勒让德(legendre)多项式及其性质
legendre多项式推导
legendre多项式推导
摘要:
1.Legendre 多项式的定义和基本概念
2.Legendre 多项式的性质和应用
3.Legendre 多项式的推导过程
正文:
Legendre 多项式是数学中的一种多项式,它的定义和基本概念如下:Legendre 多项式是指形如P_n(x) = (x - x_1)(x - x_2)...(x - x_n) 的多项式,其中x_1, x_2,..., x_n 是多项式的根。
它也可以写成如下形式:P_n(x) = A_n x^n + A_{n-1} x^{n-1} +...+ A_1 x + A_0
其中A_n, A_{n-1},..., A_1, A_0 是多项式的系数。
Legendre 多项式具有很多重要的性质和应用,比如:
1.Legendre 多项式的根是均匀分布在实数轴上的。
2.Legendre 多项式的系数A_n, A_{n-1},..., A_1, A_0 都可以通过Vieta 定理求出。
3.Legendre 多项式在数值分析和计算机图形学中有广泛应用,比如在求解数值积分和计算曲线积分时,常常使用Legendre 多项式作为基函数。
legendre多项式生成函数
legendre多项式生成函数介绍在数学中,Legendre多项式是以法国数学家阿道夫·雅克·勒让德(Adrien-Marie Legendre)的名字命名的一类多项式。
这些多项式广泛应用于物理学、工程学和应用数学中,具有许多重要的性质。
本文将详细介绍Legendre多项式的生成函数及其相关内容。
生成函数的定义生成函数是一种将数列与函数联系起来的工具,通过将一个数列表示为幂级数形式,可以更方便地进行求解和分析。
Legendre多项式的生成函数是其独特之处,也是引人注目的。
Legendre多项式的定义Legendre多项式可以使用递归关系定义。
设Pn(x)是n次Legendre多项式,则其定义如下:•P0(x) = 1•P1(x) = x•Pn(x) = [(2n-1)xPn-1(x) - (n-1)Pn-2(x)] / n生成函数的定义Legendre多项式的生成函数可以表示为:G(x, t) = 1 / (1 - 2xt + t2)0.5其中,t是一个常数。
生成函数的性质生成函数提供了一种方便的方法来研究Legendre多项式的各种性质。
下面列举了一些生成函数的常见性质。
构造递归关系通过生成函数,我们可以推导出Legendre多项式的递归关系。
根据生成函数的定义,我们可以将G(x, t)展开为幂级数形式:G(x, t) = 1 + 2xt - (t2)x2 + (3t2)x3 - (3t3)x4 + …观察这个幂级数的系数,我们可以得到Legendre多项式的递归关系。
计算Legendre多项式的系数由于生成函数具有幂级数形式,我们可以通过展开生成函数,逐项提取Legendre多项式的系数。
根据生成函数的定义,我们可以得到:G(x, t) = (1 - 2xt + t2)-0.5 = 1 + C1x + C2x^2 + C3x^3 + …通过对比展开式和Legendre多项式的定义,我们可以依次得到C1,C2,C3等系数,从而计算Legendre多项式的值。
第六章 勒让德多项式
y1 ( x ) = ∑ m = 0 a2 m x 2 m ,
∞
y2 ( x ) = a1 x + a3 x 3 + a5 x 5
西安理工大学应用数学系
不妨取n为非负整数,那么对应多项式结构如何? 不妨取 为非负整数,那么对应多项式结构如何?这时 为非负整数
an+2 = an+4 =⋯= 0 ak ≠ 0, k ≤ n
( n − 1)( n + 2) a3 = − a1 3⋅ 2 ( n − 3)( n + 4) ( n − 1)( n − 3)( n + 2)( n + 4) a5 = − a3 = a1 5⋅4 5!
