人教版八年级数学上册单元测试题:第13章轴对称
人教版八年级数学上册第13章 轴对称单元测试(配套练习附答案)
一、选择题(本大题共10小题,共40.0分)
1.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,是整个阴影部分组成的图形成轴对称图形,那么符合条件的小正方形共有()
A.4个B.3个C.2个D.1个
【答案】B
A. B. C. D.
【答案】B
【解析】
【详解】试题分析:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P1P2的长,∵OP=5,∴OP2=OP1=OP=5.又∵P1P2=5,,∴OP1=OP2=P1P2,∴△OP1P2是等边三角形, ∴∠P2OP1=60°,即2(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
【详解】 , ,
,
是 的外角,
,
,
.
【点睛】考查等腰三角形的性质,关键是根据三角形外角的性质以及三角形内角和定理解答.
19.已知点A(2m+n,2),B (1,n-m),当m、n分别为何值时,
(1)A、B关于x轴对称;
(2)A、B关于y轴对称.
【答案】 (2)
【解析】
【分析】(1)根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得
【分析】首先证明△ACD≌△BAE可得∠ACD=∠BAE,根据∠BAE+∠EAC=60°可得∠ACD+∠EAC=60°,再根据三角形内角与外角的关系可得∠APD=60°.
【详解】∵△ABC是等边三角形,
∴
在△ACD和△BAE中,
人教版八年级数学上册《轴对称》测试卷(含答案)
人教版八年级数学上册《轴对称》测试卷(含答案)一、选择题(每小题3分,共30分)1.点A(m,3)与B(4,n)关于x轴对称,则m,n的值分别为( )A.4,3B.-4,-3C.-4,3D.4,-32.下列交通标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多的是( )A.线段B.等边三角形C.五角星D.圆4.下列三角形中,不是轴对称图形的是( )A.等腰直角三角形B.有一个角是30°的直角三角形C.两内角分别是30°,120°的三角形D.两内角分别是30°,75°的三角形5.如图,ABCD 是矩形纸片,翻折∠B、∠D,使AD、BC 边与对角线AC重叠,且顶点B、D恰好落在同一点0上,折痕分别是CE、AF,则AE等于( )EBA.√3B.2C.1.5D.√26.到三角形三个顶点距离相等的点是( )A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三边垂直平分线的交点7.如图,在等腰梯形ABCD中,AD //BC,AB=CD,AC=BD,AC平分∠BCD,若∠ABC=72°,则图中等腰三角形共有( )A.8个B.6个C.4个D.2个8.如图,在△ABC 中,AB<AC,BC边的垂直平分线交BC于D,交AC 于E,连BE,AB=6cm,△ABE 的周长为14cm,则AC的长为( )A.4cmB.6cmC.8cmD.10cm9.如图,已知AB=AC=BD,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°10.如图,在△ABC中,∠BAC=90,AB=AC,BD平分∠ABC交AC于D,AE⊥BD,交BC于E,下列说法:①AB=BE;②∠CAE=1∠C;③AD=CE;④CD=CE.其中正确的是( )2A.①②③B.②③④C.①②④D.①②③④二、填空题(每小题3分,共18分)11.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m=_________,n=__________.12.等腰三角形的一个角是80°,则它顶角的度数是_______________度.13.在△ABC 中.①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有__个.14.如图,在△ABC 中,∠A=90°,∠ABC=60°,∠ABC,∠ACB的平分线交于点O,OE // AB交BC于E,OF //AC交BC于F,若AB=1,则△OEF 的周长为_____________.15.如图,AD是等边△ABC底边上的中线,AC的垂直平分线交AC 于点E,交AD于点F ,若AD=9,则DF长为____.16.已知Rt△ABC 中,∠C=90°,∠A=30°.在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有________个.三、解答题(72分)17.(8分)如图,△ABC 中,点D是BC边的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.求证:∠BAD=∠CAD.18.(8分)如图,在△ABC中,D,E分别是AC,AB边上的点,BD,CE相交于点0,给出下列条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形?(用序号写出所有的情形);(2)选择(1)中的一种情形,证明△ABC是等腰三角形.19.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-3,0),B(-3,-4),C(-1,-4).(1)求△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F 的坐标.20.(8分)如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD于H,交AB于N.(1) 求证:△ANC为等腰三角形;(2)试判断BN与CD的数量关系,并说明理由.21.(8分)已知如图,在△ABC中,AB=BC=2,∠ABC=120°,BC//x轴,点B的坐标是(一3,1).(1)写出顶点C的坐标;(2)作出△ABC 关于y轴对称的△A'B'C';(3)求以点A,B,B',A'为顶点的四边形的周长.22.(10 分)在△ABC 中,AB=CB.(1)若AC=AB,如图1,CM⊥AB 于点M,MN⊥AC 于点N,NP ⊥BC 于点P.若CP=2,则BP=_______;(2)若∠BAC=45°,如图2,CD平分∠ACB交AB于点D,过边AC上一点E作EF //CD,交AB于点F,AG是△AEF的高,探究高AG与边EF的数量关系;(3)若∠ABC=90°,点E是射线BC上的一个动点,作AF⊥AE且AF=AE,连CF交直线AB于点G.若BCCE =53,则AGBG=__________.23.(10分)图1,在△ABC中,AB=AC,∠BAC=30°,点D 是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)直接写出∠ADE 的度数___________;(2)求证:DE=AD+DC;(3)作BP 平分∠ABE,EF⊥BP,垂足为F(如图2),若EF=3,求BP 的长.24.(12分)如图1,A 是OB 的垂直平分线上的一点,P为y轴上一点,且∠OPB=∠OAB.(1)若∠AOB=60°,PB=4,求点P的坐标;(2)在(1)的条件下,求证:PA+PO=PB;(3)如图2,若点A是OB 的垂直平分线上的一点,已知A(2,5),∠OPB=∠OAB,求PO+PB 的值.参考答案:。
人教版八年级数学上册第13章《轴对称》单元练习题(含答案)
人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。
人教版八年级数学上册第十三章《轴对称》综合测试题(含答案)
人教版八年级数学上册第十三章《轴对称》综合测试题(含答案)一、单选题1.下列润滑油1ogo标志图标中,不是..轴对称图形的是()A.B.C.D.2.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.ABC的三条中线的交点B.ABC三边的垂直平分线的交点C.ABC三条角平分线的交点D.ABC三条高所在直线的交点3.三角形的外心是三角形的()A.三条中线的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三条高所在直线的交点4.下列条件中,不能判定直线CD是线段AB(C,D不在线段AB上)的垂直平分线的是()A.CA=CB,DA=DB B.CA=CB,CD⊥ABC.CA=DA,CB=DB D.CA=CB,CD平分AB5.如图,在⊥ABC中,AB=AC,⊥A=36°,BD平分⊥ABC交AC于点D,则图中的等腰三角形共有()A .1 个B .2 个C .3 个D .4 个6.下列图形中,不是轴对称图形的是( )A .有一个角是45度的直角三角形B .有两个角相等的三角形C .有一个角是40度,另一个角是100度的三角形D .有一个角是30度的直角三角形7.如图,在ABC 中,90,6,10,8BAC AC BC AB ∠=︒===,过点A 的直线//,DE BC ABC ∠与ACB ∠的平分线分别交DE 于点E 、D ,则DE 的长为( )A .14B .16C .18D .208.若等腰三角形的顶角是40°,则它的底角是( )A .40°B .70°C .80°D .100°9.如图,在等边ABC 中,AD 是它的角平分线,DE AB ⊥于点E ,若8AC =,则BD =( )A .4B .3C .2D .110.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,150ABC ∠=︒,BC 的长是40m ,则乘电梯从点B 到点C 上升的高度h 是( )A.20m B 203m3C403m3D.203m11.如图,△ABC是边长为4的等边三角形,点P在AB上,过点P作PE⊥AC,垂足为E,延长BC至点Q,使CQ=P A,连接PQ交AC于点D,则DE的长为()A.1B.1.8C.2D.2.512.如图,等边三角形ABC的三条角平分线相交于点O,//OD AB交BC于点D,//OE AC交BC于点E,那么这个图形中的等腰三角形共有()个A.4B.5C.6D.7二、填空题13.在“锐角、五角星、等边三角形、圆、正六边形”这五个图形中,是轴对称图形的有________个,按对称轴条数由多到少排列是_______________.14.如图,在ABC中,10cmAB AC==,AB的垂直平分线交AC于点D,且BCD△的周长为17cm,则BC=________cm.15.如图,在ABC ∆中,,MP NQ 分别垂直平分边,AB AC ,交BC 于点,P Q ,如果20BC =,那么APQ 的周长为 __________.16.ABC ∆中,AB =AC ,AB 的中垂线与AC 所在直线相交成的锐角为50︒,则底角B 的大小为_________.17.如图,⊥AOB =60°,C 是BO 延长线上一点,OC =10cm ,动点P 从点C 出发沿CB 以2cm/s 的速度移动,动点Q 从点O 出发沿OA 以1cm/s 的速度移动,如果点P 、Q 同时出发,用t (s )表示移动的时间,当t =______s 时,△POQ 是等腰三角形.三、解答题18.如图,AD 平分⊥BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD 垂直平分EF .19.如图,在ABC 中,,AB AC AB =的垂直平分线交AB 于点D ,交AC 于点E .已知BCE 的周长为8,2AC BC -=,求AB 与BC 的长.20.如图,AD 是ABC 的角平分线,EF 是AD 的垂直平分线.求证:(1)EAD EDA ∠=∠;(2)//DF AC ;(3)EAC B ∠=∠.21.如图,在四边形ABCD 中,//AD BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .22.如图,在⊥ABC 中,⊥BAC =90°,E 为边BC 上的任意点,D 为线段BE 的中点,AB =AE ,EF ⊥AE ,AF BC ∥.(1)求证:⊥DAE=⊥C;(2)求证:AF=BC.23.阅读下面材料:【原题呈现】如图1,在ABC中,⊥A=2⊥B,CD平分⊥ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分⊥ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到DEC⊥DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知ABC中,AB=AC,⊥A=20°,BD平分⊥ABC,BD=2.3,BC=2.求AD的长.参考答案1.C2.C3.C4.C5.C6.D7.A8.B9.A10.A11.C12.D解:⊥⊥⊥ABC为等边三角形,⊥AB=AC,⊥⊥ABC为等腰三角形;⊥⊥BO,CO,AO分别是三个角的角平分线,⊥⊥ABO=⊥CBO=⊥BAO=⊥CAO=⊥ACO=⊥BCO,⊥AO=BO,AO=CO,BO=CO,⊥⊥AOB为等腰三角形;⊥⊥AOC为等腰三角形;⊥⊥BOC为等腰三角形;⊥⊥OD⊥AB,OE⊥AC,⊥⊥ABC=⊥ODE,⊥ACB=⊥OED,⊥⊥ABC=⊥ACB,⊥⊥ODE=⊥OED,⊥⊥DOE为等腰三角形;⊥⊥OD⊥AB,OE⊥AC,⊥⊥BOD=⊥ABO,⊥COE=⊥ACO,⊥⊥DBO=⊥ABO,⊥ECO=⊥ACO,⊥⊥BOD=⊥DBO,⊥COE=⊥ECO,⊥⊥BOD为等腰三角形;⊥⊥COE为等腰三角形.故选:D.13. 5 圆、正六边形、五角星、等边三角形、锐角14.715.2016.70°或20°17.103或10 18.证明:AD 平分⊥BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,,EAD FAD DE EF ∴∠=∠=又AD AD =∴AED AFD ≌∴AE AF =∴,A D 在EF 的垂直平分线上即AD 垂直平分EF .19.解: ⊥BCE 的周长为8,⊥8BE EC BC ++=⊥AB 的垂直平分线交AB 于点D ,交AC 于点E ,⊥AE BE =,⊥8AE EC BC ++=,即8AC BC +=,⊥2AC BC -=,⊥5AC =,3BC =,⊥AB AC =,⊥5AB =.20解析:(1)根据线段垂直平分线上任意一点,到线段两端的距离相等可得到AE DE =,再根据三角形全等得到EAD EDA ∠=∠;(2)根据线段垂直平分线的性质证明AF DF =,进而得到BAD ADF ∠=∠,再利用角平分线的性质可得到BAD CAD ∠=∠,利用等量代换可得ADF CAD ∠=∠,再根据平行线的判定即可得到//DF AC ;(3)根据三角形内角与外角的关系可得到结论.答案:证明:(1)如图,连接AE ,设AD 与EF 相交于点Q ,⊥EF 是AD 的垂直平分线,⊥AE DE =,AQ DQ =,在AEQ △和DEQ 中,⊥,,,AQ DQ EQ EQ AE DE =⎧⎪=⎨⎪=⎩⊥AEQ DEQ ≌(SSS ),⊥EAD EDA ∠=∠;(2)⊥EF 是AD 的垂直平分线,⊥AF DF =,在AFQ △和DFQ 中,⊥,,,AQ DQ FQ FQ AF DF =⎧⎪=⎨⎪=⎩⊥AFQ DFQ ≌(SSS ),⊥BAD ADF ∠=∠,⊥AD 是ABC 的角平分线,⊥BAD CAD ∠=∠,⊥ADF CAD ∠=∠,⊥//DF AC ;(3)由(1)知EAD EDA ∠=∠,EAD CAD EAC ∠=∠+∠,⊥EDA CAD EAC ∠=∠+∠,又⊥EDA BAD B ∠=∠+∠,⊥CAD EAC BAD B ∠+∠=∠+∠,⊥BAD CAD ∠=∠,⊥EAC B ∠=∠.易错:证明:(1)⊥EF 是AD 的垂直平分线,⊥AE DE =,在AEQ △和DEQ 中,,,,AQ DQ AEQ DEQ AE DE =⎧⎪∠=∠⎨⎪=⎩⊥AEQ DEQ ≌(SAS ),⊥EAD EDA ∠=∠.错因:角不是夹角,随意找三个条件证明全等.满分备考:掌握线段的垂直平分线和角平分线的性质与判定的应用,可以快速解决有关线段相等,角相等或距离相等的问题.21(1)//AD BC ,,F DAE ECF D ∴∠=∠∠=∠,点E 是CD 的中点,CE DE ∴=,在CEF △和DEA △中,F DAE ECF D CE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CEF DEA AAS ∴≅,FC AD ∴=;(2)由(1)已证:CEF DEA ≅,FE AE ∴=,又BE AE ⊥,BE ∴是线段AF 的垂直平分线,AB FB BC FC ∴==+,由(1)可知,FC AD =,AB BC AD ∴=+.22.(1)证明:⊥AB =AE ,D 为线段BE 的中点,⊥AD ⊥BC ,⊥⊥C +⊥DAC =90°,⊥⊥BAC =90°,⊥⊥BAD +⊥DAC =90°,⊥⊥C =⊥BAD ,⊥AB =AE ,AD ⊥BE ,⊥⊥BAD =⊥DAE ,⊥⊥DAE =⊥C ;(2)证明:⊥AF ⊥BC ,⊥⊥F AE =⊥AEB ,⊥AB =AE ,⊥⊥B =⊥AEB ,⊥⊥B =⊥F AE ,又⊥AEF =⊥BAC =90°,AB =AE ,⊥⊥ABC ⊥⊥EAF (ASA ),⊥AC =EF .23.解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,⊥⊥ACD ⊥⊥ECD (SAS ),⊥AD =DE ,⊥A =⊥DEC ,⊥⊥A =2⊥B ,⊥⊥DEC =2⊥B ,⊥⊥B =⊥EDB ,⊥⊥BDE 是等腰三角形;⊥BE =DE =AD =2.2,AC =EC =3.6, ⊥BC 的长为5.8;(2)⊥⊥ABC 中,AB =AC ,⊥A =20°, ⊥⊥ABC =⊥C =80°,⊥BD 平分⊥B ,⊥⊥1=⊥2=40°,⊥BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =⎧⎪∠=∠⎨⎪=⎩,⊥⊥DEB ⊥⊥DBC (SAS ),⊥⊥BED =⊥C =80°,⊥⊥4=60°,⊥⊥3=60°,在DA 边上取点F ,使DF =DB ,连接FE , 同理可得△BDE ⊥⊥FDE ,⊥⊥5=⊥1=40°,BE =EF =2,⊥⊥A =20°,⊥⊥6=20°,⊥AF =EF =2,⊥BD =DF =2.3,⊥AD =BD +BC =4.3.。
