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。

例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为的直线,与抛物线交于两点(点在轴左侧),则有____图3解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,设,又,代入公式得,解得,所以。

例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。

圆锥曲线的极坐标方程 焦半径公式 焦点弦公式

圆锥曲线的极坐标方程 焦半径公式 焦点弦公式

椭圆、 曲线、抛物线统一的极坐标方程为
ρ = ep . 1 − e cosθ
其中 p 是定点 F 到定直线的距离,p>0 .
当 0 e 1 时,方程表示椭圆
当 e>1 时,方程表示 曲线,若ρ>0,方程只表示 曲线右支,若允
许ρ 0,方程就表示整个 曲线
当 e=1 时,方程表示开口向右的抛物线.
二、圆锥曲线的焦半径公式
推论 若圆锥曲线的弦 MN 过焦点 F,则有 1 + 1 = 2 . MF NF ep
、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 过焦点 F,
1、椭圆中, p = a 2 − c = b2 , MN = ep +
ep
= 2ab2 .
c
c
1− ecosθ 1− ecos(π −θ) a2 − c2 cos2 θ
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式
湖北省天门中学 薛德斌
一、圆锥曲线的极坐标方程
椭圆、 曲线、抛物线可以统一定义为 一个定点(焦点)的距离和一条定
直线(准线)的距离的比等于常数 e 的点的轨迹.
以椭圆的左焦点( 曲线的右焦点、抛物线的焦点)为极点,过点 F 作相
应准线的垂线,垂足为 K,以 FK 的 向延长线为极轴建立极坐标系.
3、抛物线中, MN = p +
p
= 2p .
1 − cosθ 1 − cos(π − θ ) sin 2 θ
四、直角坐标系中的焦半径公式 设 P x,y 是圆锥曲线 的点,
1、若 F1、F2 分别是椭圆的左、右焦点,则 PF1 = a + ex ,、 F2 分别是 曲线的左、右焦点,
设 F 为椭圆的左焦点( 曲线的右焦点、抛物线的焦点),P 为椭圆( 曲线 的右支、抛物线) 任一点,则

高考数学专题07 圆锥曲线第二定义与焦点弦(原卷版)-2021高考数学满分突破之解析几何篇

高考数学专题07 圆锥曲线第二定义与焦点弦(原卷版)-2021高考数学满分突破之解析几何篇

专题07 圆锥曲线的第二定义与焦点弦【突破总分值数学之秒杀技巧与答题模板】:焦点弦定义:过焦点的直线与曲线相交于两点A 、B ,弦AB 叫做曲线的焦点弦。

秒杀题型一:椭圆与双曲线焦点弦中常考的秒杀公式:①焦点弦长公式:θ222cos 12e a b -(θ为直线与焦点所在轴的夹角),通径:22b a (最短焦点弦); ②焦点弦被焦点分成两局部,m n ,那么2112am n b+=(定值)(取通径即可)。

③BF AF λ=,那么有11cos +-=λλθe (θ为直线与焦点所在轴的夹角)。

秒杀题型二:抛物线的焦点弦中常考的秒杀公式:①过抛物线)0(22>=p px y 焦点的直线交抛物线于A 、B 两点,那么:2p y y B A -=,42p x x B A =。

(焦点在y 轴上的性质比照给出。

)引伸:M (,0)a (0)a >在抛物线22(0)y px p =>的对称轴上,过M 的直线交抛物线于两点。

1122(,),(,)A x y B x y ,12.y y =2pa -(定值)。

②α2sin 2||pAB =(α是直线AB 与焦点所在轴的夹角)=12x x p ++(焦点在x 轴正半轴上)(其它三种同理可以推导),焦点弦中通径(垂直于对称轴的焦点弦,长为2p )最短。

