乘法公式与因式分解复习课

合集下载

第14章整式的乘法与因式分解单元备课

第14章整式的乘法与因式分解单元备课

第十四章“整式的乘法与因式分解”单元备课一、课程学习目标1.使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。

使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。

2.使学生会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。

3.使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。

4.使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。

二、教学重点、难点和关键本章的教学重点之一是整式的乘法,包括乘法公式。

从整式乘除的地位和作用可知,如果不掌握好这部分内容,会给以后的学习带来极大的困难。

因此要有针对性地加强练习,务必使学生对整式的乘除运算,包括其中运用乘法公式进行计算达到熟练的程度。

整式的乘除中,单项式的乘除是关键。

这是因为其他乘除都要转化为单项式的乘除。

实际上,单项式的乘除进行的是幂的运算与有理数的运算,因此幂的运算是学好整式乘除的基石。

乘法公式的结构特征以及公式中字母的广泛含义学生不易掌握,运用时容易混淆,因此乘法公式的灵活运用是本部分的难点。

在教学中要引导学生分析公式的结构特征,并在练习中与所运用公式的结构特征联系起来,对所发生的错误多做具体分析,以加深学生对公式结构特征的理解。

添括号时,括号内符号的确定是本部分的另一个难点。

掌握添括号法则的关键是要把添上括号后括号内的多项式与括号前面的符号看成统一体,对于这一点学生不易理解,要结合例题进行分析。

学生在学习添括号时,感觉添括号比去括号要难,括号前是“—”号比括号前是“+”号要难。

遇到括号前是“—”号时,学生容易漏掉括号内一部分项的变号,在讲解例题时要强调法则中“各项”的含义。

第12章-乘法公式和因式分解复习课

第12章-乘法公式和因式分解复习课

一、学习目标:1.了解公式的几何解释,并能运用公式进行简单计算.2、在应用乘法公式进行计算的过程中,感受乘法公式的作用和价值.3、会用提公因式法、公式法进行因式分解.4、了解因式分解的一般步骤.5、在因式分解中,经历观察、探索和作出推断的过程,提高分析能力和解决问题的能力.二、学习重点、难点和关键:1.学习重点:(1)乘法公式及其运用;(2)用提公因式法和公式法进行因式分解.2.学习难点:(1)在具体问题中,正确地运用乘法公式;(2)在具体问题中,正确地运用提公因式法和公式法分解因式.3.关键:关键在于使学生正确理解乘法公式和因式分解的意义,认识乘法公式的结构特征以及字母的广泛含义.三、课前延伸:(一)梳理知识:1、乘法公式:①完全平方公式:﹍﹍﹍﹍②平方差公式:﹍﹍﹍﹍2、因式分解:(1)把一个多项式写成几个整式的乘积的形式,叫做因式分解。

(2)因式分解的方法:①提公因式法;②运用公式法;③十字相乘法④分组分解法①提公因式法:公因式的确定(系数、字母、指数、多项式)②运用公式法:a2-b2=(a+b)(a-b)a2±2ab+b2=(a±b)2③十字相乘法:x2+(p+q)x+pq=(x+p)(x+q)x2+5x+6 = x2+5x-6=x 2-5x+6 = x 2-5x-6=④分组分解法:a 2-ab+ac-bc=a 2+c 2-2ac-1=(3)因式分解的步骤:一提、二用、三分、四查。

3、区别乘法运算和因式分解: ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍四、课内探究:(一)自主学习(学生独立完成)(二)合作探究:1、(x -2y) ﹒(x+2y) -(x+2y)2+8y 2; 2 、(a+2b+3c) ﹒(a+2b -3c);3 、(a+b)3;4 、10012×9992(三)精讲点拨:(1) 4x 3y +4x 2y2+xy3; (2) b 2 +c 2-2bc -a 2()()()()()()()()()()()()()______124.6_____1414.5_____111.4___;1___1.349___3___3.2125____15.143322222222的公因式是y x z y x m m x x x a b b a x x b a a a a a -=-+=+-+-=+-=--=--+--=+()()()()______.11_____228.10_____22.9_____3.83235=-=-+=+---x x mn mn n m x n mx mn b a b a 分解因式:的公因式是()()_________124.722的公因式是和m n mn n m m +-+-(3)x4-16 (4) (a 2-4ab+4b 2)-(2a-4b)+1 (5)25(a+b)2-9(a-b)2(四)巩固提升:1、因式分解:(1)25m 2-4n 2(2)(m+n)2-8(m+n)+16 (3)(x2+4)2-16x22、计算:(1)1982(2)9.92-9.9×0.2+0.013、解方程:(2x+5)2-(2x+1)2=25(1-x)4.(1)若一个正方形的面积是9x2+12xy+4y2,则这个正方形的边长是____;(2)当k=____时,100x2–kxy+49y2是一个完全平方式(3)若二项式4m2+1加上一个单项式后是一含m的完全平方式,则单项式为____五、作业:课本p127.8题 10题六、课后提升:1. 将下列各式因式分解(1).(t-1)(t+4)-6 (2). ax2+3x2-4a-122. 求值计算:(1).2005+20052-20062(2).x,,y满足x2+xy=35,求出满足条件的自然数x和y.。

整式的乘法因式分解复习课件

整式的乘法因式分解复习课件

因式分解
1.运用前两节所学的知识填空
1).m(a+b+c)= ma+mb+你m能. c发现这 2).(a+b)(a-b)= a2-b2 两组.等式之 3).(a+b)2= a2+2ab.+b2间区的别联吗系? 和
2.试一试 填空:
1).ma+mb+mc= m•( a+b+c )
2).a2-b2=((a+b)(a-b))
A. 4X²+y² B. 4 x- (-y)²
C. -4 X²-y³ D. - X²+ y²
D. 4) -4a²+1分解因式的结果应是 (D )
A. -(4a+1)(4a-1)
B. -( 2a –1)(2a –1)
B. -(2a +1)(2a+1) D. -(2a+1) (2a-1)
整式的乘法因式分解复习课件
被除式的系数 除式的系数
底数不变, 指数相减。 整式的乘法因式分解复习课件
保留在商里 作为因式。
解: (1).(2x²y)³·(–7xy²)÷(14x4y³)
=8x6y3 ·(–7xy²)÷(14x4y³)
=-56x7y5 ÷(14x4y³) = -4x3y2 解:(2).(2a+b)4÷(2a+b)²
整式的乘法因式分解复习课件
a a a 同底数幂的乘法
m · n = m+n
幂的乘方
a a ( m )n = mn
整 式
积的乘方
( ab )n= an b n
的 乘
单项式的乘法
4a2x5 ·(-3a3bx2)