人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)
【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,
人教版八年级上册数学第十三章 轴对称 含答案
人教版八年级上册数学第十三章轴对称含答案一、单选题(共15题,共计45分)1、如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD,若CD=AC,∠A=50°,则∠B=()A.50°B.45°C.30°D.25°2、已知点A(a,3),B(﹣3,b),若点A、B关于x轴对称,则点P(﹣a,﹣b)在第_____象限,若点A、B关于y轴对称,则点P(﹣a,﹣b)在第_____象限.()A.一、三B.二、四C.一、二D.三、四3、已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m 2+2mn+n 2=0B.m 2﹣2mn+n 2=0C.m 2+2mn﹣n 2=0D.m 2﹣2mn﹣n 2=04、如图,菱形ABCD中,∠BAD=120°.若△ABC的周长是15,则菱形ABCD的周长是( )A.25B.20C.15D.105、下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.6、在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是( )A. B. C. D.7、下列图形中,不是轴对称图形的是()A. B. C. D.8、下列命题中真命题是()A.全等的两个图形是中心对称图形B.中心对称图形都是轴对称图形 C.轴对称图形都是中心对称图形 D.关于中心对称的两个图形全等9、如图所示的图形中,从数学角度考虑,有一个与其它三个不同,这个图形应是()A. B. C. D.10、下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.平行四边形C.正五边形D.矩形11、下列手机屏幕解锁图形案是轴对称图形的是()A. B. C. D.12、甲骨文是我国一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A. B. C. D.13、如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.12B.16C.20D.2414、若点M的坐标为(-2,-3),则点M关于y轴的对称点M´的坐标为( )A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)15、如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:①BD平分∠ABC;②AD=BD=BC;③△BDC的周长等于AB+BC;④D是AC中点.其中正确的命题序号是()A.①②③B.①②④C.②③④D.①③④二、填空题(共10题,共计30分)16、定义:对于平面直角坐标系xOy中的线段PQ和点M,在△MPQ中,当PQ边上的高为2 时,称点M为PQ的等高点”,称此时MP+MQ的值为PQ的“等高距离”.已知P(1,2),Q(3,4),当PQ的“等高距离”最小时,则点M的坐标为________.17、如图,在△ABC中,∠ABC=110°,若DE、FG分别垂直平分AB、BC,那么∠EBF的度数为 ________18、如图,△ABO是关于y轴对称的轴对称图形,点A的坐标为(-2,3),则点B的坐标为________.19、如果,那么以a、b为边长的等腰三角形的周长为________20、如图,将等边三角形ABC绕点A顺时针旋转得到等边三角形ADE,若AD 与BC交于点F,且,则的值是________.21、如图,,均为等边三角形,点,,在同一条直线上,连接,,与相交于点,与相交于点,连接,下列结论正确的有________.①;②;③;④;⑤平分22、一个汽车牌照号码在水中的倒影为,则该车牌照号码为________.23、如图,在△ABC中,AB=AC=5,BC=8.若∠BPC= ∠BAC,则tan∠BPC=________.24、如图,已知等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿EF 折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则∠EFD=________.25、△ABC中其周长为7,AB=3,当BC=________时,△ABC为等腰三角形.三、解答题(共5题,共计25分)26、已知ABC中∠BAC=140°, AB、AC的垂直平分线分别交BC于E、F,AEF的周长为10㎝,求BC的长度和∠EAF的度数.27、已知:矩形ABCD的一条对角线AC长8,两条对角线的一个交角∠AOB=60°,求这个矩形的面积.28、如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于D,垂足为E,若∠A=30°,CD=3.(1)求∠BDC的度数.(2)求AC的长度.29、如图,在△ABC中,BD平分∠ABC,ED∥BC .求证:△BED是等腰三角形.30、如图,△ABC中,AB=AC=6,BC=4,∠A=40°.(1)用尺规作出边AB的中垂线交AB于点D,交AC于点E(不写作法,保留作图痕迹,并在图中表明字母)(2)连接BE,求△EBC的周长和∠EBC的度数.参考答案一、单选题(共15题,共计45分)1、D3、C4、B5、C6、C7、A8、D9、B10、D11、C12、A13、B14、C15、A二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。
第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)
第十三章 轴对称时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·辽宁盘锦双台子区期末)下列由黑白棋子摆成的图案中,是轴对称图形的是( ) A B C D2.(2022·福建福州鼓楼区期中改编)在平面直角坐标系中,若点(2,m)与点(n,3)关于x 轴对称,则(m+n)2 023的值为( )A.0B.-1C.1D.32 0233.如图是3×3的正方形网格,其中已有2个小方格被涂成了黑色.现在要从编号为①—④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是( )A.①B.②C.③D.④4.(2022·四川遂宁期末)若等腰三角形的一个外角等于70°,则它的底角的度数为( ) A.35° B.70° C.110° D.55°5.(2022·河南周口期末)元旦联欢会上,同学们玩抢凳子游戏,在与A,B,C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A,B,C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的( )A.三边中线的交点处B.三边垂直平分线的交点处C.三边上高的交点处D.三条角平分线的交点处6.(2022·山东菏泽期中)如图,在△ABC中,AB=AC,AD,BE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ABE的度数为( ) A.20° B.35° C.40° D.70°(第6题) (第7题)7.如图,直线a,b相交形成的夹角中,锐角为52°,交点为O,点A在直线a上,直线b 上存在点B,使以点O,A,B为顶点的三角形是等腰三角形,这样的点B有( )A.4个B.3个C.2个D.1个8.(2022·广东广州天河区期末)在△ABC中,AB=AC,∠A=36°,若按如图所示的尺规作图方法作出线段BD,则下列结论错误的是( )A.AD=BDB.∠BDC=72°C.S△ABD∶S△BCD=BC∶ACD.△BCD的周长=AB+BC9.(2022·山东烟台期末)如图,∠AOB=60°,点P在射线OA上,OP=22,点M,N在射线OB上(点M在点N的左侧),且PM=PN.若MN=4,则OM的长为( ) A.7 B.8 C.9 D.11(第9题) (第10题) 10.(2022·辽宁大连期末)如图,∠ABC=30°,点D是∠ABC内部的一点,连接BD.若BD=1m,点E,F分别是边BA,BC上的动点,则△DEF的周长的最小值为( )A.0.5mB.1mC.1.5mD.2m二、填空题(本大题共6小题,每小题3分,共18分)11.新风向开放性试题汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,黑体的汉字“王”“中”“田”等都是轴对称图形,请再写出两个这样的汉字: .12.(2022·安徽合肥庐阳区期末改编)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE.若CE=3,则AE= .(第12题) (第13题)13.如图,在△ABC中,AB=AD=DC,若∠BAD=24°,则∠C的度数为 .14.新风向新定义试题(2021·江苏苏州期末)定义:等腰三角形的一个底角与其顶角的度数的比值k(k>1)称为这个等腰三角形的优美比.若在等腰三角形ABC中,∠A=36°,则它的优美比为 .15.(2022·河南济期末)在平面直角坐标系中,对△ABC进行如图所示的轴对称变换.若原来点A的坐标是(a,b),则经过第2 023次变换后,点A所对应的坐标是 .16.(2021·北京西城区期末)如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于三、解答题(共6小题,共52分)17.(6分)(2022·湖北十堰期末节选)如图,△ABC的顶点A,B,C都在小正方形的格点上,利用网格线按下列要求画图.(1)画出△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A,B的距离之和最短.(要求:不写作法,保留作图痕迹)18.(8分)(2022·湖北十堰郧阳区期中改编)某市发生地震后,为了抢救伤员,一架救援直升机从该市A地起飞,运送一批地震伤员沿正北方向到机场N,如图.上午8时,直升机从A地出发,以200 km/h的速度向正北方向飞行,9时到达B地,此时,机场的导航站传来信息:在C处有一座高山,因受天气影响,高山周围80 km内能见度低,飞行时会遇到危险.经测量得∠NAC=15°,∠NBC=30°.问该直升机继续向机场N飞行是否有危险,请说明理由.19.(8分)新风向开放性试题(2022·江苏南京鼓楼区期中)证明:有两个角相等的三角形是等腰三角形.已知:如图,在△ABC中, .求证: .证明:20.(8分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=15°,求∠AEB的度数;21.(10分)新风向探究性试题(2022·河北石家庄裕华区期末)【问题】如图,在△ABC中,点D为BC边上一点,BD=BA.EF垂直平分AC,交AC 于点E,交BC于点F,连接AD,AF.若∠B=30°,∠BAF=90°,求∠DAC的度数.【探究】如果把【问题】中的条件“∠B=30°”去掉,其他条件不变,那么∠DAC的度数会变吗?请说明理由.22.(12分)如图,在△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N 第一次到达点B时,M,N同时停止运动.(1)当点M,N运动几秒时,M,N两点重合?(2)当点M,N运动几秒时,可得到等边三角形AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如果能,请求出此时M,N运动的时间.第十三章 轴对称选择填空题答案速查12345678910D B D A B B A C C B11.甲,本(答案不唯一)12.613.39°14.215.(-a,b)16.181.D高分锦囊判断一个图形是不是轴对称图形,关键看能否找到这样一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合.2.B ∵点(2,m)与点(n,3)关于x轴对称,∴m=-3,n=2,∴(m+n)2 023=(2-3)2 023=-1.3.D 图示速解如图,将编号为④的小方格涂成黑色,黑色部分不是轴对称图形.4.A 由题意可得,与等腰三角形的这个外角相邻的内角等于110°.∵三角形的内×(180°-110°)=35°.角和为180°,∴底角不可能等于110°,∴底角度数为125.B ∵三角形的三边垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三边垂直平分线的交点处.6.B ∵AD是△ABC的中线,AB=AC,∠CAD=20°,【关键】等腰三角形的“三线合一”∴∠CAB=2∠CAD=40°,∴∠ABC=1×(180°-40°)=70°.∵BE是△ABC的角平分线,2∴∠ABE=1∠ABC=35°.2一题多解∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴AD⊥BC,∴∠C=90°-20°=70°,∴∠ABC=∠C=70°.又BE是△ABC的角平分线,∴∠ABE=1∠ABC=35°.27.A 图示速解如图,要使△OAB为等腰三角形,应分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B1;②当OA=AB时,以点A为圆心,OA 的长为半径作圆,与直线b交于点B2;③当OA=OB时,以点O为圆心,OA的长为半径作圆,与直线b交于点B3,B4.故选A.8.C ∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.由作图痕迹可知BD平分∠ABC∴∠DBC=∠ABD=∠A=36°,【关键】由尺规作图可以得出BD平分∠ABC∴AD=BD,∠BDC=72°.故A,B选项不符合题意.由以上可知∠C=∠BDC,∴BD=BC,∴AD=BC.∵S△ABD∶S△BCD=AD∶CD,∴S△ABD∶S△BCD=BC∶CD.【关键】两三角形同高不同底故C选项符合题意.∵BD=AD,△BCD的周长=BC+CD+BD,∴△BCD的周长=BC+CD+AD=BC+AC=AB+BC.故D选项不符合题意.7.C 如图,过点P作PC⊥OB于点C,∵∠AOB=60°,∴∠OPC=90°-∠AOB=30°.∵OP=22,∴OC=1OP=11.∵2MN=2,∴OM=OC-MC=11-2=9.PM=PN,MN=4,∴MC=1210.B (转化思想)如图,作点D关于AB的对称点G,作点D关于BC的对称点H,连接GH交AB于点E,交BC于点F,此时△DEF的周长有最小值,连接GB,BH.由线段垂直平分线的性质可得,GE=ED,DF=FH,由轴对称的性质得BG=BD,BD=BH,∴ED+DF+EF=GE+EF+FH=GH,此时△DEF的周长最小值为GH.∵∠GBA=∠ABD,∠DBC=∠CBH,BD=m,∴∠GBH=2∠ABC=2×30°=60°,∴△GBH是等边三角形,∴GH=BG=BD=m,∴△DEF的周长的最小值为m.【关键】发现△GBH是等边三角形11.甲,本(答案不唯一,只要是轴对称图形即可)12.6 ∵∠C=90°,∠A=30°,∴∠CBA=60°.∵DE是线段AB的垂直平分线,∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=60°-30°=30°.∵∠C=90°,CE=3,∴BE=2CE=2×3=6,∴AE=6.13.39° ∵AB=AD,∠BAD=24°,∴∠B=∠ADB=1×(180°-24°)=78°.2又AD=DC ,∴∠C=∠CAD=12∠ADB=12×78°=39°.14.2 (分类讨论思想)当∠A 为顶角时,则底角∠B=∠C=72°,此时,优美比=72°36°=2;当∠A 为底角时,则顶角为108°,此时,优美比=36°108°=13(不合题意,舍去).15.