西安理工大学应用数学系
( n − 3)( n + 4) ( n − 1)( n − 3)( n + 2)( n + 4) a5 = − a3 = a1 5⋅4 5!
y2 ( x ) 中有
西安理工大学应用数学系
( k − n)( k + n + 1) ak + 2 = ak k = 0,1, 2,⋯ ( k + 1)( k + 2) m n( n − 2)⋯ ( n − 2 m + 2)( n + 1)( n + 3)⋯ ( n + 2 m − 1) a2 m = ( −1) a0 (2m )! m ( n − 1)( n − 3)⋯( n − 2m + 1)( n + 2)( n + 4)⋯( n + 2m ) a2 m +1 = ( −1) a1 (2m + 1)!
( k − n)( k + n + 1) ak + 2 = ak ( k + 1)( k + 2) ( k + 1)( k + 2) ak = ak + 2 k ≤ n−2 ( k − n)( k + n + 1) n( n − 1) an − 2 = − an 2(2n − 1) ( n − 2)( n − 3) n( n − 1)( n − 2)( n − 3) an − 4 = − an − 2 = an 4(2n − 3) 2 ⋅ 4(2n − 1)(2n − 3) n( n − 1)( n − 2)⋯( n − 2m + 1) m an − 2 m = ( −1) an 2 ⋅ 4⋯ ⋅ 2m (2n − 1)⋯ (2n − 2m + 1)
数理方程勒让德多项式
35 cos
3
30 cos
)
P6
(x)
1 16
(231x6
315x4
105x 2
5)
1 512
(231cos
6
126 cos
4
105 cos
2
50)
第6页/共30页
勒让德多项式的图形可通过计算机仿真(如MATLAB仿真) 得到
图 6.1
第7页/共30页
计算 Pl (0) ,这应当等于多项式 Pl (x) 的常数项.
不同阶的勒让德多项式在区间 [1,1] 上满足
1
1 Pn
( x)Pl
(x)dx
N 2 l n,l
(2.2)
其中
n,l
1 0
(n l) (n l)
当
nl
时满足
1
1Pn (x)Pl (x)d,x 0
(2.3)
称为正交性. 相等时可求出其模
Nl
1 1
Pl2
(
x) dx
2 2l 1
(l 0,1,2, )
第2页/共30页
(1
x2
)
d2 y dx2
2x
dy dx
l
(l
1)
1
m2 x2
y
0
(1.4)
若所讨论的问题具有旋转轴对称性,即定解问题的解与
无关,则 m 0 ,即有
1
sin
d
d
sin
d
d
l(l
1)
0
(1.5)
称为 l 阶勒让德(legendre)方程.
第3页/共30页
同样若记 arc cos x , y(x) (x)
勒让德多项式
从而得到
1
ห้องสมุดไป่ตู้
Θ
sin θ
d dΘ (sin θ ) + n( n + 1) sin 2 θ = m 2 dθ dθ
( 6. 4 )
( 6. 5 )
1 d 2Φ + m2 = 0 2 Φ dϕ
(2 勒让德多项式的一些性 质; )
有关的定解问题。 (3 会用勒让德多项式求解 有关的定解问题。 )
§6.1
勒让德方程的引出
u xx + u yy + uzz = 0
在第四章中, 域内的迪利克雷问题: 在第四章中,我们用格 林函数法解决了球形区 域内的迪利克雷问题:
{
球函数
z
θ
●
拉普拉斯方程 第一类边界条件
数学物理方法
第六章 勒让德多项式 ( Legendre polynomials )
勒让德( 勒让德(1752~1833) ~ ) Legendre . Adrien-Marie 阿德利昂·玛利 埃 勒让德 公元1752─公元1833 为法国数学家, 勒让德( 1752─公元1833) 阿德利昂 玛利·埃·勒让德(公元1752─公元1833)为法国数学家,生于 玛利 巴黎,卒于巴黎。 1770年毕业于马扎兰学院 1775年任巴黎军事学院数学 年毕业于马扎兰学院。 巴黎,卒于巴黎。约1770年毕业于马扎兰学院。1775年任巴黎军事学院数学 教授。1782年以 关於阻尼介质中的弹道研究》获柏林科学院奖金, 年以《 教授。1782年以《关於阻尼介质中的弹道研究》获柏林科学院奖金,次年当 选为巴黎科学院院士。1787年成为伦敦皇家学会会员 年成为伦敦皇家学会会员。 选为巴黎科学院院士。1787年成为伦敦皇家学会会员。 曾与拉格朗日( )、拉普拉斯 拉普拉斯( 勒让德 (Legendre) 曾与拉格朗日(Lagrange)、拉普拉斯(Laplace) 并列为法国数学界的“ 世纪末19世纪初法国数学的复兴, 并列为法国数学界的“三 L ”,为18世纪末19世纪初法国数学的复兴,做出了 , 18世纪末19世纪初法国数学的复兴 卓越的贡献。 卓越的贡献。