(完整版)乘法公式和因式分解知识点

(完整版)乘法公式和因式分解知识点

乘法公式和因式分解(一)、知识点:1、单项式乘单项式:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

2、单项式乘多项式:单项式与多项式相乘,用单项式乘多项式的的每一项,再把所得的积相加。

m(a+b-c)=ma+mb-mc3、多项式乘多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

(a+b)(c+d)=ac+ad+bc+bd(二)、知识要点 1、乘法公式2、因式分解因式分解:(1)把一个多项式写成几个整式的积的形式叫做多项式的因式分解。

注、公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。

(2)多项式的乘法与多项式因式分解的区别简单地说:乘法是积化和,因式分解是和化积。

3、因式分解的方法: (1)、提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

(2)、运用公式法:运用乘法公式把一个多项式因式分解的方法叫运用公式法。

(3)、分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. (4)、十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。

简单的说十字相乘法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

注意:十字相乘法不是适合所有二次三项式,只有在一次项系数和二次项系数以及常数项存在一种特殊关系时才能用,这个特殊关系我们通过例题来说明: 注意:我们在用十字相乘法之前一定要根据第一步判断是否能用十字相乘法。

我们在分解常数项和二次项系数时变化多端,目的是交叉相乘之和要等于一次项系数,如何分配常数项和二次项系数要根据情况而定。

人教版八年级上册数学《平方差公式》整式的乘法与因式分解研讨复习说课教学课件

人教版八年级上册数学《平方差公式》整式的乘法与因式分解研讨复习说课教学课件

总结
这节课我们学到了什么?
1.平方差公式: (a+b)(a-b)=
2.平方差公式的结构特点:
结构
两数之和 两数之差 两数的平方差
(a+b)(a-b)= -
细节
相同项
相反项
平方差公式
什么是平方差公式? 平方差公式的结构有什么特点? 证明利用平方差公式计算?
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
(2)(m+2)(m-2)=_______________;
(3)(2x+1)(2x-1)=_______________.
上述问题中相乘的两个多项式有什么共同点? 都是两项之和乘以两项之差
探究
计算下列多项式的积: (1)(x+1)(x-1)=_______________;
(2)(m+2)(m-2)=_______________;
(2)102×98 = (100+2)(100-2) = 1002-22 = 10 000 – 4 =9996.
新课讲解
不符合平方差公 式运算条件的 乘法,按乘法 法则进行运算.
通过合理变形, 利用平方差公式, 可以简化运算.
新课讲解
【练习】计算:
(1) 51×49; (2)(3x+4)(3x-4)-(2x+3)(3x-2) . 解: (1) 原式=(50+1)(50-1)
在探究整除性或倍数问题时,一般先将代数式化为最简, 然后根据结果的特征,判断其是否具有整除性或倍数关系.
随堂即练
1.下列运算中,可用平方差公式计算的是( C )
A.(x+y)(x+y) B.(-x+y)(x-y)

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案第一章:整式的乘法1.1 整式乘法的基本概念理解整式的定义及表示方法掌握整式乘法的基本原理1.2 整式的乘法法则学习整式乘法的基本法则练习整式乘法的计算方法1.3 多项式乘多项式理解多项式乘多项式的概念掌握多项式乘多项式的计算方法1.4 单项式乘多项式理解单项式乘多项式的概念掌握单项式乘多项式的计算方法第二章:平方差公式与完全平方公式2.1 平方差公式推导平方差公式练习应用平方差公式解题2.2 完全平方公式推导完全平方公式练习应用完全平方公式解题2.3 平方根与乘方理解平方根与乘方的概念掌握平方根与乘方的计算方法第三章:因式分解3.1 因式分解的概念理解因式分解的定义及意义掌握因式分解的基本方法3.2 提取公因式法学习提取公因式法的方法练习提取公因式法解题3.3 公式法学习公式法的方法练习公式法解题3.4 分组分解法学习分组分解法的方法练习分组分解法解题第四章:应用题与综合练习4.1 应用题解法学习应用题的解法练习解决实际问题4.2 综合练习综合运用所学知识解决实际问题提高解题能力与思维水平第五章:复习与总结5.1 复习重点知识复习整式的乘法与因式分解的重点知识巩固所学内容5.2 总结全章内容总结整式的乘法与因式分解的主要概念和方法提高学生的综合运用能力第六章:多项式的乘法与除法6.1 多项式乘多项式理解多项式乘多项式的概念掌握多项式乘多项式的计算方法6.2 单项式乘多项式与多项式乘单项式理解单项式乘多项式与多项式乘单项式的概念掌握单项式乘多项式与多项式乘单项式的计算方法6.3 多项式除以单项式理解多项式除以单项式的概念掌握多项式除以单项式的计算方法6.4 多项式除以多项式理解多项式除以多项式的概念掌握多项式除以多项式的计算方法第七章:分式与分式方程7.1 分式的概念与性质理解分式的定义及表示方法掌握分式的基本性质7.2 分式的运算学习分式的运算规则练习分式的计算方法7.3 分式方程理解分式方程的定义及解法掌握解分式方程的方法7.4 应用题与综合练习学习解决实际问题中涉及分式与分式方程的问题提高解决实际问题的能力第八章:二次三项式的因式分解8.1 二次三项式的概念理解二次三项式的定义及表示方法掌握二次三项式的性质8.2 二次三项式的因式分解学习二次三项式的因式分解方法练习二次三项式的因式分解技巧8.3 应用题与综合练习学习解决实际问题中涉及二次三项式的因式分解的问题提高解决实际问题的能力第九章:方程的解法与应用9.1 方程的解法学习方程的解法掌握解一元二次方程的方法9.2 方程的应用理解方程在实际问题中的应用练习解决实际问题中涉及方程的问题9.3 应用题与综合练习学习解决实际问题中涉及方程的问题提高解决实际问题的能力第十章:复习与总结10.1 复习重点知识复习本章的重点知识巩固所学内容10.2 总结全章内容总结本章的主要概念和方法提高学生的综合运用能力重点和难点解析1. 整式乘法的基本概念和原理:理解整式乘法的定义和表示方法,掌握整式乘法的原理是学习整式乘法的基础,需要重点关注。