(-a ,b ) 第1次变换后,点A 在第四象限;第2次变换后,点A 在第三象限;第3次变换后,点A 在第二象限;第4次变换后,点A 在第一象限,回到原始位置,…,以此类推,每4次变换为一组循环.因为2 023÷4=505……3,所以第2 023次变换后,点A 在第二象限,坐标为(-a ,b ).16.18 ∵△ABC 是等边三角形,∴∠C=∠BAC=60°.∵AD ⊥BC ,∴BD=CD ,∠DAC=12∠BAC=30°.∵AD=12,∴DE=12AD=6.∵DE ⊥AC ,∴∠EDC=90°-∠C=90°-60°=30°,∴EC=12DC ,∴BC=4EC.∵S △EDC =12ED ·EC=12×6×EC=3EC ,S △ABC =12AD×BC=12×12×BC=6BC=24EC ,∴S △EDCS △ABC =3EC24EC =18.17.【参考答案】(1)如图,△A 1B 1C 1即为所求作.(3分)(2)如图,点P 即为所求作.(6分)18.【参考答案】该直升机继续向机场N 飞行无危险.(1分)理由:如图,过点C 作CD ⊥AN 于点D ,∵∠NAC=15°, ∠NBC=30°,∴∠ACB=15°,CD=12BC ,∴∠ACB=∠NAC ,∴BC=AB.(5分)由题意可得,AB=200 km,∴BC=200 km,∴CD=100 km.∵100>80,∴该直升机继续向机场N飞行无危险.(8分)19.【参考答案】已知:如图,在△ABC中,∠B=∠C.(2分)求证:△ABC是等腰三角形.(4分)证明:如图,过点A作AD⊥BC,垂足为点D.∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.(8分)20.【参考答案】(1)补全图形如图所示. (3分) (2)在等边三角形ABC中,AC=AB ,∠BAC=60°.由对称可知AD=AC ,∠PAD=∠PAC=15°,∴∠BAD=90°,AB=AD ,∴∠ABD=∠D=45°,∴∠AEB=∠D+∠PAD=60°.(8分)21.思路导图【参考答案】【问题】∵AB=BD ,∠B=30°,∴∠BAD=∠ADB=180°―30°2=75°.∵∠BAF=90°,∴∠AFB=90°-30°=60°.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=30°,∴∠CAD=∠ADB-∠C=75°-30°=45°.(5分)【探究】不变.(6分)理由:∵AB=BD ,∴∠BAD=∠ADB=180°―∠B 2=90°-12∠B.∵∠BAF=90°,∴∠AFB=90°-∠B.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=45°-12∠B ,∴∠CAD=∠ADB-∠C=90°-12∠B-(45°-12∠B )=45°.(10分)22.【参考答案】(1)设当点M ,N 运动x s 时,M ,N 两点重合,由题意,可得x×1+12=2x ,解得x=12.故当点M ,N 运动12 s 时,M ,N 两点重合.(2分)(2)设当点M ,N 运动t s 时,可得到等边三角形AMN ,此时AM=t ,AN=AB-BN=12-2t ,∴t=12-2t ,解得t=4.(4分)故当点M ,N 运动4 s 时,可得到等边三角形AMN.(5分)(3)当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形.(6分)若△AMN 是以MN 为底边的等腰三角形,则AN=AM ,∴∠AMN=∠ANM ,∴∠AMC=∠ANB.∵在△ABC 中,AB=BC=AC ,∴△ACB 是等边三角形,∴∠C=∠B=60°.(8分)在△ACM 和△ABN 中,∠AMC =∠ANB ,∠C =∠B ,AC =AB ,∴△ACM ≌△ABN ,∴CM=BN.(10分)设当点M ,N 运动时间为y s 时,△AMN 是以MN 为底边的等腰三角形,∴CM=y-12,NB=36-2y ,∴y-12=36-2y ,解得y=16.故能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16 s .(12分)。
人教版八年级数学上册《第十三章轴对称》单元练习题(含答案)
第十三章《轴对称》单元练习题一、选择题1.如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是()A.锐角三角形B.等腰三角形C.等边三角形D.等腰直角三角形2.如图,在△ABC中,AB=AC,∠ABC=70°,顶点B在直线DE上,且DE∥AC,则∠CBE等于()A. 40°B. 50°C. 70°D. 80°3.若A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),则P(a,b)关于x轴对称点P1的坐标是()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)4.如图,在△ABC中,AB=AC=8,BC=5,AB的垂直平分线交AC于D,则△BCD的周长为()A. 13B. 15C. 18D. 215.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQB.DE=ACC.AE=CQD.PQ⊥AB6.已知a,b,c是三角形的三边长,如果满足(a﹣b)2++|c2﹣64|=0,则三角形的形状是()A.底和腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形7.以下列各组数据为边长,可以构成等腰三角形的是()A. 2,3,4B. 5,5,10C. 2,2,1D. 1,2,38.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+∠B=90°二、填空题(9.如图,等边△ABC周长是12,AD是∠BAC的平分线,则BD=.10.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使PA+PB最短,则点P应选点(C或D).11.在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为.12.如图,△ABC与△A′B′C′关于直线l对称,则∠C′的度数为.13.如图,在△ABC中,D为AB上的一点,且DE垂直平分AC,∠B=115°,且∠ACD:∠BCD=5:3,则∠ACB=__________度.14.如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=____________.15.如图,△ABC是等边三角形,则∠ABD=度.16.如图将边长为5cm的等边△ABC,沿BC向右平移3cm,得到△DEF,DE交AC于M,则△MEC 是三角形,DM=cm.三、解答题17.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)画出点B关于直线AC的对称点D.19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(2,3),B(3,1),C(-2,-2).(1)请在图中作出△ABC关于y轴的轴对称图形△A′B′C′(A,B,C的对称点分别是A′,B′,C′),并直接写出A′,B′,C′的坐标.(2)求△A′B′C′的面积.20.如图,已知五边形ABCDE是轴对称图形,点B,E是一对对称点,请用无刻度的直尺画出该图形的对称轴.(保留作图痕迹,不要求写作法)21.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.第十三章《轴对称》单元练习题答案解析1.【答案】B【解析】可依据题意线作出简单的图形,结合图形可得∠B=∠A,进而可得其为等腰三角形.解:如图,DC平分∠ACE,且AB∥CD,∴∠ACD=∠DCE,∠A=∠ACD,∠B=∠DCE∴∠B=∠A,∴△ABC为等腰三角形.故选B2.【答案】C【解析】由已知AB=AC,∠ABC=70°,根据等腰三角形的性质,得出∠C的度数,再利用DE∥AC,可得∠CBE=70°,答案可得.解:∵AB=AC(已知),∴∠C=∠ABC=70°(等边对等角),又∵DE∥AC(已知),∴∠CBE=∠C=70°(两直线平行,内错角相等)故选C.3.【答案】C【解析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得方程组,根据解方程组,可得P点坐标,根据关于关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:由A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),得2a-b=-3,a+b=-3,所以a=-2,b=-1,∴P(﹣2,﹣1).P(a,b)关于x轴对称点P1的坐标是(﹣2,1),故选:C.4.【答案】A【解析】根据线段垂直平分线的性质得出AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC求出即可.解:∵AB=AC=8,BC=5,AB的垂直平分线交AC于D,∴AD=BD,∴△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.故选A.5.【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,∠FPD=∠Q,∠FDE=∠CDQ,PF=CQ∴△PFD≌△QCD,∴PD=DQ,DF=CE,∴A选项正确,∵AE=EF,∴DE=AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=AP=CQ,∴C选项正确,故选D.6.【答案】B【解析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.解:由(a﹣b)2++|c2﹣64|=0得:a﹣b=0,b﹣8=0,c2﹣64=0,又a,b,c是三角形的三边长,∴a=8,b=8,c=8,所以三角形的形状是等边三角形,故选:B.7.【答案】C【解析】根据三角形的三边关系对以下选项进行一一分析、判断.解:A.∵2≠3≠4,∴本组数据不可以构成等腰三角形;故本选项错误;B.∵5+5=10,∴本组数据不可以构成三角形;故本选项错误;C.∵1+2>2,∴本组数据可以构成等腰三角形;故本选项正确;D.∵1+2=3,∴本组数据不可以构成三角形;故本选项错误.故选C.8.【答案】D【解析】等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解:A、若∠A是顶角时,则50°+120°<180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在50°+50°+160°<180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;B、若∠A是顶角时,则50°+200°>180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在100°+100°>180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;C、当∠A+∠B=90°时,∠C=90°;但∠A=10°,∠B=80°时,三角形ABC的三个内角没有那两个相等,所以构不成等腰三角形;故本选项错误;D、当∠B是顶角时,则2∠A+∠B=180°,∴∠A+∠B=90°;故本选项正确;故选D.9.【答案】2【解析】根据等边三角形的性质求得BD=CD,并且求得边BC的长度,进而即可求得BD的长.解:∵△ABC是等边三角形,AD是∠BAC的平分线,∴AB=BC=CA,BD=CD,∵等边△ABC周长是12,∴BC=4,∴BD=2.故答案为2.10.【答案】C【解析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a的交点,即为点P,此时PA+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故答案为:C.11.【答案】1或3【解析】当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF﹣BC求出CF的长,即可得到CD的长;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=∠EBF=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF+BC求出CF的长,即可得到CD的长.解:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,可得∠EFB=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=60°,∴∠BEF=30°,∵BE=AB+AE=1+2=3,∴FB=12EB=32,∴CF=FB﹣BC=12,则CD=2CF=1;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,可得∠EFC=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=∠EBF=60°,∴∠BEF=30°,∵BE=AE﹣AB=2﹣1=1,∴FB=12BE=12,∴CF=BC+FB=32,则CD=2CF=3,综上,CD的值为1或3.故答案为:1或3.12.【答案】20°【解析】根据轴对称的性质求出∠A′,再利用三角形的内角和等于180°列式计算即可得解.解:∵△ABC与△A′B′C′关于直线l对称,∴∠A′=∠A=50°,在△A′B′C′中,∠C′=180°﹣∠A′﹣∠B′=180°﹣50°﹣110°=20°.故答案为:20°.13.【答案】40【解析】根据垂直平分线的性质与三角形的全等可以得出∠A=∠ACD,再根据三角形的内角和和角的比计算.解:∵DE垂直平分AC,∴EA=EC,AD=CD,∠ADE=∠CDE=90°∴Rt△ADE≌Rt△CDE∴∠A=∠ACD又∵∠ACD:∠BCD=5:3,∴∠ACD:∠ACB=5:8∴∠A:∠ACB=5:8又∵∠B=115°。
八年级数学上册第十三章《轴对称》测试-人教版(含答案)
八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。
人教版八年级上册第13章《轴对称》单元测试含答案
人教版八年级上册第13章《轴对称》单元测试考试分值:120分;考试时间:100分钟;姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共7小题,满分35分,每小题5分)1.(5分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.12.(5分)在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)3.(5分)如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°4.(5分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm5.(5分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC 成轴对称且以格点为顶点三角形共有()个.A.3个 B.4个 C.5个 D.6个6.(5分)△ABC中,AD是中线,点D到AB,AC的距离相等,则△ABC一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形7.(5分)如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3评卷人得分二.填空题(共7小题,满分35分,每小题5分)8.(5分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.9.(5分)在Rt△ABC中,若∠C=90°,AB=,∠A=30°,则BC=.10.(5分)如图所示,一排数字是球衣数字在镜中的像,则原数是.11.(5分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围是.12.(5分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为.13.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D 在BC上,已知∠CAD=32°,则∠B=度.14.(5分)图中的正五角星有条对称轴,图中与∠A的2倍互补的角有个.评卷人得分三.解答题(共7小题,满分50分)15.(6分)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.16.