legendre多项式推导
legendre多项式推导【最新版】目录1.Legendre 多项式的定义和基本概念2.Legendre 多项式的性质和应用3.Legendre 多项式的推导过程4.Legendre 多项式的扩展和推广正文Legendre 多项式是数学中的一种多项式,它的定义和基本概念如下: Legendre 多项式是关于变量 x 的 n 阶多项式,其通项公式为:Pn(x) = (x - x1)(x - x2)...(x - xn),其中 x1, x2,..., xn 是 n 个不同的实数。
Legendre 多项式具有许多重要的性质和应用,例如:- Legendre 多项式的根为 x1, x2,..., xn,这些根是多项式的解。
- Legendre 多项式的系数具有特殊的性质,可以用来求解其他数学问题。
- Legendre 多项式可以用来表示其他数学函数,例如三角函数、指数函数和对数函数等。
Legendre 多项式的推导过程比较复杂,需要涉及到一些高级的数学概念和方法,例如代数余子式、行列式和递推公式等。
具体的推导过程如下:首先,根据代数余子式的定义,可以得到 Legendre 多项式的余子式表示:Pn(x) = a0x^n + a1x^(n-1) +...+ an-1x + an,其中 a0, a1,..., an-1, an 是多项式的系数。
然后,根据行列式的定义,可以得到 Legendre 多项式的系数行列式表示:Pn(x) = |x-x1| |x-x2|...|x-xn|,其中|x-x1|,|x-x2|,..., |x-xn|是 x-x1, x-x2,..., x-xn 的绝对值。
最后,根据递推公式,可以得到 Legendre 多项式的递推公式表示:Pn(x) = (x - x1)Pn-1(x) - (x - x2)Pn-2(x) +...+ (x - xn-1)P1(x) - (x - xn)P0(x),其中 Pn-1(x), Pn-2(x),..., P1(x), P0(x) 是 Legendre 多项式的前 n-1 项、前 n-2 项,...,第 1 项和第 0 项。
勒让德多项式的性质
三、正交性 1 §14.2 勒让德多项式的性质用途:可计算含 pl (x 的积分。
2 ∫−1 Pl (x Pk (x dx = 2l + 1 δ kl , k , l = 0,1,2,..., (6 问: ∫ ∫ 1 2 2 P8 (x dx = ? = −1 2 ⋅ 8 + 1 17 1 0 ∫−1 P8 (x P9 (x dx = ? 1 9 2 ∫−1 xP8 (x P9 (x dx = ? = 17 ⋅ 18 + 1 2 −1 1 P 199 ( x P 300 ( x dx = ? 0四、广义傅氏展开f (x = ∑ Cl Pl (x l =0 ∞ §14.2 勒让德多项式的性质 (9 2l + 11 Cl = f ( x Pl ( x dx ∫2 −1 (10 用途: (1在物理中常需将作为表征的物理量展开为级数进行分析。
(2在求解数学物理方程时其解常是某函数的无穷级数,如稳恒电场的解,就是 Legendre级数。
五.小结一、母函数关系式二、递推公式三、正交性1 1− 2x t + t 2 §14.2 勒让德多项式的性质= ∑ Pl (x t l , t < 1 (1 l =0 ∞ 1. (l + 1Pl +1 ( x − (2l + 1x Pl ( x + l Pl−1 ( x = 0 (2 2. (2l + 1Pl (x = Pl′+1 ( x − Pl′−1 (x (3 ∫ 1 −1 Pl ( x Pk (x dx = 2 δ kl , k , l = 0,1,2,..., (6 2l + 1 ∞ 四、广义傅氏展开f ( x = ∑ Cl Pl ( x l =0 (9 2l + 1 1 Cl = f (x Pl ( x dx ∫ − 1 2 (10本节作业一.由勒让的多项式的母函数关系式推出下列递推关系: 1. (l + 1Pl +1 (x − (2l + 1x Pl ( x + l Pl −1 ( x = 0 (2 2. (2l + 1Pl (x = Pl′+1 ( x − Pl′−1 (x (3 二.P280. 2。