整式乘除与因式分解复习教案

整式乘除与因式分解复习教案

整式乘除与因式分解复习教案第一篇:整式乘除与因式分解复习教案整式的乘除与因式分解复习菱湖五中教学内容复习整式乘除的基本运算规律和法则,因式分解的概念、方法以及两者之间的关系。

通过练习,熟悉常规题型的运算,并能灵活运用。

教学目标通过知识的梳理和题型训练,提高学生观察、分析、推导能力,培养学生运用数学知识解决问题的意识。

教学分析重点根据新课标要求,整式的乘除运算法则与方法和因式分解的方法与应用是本课重点。

难点整式的除法与因式分解的应用是本课难点。

教学方法与手段采用多媒体课件,由于本课内容较多,故设计了大量的练习,使学生理解各种类型的运算方法。

本课教学以练习为主。

教学过程一.回顾知识点(一)整式的乘法1、同底数的幂相乘2、幂的乘方3、积的乘方4、同底数的幂相除5、单项式乘以单项式6、单项式乘以多项式7、多项式乘以多项式8、平方差公式9、完全平方公式(二)整式的除法1、单项式除以单项式2、多项式除以单项式(三)因式分解1、因式分解的概念2、因式分解与整式乘法的关系3、因式分解的方法4、因式分解的应用二.练习巩固(一)单项式乘单项式(1)(5x3)⋅(-2x2y),(2)(-3ab)2⋅(-4b3)(3)(-am)2b⋅(-a3b2n),231(4)(-a2bc3)⋅(-c5)⋅(ab2c)343(二)单项式与多项式的乘法(1)(-2a)⋅(x+2y-3c),(2)(x+2)(y+3)-(x+1)(y-2)(3)(x+y)(-2x-1y)2(三)乘法公式应用(1)(-6x+y)(-6x-y)(2)(x+4y)(x-9y)(3)(3x+7y)(-3x-7y)(四)整式的除法1(1)(-a6b4c)÷((2a3c)41(2)6(a-b)5÷[(a-b)2]3(3)(5x2y3-4x3y2 +6x)÷(6x)13(4)x3my2n-x2m-1y2+x2m+1y3)÷(-0.5x2m-1y2)3 4(五)提取公因式法因式分解(1)3ay-3by+3y(2)-4a3b2+6a2b-2ab(3)3(x-y)3-6(x-y)2(4)5m(a-b)4-4m2(b-a)3(六)乘法公式因式分解(1)25-16x2(2)-81x2+4(y-1)2(3)x2-14x+49(4)(x+y)2-6(x+y)+9(七)因式分解的应用1、解方程(1)9x2+4x=0(2)x2=(2x-5)22、计算(1)(2mp-3mq+4mr)÷(2p-3q+4r)(2)(16-x4)÷(4+x2)÷(x-2)探究活动:求满足4x2-9y2=31的正整数解。

人教版八年级数学上册课件:14章 整式的乘法与因式分解--知识点复习 (共53张PPT)

人教版八年级数学上册课件:14章   整式的乘法与因式分解--知识点复习 (共53张PPT)

A.(6a3+3a2)÷
1 2
a=12a2+6a
B.(6a3-4a2+2a)÷2a=3a2-2a
C.(9a7-3a3)÷(﹣
1 3
a3)=﹣27a4+9
C.( 14a2+a)÷(﹣12a)=﹣12 a-2
5.一个多项式与﹣2x2的积为﹣2x5+4x3﹣x2,则这个多项式

.
6.计算:⑴
(9x2y-6xy2)÷3xy;
2.已知M= a-1,N=a2- a(a为任意实数),则M,N的
大小关系为( A ) A. M<N B. M=N C. M>N D.不能确定
3.若x2+y2+ =2x+y,则y-x= .
3、am﹣n=am ÷ an(a≠0,m,n都
是正整数,并且m>n).
10
知识点一:幂的运算性质
巩固练习
1.(易错题)若(1-x)1-3x=1,则x的取值有( C )个.
A.0 B.1 C.2 D.3 4
2.若3x=4,9y=7,则3x-2y的值为 7 . 3.已知am=3,an=2,则a2m-n的值为 4.5 .
为( B ) A M<N
B M>N
C M=N D.不能确定
10.计算:(1)(x+1)(x+4); (2)(y-5)(y-6); (3)(m-3)(m+4)
(x+p)(x+q)
18
知识点二:整式的运算
知识回顾
单项式的除法法则: 系数、同底数幂分别相除 只在被除式里含有的字母
19Βιβλιοθήκη 知识点二:整式的运算2
重点难点
重点:运用整式的乘法法则和除法法则进行运算;因式分 解. 难点:应用整式的乘法和因式分解决问题.

乘法公式因式分解与分式复习课2014.3

乘法公式因式分解与分式复习课2014.3
2 3 3 4
2
4. x 1 x 1 1 x _____
2


6.4 x y z 12 x y 的公因式是 ______
7. 4mm n 和 12 mn n m 的公因式是
2
_________
8.a b 3a b 的公因式是 _____
4、从甲地到乙地的路程是15千米,A骑自行车从甲地到 乙地先走,40分钟后,B骑自行车从甲地出发,结果同 时到达。已知B的速度是A的速度的3倍,求两车的速度。
3.对下列多项式进行因式分解:
1x y z yz y 281x 4 y 4
1 2 4 3 a a 4 2 4x y 4x y 1
5 3
9.2mn 2mx _____n x
2 3
10.8m n 2mn 2mn_____ 11.分解因式:x x ______
12、下列代数式是分式的是:
1 x
x 1 3 xy 2
2
3 1 a Hale Waihona Puke y m1 2典例探究
1.如果x y 10, xy 7, 则x y xy ____
2 2
2.计算: 5652 0.13 4352 0.13 _____ 3.若mx ny x 3 y x 3 y , 则m ___,
2 2
n ___
2a b b 2a b
4.先化简,再求值:
2 2
4a , 其中a 1, b 2
乘法公式、因式分解与分式
复 习
学习目标:
1.了解公式的几何解释,分式和最简分式的概念。 2、在应用乘法公式进行计算的过程中,感受乘法 公式的作用和价值. 3、会用提公因式法、公式法(利用公式不超过二 次)进行因式分解. 4、了解因式分解的一般步骤. 5、能利用分式的基本性质进行约分和通分,并进 行简单的分式的加减乘除运算。能解可化为一元 一次方程的分式方程