③BF AF λ=,那么有11cos +-=λλθ,θcos 1-=p AF ,θcos 1+=p BF (θ为直线与焦点所在轴的夹角)。

④面积:θsin 22p S AOB=∆,θ32sin 2p S AMNB =(θ是直线AB 与焦点所在轴的夹角)。

⑤以AB 为直径的圆与准线MN 相切,切点为MN 中点Q ,BQ AQ ,分别是抛物线的切线,并且分别是NBA MAB ∠∠,的角平分线。

⑥以MN 为直径的圆与AB 相切,切点为焦点F 。

⑦以焦半径为直径的圆与y 轴相切。

⑧N O A ,,三点共线,M O B ,,三点共线。

初中数学-圆锥曲线焦半径体系-公式与证明-

初中数学-圆锥曲线焦半径体系-公式与证明-

规定半通径p =b 2a圆锥曲线焦半径体系1.椭圆的焦点弦:若过焦点的直线与椭圆相交于两点A 和B ,∠AF1F 2为α,则称线段AB 为焦点弦。

AF 1 =b 2a −c cos α=p 1−e cos αBF 1 =b 2a +c cos α=p 1+e cos α1AF 1 +1BF 1=2p ①如图,当焦点弦过左焦点时,焦点弦的长度AB =2ab 2a 2−c 2cos 2α=2p 1−e 2cos 2α;当焦点弦过右焦点时,焦点弦的长度AB =2ab 2a 2−c 2cos 2α=2p 1−e 2cos 2α.② 过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为AB =2b 2a.③4a 体:过椭圆x 2a 2+y 2b2=1a >b >0 的左焦点F 1的弦AB 与右焦点F 2围成的三角形△ABF 2的周长是4a ;证明:(1)AF 1 +AF 2 =2a ;BF 1 +BF 2 =2a ,故AB +AF 2 +BF 2 =4a ;(2)设AF 1 =m ;BF 1 =n ;AF 2 =2a -m ;BF 2 =2a -n ;由余弦定理得m 2+2c 2-2a -m 2=2m ⋅2c cos α;整理得AF 1 =b 2a -c cosα=p 1−e cos α同理:n 2+2c 2-2a -n 2=2n ⋅2c cos 180°-α ;整理得BF 1 =b2a +c cos α=p 1+e cos α两式相加得,则过焦点的弦长:AB =m +n =2ab2a 2-c 2cos 2α=2p 1−e 2cos 2α2.双曲线的焦点弦问题:双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点为F 1、F 2,弦AB 过左焦点F 1(A 、B 都在左支上),AB =l ,则△ABF 2的周长为4a +2l (如下图左)AF 1 =b 2a −c cos α=p 1−e cos αBF 1 =b 2a +c cos α=p 1+e cos α1AF 1 +1BF 1=2p 焦半径公式:当AB 交双曲线于一支时,与椭圆公式一样。

圆锥曲线的焦点弦长公式

圆锥曲线的焦点弦长公式

Course Education Research 课程教育研究2018年第20期一个平面从不同角度截一个圆锥面所得的曲线称为圆锥曲线,截得的结果可以是圆、椭圆、双曲线、抛物线、直线、两相交直线、点。

不过,狭义上讲,圆锥曲线仅指椭圆、双曲线、抛物线,狭义圆锥曲线有一个统一的定义如下:到定点F 的距离与到定直线l 的距离之比等于常数e 的动点轨迹称为圆锥曲线,当0<e<1时轨迹为椭圆,当e>1时轨迹是双曲线,当e=1时轨迹是抛物线。

定点F 称为圆锥曲线的焦点,定直线l 称为圆锥曲线的准线,定点到准线的距离称为焦准距(记为p ),常数e 称为离心率。

(椭圆和双曲线都有两个焦点和对应的两条准线)如下图1所示,P 为某圆锥曲线上任意一点,则P 1是P 到准线的射影,则PF PP 1=e图1过焦点的直线与圆锥曲线交于两个点A 、B ,这两点之间的线段成为圆锥曲线的焦点弦,当直线绕焦点转动起来时,焦点弦的倾斜角和长度都在变化。

当焦点弦与准线平行时称为圆锥曲线的通径。

一、抛物线的焦点弦长公式例1.如下图2,已知抛物线的方程是y 2=2px (p>0),AB 是过焦点F 的弦。

(1)若A(x 1,y 1),B(x 2,y 2),求焦点弦长;(2)若焦点弦的倾斜角是θ,求焦点弦长。

解:焦点弦AB 被焦点F 截成两段,为了方便,我们分别记m=|AF|、n=|BF|则|AB|=m+n(1)记A 1、B 1分别为A 、B 在准线l 上的射影,根据抛物线的定义,m=|AA 1|,n=|BB 1|则焦点弦长为:|AB|=m+n=|AA 1|+|BB 1|=[x 1-(-p 2)]+[x 2-(-p 2)]=x 1+x 2+p分析:这个弦长公式的巧妙在于,把斜向的弦长AB 化成横线的线段AA 1与BB 1的和,而横向的长度往往比较好计算,这里的m=|AA 1|,n=|BB 1|非常重要,下面还会继续用到这个转化。