(6分)在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x ﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.17.(7分)已知:如图,BD=DE=EF=FG.(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.18.(6分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.19.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.20.(8分)如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE交直线a于点E,且∠ADE=60°.(1)若D在BC上(如图1)求证CD+CE=CA;(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.21.(10分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.参考答案与试题解析一.选择题(共7小题,满分35分,每小题5分)1.(5分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.1【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形.求解【解答】解:(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选:B.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.(5分)在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x,y)关于y轴的对称点的坐标是(﹣x,y)即可得到点(1,1)关于y轴对称的点的坐标.【解答】解:点(1,1)关于y轴的对称点的坐标是(﹣1,1),故选:C.【点评】此题主要考查了关于x轴、y轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.3.(5分)如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°【分析】根据等腰三角形的性质就可以求出∠ABC和∠C的度数,由角平分线的性质就可以求出∠ABD的度数.【解答】解:∵AB=AC,∠A=100°,∴∠ABC=∠C=40°.∵BD平分∠ABC,∴∠ABD=∠DBC=20°.故选:C.【点评】本题主要考查了等腰三角形的性质,解题的关键是掌握角平分线的性质,此题比较简单.4.(5分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【分析】根据线段的垂直平分线的性质得到GA=GB,根据三角形的周长公式计算即可.【解答】解:∵DG是AB的垂直平分线,∴GA=GB,∵△AGC的周长为31cm,∴AG+GC+AC=BC+AC=31cm,又AB=20cm,∴△ABC的周长=AB+AC+BC=51cm,故选:C .【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(5分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC ,则与△ABC 成轴对称且以格点为顶点三角形共有( )个.A .3个B .4个C .5个D .6个【分析】解答此题首先找到△ABC 的对称轴,EH 、GC 、AD ,BF 等都可以是它的对称轴,然后依据对称找出相应的三角形即可.【解答】解:与△ABC 成轴对称且以格点为顶点三角形有△ABG 、△CDF 、△AEF 、△DBH ,△BCG 共5个,故选:C .【点评】本题主要考查轴对称的性质;找着对称轴后画图是正确解答本题的关键.6.(5分)△ABC 中,AD 是中线,点D 到AB ,AC 的距离相等,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【分析】根据中线的性质得出S △ABD =S △ACD ,再由点D 到AB ,AC 的距离相等,得出AB=AC ,从而得出△ABC 一定是等腰三角形.【解答】解:∵AD是中线,=S△ACD,∴S△ABD∵D到AB,AC的距离相等,∴AB=AC,∴△ABC一定是等腰三角形,故选:B.【点评】本题考查了等腰三角形的判定以及中线的性质,掌握三角形的中线把三角形的面积分成相等的两部分是解题的关键.7.(5分)如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3【分析】根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D 为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.【解答】解:∵∠BAC=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵BE、CE分别为∠ABC、∠ACB的平分线,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×120°=60°,∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣60°=120°,故①正确;如图,过点D作DF⊥AB于F,DG⊥AC的延长线于G,∵BE、CE分别为∠ABC、∠ACB的平分线,∴AD为∠BAC的平分线,∴DF=DG,∴∠FDG=360°﹣90°×2﹣60°=120°,又∵∠BDC=120°,∴∠BDF+∠CDF=120°,∠CDG+∠CDF=120°,∴∠BDF=∠CDG,∵在△BDF和△CDG中,,∴△BDF≌△CDG(ASA),∴DB=CD,∴∠DBC=(180°﹣120°)=30°,∴∠DBE=∠DBC+∠CBE=30°+∠CBE,∵BE平分∠ABC,AE平分∠BAC,∴∠ABE=∠CBE,∠BAE=∠BAC=30°,根据三角形的外角性质,∠DEB=∠ABE+∠BAE=∠ABE+30°,∴∠DBE=∠DEB,∴DB=DE,故②正确;∵DB=DE=DC,∴B,C,E三点在以D为圆心,以BD为半径的圆上,∴∠BDE=2∠BCE,故③正确;综上所述,正确的结论有①②③共3个.故选:D.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.二.填空题(共7小题,满分35分,每小题5分)8.(5分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.【分析】分为以下情况:①原三角形是锐角三角形,最大角是72°的情况;②原三角形是直角三角形,最大角是90°的情况;③原三角形是钝角三角形,最大角是108°的情况;④原三角形是钝角三角形,最大角是126°的情况;⑤原三角形是钝角三角形,最大角是132°的情况.【解答】解:①原三角形是锐角三角形,最大角是72°的情况如图所示:∠ABC=∠ACB=72°,∠A=36°,AD=BD=BC;②原三角形是直角三角形,最大角是90°的情况如图所示:∠ABC=90°,∠A=36°,AD=CD=BD;③原三角形是钝角三角形,最大角是108°的情况如图所示:④原三角形是钝角三角形,最大角是126°的情况如图所示:∠ABC=126°,∠C=36°,AD=BD=BC;⑤原三角形是钝角三角形,最大角是132°的情况如图所示:∠C=132°,∠ABC=36°,AD=BD,CD=CB.综上,原三角形最大内角的所有可能值为72°,90°,108°,132°,126°.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理;分情况讨论是解决本题的关键,本题有一定的难度.9.(5分)在Rt△ABC中,若∠C=90°,AB=,∠A=30°,则BC=5.【分析】根据含30度角的直角三角形的性质推出BC=AB,代入求出即可.【解答】解:∵∠C=90°,∠A=30°,AB=10,∴BC=AB=×10=5,故答案为:5.【点评】本题主要考查对含30度角的直角三角形的性质的理解和掌握,能熟练地运用性质进行计算是解此题的关键.10.(5分)如图所示,一排数字是球衣数字在镜中的像,则原数是251.【分析】易得所求的号码与看到的号码关于竖直的一条直线成轴对称,作出相应图形即可求解.【解答】解:由题意得:251|125.故答案为:251.【点评】考查了镜面对称,解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形;注意2,5的关于竖直的一条直线的轴对称图形是5,2.11.(5分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围是m<.【分析】直接利用关于x轴对称点的性质得出M点位置,进而得出答案.【解答】解:∵点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴点M在第四象限,∴,解得:m<.故答案为:m<.【点评】此题主要考查了关于x轴对称点的性质以及不等式组的解法,正确解不等式是解题关键.12.(5分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为12.【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分情况讨论:①当三边是2,2,5时,2+2<5,不符合三角形的三边关系,应舍去;②当三角形的三边是2,5,5时,符合三角形的三边关系,此时周长是12.故填12.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D 在BC上,已知∠CAD=32°,则∠B=29度.【分析】利用中垂线和三角形外角性质计算.【解答】解:∠C=90°,∠CAD=32°⇒∠ADC=58°,DE为AB的中垂线⇒∠BAD=∠B又∠BAD+∠B=58°⇒∠B=29°故填29°【点评】本题涉及中垂线和三角形外角性质,难度中等.14.(5分)图中的正五角星有5条对称轴,图中与∠A的2倍互补的角有10个.【分析】正五角星经过角的顶点和中心点的直线都是它的对称轴,有5条对称轴,且五角星的五个角相等,从而求得答案.【解答】解:正五角星经过角的顶点和中心点的直线都是它的对称轴,所以有5条对称轴.与∠A的2倍即是∠AIE,与该角互为补角的角有∠AIC和∠DIE共两个,同理可得出其他八个符合条件的角.故答案为:5,10.【点评】本题考查了轴对称的性质,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形,这条直线是它的对称轴.三.解答题(共7小题,满分50分)15.(6分)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.【分析】(1)作点A关于直线l的对称点,再连接解答即可;(2)连接BA,延长BA交直线l于N,当N即为所求;【解答】解:(1)如图所示:(2)如图所示;理由:∵NB﹣NA≤AB,∴当A、B、N共线时,BN﹣NA的值最大.【点评】此题主要考查有关轴对称﹣﹣最短路线的问题中的作图步骤,是此类问题的基础,需熟练掌握.16.(6分)在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x ﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.【分析】(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求出x、y的值,从而得到点A的坐标,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”写出点A1的坐标,根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”写出点A2的坐标;(2)设经过OA1的直线解析式为y=kx,利用待定系数法求一次函数解析式求出直线解析式,再求出点A2在直线上,然后利用勾股定理列式求出OA1=OA2,最后根据线段中点的定义证明即可.【解答】(1)解:∵点A(2x+y﹣3,x﹣2y)与A1(x+3,y﹣4)关于x轴对称,∴,解得,所以,A(8,3),所以,A1(8,﹣3),A2(﹣8,3);(2)证明:设经过O、A1的直线解析式为y=kx,易得:y OA1=﹣x,又∵A2(﹣8,3),∴A2在直线OA1上,∴A1、O、A2在同一直线上,由勾股定理知OA1=OA2==,∴O为线段A1A2的中点.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.17.(7分)已知:如图,BD=DE=EF=FG.(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.【分析】(1)由已知可得到几组相等的角,再根据三角形外角的性质可得到∠EDF,∠FEG,∠AFG,∠AMG分别与∠B的关系,再根据三角形内角和定理即可求解.(2)结合第(1)题,根据三角形内角和定理可知,需满足mn<90°,从而不难求解.【解答】解:(1)有4条,若∠ABC=10°,有8条.当∠ABC=20°,∵BD=DE=EF=FG=GM,∴∠DEB=∠B,∠EDF=∠EFD,∠FEG=∠FGE,∠GFM=∠FMG∵∠EDF=2∠B=40°,∠FEG=3∠B=60°,∠AFG=4∠B=80°,∠AMG=5∠B=100°,∴同理:∠AMG将成为下一个等腰三角形的底角∵100°+100°>180°∴不会再由下一条折线∴共有四条拆线,分别是:DE、EF、FG,GM.同理:当∠ABC=10°,有8条符合条件的折线.(2)由(1)可知∠EDF=2∠B=2m°,∠FEG=3∠B=3m°,∠AFG=4∠B=4m°,∵根据三角形内角和定理可知,需满足mn<90°,∴n<的整数.【点评】此题主要考查等腰三角形的性质,三角形外角和性质及三角形内角和定理的综合运用.18.(6分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.【分析】(1)由于AB′是AB的折叠后形成的,所以∠AB′E=∠B=∠D=90°,∴B′E ∥DC;(2)利用平行线的性质和全等三角形求解.【解答】解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD边上的B′点,则△ABE≌△AB′E,利用全等三角形的性质和平行线的性质及判定求解.19.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(8分)如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE 交直线a于点E,且∠ADE=60°.(1)若D在BC上(如图1)求证CD+CE=CA;(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.【分析】(1)实际上也就是求两条线段相等,在AC上取一点F,使CF=CD,然后求证△ADF≌△EDC即可.(2)归根究底仍是求两条线段的问题,通过求证全等,最终得出几条边之间的关系.【解答】(1)证明:在AC上取点F,使CF=CD,连接DF.∵∠ACB=60°,∴△DCF为等边三角形.∴∠3+∠4=∠4+∠5=60°.∴∠3=∠5.∵∠1+∠ADE=∠2+∠ACE,∴∠1=∠2.在△ADF和△EDC中,,∴△ADF≌△EDC(AAS).∴CE=AF.∴CD+CE=CF+AF=CA.(2)解:CD、CE、CA满足CE+CA=CD;证明:在CA延长线上取CF=CD,连接DF.∵△ABC为等边三角形,∴∠ACD=60°,∵CF=CD,∴△FCD为等边三角形.∵∠1+∠2=60°,∵∠ADE=∠2+∠3=60°,∴∠1=∠3.在△DFA和△DCE中,∴△DFA≌△DCE(ASA).∴AF=CE.∴CE+CA=FA+CA=CF=CD.注:证法(二)以CD为边向下作等边三角形,可证.证法(三)过点D分别向CA、CE作垂线,也可证.【点评】本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得三角形全等是正确解答本题的关键.21.(10分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.【分析】根据角平分线定义和平行线性质求出∠EDB=∠EBD,推出DE=BE,同理得出CF=DF,即可求出答案.【解答】证明:∵BD平分∠ABC,∴∠EBD=∠DBC,∵EF∥BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴DE=BE,同理CF=DF,∴EF=DE+DF=BE+CF,即BE+CF=EF.【点评】本题考查了角平分线定义,平行线性质,等腰三角形的判定的应用,注意:等角对等边.。
人教版八年级数学上册 第13章 轴对称 章节综合测试【含答案】
12. 在△ABC 中,若∠A=100°,∠B=40°,AC=5,则 AB=________.