最新人教版初中八年级数学上册第十四章《整式的乘法与因式分解》精品教案(小结复习课)

最新人教版初中八年级数学上册第十四章《整式的乘法与因式分解》精品教案(小结复习课)

解:(1) (x-y)2-8(x2-y2)+16(x+y)2 = (x-y)2-8(x-y)(x+y)+[4(x+y)]2 = (x-y)2-2(x-y)∙4(x+y)+[4(x+y)]2 = [(x-y)-4(x+y)]2 = (-3x-5y)2 = (3x+5y)2 ;
解:(2) (x+2)(x-8)+25 =x2-8x+2x-16+25 =x2-6x+9 =x2-2∙x∙3+32 =(x-3)2 .
本题源自《教材帮》深化Fra bibliotek习 3计算:整数x,y满足方程 2xy+x+y=83,则 x+y 的值为多少? 解析:利用因式分解将等式变形为左边是两个整式的乘积,右边是一个整 数的形式,再求出x,y的值,进而求出x+y的值.
本题的难点是如何将2xy+x+y=83进行变形并因式分解.
本题源自《教材帮》
深化练习 3
本题源自《教材帮》
深化练习 1
若:4x2+mxy+9y2是完全平方式,则m的值为多少?
解:完全平方公式是形如 a2+2ab+b2,a2-2ab+b2 的式子, 将条件中的式子进行变形. ∵4x2+mxy+9y2=(2x)2+mxy+(3y)2,且原式是完全平方式, ∴±mxy=2∙2x∙3y. ∴m=±12.
因式分解: (1) a4-16a2 ;
解:(1) a4-16a2 = a2(a2-16) = a2(a+4)(a-4) ;
(2) -2a2b2+a3b+ab3 ;

复习教案-初二-整式的乘法与因式分解(教师版)

复习教案-初二-整式的乘法与因式分解(教师版)

A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)2.设b>0,a2﹣2ab+c2=0,bc>a2,则实数a、b、c的大小关系是(A)A.b>c>a B.c>a>b C.a>b>c D.b>a>c3.若(x+2)是多项式4x2+5x+m的一个因式,则m等于( A )A.–6B.6C.–9D.9三、课堂练习1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于(D)A.﹣1B.﹣1或﹣11C.1D.1或112.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为(A)A.25B.20C.15D.103.已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则(D)A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥04.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 6 .5.若a﹣b=3,b﹣c=2,那么a2+b2+c2﹣ab﹣ac﹣bc=19 .6.已知x2﹣2x﹣1=0,则3x2﹣6x= 3 ;则2x3﹣7x2+4x﹣2019=-2022 .7.已知x2﹣2x﹣3=0,则x3﹣x2﹣5x+12=15 .8.若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为 3 .9.已知2x2﹣ax﹣2=0,则下列结论中正确的是124 .①其中x的值不可能为0;②当x=2时,;③若a=1时,;④若a=2时,x3﹣4x2+2x=﹣3.10.设n为整数,则(2n+1)2﹣12.5一定能被(B)A.2整除B.4整除C.6整除D.8整除11.248﹣1能被60到70之间的某两个整数整除,则这两个数是(B)A.61和63B.63和65C.65和67D.64和6712.对于算式20183﹣2018,下列说法错误的是(C)A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除13.如图①,是一个棱长为a的正方体中挖去一个棱长为b的小正方体(a>b)(1)如图①所示的几何体的体积是a3-b3.(2)用另一种方法表示图①的体积:把图①分成如图②所示的三块长方体,将这三块长方体的体积相加后得到的多项式进行因式分解.比较这两种方法,可以得出一个代数恒等式(a-b)(a2+ab+b2)=a3-b3.14.若a2﹣b﹣1=0,且(a2﹣1)(b+2)<a2b.(Ⅰ)求b的取值范围;(Ⅱ)若a4﹣2b﹣2=0,求b的值.15.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,则△ABC的形状是直角三角形或等腰三角形或等腰直角三角形三角形.16.△ABC的两边a,b满足a4+b4﹣2a2b2=0,且∠A=60°,则△ABC的形状是等边三角形三角形.17.阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)所得结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个边长分别为a、b的长方形纸片,①请按要求利用所给的纸片拼出一个几何图形,并画在图3所给的方框中,要求所拼出的几何图形的面积为2a2+5ab+2b2,②再利用另一种计算面积的方法,可将多项式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=.18.阅读理解材料一:若一个正整数的各个数位上的数字之和能被3整除,则这个数就能被3整除;反之也能够成立.材料二:两位数p和三位数q,它们各个数位上的数字都不为0,将数p任意一个数位上的数字作为一个新的两位数的十位数字,将数q的任意一个数位上的数字作为该新数的两位数的个位数字,技照这种方式产生的所有新的两位数的和记为T(p,q)例如:T(12,123)=11+12+13+21+22+23=102,T(33,456)=34+35+36+34+35+36=210.(1)填空T(15,345)=.(2)求证:当q能够被3整除时T(p,q)一定能够被6整除.(3)若一个两位数m=2la+b,一个三位数n=12la+b+199,(其中1≤a≤4,1≤b≤5,a,b为整数),交换三位数n的百位数字和个位数字得到新数n′,当m的个位数字的3倍与n′的和能被11整除时,称这样的两个数m和n为“和谐数对”,求所有和谐数对中T(m,n)的最大值.四、课堂小结重难点:多项式乘多项式;乘法公式;因式分解的方法。