勒让德多项式是区间什么的正交函数
勒让德多项式是一类具有重要性质的正交函数,它们在数学和工程领域中有着广泛的应用。
本文将介绍勒让德多项式的定义、性质、正交关系以及其在实际问题中的应用。
一、勒让德多项式的定义勒让德多项式是勒让德微分方程的解,该微分方程形式如下:\[ (1-x^2)y''-2xy'+n(n+1)y=0 \]其中n为非负整数。
根据其定义,勒让德多项式可以通过勒让德微分方程的解出来。
勒让德多项式的具体形式可以表示为:\[ P_n(x)= \frac{1}{2^n n!} \frac{d^n}{dx^n}(x^2-1)^n \]其中n为非负整数,P_n(x)表示第n阶的勒让德多项式。
二、勒让德多项式的性质勒让德多项式具有许多重要的性质,例如:1. 勒让德多项式是正交的,即对于不同的n和m,有以下正交性质成立:\[ \int_{-1}^{1}P_n(x)P_m(x)dx=0, \quad(n\neq m) \]2. 勒让德多项式满足勒让德微分方程,这也是它的定义所在。
3. 勒让德多项式具有递推关系,即通过递推关系可以方便地计算高阶的勒让德多项式。
三、勒让德多项式的正交关系及应用勒让德多项式的正交性质在数学和工程领域中有着重要的应用。
在数学分析中,勒让德多项式的正交性质可以用来进行函数的展开和逼近,例如在傅立叶级数、泰勒级数及函数的插值逼近中。
在数值计算和数值分析中,勒让德多项式的正交特性也被广泛应用,例如在数值积分方法中,通过勒让德多项式的正交性质可以得到高效的数值积分算法。
勒让德多项式还具有广泛的物理应用,例如在量子力学中,勒让德多项式常常用来描述原子轨道的形状。
在实际问题中,勒让德多项式的正交性质为我们提供了一种简便而有效的数学工具,通过利用勒让德多项式的正交性质,我们可以更加方便地解决各种数学和工程问题。
勒让德多项式作为一类重要的正交函数,在数学和工程领域中具有着广泛的应用。
通过深入研究勒让德多项式的定义、性质、正交关系及其应用,我们可以更好地理解和运用这一类特殊的函数,从而为解决各种实际问题提供更加有效的数学工具。
legendre多项式推导
legendre多项式推导勒让德多项式(Legendre polynomials)是一类重要的正交多项式,其推导过程可以通过递归关系和积分方法得到。
1. 递归关系推导:勒让德多项式可以通过以下递归关系定义:P_0(x) = 1P_1(x) = x(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)其中,P_n(x)表示阶数为n的勒让德多项式。
利用这个递归关系,我们可以依次计算出更高阶的勒让德多项式。
2. 积分方法推导:另一种推导勒让德多项式的方法是使用积分。
设f(x)为一个可积函数,我们想要将它展开成勒让德多项式的级数形式。
首先假设可以将f(x)展开为如下形式:f(x) = ∑_{n=0}^∞ a_n P_n(x)我们的目标是求解每个a_n的值。
为了实现这一点,我们将上述等式两边乘以P_m(x)并在区间[-1,1]上进行积分,可以得到:∫_{-1}^1 f(x)P_m(x)dx = ∑_{n=0}^∞ a_n ∫_{-1}^1 P_n(x)P_m(x)dx由于勒让德多项式是正交的,即∫_{-1}^1 P_n(x)P_m(x)dx = 0 (n ≠ m),所以上述等式简化为:∫_{-1}^1 f(x)P_m(x)dx = a_m ∫_{-1}^1 P_m(x)P_m(x)dx =a_m(c_m),其中c_m是一个常数。
我们可以通过计算∫_{-1}^1 f(x)P_m(x)dx 来求解 a_m 的值,从而得到展开式中每个项的系数。
综上所述,勒让德多项式可以通过递归关系或积分方法推导出来,并且可以用于展开函数。
其在物理学、数学和工程等领域中有广泛的应用。
第13讲 勒让德多项式
4
105 cos
2
50)
勒让德多项式的图形可通过计算机仿真(如MATLAB仿真) 得到
图 6.1
计算 Pl (0) ,这应当等于多项式 Pl (x) 的常数项.