13. 已知点 P(x,y)的坐标满足等式(x-2)2+|y-1|=0,且点 P 与点 P′关于 y 轴对 称,则点 P′的坐标为________. 三、作图题 14. 如图,在公路 l 附近有两个小区 A,B,某商家计划在公路 l 旁修建一个大型 超市 M,要求超市 M 到 A,B 两个小区的距离相等,请你借助尺规在图上找出 超市 M 的位置.(不写作法,保留作图痕迹)
人教版八年级数学上册 第 13 章 轴对称 章节综合测试
一、选择题 1. 如图,等腰三角形的对称轴是( )
A.直线 l1 C.直线 l3
B.直线 l2 D.直线 l4
2. 下列四个交通标志图中,为轴对称图形的是( )
3. 如图,在等腰三角形中,若∠1=110°,则∠2 的度数为( )
A.35° C.110°
14.
解:如图,点 M 为所作.
答案
15.
解:如图所示,△ABC 即为所求.
16.
解:(1)如图所示. (2)△A′B′C′如图所示,点 B′的坐标为(2,1).(3)如图所示,点 P 的坐标为(-1, 0).
四、解答题
17.
解:∵DE 是 AB 的垂直平分线,∴AE=BE. ∵△EBC 的周长是 16 cm, ∴BC+BE+EC=16 cm, 即 BC+AE+EC=AC+BC=16 cm. ∵△ABC 的周长是 26 cm, ∴AB+AC+BC=26 cm, ∴AC=AB=10 cm.
15. 尺规作图:已知线段 a(如图),画一个底边长度为 a,底边上的高也为 a 的等 腰三角形.(保留作图痕迹,不写作法)
人教版八年级数学上册试题 第十三章 轴对称章节测试卷(含详解)
第十三章《轴对称》章节测试卷一.选择题(共12小题,每小题4分,共48分)1.下列交通安全标志中,是轴对称图形的是( )A.B.C.D.2.如图,△ABC和△A′B′C′关于直线l对称,若∠A=50°,∠C′=30°,则∠B的度数为( )A.30°B.50°C.90°D.100°3.到三角形的三个顶点距离相等的点是( )A.三条角平分线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条中线的交点4.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是( )A.20°B.40°C.50°D.60°5.若等腰三角形有两条边的长度为5和8,则此等腰三角形的周长为( )A.18或21B.21C.24或18D.186.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,AB,CB分别交直线m于点D 和点E,且DB=DE,若∠1=65°,则∠BDE的度数为( )A.115°B.120°C.130°D.145°7.在下列结论中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的等腰三角形是等边三角形;④有一个角是60°,且是轴对称的三角形是等边三角形.其中正确的个数是( )A.4个B.3个C.2个D.1个8.已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为( )A.70°B.70°或55°C.40°或55°D.70°或40°9.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是( )A.a<﹣1B.﹣1<a<32C.−32<a<1D.a>3210.如图,在△ABC中,∠C=60°,AD是BC边上的高,点E为AD的中点,连接BE并延长交AC于点F.若∠AFB=90°,EF=2,则BF长为( )A.4B.6C.8D.1011.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是( )A.10B.8C.6D.412.如图,点C、D在线段AB的同侧,CA=4,AB=12,BD=9,M是AB的中点,∠CMD=120°,则CD长的最大值是( )A.16B.19C.20D.21二.填空题(共4小题,每小题4分,共16分)13.若点A(m,﹣3),B(﹣2,n)关于y轴对称,则2m+3n的值为 .14.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为 .15.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为 .16.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为 .三.解答题(共8小题,共86分)17.如图,在Rt△ABC中,∠ACB=90°,∠CAB=2∠B,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DB=DE.18.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)△ABC的面积为 ;(2)在图中作出△ABC关于直线MN的对称图形△A′B′C′.(3)利用网格纸,在MN上找一点P,使得PB+PC的距离最短.(保留痕迹)20.如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.21.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.22.已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1,h2,h3,△ABC 的高为h.(1)若点P在一边BC上[如图①],此时h3=0,求证:h1+h2+h3=h;(2)当点P在△ABC内[如图②],以及点P在△ABC外[如图③]这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h1,h2,h3与h之间又有怎样的关系,请说出你的猜想,并说明理由.23.如图,在等边△ABC中,AB=12cm,现有M,N两点分别从点A,B同时出发,沿△ABC的边按顺时针方向运动,已知点M的速度为1cm/s,点N的速度为2cm/s,当点N第一次到达B点时,M,N同时停止运动,设运动时间为t(s).(1)当t为何值时,M,N两点重合?两点重合在什么位置?(2)当点M,N在BC边上运动时,是否存在使AM=AN的位置?若存在,请求出此时点M,N 运动的时间;若不存在,请说明理由.24.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.答案一.选择题1.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.2.【解答】解:∵△ABC和△A′B′C′关于直线l对称,∠A=50°,∠C′=30°,∴△ABC≌△A′B′C′,∴∠C=∠C′=30°,∴∠B=180°﹣∠A﹣∠C=180°﹣50°﹣30°=100°.故选:D.3.【解答】解:∵OA=OB,∴O在线段AB的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,即O是△ABC的三边垂直平分线的交点,故选:B.4.【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,又MP,NQ为AB,AC的垂直平分线,∴∠BAP=∠B,∠QAC=∠C,∴∠BAP+∠CAQ=70°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=110°﹣70°=40°故选:B.5.【解答】解:根据题意,①当腰长为5时,周长=5+5+8=18;②当腰长为8时,周长=8+8+5=21.故选:A.6.【解答】解:如图,∵DB=DE,∴∠2=∠B,∴∠3=2∠B,∵∠C=90°,∴∠5=90°﹣∠B,∵m∥n,∴∠1+∠5+∠3=180°,∴65°+90°﹣∠B+2∠B=180°,∴∠B=25°,∴∠BDE=130°,故选:C.7.【解答】解:①有一个外角是120°的等腰三角形是等边三角形,正确;②有两个外角相等的等腰三角形不一定是等边三角形,错误;③有一边上的高也是这边上的中线的等腰三角形不一定是等边三角形,错误;④有一个角是60°,且是轴对称的三角形是等边三角形,正确.故选:C.8.【解答】解:分两种情况:当70°的角是底角时,则顶角度数为40°;当70°的角是顶角时,则顶角为70°.故选:D.9.【解答】解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在第四象限,,∴{a+1>0①2a−3<0②解不等式①得,a>﹣1,,解不等式②得,a<32,所以,不等式组的解集是﹣1<a<32故选:B.10.【解答】解:∵在△ABC中,∠C=60°,AD是BC边上的高,∴∠DAC=90°﹣∠C=90°﹣60°=30°,∵∠AFB=90°,EF=2,∴AE=2EF=4,∵点E为AD的中点,∴DE=AE=4,∵∠C=60°,∠BFC=180°﹣90°=90°,∴∠EBD=30°,∴BE=2DE=8,∴BF=BE+EF=8+2=10,故选:D.11.【解答】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,{∠ABP=∠EBPBP=BP∠APB=∠EPB,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=12S△ABC=12×12=6,故选:C.12.【解答】解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=4+6+9=19,∴CD的最大值为19,故选:B.二.填空题13.【解答】解:∵点A(m,﹣3),B(﹣2,n)关于y轴对称,∴m=2,n=﹣3,∴2m+3n=2×2+3×(﹣3)=﹣5.故答案为:﹣514.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19cm.15.【解答】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=70°,可得∠B′OG+∠BOG=110°∴∠B′OG=1×110°=55°.216.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n﹣1.故答案是:2n﹣1.三.解答题17.证明:(1)∵∠ACB=90°,∴∠CAB+∠B=90°,又∵∠CAB=2∠B,∴∠B=30°,∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠DAB=30°;(2)∵∠DAB=30°=∠B,∴AD=DB,∵AC=EC,∠ACB=90°,∴AD=DE,∴DE=DB.18.解:(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=12BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=4.19.解:(1)S△ABC=3×4−12×2×2−12×1×4−12×2×3=12﹣2﹣2﹣3=5.故答案为:5;(2)如图,△A′B′C′即为所求;(3)如图,点P即为所求.20.解:(1)∵AE是BC边上的高,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=3,则EH=12AE=32、AH=32,∴S△ADF=12×3×32=334.21.解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.22.解:(1)如图1,连接AP,则 S△ABC=S△ABP+S△APC∴12BC•AM=12AB•PD+12AC•PF即12BC•h=12AB•h1+12AC•h2又∵△ABC是等边三角形∴BC=AB=AC,∴h=h1+h2;(2)点P在△ABC内时,h=h1+h2+h3,理由如下:如图2,连接AP、BP、CP,则 S△ABC=S△ABP+S△BPC+S△ACP∴12BC•AM=12AB•PD+12AC•PE+12BC•PF即12BC•h=12AB•h1+12AC•h2+12BC•h3又∵△ABC是等边三角形,∴BC=AB=AC.∴h=h1+h2+h3;点P在△ABC外时,h=h1+h2﹣h3.理由如下:如图3,连接PB,PC,PA由三角形的面积公式得:S△ABC=S△PAB+S△PAC﹣S△PBC,即12BC∙AM=12AB•PD+12AC•PE−12BC•PF,∵AB=BC=AC,∴h1+h2﹣h3=h,即h1+h2﹣h3=h.23.解:(1)由题意,t×1+12=2t,解得:t=12,∴当t=12时,M,N两点重合,此时两点在点C处重合;(2)结论:当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形.理由:由(1)知12秒时M、N两点重合,恰好在C处,如图,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,{∠C=∠B∠AMC=∠ANB,AC=AB∴△ACM≌△ABN(AAS),∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,∵CM=NB,∴y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,当运动时间为12秒或16秒时,AM=AN.24.(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF.∴CE=CF.(2)解:GE=BE+GD成立.∵△CBE≌△CDF,∴∠BCE=∠DCF.∴∠ECD+∠ECB=∠ECD+∠FCD.即∠ECF=∠BCD=90°.又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCF=∠GCE,GC=GC,∴△ECG≌△FCG.∴EG=GF.∴GE=DF+GD=BE+GD.(3)解:过C作CG⊥AD,交AD延长线于G,在直角梯形ABCD中,∵AD∥BC,∠A=∠B=90°,又∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC=12.已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG,设DE=x,则DG=x﹣4,∴AD=AG﹣DG=16﹣x,AE=AB﹣BE=12﹣4=8.在Rt△AED中∵DE2=AD2+AE2,即x2=(16﹣x)2+82解得:x=10.∴DE=10.。