人教版八年级上册数学《平方差公式》整式的乘法与因式分解培优说课教学复习课件

人教版八年级上册数学《平方差公式》整式的乘法与因式分解培优说课教学复习课件

课堂检测
5. 计算: 20152 – 2014×2016.
解: 20152 – 2014×2016 = 20152 – (2015–1)(2015+1) = 20152 – (20152–12 ) = 20152 – 20152+12 =1
课堂检测
6. 利用平方差公式计算:
(1)(a–2)(a+2)(a2 + 4) 解:原式=(a2–4)(a2+4)
=10000 – 4
= y2–4–y2–4y+算5 条件的乘法,按乘法法
则进行运算.
=9996;利用通平过方合差理公变式形,,可= – 4y + 1.
以简化运算.
巩固练习
计算:
(1) 51×49; 解: (1) 原式=(50+1)(50–1)
= 502–12 =2500 – 1 =2499;
(2)(3x+4)(3x–4)–(2x+3)(3x–2) . (2) 原式=(3x)2–42–(6x2+5x–6)
B. (a+b)2=a2+2ab+b2 C. (a–b)2=a2–2ab+b2
b 图1
b 图2
D. (a+2b)(a–b)=a2+ab–2b2
链接中考
1. 化简(x–1)(x+1)的结果是 x2–1 . 2. 某同学化简a(a+2b)–(a+b)(a–b)出现了错误,解答过程如 下:原式=a2+2ab–(a2–b2) (第一步)
①(x + 1)( x–1);
x2 – 12
②(m + 2)( m–2);
m2–22
③(2m+ 1)(2m–1); ④(5y + z)(5y–z).

人教版八年级数学上册第十四章整式的乘法与因式分解小结与复习教学课件

人教版八年级数学上册第十四章整式的乘法与因式分解小结与复习教学课件
∴420>1510.
考点二 整式的运算
例3 计算:[x(x2y2-xy)-y(x2-x3y)] ÷3x2y,其中x=1,y=3.
解析:在计算整式的加、减、乘、除、乘方的运算中,一要注意运算顺序;二要熟练
正确地运用运算法则.
解:原式=(x3y2-x2y-x2y+x3y2) ÷3x2y
=(2x3y2-2x2y) ÷3x2y
例6 把多项式2x2-8分解因式,结果正确的是( C )
A.2(x2-8)
B.2(x-2)2
C.2(x+2)(x-2) D.2x(x- )
4 x
归纳总结
因式分解是把一个多项式化成几个整式的积的形式,它与整式乘法互为逆 运算,因式分解时,一般要先提公因式,再用公式法分解,因式分解要求 分解到每一个因式都不能再分解为止.
3.(1)已知3m=6,9n=2,求3m+2n,32m-4n的值. (2)比较大小:420与1510. 解:(1)∵3m=6,9n=2, ∴3m+2n=3m·32n=3m·(32)n=3m·9n=6×2=12. 32m-4n=32m÷34n=(3m)2÷(32n)2=(3m)2÷(9n)2=62÷22=9. (2) ∵420=(42)10=1610, ∵1610>1510,
=a2-(b-3)2=a2-b2+6b-9. (3)原式=[(3x-2y)(3x+2y)]2
=(9x2-4y2)2=81x4-72x2y2+16y4
11.用简便方法计算
(1)2002-400×199+1992; (2)999×1 001. 解:(1)原式=(200-199)2=1;
(2) 原式=(1000-1)(1000+1) =10002-1 =999999.

第4讲 乘法公式和因式分解

第4讲 乘法公式和因式分解

1 〖初高中数学衔接知识〗第4讲 乘法公式和因式分解班级________________ 姓名________________ 学号______【乘法公式】将一些特殊的多项式相乘的结果加以总结,直接应用。

(1)平方差公式:_______________________________;(2)两数和的完全平方公式:___________________________________;(3)两数差的完全平方公式:___________________________________;(4)立方和公式:2233()()a b a ab b a b +-+=+;(5)立方差公式:2233()()a b a ab b a b -++=-;(6)三数和的平方公式:2222()222a b c a b c ab bc ac ++=+++++;(7)两数和的立方公式:33223()33a b a a b ab b +=+++;(8)两数差的立方公式:33223()33a b a a b ab b -=-+-。

【例1】化简下列各式:(1)()()a b c a b c ++--; (2)(23)(23)a b c a b c ----。

【例2】已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值。

【例3】计算:22(1)(1)(1)(1)x x x x x x +--+++2 〖练习1〗填空:(1)221111()9423a b b a -=+( );(2)(4m + 22)164(m m =++ );(3)2222(2)4(a b c a b c +-=+++ )。

〖练习2〗若212x mx k ++是一个完全平方式,则k 等于 ··························· () (A )2m (B )214m (C )213m (D )2116m〖练习3〗不论a ,b 为何实数,22248a b a b +--+的值 ························ () (A )总是正数 (B )总是负数 (C )可以是零 (D )可以是正数也可以是负数 〖练习4〗计算:(1)103×97; (2)2199819971999-⨯。

人教版八年级上册第十四章整式的乘法与因式分解复习课件

人教版八年级上册第十四章整式的乘法与因式分解复习课件
章节复习课
课程标准
本章知识梳理
1.能进行简单的整式乘法运算(多项式乘法仅限于一次式之间和
一次式与二次式的乘法).
2.理解乘法公式(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2,了解公
式的几何背景,能利用公式进行简单的计算和推理.
3.能用提公因式法、公式法(直接利用公式不超过两次)进行因式
分解(指数是正整数).
知识导航
同底数幂的乘法:am·an=am+n(m,n都是正整数) 幂的乘方:(am)n=amn(m,n都是正整数) 整式的 积的乘方:(ab)n=anbn(n是正整数) 乘法 单项式与单项式相乘:ambn·ab=am+1bn+1(m,n都是正整数) 单项式与多项式相乘:m(a+b+c)=ma+mb+mc 多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb
=(4+x2)(2+x)(2-x).
易错典例
易错点7:错误运用整体思想分解因式 【例7】分解因式:(m+n)2-4(m+n)+4. 错解:许多同学对此题束手无策,或误解为原式=(m+n)(m+n- 4)+4. 错解分析:公式中的字母可以表示任何数、单项式或多项式.要 避免把公式中的字母看成一个数的局限性.此题可以把m+n看作一 个整体. 正解:原式=(m+n-2)2.
续表
提公因式法:ma+mb=m(a+b)
因式分解
平方差公式法:a2-b2=(a+b)(a-b) 公式法
完全平方公式法:a2±2ab+b2=(a±b)2