如 l 为 2n 1 (即为奇数)时,则 P2n1(x)
只含奇 数次幂,不含常数项,所以
P2n1 (0) 0
(1.8)
(x)
1 8
(35x4
30x2
3)
1 64
(35 cos
4
20
cos
2
9)
P5
(x)
1 8
(63x5
70
x3
15x)
1 128
(63cos
5
35
cos
3
30
cos
)
P6
(x)
1 16
(231x6
315x4
105x 2
5)
1 512
(231cos
6
126 cos
(
x)
d dx
[(1
x
2
)Pl(
x)]
Pl
(
x)
d dx
[(1
x
2
)Pn(
x)]}dx
1
[n(n 1) l(l 1)] 1Pl (x)Pn (x)dx
因为上面等式左边的积分值为
(1 x2 )[Pn (x)Pl(x) Pl (x)Pn(x)] |11 0
1
所以当 n l 时,必然有 1Pl (x)Pn (x)dx 0
勒让德多项式
数学物理方法于承斌泰山医学院第十六章勒让德函数球坐标系中求解物理方程,解函数是一类特殊函数,其形式为多项式,最早研究的是法国数学家勒让德,故称其为勒让德函数以及勒让德多项式。
§16.1 勒让德多项式的定义及表示16.1.1. 定义及级数表示oϕθr xyz勒让德方程0,21(1)2c n n ⋅+−x+ x+4(23)2(1)!(2)!(24)!,n n n n n −−−−,0,1,2,,m =⎢ 220(22)!()(1)2!()!(2)!l k l k l l k l k P x x k l k l k ⎡⎤⎢⎥⎣⎦−=−=−−−∑()l P x 221112122112(!)d d 1d (1)d d (1)d d (1)d d l ll l l l llll x l x x x x x x−−−−−⋅−⎢⎥⎣⎦⎡−−⋅⎢⎡⎤−⎢⎥⎣⎦∫∫注意到lllx x x )1()1()1(2+−=−以1±=x 为l 级零点,故其(1)l −阶导数121d (1)d l ll x x −−−必然以1±=x 112121222111(1)d (1)d (1)d 2(!)d d l l l ll ll l x x N x l x x−+−+−−−−=∫再进行l 次分部积分,即得221222221(1)d (1)(1)d 2(!)d ll llll l x N x x l x−−−=−∫为一级零点,从而上式已积出部分的值为零lx )1(2−是l 2次多项式,其l 2阶导数也就是最高幂项lx2的l 2阶导数为)!2(l .故12221(2)!(1)(1)(1)d 2(!)ll llll N x x xl −=−−+∫再对上式分部积分一次112112211111221(2)!1(1)(1)(1)(1)(1)d 2(!)1(2)!(1)(1)(1)(1)d 2(!)1ll l l l ll l l l l l N x x l x x x l l l l x x x l l −+−−−+−⎡⎤=−⋅−+−−+⎢⎥⎣⎦+=−⋅−−++∫∫容易看出已积出部分以1±=x 为零点.至此,分部积分的结果是使)1(−x 的幂次降低一次,)1(+x 的幂次升高一次,且积分乘上一个相应的常数因子.继续分部积分(计l 次),即得120222112121(2)!11(1)(1)(1)(1)d 2(!)122112(1)22121ll lll l l l l l N x x x l l l l x l l −+−−=−⋅−⋅⋅⋅−+++=⋅+=++∫ 故勒让德多项式的模为122+=l N l ),2,1,0( =l 且有112P ()P ()d 21l lx x x l −=+∫=2m P ++16.2.4. 勒让德多项式的递推公式利用母函数(16.1.13)对x求导, 勒让德多项式有以下的递推公式11(2)(1)()(21)()()n n n n P x n xP x nP x +−+=+−1(3)()()()n n n nP x xP x P x −′′=−1(4)'()()(1)()n n n P x xP x n P x +′′=++11(1)()'()2'()'()n n n n P x P x xP x P x +−=−+11(5)(21)()()()n n n n P x P x P x +−′′+=−21(6)(1)'()()()n n n x P x nxP x nP x −−=−1(7)(21)()'()'()nln n l l P x P x P x +=+=+∑例16.2. 