第13章轴对称单元同步检测试题2022—2023学年人教版数学八年级上册
第十三章《轴对称》单元检测题题号 一 二三总分1920 21 22 23 24 分数一、选择题(每题3分,共30分)1.下列交通安全标志中,是轴对称图形的是( )A .B .C .D .2.如图,ABC ∆与DEF ∆关于直线MN 轴对称,则下列结论中错误的是( )A .//AB DF B .B E ∠=∠C .AB DE =D .AD 的连线被MN 垂直平分3.如图,ABC ∆中边AB 的垂直平分线分别交BC ,AB 于点D ,E ,3AE cm =,ADC ∆的周长为9cm ,则ABC ∆的周长是( )A .10cmB .12cmC .15cmD .17cm4.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是( )A.B.C.D.5.如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10B.12C.14D.166.平面直角坐标系中,点(﹣2,4)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限7.等腰三角形的一个外角的度数是,则它的顶角的度数为()A. B. 或 C. D. 或8.如图,中,D、E两点分别在AC、BC上,且AB=AC,CD=DE.若,,则()A. B. C. D.9.如图,点P是外的一点,点M,N分别是两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若,,,则线段QR的长为()A. B. C. D.10.如图,等边和等边,其中B、C、E三点共线,连接AE、BD、CF、GH,下列说法中:平分;;;正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题(每题3分,共24分)11.在平面直角坐标系中点P(﹣2,3)关于x轴的对称点在第象限.12.一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:.13.点(2+a,3)关于y轴对称的点的坐标是(﹣4,2﹣b),则a b =.14.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为.15.△ABC为等边三角形,D、E、F分别在边BC、CA、AB上,且AE=CD=BF,则△DEF为三角形.16.如图,在等腰三角形ABC中,AB=AC,BC=3cm,△ABC的面积是18cm2,腰AB的垂直平分线EF交AC于点F,若点D为BC边上的中点,M为EF 上的动点,则△BDM周长的最小值为.17.如图,△ABC中,AD为角平分线,若∠B=∠C=60°,AB=8,则CD的长度为.18.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为.三.解答题(共46分,19题6分,20 ---24题8分)19.如图△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD.求证:DB=DE.20.已知:如图,OA平分∠BAC,∠1=∠2,求证:△ABC是等腰三角形.21.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积S△A1B1C1=________.22.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.23.已知,如图,P是平分线上的一点,,,垂足分别为C,D.求证:(1)OC=OD;(2)OP是CD的垂直平分线.24.如图,ABC===,现有两点M、N分别从点A、点B同AB BC AC cm∆中,12时出发,沿三角形的边运动,已知点M的速度为1/cm s,点N的速度为2/cm s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.答案一、选择题(每题3分,共30分)题号12345678910答案D A C C C C B C A D二、填空题(每题3分,共24分)11.解:点P(﹣2,3)满足点在第二象限的条件.关于x轴的对称点的横坐标与P点的横坐标相同,是﹣2;纵坐标互为相反数,是﹣3,则P关于x轴的对称点是(﹣2,﹣3),在第三象限.故答案是:三12.解:实际车牌号是K62897.故答案为:K62897.13.解:∵点(2+a,3)关于y轴对称的点的坐标是(﹣4,2﹣b),∴2+a=4,2﹣b=3,解得a=2,b=﹣1,所以,a b=2﹣1=.故答案为:.14.解:要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.故答案为:60°.15.解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,又AE=CD=BF,∴AF=BD=CE,∴△EAF≌△FBD≌△DCE(ASA),∴EF=FD=DE,即△DEF为等边三角形.故填等边.16.解:∵D为BC的中点,BC=3cm,∴BD=1.5cm,连接AD,∵AB=AC,D为BC的中点,∴AD为等腰三角形的高,设AD=hcm,∵△ABC的面积是18cm2,∴S△ABC=×BC×AD=18cm2,即×3×h=18,解得:h=12,∴AD=12cm,∵EF为线段AB的垂直平分线,∴A、B关于EF对称,∴BM+DM的最小值为线段AD的长度,即12cm,∴△BDM周长的最小值为12cm+1.5cm=13.5cm,故答案为:13.5cm.17.解∵∠B=∠C=60°,∴∠BAC=180°﹣60°﹣60°=60°,∴△ABC为等边三角形,∵AB=8,∴BC=AB=8,∵AD为角平分线,∴BD=CD,∴CD=4,故答案为:4.18.解:∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=3,∵∠B=30°,∴BD=2DE=6,故答案为:6.三.解答题(共46分,19题6分,20 ---24题8分)19.证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).20.证明:作OE⊥AB于E,OF⊥AC于F,∵AO平分∠BAC,∴OE=OF(角平分线上的点到角两边的距离相等).∵∠1=∠2,∴OB=OC.∴Rt△OBE≌Rt△OCF(HL).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形.21.解:(1)如图.(第23题)(2)A1(0,-4),B1(-2,-2),C1(3,0).(3)722:(1)∵DE垂直平分AC,∴AE=CE,∴∠ECD=∠A=36°.(2)∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵∠BEC=∠A+∠ACE=72°,∴∠B=∠BEC,∴BC=CE=5.23.证明:(1)鈭礟是鈭燗OB平分线上的一点,PC鈯A,PD鈯B,鈭碢C=PD,在Rt鈻砅OC与Rt鈻砅OD中,,(2)如图,设OP与CD相交于点E,是鈭燗OB平分线上的一点,鈭粹垹CCC=鈭燚CC由(1)知,OC=OD,在鈻矯OE与鈻矰OE中,,(SAS)鈭碈E=DE,,是CD的垂直平分线.【解析】本题考查的是角平分线的性质,垂直平分线的性质,全等三角形的判定与性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.(1)先根据P是鈭燗OB平分线上的一点,PC鈯A,PD鈯B得出PC=PD,由HL 定理得出Rt鈻砅OC≌Rt鈻砅OD,故可得出OC=OD;(2)根据P是鈭燗OB平分线上的一点得出,根据SAS定理得出鈻矯OE≌鈻矰OE,由此可得出结论.24.解:(1)设点M、N运动x秒时,M、N两点重合,1122x x⨯+=,解得:12x=;(2)设点M、N运动t秒时,可得到等边三角形AMN∆,如图①,1AM t t=⨯=,122AN AB BN t=-=-,三角形AMN∆是等边三角形,122t t∴=-,解得4t=,∴点M、N运动4秒时,可得到等边三角形AMN∆.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设AMN∆是等腰三角形,AN AM∴=,AMN ANM∴∠=∠,AMC ANB∴∠=∠,AB BC AC==,ACB∴∆是等边三角形,C B∴∠=∠,在ACM∆和ABN∆中,AMC ANBB CAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACM ABN AAS∴∆≅∆,CM BN∴=,设当点M、N在BC边上运动时,M、N运动的时间y秒时,AMN∆是等腰三角形,∴=-,362=-,CM NBNB yCM y12=,-=-,y y12362解得:16y=.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.。
2022-2023学年人教版数学八年级上册第十三章《轴对称》单元测试
人教版数学八年级上册《第十三章轴对称》单元测试一、单选题(本大题共15小题,共45分)1.(3分)在平面直角坐标系中,点P(3,-2)关于y轴的对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.(3分)如图,∠DAE=∠ADE=15°,DE//AB,DF⊥AB,若AE=6,则DF等于()A. 2B. 3C. 4D. 63.(3分)直角坐标系中,点(-2,3)与(-2,-3)关于()A. 原点中心对称B. x轴轴对称C. y轴轴对称D. 以上都不对4.(3分)一个等腰三角形的顶角是50°,则它的底角是()A. 65°B. 70°C. 75°D. 100°5.(3分)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A. 9cmB. 12cmC. 15cmD. 12cm或15cm6.(3分)在等腰三角形ABC中,AB=AC,那么下列说法中不正确的是()A. BC边上的高线和中线互相重合B. AB和AC边上的中线相等C. 三角形ABC中∠B和∠C的角平分线相等D. 等腰三角形最多有一条对称轴7.(3分)2022年北京和张家口成功举办了第24届冬奥会和冬残奥会.下面关于奥运会的剪纸图片中是轴对称图形的是()A. B.C. D.8.(3分)下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A. 菱形B. 矩形C. 等腰梯形D. 正五边形9.(3分)若ΔABC是等边三角形,且点D、E分别是AC、BC上动点,始终保持CD=BE,不与顶点重合,则∠AFD的度数是()度.A. 30B. 45C. 60D. 无法确定10.(3分)下列图形中,是轴对称图形的个数是()A. 1B. 2C. 3D. 411.(3分)点M(3,-4)关于x轴的对称点M′的坐标是()A. (3,4)B. (-3,-4)C. (-3,4)D. (-4,3)12.(3分)ΔABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,则最长边AB的长为()A. 9cmB. 8cmC. 7cmD. 6cm13.(3分)点(5,-6)关于x轴的对称点的坐标是()A. (-6,5)B. (-5,-6)C. (5,6)D. (-5,6)14.(3分)在四边形ABCD中,AB=AD,BC=CD,则两对角线AC与BD的关系是()A. AC垂直平分BDB. BD垂直平分ACC. AC与BD互相垂直平分D. BD平分∠ADC15.(3分)七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”.将右图的七巧板的其中几块,拼成一个多边形,为轴对称图形的是()A. B.C. D.二、填空题(本大题共5小题,共15分)16.(3分)如图,在3×3的正方形网格中,网格纸的交点称为格点.已知A,B是两格点,C 也是图中的格点,且以A,B,C为顶点的三角形是等腰三角形,则满足条件的点C的个数是________.17.(3分)已知点P(−1,2),那么点P关于直线x=1的对称点Q的坐标是______.18.(3分)已知点P(a-1,5)和点Q(2,b-1)关于x轴对称,则(a+b)2012=____.19.(3分)有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是______.20.(3分)已知等腰三角形周长为12,一边长为5,则它另外两边差的绝对值是______.三、解答题(本大题共5小题,共40分)21.(8分)如图,在正方形网格中,每个小正方形的边长为1,格点ΔABC的顶点A、C的坐标分别为(−4,5)、(−1,3).(1)请在图中正确作出平面直角坐标系;(2)请作出ΔABC关于y轴对称的ΔA′B′C′;(3)点B′的坐标为 ______ ,ΔA′B′C′的面积为 ______ .22.(8分)如图,在平面直角坐标系中,A(1,3),B(−4,1),C(−3,−2)(1)画出ΔABC关于y轴对称的ΔA1B1C1;(2)ΔA1B1C1的面积是______;(3)在如图的网格中规定每个小正方形的顶点叫做格低,点D是第二象限内的格点,若ΔDBC是等腰三角形,则点D的坐标是______.23.(8分)在图示的方格纸中:(1)作出ΔABC关于MN对称的图形ΔA1B1C1;(2)说明ΔA2B2C2是由ΔA1B1C1经过怎样的平移得到的?(3)若方格的边长为1,求出四边形A1A2C2C1的面积.24.(8分)在等边ΔABC中,点E是AB上的动点,点E与点A、B不重合,点D在CB的延长线上,且EC=ED.(1)如图1,若点E是AB的中点,求证:BD=AE;(2)如图2,若点E不是AB的中点时,(1)中的结论“BD=AE”能否成立?若不成立,请直接写出BD与AE数理关系,若成立,请给予证明.25.(8分)如图1,等边ΔABC中,D是AB上一点,以CD为边向上作等边ΔCDE,连结AE.