第十四章整式乘法与因式分解单元教学精选全文完整版

第十四章整式乘法与因式分解单元教学精选全文完整版

可编辑修改精选全文完整版第十四章整式乘法与因式分解单元教学第一篇:第十四章整式乘法与因式分解单元教学第十四章整式的乘法与因式分解单元教学计划14.3因式分解。

小结复习。

一、教学内容:14.1整式的乘法。

14.2乘法公式。

二、教学目标:知识与技能:1、使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。

使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。

2、使学生会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。

3、使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运算运算律与乘法公式简化运算4、使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的变形,掌握提公因式法和运用公式法这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。

过程与方法:1、通过探索、猜测,进一步体会学会推理的必要性,发展学生过程与方法〕初步推理归纳能力;2、通过揭示一些概念和法则之间的联系,对学生进行创新精神和实践能力的及主观能动培养.情感态度与价值观:1、通过观察、实验、归纳、类比、推断,体验数学活动的趣味性,以感受推理过程的严谨性以及结论的确定性;2、开展探究性活动,充分体现学生的自主、合作精神,激发学生乐于探索的热情。

三、教学重点:掌握整式的乘法公式。

四、教学难点:掌握因式分解的方法。

五、课时分配:教学时间约需 14 课时,具体分配如下:14.1整式的乘法6课时。

14.2乘法公式3课时。

14.3因式分解3课时。

小结复习2课时。

第二篇:因式分解与整式乘法的关系因式分解与整式乘法的关系【知识点】整式乘法与因式分解一个是积化和差,另一个是和差化积,是两种互逆的变形.即:多项式整式乘积【练习题】1.下列因式分解正确的是①②③④⑤2.下列因式分解正确的是①②③④⑤3.下列因式分解正确的是①②③④⑤4.下列因式分解正确的是①②③④⑤5.下列因式分解正确的是①②③④⑤6.下列因式分解正确的是①②③④⑤答案1.1;22.1;3;53.4;54.3;45.2;46.1;3;57.第三篇:整式的乘法与因式分解复习教案《整式的乘法与因式分解》复习(一)教案教学目标:知识与技能:记住整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法和则过程与方法:会运用法则进行整式的乘除运算,会对一个多项式分解因式情感态度与价值观:培养学生的独立思考能力和合作交流意识教学重点:记住公式及法则教学难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解教学方法与手段:讲练结合教学过程:一.本章知识梳理:幂的运算:(1)同底数幂的乘法(2)同底数幂的除法(3)幂的乘方(4)积的乘方整式的乘除:(1)单项式乘单项式(2)单项式乘多项式(3)多项式乘多项式(4)单项式除以单项式(5)多项式除以单项式乘法公式:(1)平方差公式(2)完全平方公式因式分解:(1)提公因式法(2)公式法二.合作探究:(1)化简:a3·a2b=.(2)计算:4x2+4x2=(3)计算:4x2·(-2xy)=.(4)分解因式:a2-25=三、当堂检测1.am=2,an=3则a2m+n =___________,am-2n =____________ 2.若A÷5ab2=-7ab2c3,则A=_________, 若4x2yz3÷B=-8x,则B=_________.2(ax+b)(x+2)=x-4,则ab=_________________.3.若4.若a-2+b2-2b+1=0,则a=a+,b=5.已知11a2+2=3aa的值是.,则6.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是()A、x2+3x-1B、x2+2xC、x2-1D、x2-3x+1 7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.–3B.3C.0D.1 8.一个正方形的边长增加了2cm,面积相应增加了32cm,则这个正方形的边长为()A、6cmB、5cmC、8cmD、7cm 9.下列各式是完全平方式的是()2A、x2-x+14 B、1+x2 C、x+xy+12D、x+2x-110.下列多项式中,含有因式(y+1)的多项式是(y 2 - 2 y + 1)A.22222(y+1)-(y-1)(y+1)-(y-1)(y+1)+2(y+1)+1B.C.D.三.课堂小结:今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。

第十四章_整式的乘法与因式分解_复习课件

第十四章_整式的乘法与因式分解_复习课件
其中a, b既可以是数, 也可以是代数式.
即两个数的和与这两个数的差的积,等于这两个 数的平方差。这个公式叫(乘法的)平方差公式
说明:平方差公式是根据多项式乘以多 项式得到的,它是两个数的和与同样的 两个数的差的积的形式。
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
法则:多项式除以单项式,先把这个多项 式的每一项除以这个单项式,再把所得的商 相加。
(1)已知a 2

1 a2
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 , 则z应为多少?
x x x (4) 2002 =
1999 3
·
(5)
(
1 7
)1997
·7
1998
=
7
(6) (-abc )2·(-ab) =-a3b3c2
4.单项式与单项式相乘的法则:
单项式与单项式相乘,把它们 的系数、相同字母分别相乘,对于 只在一个单项式里含有的字母,则 连同它的指数作为积的一个因式。
5 .多项式与多项式相乘:
(4) 1 x3m y2n x2m1y2 3 x2m1y3) (0.5x2m1y2 )
3
4
定义 把一个多项式化成几个整式的积的形式,象
这样的式子变形叫做把这个多项式因式分解
或分解因式。