1求积分11P ()P ()d l n I x x x x−=∫【解】利用递推公式(2)11(1)P ()(21)P ()P ()k k k k x k x x k x +−+=+−.(1)k ≥故有1111111111111P ()P ()d {[(1)P ()P ()]}P ()d 211 P ()P ()d P ()P ()d 2121l n l l n l n l n I x x x x l x l x x x l l lx x x x x x l l +−−−+−−−==++++=+++∫∫∫∫22 (1)412(1) (1)(23)(21)0 (1)nl n n n l n n n l n ⎧⎪=−−⎪⎪+==+⎨++⎪⎪⎪−≠±⎩例16.2. 2求积分1P ()d l I x x=∫【解】利用递推公式(5)11110011101111P ()d d[P ()P ()]2111[P ()P ()][P (0)-P (0)]2(120)1=1l l l l l l l l I x x x x l x x l l l P +−−+−+−==−+=−=+++∫∫112x 0(1)(0)(21)0(0)(0)n n n n P n P nP +−+=+−利用递推式:令=代入11(0)(0)1l l lP P l −+−=+(1)(21)!!21(22)k k l k k −−=++!!02l k =111001P ()d d 12x x x x l ===∫∫11000P ()d d 1x x x l ===∫∫⎧⎪=⎨⎪⎩例16.2. 3求积分1P ()d l Ix x x=∫【解】利用递推公式(5)1111001111011021012011P ()d d[P ()P ()]211[P ()P ()]|[P ()P ()]d 2121P (0)P (0)P (0)1[-] = -212(2)(1)1d 021d 13021(1)(23)!!2(22)!!l l l l l l l l l l k I x x x x x x l x x x x x x l l l l ll l x x l x x l l k k l k +−+−+−−+==−+=−−−++=−+++−======+−−=+∫∫∫∫∫k⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩1101P ()d P (0)1∵l l x x l −=+∫112(0)(0)1(0)(0)1l l l l lP P l lP P l −+−−=+−=−例16.2. 4利用递推公式(2)可得如下结果;212021P ()P ()P ()33x x x x x ==+3212021P ()[P ()P ()]33x x x x x x x x x =⋅=⋅=⋅+3123P ()P ()55x x =+43142023841[P ()P ()]P ()P ()P ()553575x x x x x x x =+=++1()P x x=221()(31)2P x x =−331()(53)2P x x x =−4241()(35303)8P x x x =−+111()[(21)()()]1l l l P x l xP x lP x l +−=+++特别1()P x x=∵利用递推公式(2)P (cos )n θ,这时有0(cos )P (cos )n n n f C θθ+∞==∑θcos =x ,此时勒让德方程的解为在实际应用中,经常要作代换π21(cos )P (cos )sin d 2n n n C f θθθθ+=∫其中系数为结论1:设k 为正整数,可以证明:222222200212121232311P ()P ()P ()P ()P ()P ()k k k k k k k k k k x C x C x C x xC x C x C x −−−−−−−=++⋅⋅⋅+=++⋅⋅⋅+结论2 :根据勒让德函数的奇偶性,若需展开的函数()f x 为奇函数,则展开式的系数20n C =;若需展开的函数()f x 为偶函数,则展开式的系数.210n C +=0,1,2,3,n =⋅⋅⋅例16.2.6以勒让德多项式为基,在[-1,1]区间上把3()234f x x x =++展开为广义傅里叶级数.