圆锥曲线焦点弦长的公式求法

圆锥曲线焦点弦长的公式求法

圆锥曲线焦点弦长的公式求法
巨鹏;孙月芳
【期刊名称】《内江科技》
【年(卷),期】2010(031)005
【摘要】求椭圆、双曲线、抛物线三种圆锥曲线的焦点弦长按一般的方法比较繁琐且运算量大.本文根据圆锥曲线的定义和几何性质,推导出了圆锥曲线焦点弦长的公式求法,只要记住公式,直接将公式所需的量代入即可求出,运算量小,操作简便,避免了繁琐的运算过程,降低了思维能力,大大提高了解题效率.
【总页数】1页(P205)
【作者】巨鹏;孙月芳
【作者单位】甘肃省平凉市第二中学;甘肃省平凉市第二中学
【正文语种】中文
【相关文献】
1.圆锥曲线焦点弦长公式及其应用
2.圆锥曲线过焦点的弦长公式
3.圆锥曲线焦点弦长的三角计算公式
4.圆锥曲线的焦点弦长公式及其应用
5.圆锥曲线焦点弦长公式及应用
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线有关焦点弦的几个公式及应用如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。

圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。

焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。

本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。

定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。

(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。

证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。

由圆锥曲线的统一定义得,,又,所以。

(1)当焦点内分弦时。

如图1,,所以。

图1
(2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以。

图2
评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。

例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。

若,则的离心率为()
解这里,所以,又,代入公式得,所以,故选。

例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心
率为。

过右焦点且斜率为的直线于相交于两点,若,则()
解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。

例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为
的直线,与抛物线交于两点(点在轴左侧),则有____
图3
解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,
设,又,代入公式得,解得,所以。

例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。

例5(自编题)已知双曲线的离心率为,过左焦点
且斜率为的直线交的两支于两点。

若,则___
解这里,,因直线与左右两支相交,故应选择公式,
代入公式得,所以所以,所以。

定理2已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准距(焦点到对应准线的距离)为。

过点的弦与曲线的焦点所在的轴的夹角为
,则有。

证明设点在准线上的射影分别为,过点作轴的垂线交直线于点,交直线于点。

由圆锥曲线的统一定义得,,所以。

图4
(1)当焦点内分弦时。

如图4,,。

,所以较长焦半径,较短焦半径。

所以。

(2)当焦点外分弦时(此时曲线为双曲线)。

图5
如图5,,。

所以,
所以较长焦半径,较短焦半径。

所以。

综合(1)(2)知,较长焦半径,较短焦半径。

焦点弦的弦长公式为。

特别地,当曲线为无心曲线即为抛物线时,焦准距就是径之半,较长焦半径,较短焦半径,焦点弦的弦长公式为。

当曲线为有心曲线即为椭圆或双曲线时,焦准距为。

注由上可得,当焦点内分弦时,有。

当焦点外分弦时,有。

例6 (2009年高考福建卷理科第13题)过抛物线的焦点作倾斜角为的直线,交抛物线于两点,若线段的长为8,则___
解由抛物线焦点弦的弦长公式为得,,解得。

例7(2010年高考辽宁卷理科第20题)已知椭圆的右焦点为,经过且倾斜角为的直线与椭圆相交于不同两点,已知。

(1)求椭圆的离心率;(2)若,求椭圆方程。

解(1)这里,,由定理1的公式得,解得。

(2)将,代入焦点弦的弦长公式得,,解得,即,所以①,又,设,
代入①得,所以,所以,故所求椭圆方程为。

例8(2007年重庆卷第16题)过双曲线的右焦点作倾斜角为的直线,交双曲线于两点,则的值为___
解易知均在右支上,因为,离心率,点准距,因倾斜角为,所以。

由焦半径公式得,。

例9(由2007年重庆卷第16题改编)过双曲线的右焦点作倾斜角为
的直线,交双曲线于两点,则的值为___
解因为,离心率,点准距,因倾斜角为,所以。

注意到分别在双曲线的两支上,由焦半径公式得,。

例10 (2007年高考全国卷Ⅰ)如图6,已知椭圆的左、右焦点分别为,
过的直线交椭圆于两点,过的直线交椭圆于两点,且。

求四边形面积的最小值。

图6
解由方程可知,,则。

设直线与轴的夹角为,因为,所以直线与轴
的夹角为。

代入弦长公式得,
,。

故四边形的面积为,。

所以四边形面积的最小值为。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档