与整式乘法的关系: 互为逆过程,互逆关系
分解因式 方法

公 二次三项型乘法公式 式
(x+p)(x+q)= x2+(p+q)x+pq

第3讲 乘法公式和因式分解

第3讲 乘法公式和因式分解

第3讲 乘法公式和因式分解一、考点知识梳理【考点1 平方差公式】两数和与这两数差的积,等于它们的平方差(a +b)(a -b)=a 2-b 2【考点2 完全平方公式】两数的平方和,加上(或者减去)它们的积的两倍等于它们和(或差)的平方(a±b)2=a 2±2ab +b 2【考点3 因式分解】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算. 要点二、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,提公因式法分解因式实际上是逆用乘法分配律.要点三、公式法1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即,. 形如,的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点四、十字相乘法和分组分解法十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. m m ()()22a b a b a b -=+-()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b对于二次三项式,若存在 ,则 分组分解法 对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点五、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解.(4)结果要彻底,即分解到不能再分解为止.二、考点分析【考点1 平方差公式】【解题技巧】能够运用平方差公式进行多项式乘法运算的必须是两个二项式,两项都能写成平方的形式,且符号相反.反之能够运用平方差公式分解因式的多项式必须是二项式且符号相反.【例1】(2019河北沧州中考模拟)若(a ﹣b ﹣2)2+|a +b +3|=0,则a 2﹣b 2的值是( )A .﹣1B .1C .6D .﹣6【一领三通1-1】(2019 山东青岛模拟)若k 为任意整数,且993﹣99能被k 整除,则k 不可能是( )A .50B .100C .98D .97【一领三通1-2】(2019辽宁大连模拟)先化简,再求值:(a +b)(a -b)+b(a +2b)-b 2,其中a =1,b =-2.【一领三通1-3】(2019河北石家庄中考模拟)计算并观察、探究下列式子①(x ﹣1)(x +1)= x 2﹣1②(x ﹣1)(x 2+x +1)= x 3﹣1③(x ﹣1)(x 3+x 2+x +1)=x 4﹣1④(x ﹣1)(x 4+x 3+x 2+x +1)=x 5﹣1⑤(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=x 6﹣1…由以上规律(1)填空:(x ﹣1)(x n +x n ﹣1+…+x +1)= . 2x bx c ++pq c p q b=⎧⎨+=⎩()()2x bx c x p x q ++=++(2)求:22019+22018+22017+…+22+2+1 的值.【分析】(1)利用多项式乘以多项式法则计算得到结果,规律总结得到一般性结论,写出即可;(2)原式变形后,利用得出的规律计算即可得到结果.【考点2 完全平方公式】【解题技巧】能运用完全平方公式进行多项式乘法运算的,必须是两个数(或差)的平方和的形式,反之能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.【例2】(2019辽宁锦州中考模拟)如果二次三项次x 2﹣16x +m 2是一个完全平方式,那么m 的值是( )A .±8B .4C .﹣2D .±2【一领三通2-1】(2019山东聊城中考模拟)已知a ,b 是△ABC 的两边,且a 2+b 2=2ab ,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .锐角三角形D .不确定【一领三通2-2】(2019沧州九中模拟)当s =t +12时,代数式s 2-2st +t 2的值为 . 【分析】运用完全平方公式分解因式【一领三通2-3】(2019•吉林长春中考)先化简,再求值:(2a +1)2﹣4a (a ﹣1),其中a =.【分析】直接利用完全平方公式以及单项式乘以多项式分别化简得出答案.【一领三通2-4】(2018,江苏南京模拟)先化简,再求值:2(21)2(21)3a a +-++,其中a =【分析】直接运用(a+b)2=a 2+2ab+b 2进行计算、化简.【考点3 因式分解】【解题技巧】因式分解的一般步骤:(1)如果多项式各项有公因式,应先提取公因式;(2)如果各项没有公因式,可以尝试使用公式法来分解因式,看是否符合平方差公式还是完全平方公式,有时需考虑用十字交乘法;(3)检查因式分解是否彻底,必须分解到每一个因式不能再分解为止.类型一、提公因式法分解因式1、 分解因式:(1);(2).【总结升华】在提取公因式时要注意提取后各项字母,指数的变化,另外分解要彻底,特别是因式中含有多项式的一定要检验是否能再分,分解因式后可逆过来用整式乘法验证其正确与否.2、利用分解因式证明:能被120整除.【思路点拨】25=,进而把整理成底数为5的幂的形式,然后提取公因式并整理为含有120的因数即可.【总结升华】解决本题的关键是用因式分解法把所给式子整理为含有120的因数相乘的形式. 类型二、公式法分解因式3、放学时,王老师布置了一道分解因式题:,小明思考了半天,没有答案,就打电话给小华,小华在电话里讲了一句,小明就恍然大悟了,你知道小华说了句什么话吗?小明是怎样分解因式的.【思路点拨】把分别看做一个整体,再运用完全平方公式解答.222284a bc ac abc +-32()()()()m m n m m n m m n m n +++-+-712255-25725()()()222244x y x y x y ++---()()x y x y +-、【总结升华】本题主要考查利用完全平方公式分解因式,注意把看作完全平方式里的是解题的关键.4、若多项式5x 2+17x ﹣12可因式分解成(x +a )(bx +c ),其中a 、b 、c 均为整数,则a +c 之值为何?( )A .1B .7C .11D .13故选:A .5、)把下列各式进行因式分解(1)4(x ﹣2)2﹣1;(2)(x+y )2+4(x+y+1).【思路点拨】(1)直接利用平方差公式分解因式即可;(2)经过变形,利用完全平方公式分解因式即可.【总结升华】此题主要考查了公式法分解因式,熟练掌握乘法公式是解题关键.举一反三: 类型三、十字相乘法和分组分解法分解因式6、分解因式:(1)(2)【总结升华】做题之前要仔细观察,注意从整体的角度看待问题.()()x y x y +-、,a b ()()222222x x ----()2224420x xx x +---7、(x ﹣y )2+5(x ﹣y )﹣50.课堂测1.(2019·安徽中考模拟)下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.(2018·江苏中考模拟)把多项式x 2+ax+b 分解因式,得(x+1)(x -3),则a 、b 的值分别是() A .a=2,b=3 B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-33.