【解】本例不必应用一般公式,事实上,()f x 是三次多项式,设它表示为3323012323021323234P ()111(31)(53)221335()()2222n nn x x C x C C x C x C x x C C C C x C x C x=++==⋅+⋅+⋅−+⋅−=−+−++∑比较同次幂即得到3210421, 0, , 455C C C C ====由此得到30132142344P ()P ()P ()55x x x x x ++=++例16.2.7将函数cos 2 (0π)θθ≤≤展开为勒让德多项式P (cos )n θ的形式【解】用直接展开法令cos x θ=,则由22cos 22cos 121x θθ=−=−我们知道:20121P ()1, P (), P ()(31)2x x x x x ===−可设200112221P ()P ()P ()x C x C x C x −=++10C =2202121(31)2x C C x −=+−由20,x x 项的系数,显然得出2041, 33C C ==−02021414cos(2)P ()P ()P (cos )P (cos )3333x x θθθ=−+=−+考虑到勒让德函数的奇偶性,显然。
勒让德多项式 协方差
勒让德多项式协方差
勒让德多项式(Legendre polynomial)是一个经典的正交多项
式系列,在物理、数学和工程等领域有广泛应用。
它们可以通过勒让德微分方程来定义。
勒让德多项式是勒让德微分方程的解,定义为以下级数形式:
P_n(x) = (1/2^n)n!(d^n/dx^n)((x^2-1)^n)
其中,P_n(x) 是勒让德多项式的第n阶多项式,x 是自变量,
n 是多项式的次数。
n! 表示n的阶乘,d^n/dx^n 表示对x进行
n次微分。
协方差(covariance)是用于衡量两个变量之间线性关系的统
计量。
在概率论和统计学中,协方差可以用来衡量两个变量的变化趋势是否一致。
协方差的计算公式如下:
cov(X, Y) = E[(X-μ_X)(Y-μ_Y)]
其中,X 和 Y 是两个随机变量,μ_X 和μ_Y 分别是 X 和 Y 的期望(均值)。
对于勒让德多项式,它们是一组正交多项式,不同阶的多项式之间是线性无关的。
因此,勒让德多项式的协方差为0,即
cov(P_m(x), P_n(x)) = 0,其中m ≠ n。
换句话说,勒让德多项式的协方差矩阵是一个对角矩阵,对角线上的元素都为0,表示各个多项式之间不存在线性相关关系。
数学物理方法4-2Legendre函数
mn
第四章 特殊函数 第二节 Legendre多项式
n n 1 d 1 2 2 n d n ( 1 ) dx ( x 1 ) x P n ( x ) dx 2 1 n n 1 2n dx dx 2 n! n 1 d 1 d n 1 2 2 n n 2n 2 ( x 1 ) d ( x 1 ) n dx n 1 2 n! 1 dx n 1 n 1 1 d 1 2 2 n d n 2n 2 ( x 1 ) ( x 1 ) dx n 1 n 1 1 dx dx 2 n!
d 2 d d 2 2 cos sin 2 2 d dx dx
连带的勒让德方程 n次的勒让德方程
(1 x 2 ) y 2 xy n(n 1) y 0
第四章 特殊函数 第二节 Legendre多项式
二 勒让德方程求解
设具有级数解 带入方程得:
a2 m (1) m
x cos (2n)! P n ( x ) dx 2 1 2 2 n n!