(1)求证:AE//BC;(2)如图2,若点D在AB的延长线上,其余条件均不变,(1)中结论是否成立?请说明理由.答案和解析1.【答案】C;【解析】∵点P(3,-2)关于y轴的对称点是(-3,-2),∴点P(3,-2)关于y轴的对称点在第三象限.故选C.2.【答案】B;【解析】解:如图,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=6,过D作DG⊥AC于G,则DG=12DE=12×6=3,∵DE//AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=3.故选:B.过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG= 30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是3,又DE//AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.这道题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解答该题的关键.3.【答案】B;【解析】解:点(-2,3)与(-2,-3)关于x轴轴对称.故选:B.4.【答案】A;【解析】解:∵三角形为等腰三角形,且顶角为50°,∴底角=(180°−50°)÷2=65°.故选:A.等腰三角形中,给出了顶角为50°,可以结合等腰三角形的性质及三角形的内角和定理直接求出底角,答案可得.这道题主要考查了等腰三角形的性质;等腰三角形中只要知道一个角,就可求出另外两个角,这种方法经常用到,要熟练掌握.5.【答案】C;【解析】解:(1)当3cm为腰时,因为3+3=6cm,不能构成三角形,故舍去;(2)当6cm为腰时,符合三角形三边关系,所以其周长=6+6+3=15cm.故选:C.题中没有指明哪个是底哪个是腰,则应该分两种情况进行分析,从而得到答案.该题考查了三角形三边关系与周长的求解.6.【答案】D;【解析】该题考查了等腰三角形的两腰相等,等边对等角,三线合一的性质以及轴对称图形的定义,是基础题型,比较简单.根据等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.(简称:等边对等角);③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(三线合一),和根据轴对称图形的对称轴的定义即可求解.解:A、BC边上的高线和中线互相重合,故本选项正确,不符合题意;B、AB和AC边上的中线相等,故本选项正确,不符合题意;C、三角形ABC中∠B和∠C的角平分线相等,故本选项正确,不符合题意;D、等腰三角形最多有3条对称轴,故本选项不正确,符合题意.故选D.7.【答案】D;【解析】解:A.不是轴对称图形,故A选项不符合题意;B.不是轴对称图形,故B选项不符合题意;C.不是轴对称图形,故C选项不符合题意;D.是轴对称图形,故D选项符合题意;故选:D.根据轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判定即可得出答案.此题主要考查了轴对称图形,熟练掌握轴对称图形的定义进行求解是解决本题的关键.8.【答案】B;【解析】解:A、菱形,对角线所在的直线即为对称轴,可以用直尺画出,故A选项错误;B、矩形,对边中点的所在的直线,只用一把无刻度的直尺无法画出,故B选项正确;C、等腰梯形,延长两腰相交于一点,作两对角线相交于一点,根据等腰梯形的对称性,过这两点的直线即为对称轴,故C选项错误;D、正五边形,作一条对角线把正五边形分成一等腰三角形与以等腰梯形,根据正五边形的对称性,过等腰三角形的顶点与梯形的对角线的交点的直线即为对称轴,故D选项错误.故选:B.针对各图形的对称轴,对各选项分析判断后利用排除法求解.这道题主要考查了轴对称图形的对称轴,熟练掌握常见多边形的对称轴是解答该题的关键.9.【答案】C;【解析】解:∵ΔABC是等边三角形,∴AB=AC,∠ABE=∠BCD,∠ABF+∠CBF=60°,在ΔABE和ΔBCD中,{AB=AC∠ABE=∠BCDCD=BE,∴ΔABE≌ΔBCD(SAS),∴∠BAF=∠CBF,∴∠AFD=∠ABF+∠BAF=∠ABF+∠CBF=60°,故选:C.抓住题中“等边三角形的每个内角是60度”这一关键点入手,三角形全等后,再利用对应角相等进行等量代换,结合外角的知识,得出∠AFD的大小.此题主要考查了全等三角形的判定与性质,结合等边三角形的性质,外角等知识解决问题,体现数学的转化思想,培养学生的推理能力,综合应用能力.10.【答案】B;【解析】解:第一个图形、第三个图形是轴对称图形,共2个.故选:B.根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11.【答案】A;【解析】点M(3,-4)关于x轴的对称点M′的坐标是(3,4).故选A.12.【答案】D;【解析】解:设∠A、∠B、∠C分别为k、2k、3k,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵最小边BC=3cm,∴最长边AB=2BC=2×3=6cm.故选D.根据比例设∠A、∠B、∠C分别为k、2k、3k,利用三角形内角和定理求出三个角,判断出ΔABC是直角三角形,并且有一个角是30°,然后根据30°角所对的直角边等于斜边的一半解答.该题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,利用“设k法”表示出三个角求解更加简便.13.【答案】C;【解析】解:点(5,-6)关于x轴的对称点的坐标是(5,6).故选C.14.【答案】A;【解析】解:∵AB=AD,∴点A在线段BD的垂直平分线,∵BC=CD,∴点C在线段BD的垂直平分线,∴AC垂直平分线段BD,故选:A.只要证明直线AC是线段BD的垂直平分线即可;此题主要考查线段的垂直平分线的判定,解答该题的关键是熟练掌握基本知识,属于中考常考题型,本题也可以用全等三角形的知识解决问题.15.【答案】C;【解析】解:A.不是轴对称图形,故A选项不符合题意;B.不是轴对称图形,故B选项不符合题意;C.是轴对称图形,故C选项符合题意;D.不是轴对称图形,故D选项不符合题意;故选:C.根据轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判定即可得出答案.此题主要考查了轴对称图形,熟练掌握轴对称图形的定义进行求解是解决本题的关键.16.【答案】8;【解析】该题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形.分类讨论思想是数学解题中很重要的解题思想.分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.解:如图,分情况讨论:①AB为等腰ΔABC的底边时,符合条件的C点有4个;②AB为等腰ΔABC其中的一条腰时,符合条件的C点有4个.故答案为8.17.【答案】(3,2);【解析】解:设点Q的坐标为(x,y),∵点P(−1,2)与点Q(x,y)关于直线x=1的对称,∴y=2,−1+x2=1,∴x=3,∴点Q的坐标为(3,2),故答案为:(3,2).根据关于直线x=1的对称点的连线的中点在对称轴上,纵坐标相等进行解答.考查了坐标与图形变化−对称,熟练掌握轴对称的性质以及对称点的坐标关系是解答该题的关键.18.【答案】1;【解析】解:∵点P(a-1,5)和点Q(2,b-1)关于x轴对称,∴a-1=2,b-1=-5,解得a=3,b=-4,∴(a+b)2012=(3-4)2012=1.故答案为:1.19.【答案】25°或40°或10°;【解析】解:由题意知ΔABD与ΔDBC均为等腰三角形,对于ΔABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°−∠ADB=180°−80°=100°,∠C=12(180°−100°)=40°,①AB=AD,此时∠ADB=12(180°−∠A)=12(180°−80°)=50°,∴∠BDC=180°−∠ADB=180°−50°=130°,∠C=12(180°−130°)=25°,①AD=BD,此时,∠ADB=180°−2×80°=20°,∴∠BDC=180°−∠ADB=180°−20°=160°,(180°−160°)=10°,∠C=12综上所述,∠C度数可以为25°或40°或10°.故答案为:25°或40°或10°.分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠BDC,然后根据等腰三角形两底角相等列式计算即可得解.该题考查了等腰三角形的性质,难点在于分情况讨论.20.【答案】0或3;【解析】解:∵等腰三角形的一边长为5,周长为12,∴当5为底时,其它两边都为3.5、3.5;当5为腰时,其它两边为5和2;∴另外两边差的绝对值是0或3.故答案为:0或3.已知给出的等腰三角形的一边长为5,但没有明确指明是底边还是腰,因此要分两种情况,分类讨论解答.此题主要考查了等腰三角形的性质及三角形三边关系;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.21.【答案】解:(1)(2)所作图形如图所示:(3)(2,1);4;【解析】解:(1)(2)所作图形如图所示:(3)点B′的坐标为(2,1),ΔA′B′C′的面积=3×4−12×2×4−12×2×1−12×2×3=4.故答案为:(2,1),4.(1)根据点A、C的坐标作出直角坐标系;(2)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(3)根据直角坐标系的特点写出点B′的坐标,求出面积.该题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点的坐标.22.【答案】172D1(-1,2),D2(-2,1),D3(-3,4);【解析】解:(1)如图所示,ΔA1B1C1即为所求.(2)ΔA1B1C1的面积是5×5−12×5×2−12×1×3−12×5×4=172,故答案为:172.(3)如图所示,使ΔDBC是等腰三角形的点D的坐标为D1(−1,2),D2(−2,1),D3(−3,4),故答案为:D1(−1,2),D2(−2,1),D3(−3,4).(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)利用割补法求解可得;(3)利用等腰三角形的概念结合网格求解可得.此题主要考查作图−轴对称变换,解答该题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.23.【答案】解:(1)如图所示:ΔA1B1C1,即为所求;(2)ΔA2B2C2是由ΔA1B1C1向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位)得到的;(3)如图:四边形A1A2C2C1为平行四边形.则四边形A1A2C2C1的面积为:4×7−2[12×1×2+12(1+7)×2]=10,所以四边形A1A2C2C1的面积为10.; 【解析】该题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置以及变化情况是解答该题的关键.(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答;(3)由作图可知四边形A1A2C2C1为平行四边形,根据平行四边形的面积计算公式即可.24.【答案】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵点E是AB的中点,∴CE平分∠ACB,AE=BE,∴∠BCE=30°,∵ED=EC,∴∠D=∠BCE=30°.∵∠ABC=∠D+∠BED,∴∠BED=30°,∴∠D=∠BED,∴BD=BE.∴AE=DB.(2)解:AE=DB;理由:过点E作EF∥BC交AC于点F.如图2所示:∴∠AEF=∠ABC,∠AFE=∠ACB.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形.∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠BED=∠ECF.在△DEB和△ECF中,{∠DEB=∠ECF ∠DBE=∠EFCDE=EC,∴△DEB≌△ECF(AAS),∴DB=EF,∴AE=BD.;【解析】(1)由等边三角形的性质得出AE=BE,∠BCE=30°,再根据ED=EC,得出∠D=∠BCE=30°,再证出∠D=∠DEB,得出DB=BE,从而证出AE=DB;(2)作辅助线得出等边三角形AEF,得出AE=EF,再证明三角形全等,得出DB=EF,证出AE=DB.此题主要考查了等边三角形的性质与判定、三角形的外角以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.25.【答案】证明:(1)∵ΔABC和ΔDCE是等边三角形,∴BC=AC,DC=EC,∠BCA=∠DCE=60°,∴∠BCA−∠ACD=∠DCE−∠ACD,即∠BCD=∠ACE,在ΔBCD与ΔACE中,箼=AC∠BCD=∠ACE DC=EC,∴ΔBCD≌ΔACE(SAS),∴∠B=∠CAE,∴∠B=∠CAE=∠ACB=60°,∴AE//BC;(2)成立,证明如下:∵同(1)可证ΔDBC≌ΔEAC,∴∠BDC=∠AEC,∵∠BCE+∠DCB=∠DCE=60°,∠BDC+∠DCB=∠ABC=60°,∴∠BCE=∠BDC,∴AE//BC.;【解析】【试题解析】这道题主要考查等边三角形的性质和全等三角形的判定与性质的知识点,解答本题的关键是能证出∠B=∠CAE=∠ACB,熟练掌握三角形全等的判定与性质定理.(1)根据已知条件先证出∠BCD=∠ACE,再根据SAS证出ΔBCD≌ΔACE,得出∠B=∠CAE=∠ACB=60°,再根据平行线的判定即可证出AE//BC;(2)根据(1)证出的ΔDBC≌ΔEAC,得出∠BDC=∠AEC,由∠BCE+∠DCB=∠DCE=60°,∠BDC+∠DCB=∠ABC=60°,得出∠BCE=∠BDC,从而得到∠AEC=∠BCE,即可得出AE//BC.。