(2018·广西中考真题)下列各式分解因式正确的是( )A .x 2+6xy+9y 2=(x+3y )2B .2x 2﹣4xy+9y 2=(2x ﹣3y )2C .2x 2﹣8y 2=2(x+4y )(x ﹣4y )D .x (x ﹣y )+y (y ﹣x )=(x ﹣y )(x+y )4.(2019·山东中考模拟)多项式4a ﹣a 3分解因式的结果是( )A .a (4﹣a 2)B .a (2﹣a )(2+a )C .a (a ﹣2)(a+2)D .a (2﹣a )25.(2018·安徽中考模拟)将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a -2D .(a+2)2-2(a+2)+1利用公式法解决代数式求值问题的方法1.(2018·河南中考模拟)已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( )A .﹣2B .﹣1C .1D .22.(2017·陕西中考模拟)已知实数x 满足22110x x x x +++=,那么1x x +的值是( )A .1或﹣2B .﹣1或2C .1D .﹣23.(2019·江苏中考模拟)若x 2+mx -15=(x+3)(x+n),则m 的值为( )A .-5B .5C .-2D .2课后习题一、选择题1.(2019,湖南湘潭中考模拟)下列式子,正确的是( )A. 3+=B. 1)1=C. 122-=-D. 2222()x xy y x y +-=-(2019,安徽蚌埠中考模拟) 下列多项式中,能用公式法分解因式的是( )A.x 2-xyB. x 2+xyC. x 2-y 2D. x 2+y 23.(2019•河北石家庄中考模拟)若要使4x 2+mx +成为一个两数差的完全平方式,则m 的值应为( ) A . B . C . D .4.(2019•山东青岛中考模拟)如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( )5.(2019•辽宁本溪中考模拟)有一个长方形内部剪掉了一个小长方形,它们的尺寸如图所示,则余下的部分(阴影部分)的面积( )A .4a 2B .4a 2﹣abC .4a 2+abD .4a 2﹣ab ﹣2b 2 二、填空题1.(2019•呼和浩特中考)因式分解:x 2y ﹣4y 3= .2.(2019•辽宁沈阳中考)因式分解:﹣x 2﹣4y 2+4xy = .3.(2019•甘肃兰州中考)因式分解:a 3+2a 2+a = .4.(2019•山东威海中考)分解因式:2x 2﹣2x += .5.(2019,江苏省连云港中考模拟)当12s t =+时,代数式222s st t -+的值为 . 6. (2019,山西省太原中考模拟)分解因式(4)4x x ++的结果是 .7.(2019,山东潍坊中考模拟)分解因式:32627x x x +-= .8. (2019,河北沧州中考模拟)有许多代数恒等式可以用图形的面积来表示,如图①,它表示了(2m +n )(m+n)=2m2+3mn+n2(1)图②是将一个长2m、宽2n的长方形,沿图中虚线平均分为四块小长方形,然后再拼成一个正方形(图③),则图③中的阴影部分的正方形的边长等于(用含m、n的代数式表示)(2)请用两种不同的方法列代数式表示图③中阴影部分的面积.方法①方法②(3)请你观察图形③,写出三个代数式(m+n)2、(m﹣n)2、mn关系的等式:;(4)根据(3)题中的等量关系,解决如下问题:若已知x+y=7,xy=10,则(x﹣y)2=;(5)小明用8个一样大的长方形(长acm,宽bcm)拼图,拼出了如图甲、乙的两种图案,图案甲是一个正方形,图案乙是一个大的长方形,图案甲的中间留下了边长是2cm的正方形小洞.则(a+2b)2﹣8ab 的值为.三、解答题1.(2019湖南怀化中考模拟)先化简,再求值:(2a-1)2-2(a+1)(a-1)-a(a-2),其中a=2+1.2.(2019浙江宁波中考模拟)化简:(a+b)2+(a-b)(a+b)-2ab.3、(2019浙江金华中考模拟)先化简,再求值:(x+5)(x-1)+(x-2)2,其中x=-2.4.(2019江苏省淮安中考模拟)先化简,再求值:[]21y 1,))(()(2=-=÷+-+-,其中x x y x y x y x5. 已知a +b =3,ab =﹣10.求:(1)a 2+b 2的值;(2)(a ﹣b )2的值.6.下面是某同学对多项式(x 2﹣4x +2)(x 2﹣4x +6)+4进行因式分解的过程.解:设x 2﹣4x =y ,原式=(y +2)(y +6)+4 (第一步)=y 2+8y +16 (第二步)=(y +4)2(第三步)=(x 2﹣4x +4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式 (2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2﹣2x )(x 2﹣2x +2)+1进行因式分解.7.正方形Ⅰ的周长比正方形Ⅱ的周长长96cm,它们的面积相差960cm2,求这两个正方形的边长.8.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.(1)用两种不同的方法表示长方形ACDF的面积S.方法一:S=.方法二:S=.(2)求a,b,c之间的等量关系(需要化简).(3)请直接运用(2)中的结论,求当c=10,a=6,S的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总结反思,拓展升华
《乘法公式与因式分解》 单元复习
学习目标:
1.了解公式的几何解释,并能运用公式进行简单 计算. 2、在应用乘法公式进行计算的过程中,感受乘法 公式的作用和价值. 3、会用提公因式法、公式法进行因式分解. 4、了解因式分解的一般步骤. 5、在因式分解中,经历观察、探索和作出推断 的过程,提高分析能力和解决问题的能力.
5.4m 14m 1 _____
6.4x2 y3z 12x3 y4的公因式是______
7. 4mm n2和12mnn m2的公因式是
_________
8.a b5 3a b3的公因式是_____ 9.2mn 2mx _____n x 10.8m2n 2mn 2mn_____
2a bb 2a b2 4a2 ,其中a 1,b 2
能力提升
1.用边长为12.75的正方形铁皮剪一个边长为7.25的 正方形,则浪费的铁皮面积为__________
2.如果x2 mx 45 x nx 5,则m _____
3.对下列多项式进行立完成)
1.5a 1____ 25a2 1 2. 3a ___ 3a ___ 9a2 4b2 3.x 1___ 1 x2;a b___ b2 a2
4.x 1x 11 x2 _____
学习重点、难点和关键 1.学习重点:
(1)乘法公式的意义、公式的由来和正确运用; (2)用提公因式法和公式法进行因式分解. 2.学习难点: (1)在具体问题中,正确地运用乘法公式; (2)在具体问题中,正确地运用提公因式法和公式 法分解因式. 3.关键: 关键在于使学生正确理解乘法公式和因式分解 的意义,认识乘法公式的结构特征以及字母 的广泛含义.
11.分解因式:x3 x ______
典例探究
1.如果x y 10, xy 7,则x2 y xy2 ____ 2.计算: 5652 0.13 4352 0.13 _____
3.若mx2 ny2 x 3yx 3y,则m ___,
n ___ 4.先化简,再求值:
1xy z yz y 281x4 y4
3 1 a2 a4
4
4x y2 4x y 1 5121a b2 169a b2 6x 1x 31 4.已知a b2 9, a b2 49,求a2 b2和ab的值。
相关文档
最新文档