1 2
x
0
2
1 (1) n sin 2 n
2 n 1
n
sin
(2n)! d 2 2 2 n 1 n!
/2
0
sin 2 n 1 d
第四章 特殊函数 第二节 Legendre多项式
第四章 特殊函数 第二节 Legendre多项式
性质4 正交性和模值
1
0, mn 2 1 Pm ( x) Pn ( x)dx , mn 2n 1
1
先证明: 1 x k Pn ( x)dx 0 k n
1 dn 2 1 1 k d n 1 2 n n x n ( x 1 ) d x n x d n 1 ( x 1) 1 2 n! dx n 2 n! 1 dx 1 n 1 n 1 1 d 1 d n k 1 n 2 k 2 ( x 1) x dx n x n 1 ( x 1) k n 1 1 dx 2 n! dx 1 n 1 k 1 k 1 d n 2 n x ( x 1 ) dx n 1 1 2 n! dx
勒让德多项式及性质
例题2、以勒让德多项式为基本函数族,将函数
f ( x) 2 x 3 3x 4 在区间(-1,+1)上进行广义傅立叶展开。
1 1 2 P2 ( x) (3x 1) (3cos 2 1) 2 4 1 1 3 P3 ( x) (5x 3x) (5cos3 3cos ) 2 8 1 1 4 2 P4 ( x) (35x 30 x 3) (35cos 4 20cos 2 9) 8 64 1 1 P5 ( x) (63x5 70 x3 15x) (63cos5 35cos3 30cos ) 8 128 1 1 P6 ( x) (231x6 315x4 105x 2 5) (231cos 6 126cos 4 105cos 2 50) 16 512
前面已学:勒让德方程在x 1有自然边界条件: x 1 有限,从而构成 y 本征值问题,本征值是l (l 1), l 0,1, 2, 3..., 在l为整数条件下,勒让德方程 的两个线性独立特解y ( x ) a0 y0 ( x ) a1 y1 ( x )之一退化为l次多项式。 z l为2k (偶数): a y ( x) ~
l 2n (n 0,1, 2, ) l 2n 1
上式具有多项式的形式,故称
Pl ( )
为
l
阶勒让德多项式.勒让德多项式也称为第一类勒让德函数.
二、勒让德多项式
1、前几个勒让德多项式: (注意到 x cos ) P0 ( x) 1
P1 ( x) x cos
勒让德多项式的图形可通过计算机仿真(如MATLAB仿真) 得到
图 11.1
2、勒让德多项式的微分表示
1 dl Pl ( x) l ( x 2 1)l 2 l ! dx l
数理方程第12讲勒让德多项式
(1.4)
若所讨论的问题具有旋转轴对称性,即定解问题的解与
无关,则
m 0 ,即有
(1.5)
1 d d sin l (l 1) 0 sin d d
称为 l 阶勒让德(legendre)方程.
同样若记
arc cos x
,
y( x) ( x)
P0 ( x) 1
P1 ( x) x cos
P2 ( x) 1 1 (3x 2 1) (3cos 2 1) 2 4
1 1 P3 ( x) (5 x3 3x) (5cos 3 3cos ) 2 8
1 1 P4 ( x) (35 x 4 30 x 2 3) (35cos 4 20cos 2 9) 8 64 1 1 P5 ( x) (63x5 70 x3 15 x) (63cos 5 35cos 3 30cos ) 8 128
d ( x 1) 1 ( x 1) dx2l dx
1 2l 2 l 2 l
( x 2 1) l 是
2l 次多项式,其 2l
1
阶导数也就是最高幂项
x 2 l 的 2l 阶导数为 (2l )! .故
(2l )! N (1) 2l 2 2 (l !)
2 l l
1
( x 1)l ( x 1)l dx
2 l 1
1
为了分部积分的方便,把上式的 Pl ( x)用微分表示给出,则有
1 N 2l 2 2 (l !)
2 l
d l ( x 2 1)l d d l 1 ( x 2 1)l dx l 1 1 dxl dx d x
1 1