人教版八年级上册数学第13章《轴对称》测试题【含答案】
一、选择题(每小题3分,共24分)1.下列交通标志图案是轴对称图形的是()2.下列图形中对称轴只有两条的是()3.如图1,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性 B.用字母表示数C.随机性 D.数形结合4.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18C.20 D.16或205.如图2,△ABC与△A′B′C′关于直线l对称,且∠A′=78°,∠C=48°,则∠ABC的度数为()A.48°B.54°C.74°D.78°6.图3是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACDB.AF垂直平分线段EGC.连接BG,CE,其交点在AF上D.△DEG是等边三角形7.在平面直角坐标系xOy中,点P(-3,8)关于y轴的对称点的坐标为()A.(-3,-8)B.(3,8)C.(3,-8)D.(8,-3)8.如图4,在△ABC中,∠ACB=90°,∠A=20°,若将△ABC沿CD折叠,使点B落在AC边上的点E处,则∠CED的度数是()A.30°B.40°C.50°D.70°二、填空题(每小题4分,共32分)9.如果一个三角形是轴对称图形,且有一个角是60°,那么这个三角形是________三角形.10. 已知M,N是线段AB的垂直平分线上任意两点,则∠MAN和∠MBN的关系是________. 11.如图5,在△ABC中,AB=AC,∠B=50°,则∠A=________.12.如图6,在△ABC中,AB=AC=3 cm,AB的垂直平分线MN交AC于点N,交AB于点M.已知△BCN的周长是5 cm,则BC的长是________cm.13.如图7,A,B,C三个居民小区的位置呈三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在________________.14.如图8,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有________个.15.观察规律,并填空:16.如图9,O为△ABC内一点,O与D关于AB对称,O与E关于BC对称,O与F关于AC对称,∠BAC=40°,∠ABC=80°,∠ACB=60°,则∠ADB+∠BEC+∠CFA=_________.三、解答题(共64分)17.(9分)请在如图10所示的三个2×2的方格中各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)18.(8分)汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图11所示的三个汉字可以看成是轴对称图形,请在方框中再写出4个类似轴对称图形的汉字.19.(12分)如图12,在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有没有等腰三角形?若有,请一一写出来(不要求证明);若没有,请说明理由.20.(11分)如图13,在△ABC中,点D,E分别是AB,AC边的中点,请你在BC边上确定一点P,使△PDE的周长最小,在图中作出点P.21.(12分)如图14,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线DE交AB于点E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.22.(12分)如图15,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE,则线段AE与BC有什么位置关系?请说明理由.第十三章轴对称测试题一、1.B 2.C 3.A 4.C 5.B 6.D 7.B 8.D二、9.等边 10. 相等 11.80° 12.213. AB,BC,CA垂直平分线的交点处14. 6 15. 16. 360°三、17.解:答案不唯一,如图1所示.18.解:答案不唯一,如中、田、日、吕、呆等.19.(1)证明:因为BD=AB,所以∠BAD=∠BDA.因为DE⊥BC,所以∠BDE=90°.又∠BAC=90°,所以∠EAD=∠EDA.所以AE=DE,即△ADE是等腰三角形.(2)还有三个等腰三角形,△ABD、△ABC、△CDE.20.解:如图2,作点D关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求作.21.解:(1)因为DE垂直平分AC,所以CE=AE,即△ACE是等腰三角形.所以∠ECD =∠A=36°.(2)因为AB=AC,∠A=36°,所以∠B=∠ACB=(180°-36°)÷2=72°.因为∠ECD=36°,所以∠BEC=∠A+∠ECD=72°,即∠BEC=∠B.所以BC=CE=5.22.解:AE∥BC.理由:因为△ABC和△DEC是等边三角形,所以BC=AC,CD=CE,∠ABC=∠BCA=∠ECD =60°.所以∠BCA-∠DCA=∠ECD-∠DCA,即∠BCD=∠ACE.在△ACE和△BCD中,AC=BC,∠ACE=∠BCD,CE=CD,所以△ACE≌△BCD.所以∠EAC=∠B=60°.所以∠EAC=∠ACB.所以AE∥BC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学上册单元测试题:第13章轴对称
一﹨选择题〖本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内〗
1.下列由数字组成的图形中,是轴对称图形的是〖〗.
2.下列语句中正确的个数是〖〗.
①关于一条直线对称的两个图形一定能重合;
②两个能重合的图形一定关于某条直线对称;
③一个轴对称图形不一定只有一条对称轴;
④轴对称图形的对应点一定在对称轴的两侧.
A.1 B.2 C.3 D.4
3.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC与△A′B′C′全等,则△A′B′C′的腰长等于〖〗.
A.8 cm B.2 cm或8 cm
C.5 cm D.8 cm或5 cm
4.已知等腰三角形的一个角等于42°,则它的底角为〖〗.
A.42°B.69°
C.69°或84°D.42°或69°
5.已知A﹨B两点的坐标分别是〖-2,3〗和〖2,3〗,则下面四个结论中正确的有〖〗.
①A﹨B关于x轴对称;
②A﹨B关于y轴对称;
③A﹨B不轴对称;
④A﹨B之间的距离为4.
A.1个B.2个
C.3个D.4个
6.如图所示,Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=3 0°时,图中一定不相等的线段有〖〗.
A.AC=AE=BE B.AD=BD
C.CD=DE D.AC=BD
7.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是〖〗.
8.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出
〖球可以经过多次反射〗,那么该球最后将落入的球袋是〖〗.
A.1号袋B.2号袋
C.3号袋D.4号袋
二﹨填空题〖本大题共8小题,每小题3分,共24分.把正确答案填在题中横线上〗9.观察规律并填空:
10.点E〖a,-5〗与点F〖-2,b〗关于y轴对称,则a=__________,b=__________.
11.如图,在等边△ABC中,AD⊥BC,AB=5 cm,则DC的长为__________.
〖第11题图〗〖第12题图〗
12.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,若BD=10,则CD=__
________. 13.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠P AQ的度数是_________
_.14.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=__________.
〖第13题图〗〖第14题图〗
15.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.16.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC﹨
DE垂直于横梁AC,AB=8 m,∠A=30°,则DE长为__________.
三﹨解答题〖本大题共5小题,共52分〗17.〖本题满分10分〗如图,在△ABC中,AB=AC,△ABC的两条中线BD﹨
CE交于O点,求证:OB=OC.
18.〖本题满分10分〗△ABC在平面直角坐标系中的位置如图所示.
;1C 1B 1A △轴对称的三角形y 关于ABC △作出〗1〖 .
2C 2B 2A △画出平移后的,长度向下平移3个单位ABC △将〗2〖 19.〖本题满分10分〗
如图,已知△ABC 中,AH ⊥BC 于H ,∠C =35°,且AB +BH =HC ,求∠B 的度数.
20.〖本题满分10分〗
如图,E 在△ABC 的AC 边的延长线上,D 点在AB 边上,DE 交BC 于点F ,DF =EF ,BD =CE .求证:
△ABC 是等腰三角形.〖过D 作DG ∥AC 交BC 于G 〗.
21.〖本题满分12分〗如图,C 为线段AE 上一动点〖不与点A ﹨
E 重合〗,在AE 同侧分别作等边△ABC 和等边△CDE ,AD 与BC 相交于点P ,BE 与CD 相交于点Q ,
连接PQ .求证:△PCQ 为等边三角形.
参考答案
1.A 点拨:数字图案一般是沿中间竖直线或水平线折叠,看是否是轴对称图形,只有A 选项是轴对称图形
.
2.B 点拨:①③正确,②④不正确,其中④对应点还可能在对称轴上.
3.D 点拨:因为BC 是腰是底不确定,因而有两种可能,当BC 是底时,△ABC 的腰长是5 cm,当BC 是腰时,腰长就是8 cm,且均能构成三角形,因为△A ′B ′C ′与△ABC 全等,所以△
A ′
B ′
C ′的腰长也有两种相同的情况:8 cm 或5 cm.
4.D 点拨:
在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.
①42°的角为等腰三角形底角;
②42°的角为等腰三角形的顶角,则底角为〖180°-42°〗÷2=69°.
所以底角存在两种情况,∴42°或69°.
5.B 点拨:①③不正确,②④正确.
6.D 点拨:DE 垂直平分AB ,∠B =30°,所以AD 平分∠CAB ,由角平分线性质和线段垂直平分线性质可知A ﹨B ﹨C 都正确,且AC ≠
AD =BD ,故D 错误.
7.C 点拨:经过三次轴对称折叠,再剪切,得到的图案是C 图
〖也可将各选项图案按原步骤折叠复原〗.
8.B 点拨:本题中的台球经过多次反射,每一次的反射就是一次轴对称变换,直到最后落入球袋,可用轴
对称作图〖如图〗,该球最后将落入2号袋.
9. 点拨:观察可知本题图案是两个数字相同,且轴对称,由排列可知是相同的偶数数字构成的,故此题
答案为6组成的轴对称图形.
10.2 -5 点拨:点E ﹨F 关于y 轴对称,横坐标互为相反数,纵坐标不变.
11.2.5 cm 点拨:△ABC 为等边三角形,AB =BC =CA ,AD ⊥BC ,所以点D 平分BC .
2.5 cm.=12BC =DC 所以 12.5 点拨:∠C =90°,∠A =30°, 则∠ABC =60°,BD 是∠ABC 的平分线, 5.=12BD =
CD 所以,30°=CBD ∠则 13.40° 点拨:因为MP ﹨NQ 分别垂直平分AB 和AC ,
所以P A =PB ,QA =QC ,∠P AB =∠B ,∠QAC =∠C ,∠P AB +∠QAC =∠C +∠
B =180°-110°=70°,
所以∠P AQ 的度数是40°.
14.25° 点拨:设∠C =x ,那么∠ADB =∠B =2x ,
因为∠ADB +∠B +∠BAD =180°,代入解得x =25°.
15.60°或120° 点拨:有两种可能,如下图〖1〗和图〖2〗,AB =AC ,CD 为一腰上的高,过A 点作底边BC 的垂线,图〖1〗中,∠BAC =60°,图〖2〗中,∠
BAC =120°.
2 m.=14AB =12AD =DE 可知,角所对的直角边是斜边的一半30°根据点拨: 2 m .16 .12
AC =CD ,12AB =BE ∴,边上的中线AB ﹨AC 分别是CE ﹨BD ∵证明:.17 又∵AB =AC ,∴BE =CD .
,
,
,
BE CD ABC ACB BC CB =
⎧⎪∠=∠⎨⎪=⎩,中CBD △和BCE △在 ∴△BCE ≌△CBD 〖SAS 〗.
∴∠ECB =∠DBC .∴OB =OC .
.
1C 1B 1A △如图所示的〗1〖解:.18 .
2C 2B 2A △如图所示的〗2〖 19. 解:如图,在CH 上截取DH=BH,连接AD,
∵AH ⊥BC,
∴AH 垂直平分BD.
∴AB=AD.∴∠B=∠ADB.
∵AB+BH=HC,
∴AD+DH=HC=DH+CD.
∴AD=CD.∴∠C=∠DAC=35°.
∴∠B=∠ADB=∠C+∠DAC=70°.
20. 证明:如图,过D 作DG ∥AC 交BC 于G,
则∠GDF=∠E,
∠DGB=∠ACB,
在△DFG 和△EFC 中,
∴△DFG ≌△EFC 〖ASA 〗.
∴CE=GD,∵BD=CE.∴BD=GD.
∴∠B=∠DGB.∴∠B=∠ACB.
∴△ABC 为等腰三角形.
21. 证明:如图, ∵△ABC 和△CDE 为等边三角形,
∴AC =BC ,CE =CD ,∠ACB =∠ECD =60°.
∴∠ACB +∠3=∠ECD +∠3, 即∠ACD =∠BCE .
又∵C 在线段AE 上,
∴∠3=60°.
在△ACD 和△BCE 中,
,,
,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩
∴△ACD ≌△BCE .∴∠1=∠2.
在△APC 和△BQC 中,
,12,
360,AC BC ACB =⎧⎪∠=∠⎨⎪∠=∠=︒⎩
∴△APC ≌△BQC .∴CP =CQ .
∴△PCQ 为等边三角形〖有一个角是60°的等腰三角形是等边三角形〗.。